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AN EFFICIENT AND EFFECTIVE NONLINEAR SOLVER IN A
PARALLEL SOFTWARE FOR LARGE SCALE PETROLEUM

RESERVOIR SIMULATION

JIANWEN CAO AND JIACHANG SUN

Abstract. We study a parallel Newton-Krylov-Schwarz (NKS) based algo-

rithm for solving large sparse systems resulting from a fully implicit discretiza-

tion of partial differential equations arising from petroleum reservoir simula-

tions. Our NKS algorithm is designed by combining an inexact Newton method

with a rank-2 updated quasi-Newton method. In order to improve the computa-

tional efficiency, both DDM and SPMD parallelism strategies are adopted. The

effectiveness of the overall algorithm depends heavily on the performance of the

linear preconditioner, which is made of a combination of several preconditioning

components including AMG, relaxed ILU, up scaling, additive Schwarz, CRP-

like(constraint residual preconditioning), Watts correction, Shur complement,

among others. In the construction of the CRP-like preconditioner, a restarted

GMRES is used to solve the projected linear systems. We have tested this algo-

rithm and related parallel software using data from some real applications, and

presented numerical results that show that this solver is robust and scalable

for large scale calculations in petroleum reservoir simulations.

Key Words. Petroleum reservoir simulation, Nonlinear solver, Precondition-

ing, Inexact Newton, BFGS, Krylov subspace, Parallel performance.

1. Introduction

Petroleum reservoir simulation solves the multidimensional and multiphase equa-
tions of conservation of mass in porous media, subject to appropriate initial and
boundary conditions. The processes occurring in petroleum reservoirs are basically
fluid flow and mass transfer. Black Oil Model [1, 2] is regarded as the fundament
of reservoir simulation work, where fluids of different phases are usually considered
to be at constant temperature and in thermodynamic equilibrium throughout the
reservoir. There are three distinct phases, namely oil, water and gas, in this model.
Flow in a porous media is governed by three kinds of equations: PDEs describing
material flow between blocks which are governed by Darcy’s law, a phase-constraint
equation describing a saturation relationship of three different phases, capillary
pressure equations describing surface tension and the curvature of the interface
between the two fluids within the small pores.

In last few years, the performance of parallel petroleum reservoir simulation has
been significantly improved ([3]-[10]). However, only a few papers offer their re-
sults and effects of practical reservoir problems on MPP computers with more than
32 CPUs. We have developed a parallel black-oil simulator based on a sequential
code ([11]), it works well on distributed-memory machines. This simulator uses a
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fully implicit scheme to discretize the coupled PDEs. The resulting set of nonlin-
ear equations is solved by using inexact Newton method with special choice the
initial guess([12]). Efficiency, flexibility and portability are emphasized throughout
processes of design and implementation. The solver package is designed and coded
so that it is adapted to solving a variety of multi phase flow problems, not being
limited to black-oil problems.

Newton method has attractive theoretical and practical properties. If the initial
guess is close enough to the exact solution, then quadratic convergence can be ob-
tained. In the nonlinear solver, choosing a good initial guess is one of our emphases.
We use BFGS method to provide a good initial guess.

In Newton iteration the most expensive part is solving large sparse linear systems.
Usually, each Newton step uses Krylov subspace method with a proper precondi-
tioner. Numerical tests show that, comparing different Krylov subspace algorithms
with their “proper” chosen preconditioners, no one algorithm is obviously better
than the other ([15]). So the most important part is the choice of preconditioning
strategy. Our parallel simulator uses a FGMRES method ([16])with an iterative
preconditioning as a typical linear solver. The used preconditioner adopts a so-
called multipurpose oblique projection correction strategy ([12]), which involves
several preconditioning components such as AMG, relaxed ILU, up scaling, DDM,
CRP ([17]) etc.

2. The Black Oil Model and Discretization

The three-phase flow conservation equations can be expressed as [18]
(1)

∇[Tw∇(Pw − ρwgD)] + qw =
∂(φbwSw)

∂t

∇[To∇(Po − ρogD)] + qo =
∂(φboSo)

∂t

∇[Tg∇(Pg − ρggD)] +∇[ToRs∇(Po − ρogD)] + qg + Rsqo =
∂(φbgSg + φboSoRs)

∂t
,

where Tl := Mlbl is the transmissibility of phase-l (l = w, o, g), bl := f1(Po) is the
reciprocal of formation volume factor, D is the vertical depth, Rs := f2(Po) is the
gas-oil ratio, and φ := f3(Po) is the rock porosity. As a factor of Tl, the mobility

Ml :=
Kf4(Sw, Sg)

µl
gives a relationship between the flow rate ~vl and the pressure

gradient ∇Pl in each phase through Darcy’s Law

~vl = −Ml∇(Pl − ρlgD) .

As an empirical fact, the capillary pressure is a unique function of saturation which
provides a relationship between different phase pressures

Pw = Po − Pcow(Sw) , Pg = Po + Pcgo(Sg) .

As a result, the three unknowns of the above PDEs are oil-phase pressure (Po),
water-phase and gas-phase saturation (Sw, Sg). More details of the variables and
their physical properties can be found in many literatures, e.g. ([2]). This model
is being used in the commercial reservoir simulation software packages such as
VIP ([7]), ECLIPSE ([8]), IPARS([9]) and Simbest-II ([11]). The model represents
mathematically a class of important industrial problems rather than simply being
an idealized model for benchmark tests and uses realistic saturation coefficients,
permeability, and transmissibility which are in-situ field data collected over a long
period of time.
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By means of considering special cases, we may know about their obscure charac-
teristics. First, the PDEs behave mainly parabolic characteristics. A single-phase
PDE has the same form of a heat conduction equation and maybe nonlinear. Two-
phase PDEs superficially resemble heat conduction equations also. Second, the
PDEs have some characters of elliptic equations. The effects of compressibility ct

usually don’t dominate, especially for incompressible flow or slight compressible
flow. Thus, as a practical matter, the pressure equation must also be treated as
being elliptic or nearly elliptic

∇(Mo + Mw)∇(Po + Pw) + 2× (
qo

ρo
+

qw

ρw
) ' φct

∂(Po + Pw)
∂t

.

Third, the saturation equation can be regarded as a nonlinear variation of the
diffusion-convection equation

∇(f5(Sw)∇Sw)− f6(Sw)~vt∇Sw +
qw

ρw
' φ

∂Sw

∂t
+∇(

MoMw(ρw − ρo)g
Mo + Mw

∇D) .

If the diffusion term dominates which means that the capillary pressure Pcow ef-

fect dominates (f5(Sw) := − MoMw

Mo + Mw

dPcow

dSw
), this PDE behaves like a parabolic

equation. However, if the capillary effects are small, when velocities ~vt are large,

the convection term dominates (f6(Sw) :=
d[Mw/(Mo + Mw)]

dSw
), and this PDE ap-

proaches a first-order nonlinear hyperbolic equation. These characteristics require
appropriate difference formulations and suitable preconditioned linear solvers in or-
der to solve various applications efficiently. According to above analysis, we can
draw the following conclusion: the pressure PDE is parabolic in nature, in many
cases, it is nearly elliptic; the gas saturation PDE is a nonlinear diffusion-convection
equation, whereas capillary pressure effects dominate; the oil saturation PDE be-
haves nearly hyperbolic, especially when capillary pressure effects dominate, and
more important sometimes, when velocities are large.

Finite difference formulation of the component conservation equation adopts
block-centered grid system in our simulator. Considering convection-dominated
PDEs, the choice of a first-order difference scheme is crucial. Both up streaming
and centered scheme in spatial direction can satisfy the requirement of uncondi-
tionally stable. Large time step requirement discards the choice of explicit scheme.
Thus, there are four combinations of first-order schemes available, up streaming-
in-distance with implicit-in-time, up streaming-in-distance with centered-in-time,
centered-in-distance with implicit-in-time, and centered-in-distance with centered-
in-time. All the four combinations may lead to numerical dispersion or oscillation
(overshoot) phenomenon. Numerical results and theoretical analysis assure that we
can’t avoid the two phenomena at the same time ([1],[2]). By choosing different
combinations, trade off between one and the other is available. In order to keep
the scheme to be unconditional stable and avoid numerical oscillation, the choice
strategy of first-order difference scheme in our simulator is: fully implicit scheme in
the time direction and up steaming scheme in the distance direction. The simulator
also adopts the so-called upstream weighting for the relative permeability in the
discretization of the second-order diffusion term.

3. Nonlinear Solver and Linear Solver

Fully implicit formulation leads to nonlinear difference equations, thus Newto-
nian iteration method is required. Newton method has been the most popular
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choice to solve the nonlinear systems resulting from the fully implicit discretization
of the fluid-flow PDE at each time step. It is noted that nonlinearity of the model
equation leads to time step restriction also, though it is much less stringent than
that for less-implicit difference scheme such as IMPES ([2]), etc. When a fully im-
plicit scheme converts the coupled partial differential equations of black oil reservoir
simulation to algebraic equations, usually a set of nonlinear algebraic equations of
the form F (u) = 0, have to be solved at every time step. The following provides a
general description of the nonlinear inexact Newton method.

Algorithm IN (Inexact Newton Method)
Define δu := u(n+1) − u(n)

(a) Give initial guess u(0)

(b) For n = 0, 1, 2, . . . until convergence, do
Using Taylor’s formula, to discretize the nonlinear equation

F (u(n+1)) = F (u(n) + δu) ≈ F (u(n)) + J(u(n))δu = 0

Get the following linear system

(2) ‖J(u(n))δu + F (u(n))‖2 ≤ ηn‖F (u(n))‖2
Choose a proper forcing term ηn, which is a function of n and F (u(n))
Solve the linear system and obtain its solution δu(n)

Choose a proper backtracking step length αn, which is a function of n, δu(n)

and δu[max tolerance]

Compute the new approximate solution

u(n+1) = u(n) + αnδu(n)

Check if u(n+1) satisfies the convergence tolerance of F (u) = 0

In most cases, the initial guess of Newton method is close enough to the exact
solution. However, on few cases (usually less than 5%), the initial guess is far
enough that Newton method is difficult to converge or even diverge. There are two
approaches to overcome these non convergence phenomena. The first approach is
to cut the length of current time step, another way is to try to find a better initial
guess. Obviously, considering the solution efficiency, the latter is better. In our
simulator, we use BFGS to find a proper initial guess, and obtain the following
algorithm:

Algorithm INNS(Inexact Newton Nonlinear Solver)
(a) Choose the initial vector u(0)

(b) Use Algorithm IN to get the approximation solution vector u(k)

(c) Do the convergence history evaluation. Determine that the nonlinear
iteration process is satisfied or not.

Case 1: If this process is satisfied, we continue to use Algorithm IN till
convergence.
Case 2: If this process isn’t satisfied, which means that it is difficult to
observe the IN’s convergence behavior, or even the IN diverges. In this
case, we use BFGS to obtain a better approximation u(k∗) than that of
u(k), then let u(0) := u(k∗), and go back to (b)in order to construct a new
approximation vector. Here, we need to choose an initial approximation of
J(u(∗)) ≡ F ′(u(∗)) as B0.

Algorithm BFGS
Get the approximation vector u(k−1) and mark it with v(0)
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Get an initial approximation of B0 := J(v(0)) ≡ F ′(v(0))
Choose ILU(1) as a preconditioner of B0

For j = 0, 1, . . . , m until the convergence criteria is satisfied, and mark the
solution v(m) with u(k∗).

(a) Let gj := F (v(j)), solve B0z = −gj using GMRES-ILU precon-
ditioned iterative method
(b) Solve the matrix system : Bjdj = −F (v(j))
(c) Compute αj so that v(j+1) = v(j) +αjdj can decrease the merit
function f(j) := 1/2‖F (v(j))‖22 along the direction dj

(d) Check if v(j+1) satisfies the tolerance ‖F (v(j+1))‖2 ≤ 0.1× ‖F (v(0))‖2
(e) Compute and get the following vector

gj+1 := F (v(j+1))
yj := gj+1 − gj ≡ F (v(j+1))− F (v(j))

s(j) := αjdj ≡ v(j+1) − v(j)

(f) Bj+1 is obtained from Bj by means of a rank-2 updates,

Bj+1 = Bj +
gj gT

j

gT
j dj

+
yj yT

j

yT
j s(j)

.

One of the important parts of our nonlinear solver is choosing a good initial
guess. The reason of adopting BFGS is that there is a fast implementation of
BFGS algorithm. The j-th BFGS iteration needs to solve a linear system with a
fixed matrix B0. We may get an ILU decomposition of B0 and repeatedly use it as a
preconditioner during iteration process (a). Another computation-sensitive process
of BFGS is (b), it only needs to solve a small dense matrix linear system of order
(j +1)× (j +1) (usually less than 10×10) which can be solved easily and efficiently
by calling BLAS3 mathematic library. In our nonlinear solver, considering the role
of BFGS, its maximum iteration number m is set to be 9, and its stopping tolerance
is set to be ‖F (v(j+1))‖2/‖F (v(0))‖2 ≤ 0.1. The computation process (b) is depicted
as follows([12]):

(b1) Compute and store the following arrays

GD(j − 1) := gT
j−1dj−1

YS(j − 1) := (gj − gj−1)T (v(j) − v(j−1))
BG(j) := B−1

0 gj

GBG(i, k) := gT
i B−1

0 gk (i = 0, 1, . . . , j; k = 0, 1, . . . , j)

(b2) Form the following (j + 1)× (j + 1) dense matrix linear system

C(k) +
j∑

i=0




( 1
GD(i)

+
1

YS(i)
+

1
YS(i− 1)

)
GBG(k, i)

− 1
YS(i)

GBG(k, i + 1)

− 1
YS(i− 1)

GBG(k, i− 1)




C(i) = −GBG(k, j)

k = 0, 1, 2, 3, . . . , j, where GD(j) := ∞, YS(−1) := ∞, YS(j) := ∞
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(b3) Call BLAS3 to solve the above small system, and obtain the solution array
C(0), . . . , C(j), then the desired solution vector of BFGS method can be obtained as

dj = −∑j−1
i=0

[
C(i)
GD(i)

− C(i + 1)− C(i)
YS(i)

+
C(i)− C(i− 1)

YS(i− 1)

]
BG(i)

−
[
1 +

C(j)− C(j − 1)
YS(j − 1)

]
BG(j)

Quasi-Newton matrix B0 comes from a Jacobian approximation of the nonlinear
equation. BFGS is used until u(k) is much closer to solution u(∗), so that Newton
method may show its quadratic convergence rate. During the computation process
along the temporal axis, on most cases, only an inexact Newton method is used for
solving the nonlinear equation, a merit function of evaluating the iteration history
needs to be provided priory. Once the iteration history isn’t satisfied, which means
that the inexact Newton algorithm may not converge successfully ([19, 20]), maybe
the initial approximation is pretty bad, at that time BFGS is used to find a better
initial guess. If INNS doesn’t work, we have to cut in half the length of this time
step (In our solver, the maximum limitation of cut number is set to be 3). If INNS
doesn’t work also, we need set the length of time step to be minimum, which is
provided from the written data file and usually equals to be 0.01 days. In the non-
linear solver, we use merit function f(j) to do the evaluation of convergence history.
If f(j − 3) < f(j − 2) < f(j − 1) < f(j) comes into existence, we consider that a
divergence process may occur, and so the INNS’s nonlinear iteration process isn’t
satisfied. The default maximum nonlinear iteration number is set to be 15, the back-

tracking step length satisfies αj = min{1.0,max{exp−0.5×10−2j

,
δu[max tolerance]

‖δu(j)‖∞
}},

where δu[max tolerance] is an experience value which means the maximum tolerance
of the variation of u(j) − u(j−1), it is given from the written data file.

The most computationally expensive part is the solution of the sparse linear
equations (2), which can be expressed algebraically as

(3)




A11 A12 A13

A21 A22 A23

A31 A32 A33







x1

x2

x3


 =




f1

f2

f3


 ⇔ A x = f

where xi = (xi,1, xi,2, · · · , xi,N )T , (i = 1, 2, 3), x1,j
.= Po,j , x2,j

.= Sw,j , x3,j
.= Sg,j ,

(j = 1, 2, · · · , N), and N = Nx ×Ny ×Nz is the total number of grid nodes. Two
ways of nature ordering are used in the linear solver of PRIS in fact. The above
ordering is suitable for analysis. Another natural ordering is based N ×N blocks
and each block has a 3 × 3 sub-block. For example, matrix-vector multiplication,
CRP preconditioning and decoupling operator adopt the nature ordering as alike
as formulation (2), ILU decomposition, DDM and AMG adopt the second pattern
of nature ordering for their specific aims. The Jacobian matrix A is sparse, each
entry Aij , i, j = 1, 2, 3, is a heptadiagonal matrix, significantly nonsymmetric and
highly indefinite. Furthermore, the coefficient blocks associated with a particular
type of unknown have different natures (the pressure diagonal block is of elliptic
type, the saturation diagonal blocks are of hyperbolic type). In this instance, the
single incomplete LU factorization, which is an algebraic preconditioner and doesn’t
consider the PDE characteristics, doesn’t work efficiently. The natural approach
to precondition this coupled system is to precondition different blocks separately,
taking full advantage of their different natures. Since the blocks of (3) are coupled
through non-diagonal blocks, ways to decouple the whole system are to be found.
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A so-called decoupled preconditioning process is adopted before we solve the whole
linear system ([12, 21, 22]).

Newton-Krylov-Schwarz method is used in our solver, where Schwarz method
is used to get the parallel solver. Usually, each Newton step uses a so-called
Krylov subspace method with a proper preconditioner. Both GMRES ([24]) and
BICGSTAB ([25]) are considered as one of the best choices to solve the linear
systems. For GMRES and BICGSTAB, [15] gives out the pattern of its proper pre-
conditioner which is named as PRE-ITER and PRE-ILU respectively. Numerical
tests show that, different Krylov subspace methods with an appropriate precondi-
tioner are able to achieve similar performance, in other words, the choice of iterative
algorithms isn’t the most important part of solving the linear systems efficiently.
Instead, the more important part is the choice of the preconditioning strategy.

The default linear solver used in our simulator is preconditioned FGMRES, ac-
cording to the conclusion of [15], it is typical. For this solver, the default number
of orthogonal vectors is 10, and the maximum number of iterations is set to 88.
GMRES-ILU preconditioned iterative method is used to solve the small system
of PRE-ITER, considering its role of preconditioning, the l2 norm of the relative
residual as the stopping condition is less than 0.1, the maximum restart number of
GMRES is limited to 3. The forcing term ηn of Formulation (2) in IN algorithm
can be depicted as follows:

ηn := max{10−5, min{10−6 ×
√

3N, ε0 × f(n)
f(n− 1)

}}

At the same time, the stopping condition of linear system (3) also has to satisfy
: ‖x(j)

1 − x
(j−1)
1 ‖∞ ≤ ε1, ‖x(j)

2 − x
(j−1)
2 ‖∞ ≤ ε2 and ‖x(j)

3 − x
(j−1)
3 ‖∞ ≤ ε2. The

default values of ε0,ε1 and ε2 are 0.01, 0.3 and 0.001 respectively. They can be
given from the written data file.

4. Preconditioning of the Linear Solver

A proper preconditioner should be computed easily and be chosen in a way to suit
parallel computation . ILU preconditioning is sequential in nature and leads to poor
efficiency of the implementation on distributed memory computer platforms. DDM-
based preconditioning and combined preconditioning for Krylov subspace methods
have been developed for solving an important class of linear systems in large-scale
simulation applications. As preconditioning components, they are coupled together
by using a so-called multi step method

Algorithm MSM(Multi Step Method)
Assume three types of preconditioning are available and denoted as T0, T1

and T2, A is the matrix of the linear system, and r is the residual vector, then the
Multi Step Method gives the following method of constructing a preconditioner

a): z = T0 r
b): r∗ = r − A z
c): z = z + T1 r∗

d): r∗ = r − A z
e): z = z + T2 r∗

This preconditioner ([22]) involves several preconditioning components such as
AMG, relaxed ILU, up scaling, DDM, CRP-like ( constraint residual precondition-
ing, [17] ) etc.. CRP involves solving a small linear system (PT AP )z = r by using
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GMRES(m) iterative method. There are three oblique projection correction oper-
ators. The first is an oblique projection correction process from the whole matrix
system A to sub-matrix PT AP . As a special case, PT AP ≡ A11 is used for Black-
oil model. The reason is that A11 shows an elliptic feature, and many algebraic
algorithms (e.g. ILU, AMG etc.) can be used to solve this sub matrix system.

The second operator deals with an oblique projection correction from the whole
solving region to local solving region which is represented by the so-called additive
Schwarz preconditioning. From the view of parallelism, computational locality is
important and be used to minimize communication frequency among processors.
We partition vector x into p sub vectors and each of which is nonempty, possible
overlapping, and the union of them is all of the elements of x. Let Boolean rect-
angular matrix Ri extracts the ith subset of vector x which can be described as
xi := Rix. Let Ai := RiART

i , and M :=
∑p

i=1 RT
i A−1

i Ri. Obviously, M is an
approximation of the inverse of Jacobian matrix A and named as additive Schwarz
preconditioner.

Theoretical and numerical analysis show that single level additive Schwarz method
is effective only for small number of subdomains ([23]). so M needs to be modified
further similar to that of multilevel methods for PDEs, this modification process
uses a coarse grid correction. With an addition of a coarse grid, we get a new
preconditioner

M := RT
0 A−1

0 R0 +
p∑

i=1

RT
i A−1

i Ri ,

which has been proved that is can be used as a “good” Schwarz preconditioning if
the coefficient matrix A derives from an elliptic operator. Further more, solving a
linear system also needs to choose a proper initial guess in order to decrease the
computation cost. We use AMG algorithm to find a better initial guess so that the
used Krylov method may converge more speedily. Considering the heterogeneous
construction characteristics of some oil area, the so-called Watts correction is used
which can also be considered as a coarse grid correction in some degree. As the
third operator of oblique projection, coarse grid correction plays an important role
in the linear solver of reservoir simulation.

If coarse grid correction is hoped to be used efficiently, matrix A should be
elliptic. Due to the features of PDEs of (1), only the sub matrix A11 is elliptic, so
we have to find a way to increase the effect of A11, and decrease the effects of A22

and A33 in the whole coefficient matrix at the same time. CRP implements this
goal in some degree, and we may find this effect from the following formula

AMCRP := A(T0 + T1 − T1AT0) =




I 0 0
ε21 χ22 ε23

ε31 ε32 χ33


 ,

where T1 = P1(PT
1 AP1)−1PT

1 is a CRP, T0 is a preconditioner of A such as M , P1

is a projector such that PT
1 AP1 = A11, and the entries of εij are much smaller than

that of χii.
Though CRP has decoupling effects in some degree, it isn’t enough. We need to

have a more powerful way to decouple the whole coefficient matrix, which is named
as decoupling operator TLeft and is used as a left preconditioning such as

TLeftAx = TLeftf, T−1
Left =




diag(A11) diag(A12) diag(A13)
diag(A21) diag(A22) diag(A23)
diag(A31) diag(A32) diag(A33)


 .
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Figure 1. Spectral distribution of the original Aij

The idea of decoupling operator is proposed as a way to weaken the coupling of drift-
diffusion equations that occur in semiconductor device modelling. Experiments
show that the decoupling operator leads to a significant clustering of eigenvalues
associated with Jacobian matrices during the simulation process. Considering our
simulator of black oil modelling, let AD := TleftA, and AD

ij := (TleftA)ij (i =
1, 2, 3, j = 1, 2, 3), figures 1 and 2 give the spectral distribution of the nine sub
matrices Aij and AD

ij respectively, and figure 3 gives the spectral distribution of
matrices A and AD. We observe through the figures 1 and 2 that, before decoupling
process, all the nine sub matrices Aij have obvious effects to the whole coefficient
matrix A. Their spectral distributions show that their effect can not be neglected.
However, after decoupling process, the effects of some sub matrix such as A12,
A13 and A23 is so little that they can even be neglected. Their eigenvalues are
so small that they maybe considered as zero matrix without too much sacrifice of
accuracy. Comparing the spectral distributions of A with A11, and comparing the
spectral distributions of AD with AD

11, we can see that matrix A is not similar to
A11, however, matrix AD is very much similar to matrix AD

11. These figures show
significant effects of the decoupling preconditioning.

In summaries, by using Algorithm MSM, we construct a final preconditioner B
for linear system (3), which consists of Tleft and Tright, and satisfies

(4) TleftATrightT
−1
rightu = Tleftf .

Further more, Tleft is a decoupling operator which deals with the coupled PDE and
scaling, Tright satisfies

(5) (I −ATright) = (I −ATc)(I −AT2)(I −AT1)(I −AT0)

where, Tc consists of AMG preconditioning and Watts correction method, T2 =
P2(PT

2 AP2)−1PT
2 is CRPe for compositional model, T1 = P1(PT

1 AP1)−1PT
1 is CRP
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Figure 2. Spectral distribution of the preconditioned (TLeftA)ij
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Figure 3. Spectral distribution of the original A and preconditioned TLeftA

for black oil model which increases the effect of the pressure term in the whole
matrix, T0 is DDM preconditioning which deals with grid partition of the solving
region, P1 and P2 are the two projection matrix. In both T1 and T2, relaxed ILU
(.e.g. relaxedILU := 0.9 × ILU(`) + 0.1 ×MILU) is used in solving the sub region
in its processor locally ([26]). Obviously, B has a similar form of multiplicative
Schwarz algorithm. In fact, multiplicative Schwarz idea is used here for taking full
advantage of “good” properties of Aij , and Shur complement operation is used to
do works related to block elimination processes.

5. Parallelism and Parallel Test Cases

The used parallel simulator is designed based on strategies of both domain de-
composition and SPMD parallelism. After discretization process, the reservoir area
is split across a number of processors by means of load balance. Currently, grid cells
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Case 1 Case 2 Case 3
number of discrete time steps 126 166 166
number of nonlinear systems 451 718 1326

number of linear systems 2669 5023 9662
number of FGMRES iterations 20744 24831 59345

number of ILU-GMRES iterations 237383 128590 342190
elapsed hours on 16 node/32 CPU 2.99 2.76 24.62
elapsed hours on 32 node/64 CPU 1.45 1.51 12.50

Table 1. Statistics of the three industrial test cases

in z-direction need to remain intact. The entire computational grid is partitioned
and distributed to a logical 2-D mesh network of processors.

In this paper, the used hardware platform is a Beowulf cluster LSSC-II [27],
which has 256 computational nodes. Each computational node has two Intel 2GHz
Xeon CPU and 1GB physical memory. Both a fast Ethernet and a Myrinet 2000
are installed for every computational node. The used compilers include both GNU
C/C++ and Intel Fortran V6. MPICH–GM 1.2.5 is used as a parallel communica-
tion library.

Industrial cases are tested to evaluate efficiency and effectiveness of our parallel
simulator with solver INNS. The first case is a three-phase black oil model, with
a 199 × 87 × 67 grid system, 6 rock types, 291 wells, the simulated period is the
31.5 years exploitation history of a DaQing oil section of China. The second case
is also a three-phase black oil model from the Chinese ShengLi Oilfield, the grid
dimensions are 160×320×27, or 1382400 grid blocks and 4147200 unknowns, there
are 326 wells in the simulation region, and the matching history is 14 years. The
third case is a finery of the same reservoir block as Case 2, with a 320 × 640 × 27
grid system, or 5.5296 million grid blocks and 16.5888 million unknowns.

Table 1 gives some statistics of the three industrial cases simulated. In fact, the
elapsed simulation time of the first two cases is roughly the same, the cost of Case
3 is about 9 times larger than that of Case 2.

The average time step length of Case 1 is 31.5 × 365 ÷ 126 ' 91 days, the
same datum of both Case 2 and Case 3 is 31 days. For Case 1, each time step
consists of 3.58 Newton steps in average, each Newton step averagely needs to solve
5.92 number of linear syetems, each linear system averagely needs 7.77 FGMRES
iterations, and each FGMRES step needs 11.44 ILU-GMRES iterations in order to
get an iterative preconditioning. For Case 2, the corresponding data are 4.33, 6.99,
4.94 and 5.18 respectively. For Case 3, the corresponding data are 7.99, 7.29, 6.14
and 5.76 respectively.

Comparing correlative data of the first two cases, we see that larger time step
length may lead to more number of FGMRES iterations and more accurate pre-
conditioning (which is in direct proportion to the average number of ILU-GMRES
iterations for each FGMRES iteration step); the nonlinear feature of Case 2 is
stronger than that of Case 1, so Case 2 needs more number of both Newton steps
and linear systems in average for each time step; comparing with Case 1, the formed
nonlinear equations of Case 2 are easier to solve.

Comparing correlative data of the last two cases, we observe that if the unknowns
increases 4 times, the totally simulation cost will increase about 9 times, where the
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CPU = 8 CPU = 16 CPU = 32 CPU = 64 CPU = 128

Elapsed T ime 8.71 5.59 2.99 1.45 0.87

Relative Speedup 1 1.56 2.91 6.01 10.01

Table 2. Elapsed times and relative speedups on LSSC-II

number of Newton step improves approximately 2 times, the computation work-
load of linear iteration improves 4 times, and the frequency of global reduction
communication improves about 3 times.

The first test case, i.e., the DaQing black oil model has been simulated using up
to 128 processors on LSSC–II with our parallel simulator. Table 2 gives elapsed
wall-clock times and relative speedups with variable CPUs ranging from 4 to 128.
The elapsed time is given in hours, and the relative speedup is computed with
respect to the case of 8 processors.

The relative parallel efficiencies on 16, 32, 64, and 128 processors with respect
to 8 processors are 78%, 73%, 75%, and 63%, respectively. The parallel efficiencies
are quite satisfactory considering the communication complexity of the parallel
nonlinear solver. The communication / computation ratio is almost 1:1 in the case
of 128 processors, indicating that 8 to 128 processors are suitable for one million-
grid cell problems of black oil model on this kind of machines.

For the past five years, the simulation time has reduced dramatically from two
months to an hour for this real data. It means the total simulation capability speed
up to 1600 times than before. After a detailed analysis, if we exclude the factors
40 of hardware contributions ( which consist of fivefold CPU frequency increasing
and at most eightfold potential concurrence process of the 64-CPU hardware sys-
tem), the left 40 times speedup belongs to the improvement of our preconditioned
nonlinear algorithm (at least speed fivefold) and elaborate parallel implementation.

Acknowledgments

This research was supported by the Major Basic Project of China (No.G19990328),
the National High Technology Research and Development Program of China (863
Program, 2002AA104540), and the Information Construction of Knowledge Inno-
vation Projects of the Chinese Academy of Sciences “Super computing environment
construction and applications” (INF105-SCE).

References

[1] Peaceman, D.W., Fundamentals of Numerical Reservoir Simulation,1977, Elsevier Scientific
Publishing Company.

[2] Mattax, C.C., Dalton, R.L., Reservoir Simulation, H.L. Doherty Memorial Fund of
AIME,1990,Richardson, TX:SPE.

[3] Wallis J.R., et al., A New Parallel Iterative Linear Solution Method for Large-scale Reservoir
Simulation, SPE 21209, presented at the SPE Symposium on Reservoir Simulation, Anaheim,
California, Feberary 17-20, 1991, Society of Petroleum Engineers of AIME, 1991.

[4] Shiralkar G.S., et al., Falcon: A Production Quality Distributed Memory Reservoir Simulator,
SPE Res. Eval. Eng., Oct. 1998

[5] Collins, D.A., Grabenstetter, J.E.,Sammon, P.H., A Shared-Memory Parallel Black-Oil Simu-
lator with a Parallel ILU Linear Solver, SPE 79713 presented at the SPE Symposium on Reser-
voir Simulation held in Houston, Texas, Feberary 03C05, 2003,Richardson,TX:SPE,2003.

[6] Dogru A.H., et al., A Massively Parallel Reservoir Simulator for Large Scale Reservoir Simu-
lation, SPE Paper 51886 presented at the SPE Symposium on Reservoir Simulation, Houston,
Feberary 14-17,1999,Richardson,TX:SPE,1999.



AN EFFICIENT AND EFFECTIVE NONLINEAR SOLVER 27

[7] Killough J E, Commander D E, Scalable Parallel Reservoir Simulation on a Windows-NT
Workstations Cluster, SPE 51883, presented at the Fifteenth SPE Symposium on Reservoir
Simulation, Houston, February 14-17,1999, Richardson,TX:SPE,1999.

[8] Verdire S., et al., Applications of a Parallel Simulator to Industrial Test Cases, SPE Paper
51887 presented at the SPE Symposium on Reservoir Simulation, Houston, February 14-
17,1999, Richardson,TX:SPE,1999.

[9] Abate J. et al., Parallel Compositional Reservoir Simulation on a Cluster of PCs, International
Journal of High Performance Computing Applications, 2001, 15:13-21.

[10] Vassilevski, Y.V., Iterative Solvers for the Implicit Parallel Accurate Reservoir Simulator
(IPARS), II: Parallelization Issues, TICAM Report 00-33, University of Texas at Austin,
2000.

[11] Wei Liu, Jianwen Cao, Mezzatesta A. et al., Parallel Reservoir Simulation on Shared and Dis-
tributed Memory System, SPE 64797, presented at the International Oil and Gas Conference
and Exhibition, Beijing,China, November 7-10,2000,Richardson,TX:SPE,2000.

[12] Jianwen Cao, Efficient and effective solvers with preconditions in the parallel software of
large-scale petroleum reservoir simulation, Ph.D thesis (in chinese), Institute of Software, the
Chinese Academy of Sciences,2002.

[13] Friedlander A., Gomes-Ruggiero M.A., et al., Solving nonlinear systems of equations by means
of quasi-Newton methods with a nonmonotone strategy, Optimization methods and Software,
1997,8:25-51.

[14] Martinez J. M., Practical Quasi-Newton methods for solving nonlinear systems, Journal of
Computational and Applied Mathematics,2000, 124:97-122

[15] Jianwen Cao, Choi-Hong Lai, Numerical experiments of some Krylov subspace methods for
black oil model, an International Journal of Computers and Mathematics with Applications,
Elsevier, 2002, 44:125-141.

[16] Saad Y., Iterative Methods for Sparse Linear Systems, PWS Publishing Company, 1995.
[17] Wallis J.R., Incomplete Guassian Elimination as a Preconditioning for Generalized Conjugate

Gradient Acceleration, SPE 12265, presented at the Reservoir Simulation Symposium , San
Francisco, November 15-18, 1983, Society of Petroleum Engineers of AIME, ,1983.

[18] Jianwen Cao, Feng Pan, Jiachang Sun et al., Large-Scale Parallel Reservoir Simulation on
Distributed Memory Systems, Proceedings of 2001 International Symposium on Distributed
Computing and Applications to Business,Engineering and Science, Wuhan:Hubei Science and
Technology Press, China, 2001.

[19] Bergamaschi, L., Moret, I., Giovanni Zilli, Inexact Quasi-Newton methods for sparse systems
of nonlinear equations, Future Generation Computer Systems, 2001,18(1):41-53

[20] Kim Jong Gyun, Deo, M.D., Inexact Newton-krylov Methods for the Solution of Implicit
Reservoir Simulation, SPE 51908 presented at the SPE Symposium on Reservoir Simulation,
Houston, Feberary 14-17,1999,Richardson,TX:SPE,1999.

[21] Lacroix,S., Vassilevski, V.V., Wheeler, M.F., Iterative Solvers of the Implicit Parallel Accu-
rate Reservoir Simulator (IPARS), I: Single Processor Case, TICAM Report 00-28, University
of Texas at Austin, 2000.

[22] Jiachang Sun,Jianwen Cao, Large Scale Petroleum Reservoir Simulation and Parallel Precon-
ditioning Algorithms Research, Science in China Ser.A (Mathematics), 2004, 47:32-40

[23] Smith B. F., Bjorstad P.E. and Gropp W.D., Domain Decomposition: Parallel multilevel
methods for elliptic partial differential equations, Cambridge University Press, 1996

[24] Saad Y., Schultz M.H., GMRES: a generalized minimal residual algorithm for solving nonsym-
metrical linear systems, SIAM Journal on Scientific and Statistical Computing,1986, 7:856-
869.

[25] Van der Vorst H.A., Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for
the solution of nonsymmetric linear systems, SIAM Journal on Scientific and Statistical
Computing,1992,12:631-644.

[26] Golub G.H. and Van der Vorst H.A., Closer to the Solution: Iterative Linear Solvers, Uni-
versiteit Utrecht, Preprint No. 982, October, 1996.

[27] Linbo Zhang, et al., Teracluster LSSC-II: Its Designing Principles and Applications in Large
Scale Numerical Simulations, Science in China Ser.A (Mathematics), 2004, 47:53-68

Laboratory of Parallel Computing, Institute of Software, Chinese Academy of Sciences, Beijing
100080, China

E-mail : cao@rdcps.ac.cn

URL: http://www.rdcps.ac.cn/∼cao/


