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NUMERICAL SOLUTIONS TO BEAN’S CRITICAL-STATE
MODEL FOR TYPE-II SUPERCONDUCTORS

WEI WEI AND HONG-MING YIN

Abstract. In this paper we study the numerical solution for an p−Laplacian

type of evolution system Ht + ∇ × [|∇ × H|p−2∇ × H
]

= F(x, t), p > 2 in

two space dimensions. For large p this system is an approximation of Bean’s

critical-state model for type-II superconductors. By introducing suitable trans-

formation, the system is equivalent to a nonlinear parabolic equation. For the

nonlinear parabolic problem we obtain the numerical solution by combining

approximation schemes for the linear equation and the nonlinear semigroup.

The convergence and stability of the scheme are proved. Finally, a numerical

experiment is presented.

Key Words. Approximation of Bean’s Critical-State model, Numerical solu-

tions.

1. Introduction

Bean’s critical-state model for type-II superconductors describes the evolution of
a magnetic field in an alloy-type of metal material under the external force ([4, 7]).
The electric field E and the current density J = σE by Ohm’s law are characterized
as follows: there exists a critical current, denoted by Jc, such that |J| ≤ Jc and

|E| =




0, if |J| < Jc,
[0,∞), if |J| = Jc,
∅, if |J| > Jc.

Here and thereafter, a bold letter represents a vector or vector function in R3.
If one scales the value of critical current by assuming Jc = 1 without loss of

generality, then the graph of |E| and |J| can be obtained formally from Ampere’s
law:

E = |∇ ×H|p−2∇×H
as p →∞, where H represents the magnetic field and the resistivity ρ = 1

σ is equal
to |∇ ×H|p−2.

This leads us to consider the following problem:

Ht +∇× [|∇ ×H|p−2∇×H
]

= F(x, t), (x, t) ∈ QT ,(1.1)
∇ ·H = 0, (x, t) ∈ QT ,(1.2)
n×H(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ],(1.3)
H(x, 0) = H0(x), x ∈ Ω,(1.4)
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where Ω is a bounded simply-connected domain in R3 and QT = Ω× (0, T ], p ≥ 2
is fixed, n is the outward unit normal on ∂Ω and x = (x1, x2, x3), F(x, t) represents
the applied magnetic current.

For large p the electric resistivity ρ = |∇ ×H|p−2 is small in the region Sε =
{(x, t) : |∇ ×H| ≤ 1− ε} while it is very large in {(x, t) : |∇ ×H| ≥ 1 + ε}, where
ε is a small constant. Thus, the resistivity ρ in Sε becomes smaller and smaller
as p increases and eventually Sε becomes the superconductor region as ε → 0 (no
resistivity). The region {(x, t) : 1− ε < |∇×H| < 1 + ε} is the transition zone and
formally becomes a sharp interface between the normal and superconductor regions
as ε → 0.

Unlike Ginzburg-Landau’s model for superconductors (see [7, 8]), the model
problem (1.1)-(1.4) describes the macro-motion of magnetic currents and is often
used by experimental physicists in searching of Type-II superconductor materials.
For two-space dimensions, by a variational argument Prigozhin [13] proved the
existence of a unique weak solution to Bean’s model. Well-posedness of the problem
(1.1)-(1.4) were established in [17] for R3 and for a bounded simply-connected
domain in R3 in [18]. Regularity of the weak solution as well as the limit solution
as p → ∞ were also investigated in these papers (see [17, 18]). Particularly, the
authors of [18] established the existence of a unique weak solution to Bean’s model
in three-space dimensions. Several researchers have investigated numerical solutions
for Bean’s model. Bossavit [1] and Prigozhin [14] studied the numerical solutions
for the case where H has only one non-zero component. More recently, the authors
of [10] studied the numerical solution of Bean’s model via a finite element method
and derived error estimate. For the problem (1.1)-(1.4), Barrett and Prigozhin
in [3] discussed the finite element solution by assuming that H has one non-zero
component. In the present paper, we study the numerical solution for the problem
(1.1)-(1.4) in two space dimensions. By using a suitable transformation, we convert
the system (1.1) to a nonlinear parabolic equation with possible degeneracy in the
leading term. Based on the nonlinear semigroup theory, an algorithm is presented
by a finite difference method. We calculate the numerical solution by solving a
linear heat equation and using time-marching iteration technique. The method is
quite easy to implement. We also show that this numerical method is convergence
and stable in L1 if we choose parameter properly. Moreover, the numerical scheme
is unconditionally stable. Finally, a numerical experiment is given to verify our
result.

The paper is organized as follows. In § 2, we transform the problem into a fully
nonlinear parabolic equation. In § 3, we first present a numerical method to solve
the nonlinear parabolic problem and then prove the convergence and stability of
the numerical solution. In § 4 a numerical experiment is presented.

2. A New Formulation of the Problem

Consider the problem (1.1)-(1.4) in two space dimensions. Assume that H
and F depend on (x1, x2) and component in z-direction is zero, i. e., H(x, t) =
{h1(x, t), h2(x, t), 0}, F = {f1(x, t), f2(x, t), 0},H0 ∈ C2+α(R2),F ∈ C2+α(0, T ; R2),
H0 and F have compact support.

By the Theorem 2.2 of [17], we know that the problem (1.1)-(1.4) has a unique
weak solution H(x, t) in QT = R2 × (0, T ]. Moreover Ht ∈ L2(R2 × (0, T ]),
H ∈ L∞(0, T ; Bd(R2)), where Bd(R2) = {G(x) ∈ W 1,p(R2) : ∇ · G = 0, a.
e. x ∈ R2}. Moreover, H(x, t) has compact support for each t ∈ [0, T ]. Therefore
we can assume that Ω is sufficiently large such that the weak solution H satisfies
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supp(H(·, t)) ⊂ Ω for all t ∈ (0, T ]. That is, H(x, t)|∂Ω = 0, ∂H(x,t)
∂n |∂Ω = 0, where

n is the outward normal on ∂Ω. For simplicity, we set Ω = [−a, a] × [−a, a] for
some sufficient large constant a > 0. Then

∇×H = (h2x1(x, t)− h1x2(x, t))k

where k is the unit vector in z-direction. It follows that

∇× (|∇ ×H|p−2∇×H) = ∇× {0, 0, |h2x1 − h1x2 |p−2(h2x1 − h1x2)}
= {[|h2x1 − h1x2 |p−2(h2x1 − h1x2)]x2 ,−[|h2x1 − h1x2 |p−2(h2x1 − h1x2)]x1 , 0}

Hence the equation (1.1) is equivalent to the following systems

h1t +
∂

∂x2
[|h2x1 − h1x2 |p−2(h2x1 − h1x2)] = f1(x1, x2, t),(2.1)

h2t +
∂

∂x1
[|h2x1 − h1x2 |p−2(h2x1 − h1x2)] = f2(x1, x2, t),(2.2)

Since H = 0 on x2 = −a, for all −a ≤ x1 ≤ a and t ∈ (0, T ]. Then from Eq.(1.2),
we see that

h2(x1, x2, t) = −
∫ x2

−a

h1x1(x1, s, t)ds = −(Ĥ1)x1(x1, x2, t),

where

Ĥ1(x1, x2, t) =
∫ x2

−a

h1(x1, s, t)ds.

It follows that

Ĥ1x2x2 = h1x2 and Ĥ1x1x1 = −h2x1 , (x1, x2, t) ∈ QT .

We use the above observation in Eq. (2.2) to obtain

∂

∂x1
Ĥ1t − ∂

∂x1
[|4Ĥ1|p−24Ĥ1] = −f2(x, t), (x, t) ∈ QT .

Integrating x1 over (−a, x1) yields

Ĥ1t − |4Ĥ1|p−24Ĥ1 = −
∫ x1

−a

f2(s, x2, t)ds + M0(x2, t).

where M0(x2, t) is an unknown function of x2 and t.
Since H(x, t) has compact support, we see

M(x2, t) = Ĥ1t − |4Ĥ1|p−24Ĥ1 |x1=−a= 0.

It follows that Eq.(2.2) becomes

Ĥ1t − |4Ĥ1|p−24Ĥ1 = f̂1(x, t)

where

f̂1(x, t) = −
∫ x1

−a

f2(s, x2, t)ds

Similarly, we can eliminate h2(x, t) to derive the following equation from (2.1)

Ĥ2t − |∆Ĥ2|p−2∆Ĥ2 = f̂2(x, t), (x, t) ∈ QT ,

where

Ĥ2(x, t) =
∫ x1

−a

h2(s, x2, t)ds, and f̂2(x, t) = −
∫ x2

−a

f1(x2, s, t)ds.
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Hence the problem (1.1)-(1.4) is transformed to the following fully nonlinear para-
bolic equations subject to initial and boundary conditions:

(2.3)





Ĥit − |∆Ĥi|p−2∆Ĥi = f̂i, (x, t) ∈ QT ,

Ĥi(x1,−a, t) = Ĥi(x1, a, t) = 0, −a ≤ x1 ≤ a, t ∈ [0, T ],
Ĥi(−a, x2, t) = Ĥi(a, x2, t) = 0, −a ≤ x2 ≤ a, t ∈ [0, T ],
Ĥi(x1, x2, 0) = ĥ0i(x1, x2), i = 1, 2

where

ĥ01(x1, x2) =
∫ x2

−a

h01(x1, s)ds, and ĥ02(x1, x2) =
∫ x1

−a

h02(s, x2)ds.

Define ui(x, t) = ∆Ĥi(x, t) and gi(x, t) = ∆f̂i(x, t), (x, t) ∈ QT , for i = 1, 2.
Then ui (i = 1, 2) will satisfy the following equation:

(2.4)





uit −∆ψ(ui) = gi(x, t), (x, t) ∈ QT

ui(x, 0) = u0i(x), x ∈ Ω
u(x, t) |∂Ω= 0, t ∈ (0, T ),

for i = 1, 2, where u01(x) = ∆
∫ x2

−a
h01(x1, s)ds, u02(x) = ∆

∫ x1

−a
h02(s, x2)ds, and

the function ψ is defined by ψ(s) = |s|p−2s.
Note that F ∈ C2+α(QT ) and H0 ∈ C2+α(R2), it follows that gi(x, t) is contin-

uous in QT and u0i is continuous in Ω. By the result of [9], there exists a unique
solution ui(x, t) ∈ L∞(QT ) ∩ Cα(QT ) for some α > 0. Moreover, the solution is
Hölder continuous in QT .

3. Numerical Method, Convergence and Stability

Let us consider the numerical method to solve the following problem:

(3.1)





ut −∆ψ(u) = g, in QT ,
u(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T ),
u(x, 0) = u0(x), x ∈ Ω

where a function by ψ(s) = |s|p−2s and u0 ∈ L1(Ω). For simplicity, we assume that
g is independent t and continuous in Ω.

We define an operator Lu = −∆u with D(L) = {u ∈ W 1,1
0 (Ω); Lu ∈ L1(Ω)}.

Then L generates a contractive semigroup {T (t), t ≥ 0} in L1(Ω) and D(L) =
L1(Ω). Let N be a large integer τ = T/N be the time step, tn = nτ, un(·) = u(·, tn).
Suppose σ : (0,+∞) → (0, +∞) be a function such that limτ→0 στ = 0. The
algorithm is given as formula

(3.2)
uk+1 − uk

τ
+ [

I − T (στ )
στ

]ψ(uk) = g, x ∈ Ω

where I is the identity operator. That is, uk+1 is determined from uk by

uk+1 = F (τ)uk, x ∈ Ω

where

(3.3) F (τ)ϕ := ϕ +
τ

στ
[T (στ )ψ(ϕ)− ψ(ϕ)] + τg

for ϕ ∈ L1(Ω).
We define the approximation un(x, t) to u(x, t) by

(3.4) un(x, t) = un = [F (
t

n
)]nu0(x).

Then we have:
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Theorem 1 Assume u0 ∈ L∞(Ω), set M = ‖u0‖L∞(Ω) and µ = (p − 1)Mp−2.
If the following stability condition holds: If

(3.5) µτ/στ ≤ 1 for every τ > 0.

Then

(3.6) ‖F (τ)η − F (τ)ξ‖L1(Ω) ≤ ‖η − ξ‖L1(Ω) for η, ξ ∈ L1(Ω),

and limn→+∞un(·, t) = u(·, t) in L1(Ω). Moreover, the convergence is uniform for
t in any given bounded interval, where u(x, t) is the weak solution of (3.1).

Proof: At first, we claim that for every k ≥ 0, −M ≤ uk ≤ M . It is shown by
induction. Assume −M ≤ uk ≤ M . Since ψ(r) = |r|p−2r is nondecreasing and
T (στ ) is contraction, it follows that ψ(−M) ≤ ψ(uk) ≤ ψ(M) and

(3.7) ψ(−M) ≤ T (στ )ψ(uk) ≤ ψ(M).

By the fact:
|ψ(r)− ψ(s)| ≤ (p− 1)Mp−2|r − s|

for all s, r ∈ R with |s| ≤ M, |r| ≤ M (see, Ch26, [19]) and (3.5), we obtain

(3.8) −M − τψ(−M)στ ≤ uk − τψ(uk)στ ≤ M − τψ(M)στ .

Combining (3.7) and (3.8), one obtains −M ≤ uk+1 ≤ M . So in the following, we
can assume ψ(s) defined in domain [−M, M ]. Then the function r − τψ(r)/σ is
nondecreasing in r. Hence

(3.9)
τ

στ
|ψ(r)− ψ(s)|+ |r − s− τ

στ
(ψ(r)− ψ(s))| = |r − s|

It follows from the contraction of {T (t)} that

‖F (τ)η − F (τ)ξ‖L1(Ω)

≤ τ

στ
‖ψ(η)− ψ(ξ)‖L1(Ω) + ‖(η − ξ)− τ

στ
(ψ(η)− ψ(ξ))‖L1(Ω).(3.10)

Combining (3.9) and (3.10), we obtain the estimate (3.6).
Let A be an operator defined by Au = Lψ(u) in L1(Ω) with domain D(A) =

{u ∈ L1(Ω); ψ(u) ∈ D(L)}. It is known ([15], lemma 2.6.2) that A is m-accretive
and −A generates a contraction semigroup{S(t), t ≥ 0} on D(A) = L1(Ω).

By applying the nonlinear version of famous Chernoff theorem (see theorem 2.2
of [2]), we remain to verify that for every ζ ∈ L1(Ω) and every λ > 0:

[I +
λ

τ
(I − F (τ))]−1ζ → [I + λA]−1ζ as τ → 0.

That is, we need show that the solution θτ of the following equation

(3.11) θτ +
λ

τ
(I − F (τ))θτ = ζ

tends θ in L1(Ω) as τ → 0, where θ is a solution of the equation

(3.12) θ + λAθ = ζ.

In fact, θ ∈ D(A) implies ψ(θ) ∈ D(L). Then since T (t) is a contraction C0-
semigroup of L, we know that

I − T (στ )
στ

ψ(θ) −→ Lψ(θ) ≡ Aθ in L1(Ω) as τ → 0.
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By the definition of F (τ), (3.10), and (3.11), one can see

(1 +
λ

τ
)(θτ − θ) =

λ

τ
(F (τ)θτ − F (τ)θ)− λ

I − T (στ )
στ

ψ(θ) + λAθ

So, by the inequality (3.6), we obtain

‖θτ − θ‖L1(Ω) ≤ |λ|‖I − T (στ )
στ

ψ(θ) + Aθ‖L1(Ω).

The proof is complete.

Remark 3.1: If g depends on t, we can get similar convergence theorem by using
the formula

u(t) = S(t)u0 +
∫ t

0

S(t− τ)g(τ)dτ

since un(x, t) → u(x, t) is uniform for t.
Let Σ denote a regular triangulation of Ω with vertices {xj}, edges {sij}, and

triangles {τijk}. The interior of the polygon associated with all the edges connecting
the vertex xj is denoted by Ωj . If a vertex xi is on the boundary of Ω, the region
Ωi is modified to include only the portion that is inside Ω. The area of Ω is
denoted by |Ω|. Let J be the number of grid point. Suppose one has approximate
solution values Un

j at time tn = nτ and grid points {xj} ⊂ Ω. For example,
U0

j = 1
|Ωj |

∫
Ωj

u0(x)dx, j = 1, · · · J . To obtain the approximate solution values

Un+1
j at the next time level tn+1 = tn + τ , we can using the following algorithm:
Set

Qn
j =

ψ(Un
j )

α
, j = 1, 2, · · · , J

where α can be chosen by any positive number satisfying µ/α ≤ 1. Solve the
following linear heat equation by using any appropriate numerical method





Qt = α∆Q in Ω
Q(x, t) = 0 on ∂Ω
Q(xj , t

n) = Qn
j , for j = 1, · · · , J

(3.13)

We can obtain values {Qn+1
j } at the underlying grid point {(xj)}J

j=1 at t = tn + τ ,
then

(3.14) Un+1
j = Un

j + Qn+1
j − ψ(Un

j )
α

+ Gn
j

for j such that (xj) ∈ Ω and

Un+1
j ≡ 0 when (xj) ∈ ∂Ω.

where Gn
j = 1

|Ωj |
∫
Ωj

g(x, tn)dx.

If Un = Un
j and Un be two different starting values in (3.13) and (3.14), it

follows from (3.6) that

‖Un+1 − Un+1‖L1(Ω) ≤ ‖Un − Un‖L1(Ω).

Theorem 2 (Stability) The numerical method (3.13) and (3.14) is L1 stable if
α ≥ µ and the numerical method used in linear heat equation (3.13) is L1 stable,
for example, by standard Crank-Nicolson or implicit scheme.
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The numerical solution of Ĥ can be obtained by solving the following Laplace
equation using finite element method or finite difference method for every tn = nτ .

(3.15)

{
∆Ĥ(x, tn) = Un, x ∈ Ω,

Ĥ(x, tn) = 0, x ∈ ∂Ω.

where Un = IhUn
j and Ihg stands for the piecewise linear interplant of g, for any

n = 1, 2, · · · , N .
By the formula h1 = Ĥ1x2 and h2 = Ĥ2x1 , we can using any numerical differen-

tiation method for the first derivative to get h1 and h2, for example

(3.15) hn
1ij =

Ĥn
i,j+2 + 4Ĥn

i,j+1 − 3Ĥn
i,j

2h

for all (x1i, x2j) ∈ Ω and n = 1, 2, · · · , N . For the boundary, because of support H
is compact, it is always zero.
Remark 3.2: All the results in this section hold for n-space dimensions.

4. Numerical Examples

We study the performance of the method when applied to test problem

(4.2)





ut −∆|u|p−2u = g, (x, t) ∈ QT ,
u(x, t) = 0 (x, t) ∈ ∂Ω× [0, T ],
u(x, 0) = cos(πx

2a ) cos(πy
2a )/π x ∈ Ω.

where the right-hand side g is chosen such that

u(x, y, t) = (1− t) cos(
πx

2a
) cos(

πy

2a
)/π

is the exact solution.
We take α = p and use standard Crank-Nicolson difference method by taking

J = 40× 40 grid points on [−10, 10]× [−10, 10] and using a variable number N of
time steps to reach time T = 8. The numerical solution graphs and exact result
graphs are showed in Figure 1,2,3 by taking p = 3, 6, 9 respectively.

Suppose the discrete L1 error E at time T was calculated by

E1 =
20× 20
J − 1

40∑

i,j=1

|UN (xi, yj)− u(xi, yj , T )|

to get Table 1 from differential 4t = T
N at time T = 8. Suppose J is large enough

so that the spatial discretization error is relatively negligible, and assume that E1 is
given by E1 = C1(4t)γ , where C1 is a constant independent of 4t. The numerical
rate of convergence γ computed by

γ = (ln(E1)− ln( E1 )/ ln(2)

where E1 and E1 are errors corresponding to N and N = 2N . Table 1 is obtained
by taking p = 3, p = 6 and p = 9 with different 4t. It shows that our method is
effective.
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Figure 1. Exact and numerical solutions for p = 3

p = 3 p = 6 p = 9

N Error E1 Rate γ Error E1 Rate γ Error E1 Rate γ
8 1.8504 2.0764 2.6477

0.7916 0.9732 0.8848
16 1.0690 1.0577 1.4339

0.6574 0.9529 1.0761
32 0.6706 0.5464 0.6801

0.4250 0.9189 0.9880
64 0.4995 0.2890 0.3429

0.2344 0.8877 0.9277
128 0.4246 0.1562 0.1932

Table 1. Discrete L1 errors and numerical convergence rates
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Figure 3. Exact and numerical solutions for p = 9
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