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TAYLOR EXPANSION ALGORITHM FOR THE BRANCHING

SOLUTION OF THE NAVIER-STOKES EQUATIONS

KAITAI LI AND YINNIAN HE

Abstract. The aim of this paper is to present a general algorithm for the

branching solution of nonlinear operator equations in a Hilbert space, namely

the k-order Taylor expansion algorithm, k ≥ 1. The standard Galerkin method

can be viewed as the 1-order Taylor expansion algorithm; while the optimum

nonlinear Galerkin method can be viewed as the 2-order Taylor expansion al-

gorithm. The general algorithm is then applied to the study of the numerical

approximations for the steady Navier–Stokes equations. Finally, the theoretical

analysis and numerical experiments show that, in some situations, the optimum

nonlinear Galerkin method provides higher convergence rate than the standard

Galerkin method and the nonlinear Galerkin method.

Key Words. Nonlinear operator equation, the Navier-Stokes equations, Tay-

lor expansion algorithm, Optimum nonlinear Galerkin method.

1. Introduction

Many integral equations and differential equations in mathematical physics can
be reduced to the operator equations. The operator equations and their numeri-
cal approximation are very important in the areas of theoretical mathematics and
computational mathematics(see[1]). The main feature of the approximate theory
of the operator equations is to apply the functional analytic method to the study
of the numerical approximation of the operator equations, which will provide new
ideas and new algorithms for the computational mathematics.

This paper is devoted to present the k-order Taylor expansion algorithms for
the branching Solution of the nonlinear operator equations. The standard Galerkin
(SG) method and the optimum nonlinear Galerkin (ONG) method can be viewed
as specific Taylor expansion algorithms.As the important application of the al-
gorithms, we consider the numerical approximations of the 2–D steady Navier-
Stokes equations and estimate the convergence rates of the corresponding algo-
rithms.Moreover, we also recall the convergence rate of the nonlinear Galerkin
(NG) methods presented in[4–9]. Our theoretical analysis and numerical experi-
ments show that the ONG method is of the higher convergence rate than the NG
method and the SG method.
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2. Operator Equation and Taylor Expansion Algorithms

We are given a Hilbert space H with a scalar product(·, ·)and a norm | · |. The
abstract operator equation that we will study has the form

F (u) = f.(2.1)

Here F : D(F ) ⊂ H → H is a nonlinear operator, D(F ) = v ∈ H;F (v) =∈ His
the domain of operator F , f ∈ His given and u ∈ D(f) is a unknown function(or
vector function)defined in a bounded domain Ω of R2or R3.

We now recall the following Taylor expansion (see[1]).
Theorem 2.1. Assume that F : D(F ) → H is the continuous Fréchet differentiable
of the k-order. Then for each p ∈ D(F ),q ∈ H, p+q ∈ D(F ) there holds the Taylor
expansion with the integral remainder, namely

F (p+ q) = F (p) + 1
1!DF (p)q + · · · + 1

(k−1)!D
k−1F (p)qk−1

+ 1
(k−1)!

∫ 1

0
(1 − t)k−1DkF (p+ tq)qk dt.

(2.2)

For each n > 0, we let Hn be a n–dimensional subspace of H and Pn : H → Hn

be an orthogonal projection operator. To introduce the Taylor expansion algorithm,
we select a large n and rewrite the solution u of (2.1) as

u = p+ q, p = Pnu ∈ Hn, q = (I − Pn)u ∈ H\Hn,

such that p represents the large eddies of the flow and q represents the small eddies
of the flow, namely |q| → 0(as n→ ∞) (refer to [2-3]). Hence, we apply respectively
Pn and Qn = I − Pn to (2.1):

PnF (p+ q) = Pnf,(2.3)

QnF (p+ q) = Qnf.(2.4)

Assume that F (u) = F (p + q) can be rewritten as the Taylor expansion (2.2).
Thanks to q being the small eddies of the flow, it is then reasonable to neglect

some small terms as DF (p)q, 1
2!DF (p)q2, · · · 1

(k−1)!

∫ 1

0
(1 − t)k−1DkF (p + tq)qk dt ,

in (2.2). Then we obtain the following Taylor expansion algorithms:
the 1-order Algorithm : Find uapp = y ∈ Hn such that

PnF (y) = Pnf ;(2.5)

the 2-order Algorithm : find uapp = y + z ∈ H, y ∈ Hn, z ∈ H\Hn, such that

PnF (y + z) = Pnf,(2.6)

Qn(F (y) +DF (y)z) = Qnf ;(2.7)

the k-order Algorithm : find uapp = y + z ∈ H, y ∈ Hn, z ∈ H\Hn, such that

PnF (y + z) = Pnf,(2.8)

Qn(F (y) +DF (y)z + · · · 1

(k − 1)!
Dk−1F (y)zk−1) = Qnf.(2.9)

Notice that (2.7),(2.9) are the infinite dimensional system. From the computa-
tional point of view we have to replaceH\Hn andQn byHN\Hn andQN

n = PN−Pn

in (2.7),(2.9), where N > n will be chosen according to some convergence analysis.
In particular, we notice that the 1-order Taylor expansion Algorithm is then the

standard Galerkin (SG) method. Moreover, the 2-order Taylor expansion Algorithm



TAYLOR EXPANSION ALGORITHM OF THE NAVIER-STOKES EQUATIONS 461

is called the optimum nonlinear Galerkin (ONG) method which id different from
the nonlinear Galerkin methods presented in the papers[4-9].

3. Numerical Approximations of the Navier-Stokes Equations

The 2-D steady Navier-Stokes equations in the primitive variable formulation
are written as

−ν∆u+ (u · ▽)u+ ▽π = g,(3.1)

divu = 0,(3.2)

where Ω is an open bounded set in R2 with sufficient smooth boundary, ν > 0
is the kinematic viscosity and g = g(x) represents the external body force. The
unknowns are the vector function u (velocity) and the scalar function π (pressure).

We will consider either the homogeneous Dirichlet boundary conditions, for
which we denote:

V = {v ∈ (H1
0 (Ω)2; divu = 0},

or the periodic boundary conditions for which

V = {v ∈ (H1
p (Ω)2; divu = 0,

∫

Ω

v(x) dx = 0}.

In both cases,we set

H = closure of V in (L2(Ω))2.

LetP be the orthonormal projection of (L2(Ω))2 onto H we define the Stoke oper-
ator

Au = −P△u, ∀u ∈ D(A) = V ∩ (H2(Ω))2,

and the bilinear operator

B(u, v) = P [(u · ∇)v],∀u, v ∈ V.

The Stokes operator A is an unbounded positive self-adjoint closed operator in
H with domain D(A) and its inverse A−1 is compact in H. Consequently, there
exists an orthonormal basis of H consisting of the eigenvectors wj of A:

Awj = λjwj , 0 < λ1 ≤ λ2 ≤ · · · , λj → ∞(asj → ∞),(3.3)

(see[2]). We denote the scalar products and norms of H and V by

|u| = (

∫

Ω

|u(x)|2 dx)1/2 and ||u|| = (

∫

Ω

|∇u(x)|2 dx)1/2

The corresponding scalar products are denoted by (·, ·) and ((·, ·)) respectively.
We define a trilinear form on V × V × V by

B(u, v, w) = < B(u, v), w >V ′,V , ∀u, v, w ∈ V

It is easy to verify that b satisfies the following important property

b(u, v, w) = −b(u,w, v), ∀u, v, w ∈ V.(3.4)

We recall some continuity properties satisfied by B and b (see[2,4-7]):

|b(u, v, w)| ≤ c0|u|1/2||u||1/2‖v‖‖w‖1/2‖w‖1/2
,(3.5)

|b(u, v, w)| ≤ c0|u|||v|||w|1/2|Aw|1/2
,(3.6)

|b(u, v, w)| ≤ c0|u|1/2|Au|1/2‖v‖|w|, |B(u, v)| ≤ c0|u|1/2|Au|1/2‖v‖,(3.7)

|B(u, v) ≤ c0|u|1/2‖u‖1/2‖v‖1/2|Av|1/2
.(3.8)
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Under the above notations,the system (3.1)-(3.2) is equivalent to the following
abstract equation

F(u, ν) ≡ νAu+B(u, u) − f = 0,(3.9)

where f = Pg. The following results are well known(see for instance [11,12]).
Theorem 3.1. Let f ∈ V ′, Ω be a bounded domain of R2 with a Lipschitz contin-
uous boundary Γ. Then the equation (3.9) admits at least a weak solution u ∈ V
such that {

|A1/2| ≤ ν−1||A−1/2f || ≡M1,
|A3/4u| ≤ ν−1|A−1/4f | + cν−3|A−1/2f |.(3.10)

Moreover, if f ∈ H then u ∈ D(A) satisfies

|Au| ≤ ν−1|f | + cν−5|A1/2f |3 + cν−2|A−1/4f ||A−1/2f | ≡M2.(3.11)

If ν and f satisfy

c0ν
−2|f |V ′ < 1,(3.12)

then the solution of (3.9) is unique.
The proof can be found in [10,11,12].
Hereafter, we denote

Hm = span{w1, · · · , wm}, Qm = I − Pm,

Pm : H(or V or D(A)) → Hm is the orthogonal projector, where m = n,N.
According to the definitions of Hm and Pm, there hold the following properties:





PmA = APm, QmA = AQm,

‖u‖ ≥ λ
1/2
1 |u|, ∀u ∈ V,

‖q‖ ≥ λ
1/2
m+1|q|, ∀q ∈ V \Hm,

‖p‖ ≤ λ
1/2
m |p|, ∀p ∈ Hm,

|Asp|2 + |Asq|2 = |As(p+ q)|2, ∀p ∈ Hm, q ∈ D(As)\Hm,

(3.13)

where s = 0, 1
2 , |A0 · | = | · |, |A1/2 · | = ‖ · ‖.

In order to apply the Taylor expansion algorithm to the abstract equation (3.9),
we write

F (u) = νAu+B(u, u) − f = 0,

where D(F ) = D(A).We set u = p + q ∈ D(A) be the solution of (3.9), where
p = Pnu ∈ Hn, q = Qnu ∈ D(A)\Hn.

Thanks to Theorem 3.1 and (3.13), we have

‖q‖2
= ((q, q)) = (q,Aq) ≤ |q||Aq| ≤ λ

−1/2
n+1 ‖q‖|Aq|,

|q| ≤ λ
−1/2
n+1 ‖q‖ ≤ λ−1

n+1|Aq| ≤ λ−1
n+1|Au| ≤ λ−1

n+1M2.(3.14)

Hence, the Taylor expansion algorithm can be applied to the numerical approxi-
mation of problem (3.9). For this, we need the following Fréchet differentials of the
nonlinear operator F at p ∈ D(F ) :

DF (p)q = νAq +B(p, q) +B(q, p),

D2F (p)q2 = 2B(q, q), D3F (p)q3 = 0.

Now, we can apply the r-order Taylor expansion algorithm with k = 2, r = 1, 2.
Then we obtain the following numerical methods for solving (3.9):

The SG method: Find u
G

= y ∈ Hn such that

νAy + PnB(y, y) = Pnf ;(3.15)
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the ONG method: Find uO = y + z, y ∈ Hn, z ∈ HN\Hn such that

νAy + PnB(y + z, y + z) = Pnf,(3.16)

νAz +QN
n [B(y + z, y) +B(y, z)] = QN

n f,(3.17)

where QN
n = PN − pn = Qn −QN , PnA(y + z) = Ay,QnA(y + z) = Az.

Remark 3.1. The SG method consists in solving a nonlinear problem in a small
space Hn; while the ONG method consists in solving a similar nonlinear subproblem
in a small space Hn and solving a linear subproblem in HN\Hn.

Finally, applying the nonlinear Galerkin (NG) method presented in [4-9] to the
abstract equation (3.9), we derive the following numerical method:

the NG method: find uN = y + z, y ∈ Hn, z ∈ HN\Hn such that

νAy + Pn[B(y + z, y) +B(y, z)] = Pnf,(3.18)

νAz +QN
n B(y, y) = QN

n f.(3.19)

Remark 3.2.The NG method can not be viewed as the particular Taylor expansion
algorithm. Also, the NG method consists in solving a nonlinear subproblem in small
space Hn and solving a linear subproblem in the space HN\Hn.

4. Existence and Uniqueness of the Numerical Solutions

In this section, we aim to prove the existence, uniqueness and regularity of the
numerical solutions uG, uO and uN .

First, we provide the existence uniqueness and regularity of the numerical solu-
tion uG ∈ Hn.
Theorem 4.1. Assume that f ∈ V ′. Then the approximate problem (3.15) admits
at least a weak solution u

G
∈ Hn such that

||uG|| ≤ ν−2||f ||V ′ .(4.1)

Moreover, if f ∈ H then

|AuG| ≤M2.(4.2)

If ν and f satisfy the unique condition (3.12) then the solution of (3.15) is unique.
This proof is classical, it can be omitted.
To prove the existence and uniqueness of the numerical solution u0 ∈ HN ;

we need the following lemma. In order to completing we give the proof (see[10],
[11],[12]).
Lemma 4.2. Let X be a finite dimensional Hilbert space with scalar product [·, ·]
and norm [·]. Let G be a continuous mapping from X into itself such that

[G(ξ), ξ] ≥ 0, ∀ξ ∈ X with [ξ] = µ > 0.(4.3)

Then there exists an element ξ ∈ X, such that

G(ξ) = 0, |ξ| ≤ µ.(4.4)

Proof. The proof proceeds by contradiction. Suppose G(ξ) 6= 0 in the closed sphere
S = {ξ ∈ X; |ξ| ≤ µ}. Then the mapping ξ → −µG(ξ)/|G(ξ)| is continuous from
S into S. As the dimension of X id finite and sine the set S is obvious non-void,
convex and compact, we may apply classical fixed point theorem due to Brouwer,
we can conclude that there exists and ξ ∈ S such that

ξ = −µG(ξ)/|G(ξ)|.
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Thus, we have exhibited and ξ ∈ X such that |ξ| = µ and

(G(ξ), ξ) = −µ|G(ξ)| < 0.

This contradicts (4.3). The proof is completed. �

Theorem 4.3. Assume that f ∈ V ′ and Ω be a bounded domain with Lipschitz
boundary. Then, the approximate problem (3.16)-(3.17) admits at least one solution
uO = y + z such that

‖uO‖ ≤ ν−1‖f‖V ′ .(4.5)

Moreover, if f ∈ H, then

|AuO| ≤M2.(4.6)

Proof. We rewrite (3.16)-(3.17) as the equivalent problem

νAuO + PNB(uO, uO) −QN
n B(QN

n uO, Q
N
n uO) = PNf.(4.7)

LetX = HN with the scalar product ((·, ·)) and norm ||·||, we define the mapping
G(ξ) by

((G(ξ), η)) = ν((ξ, η)) + b(ξ, ξ, η) − b(QN
n ξ,Q

N
n ξ,Q

N
n η) − (f, η), ∀ξ, η ∈ HN .

The continuity of the mapping G is obvious; Thanks to (3.4),

(G(ξ), η) = ν‖ξ‖2 + b(ξ, ξ, ξ) − b(QN
n ξ,Q

N
n ξ,Q

N
n ξ) − (f, ξ)

= ν‖ξ‖2 − (f, ξ) ≥ ‖ξ‖(ν‖ξ‖ − ‖f‖V ′).

Hence, by choosing µ = 1
ν ‖f‖V ′ , we have

(G(ξ), ξ) ≥ 0, ∀ξ ∈ HN , ‖ξ‖ = ν.

Therefore we can apply lemma 4.2, there exist at least one solution of (4.7) and

‖uO‖ ≤ µ =
1

ν
‖f‖V ′ .

This yields (4.5).
In order to prove (4.6) we recall that

|B(uO, uO)| ≤ c0|uO|1/2‖AuO‖1/2‖uO‖ ≤ ν

4
|AuO| + c20ν

−1|uO|‖uO‖2,(4.8)

|B(QN
n uO, Q

N
n uO)| ≤ ν

4
|AuO| + ν−1c20|uO|‖uO‖2.(4.9)

Combining (4.7)-(4.8) with (4.9), we have

ν|AuO| ≤ 2|f | + c20ν
−1|uO|‖uO‖2

≤ 2|f | + c20ν
−1λ

−1/2
1 M3

1 .

This yields (4.6). The proof ends. �

By a similar manner we can derive the following results.
Theorem 4.4. Assume that f ∈ V ′. Then the proximate problem (3.18)-(3.19)
admits at least one solution uN ∈ HN such that

‖uN‖ ≤ ν−1‖f‖V ′ .(4.10)

Moreover, if f ∈ H then

|AuN | ≤M2.(4.11)
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It is obvious that the uniqueness of approximates solution uO depends upon pa-
rameter ν and infinite dimensional solution u. Consequently, we have to consider
the nonsingular solution u of (3.9). In the neighborhood of singular solution u of
(3.9), my be to occurs bifurcation at (ν, u), we will study in other paper.

We say that the solution of (3.9) is an nonsingular solution at ν if only if the
Fréchet derivative operator DuF(u, ν) at (u, ν) is an isomorphism from V onto V .
If u is not an nonsingular solution we say that u is a singular solution.

Owing to the continuity of DuF(u, ν) for any nonsingular solution u, by the
Banach theorem, we assert that there existsDuF(u, ν)−1, andDuF(u, ν)−1 is linear
and continuous. In view of the bounded inverse theorem, DuF(u, ν) is bounded
below

||DuF(u, ν)v|| ≥ α‖v‖, ∀v ∈ V,(4.12)

where α > 0 (see Dunford and Schwartz [13]).
Let us introduce the functional

ρ(w) = inf
v∈V

b(v, w, v)

‖v‖2
, ∀w ∈ V.(4.13)

It is clear that ∀w ∈ V ,

|b(v, w, v)| ≤ ρ(w)||v||2, ∀v ∈ V.(4.14)

By virtue of (3.10), for any solution u of (3.9)

|b(v, u, v)| ≤ c||u||||v||2 ≤ cν−1||f ||V ′ ||v||2.
Consequently, for any solution u of (3.9,)

ρ(u) ≤ c0ν
−1||f ||V ′ .(4.15)

Recall that

(DuF(u, ν)v, w) = ν((v, w)) + b(u, v, w) + b(v, u, w),

we define bilinear form V × V → R :

Cu(w, v) ≡ (DuF(u, ν)w, v) = ν((w, v)) + b(u,w, v) + b(w, u, v).(4.16)

Then,existence of DuF(u, ν)−1 is equivalent to that elliptic problem:
find w ∈ V such that for any g ∈ V ′

Cu(w, v) = (g, v), ∀v ∈ V,(4.17)

admits a unique solution w ∈W .
According to generalized Lax-Milgram theorem ([10], [11]) if Cu(w, v) is contin-

uous and satisfying weak coerciveness:
(i) There exist δ > 0 such that

inf
‖w‖=1

sup
‖v‖≤1

v 6=0

|Cu(w, v)| ≥ δ > 0,(4.18)

(ii)

sup
w∈V

w 6=0

|Cu(w, v)| > 0, ∀v ∈ V, v 6= 0,(4.19)

then, ∀g ∈ V ′ there exist a unique solution w of (4.17) with the following estimate

‖w‖ ≤ δ−1‖g‖V ′ .(4.20)
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This can derive that if Cu(·, ·) is weak coercive then there exists DuF(u, ν)−1

and α = δ, where α is a constant defined by (4.12). Therefore,
{

‖DuF(u, ν)v‖ ≥ α‖v‖ = δ‖v‖,
‖DuF(u, ν)−1‖L(V,V ) ≤ δ−1.

(4.21)

Lemma 4.5. Assume that the solution u of (3.9) satisfies

ν − ρ(u) ≥ δ > 0.(4.22)

Then u is a nonsingular solution.

Proof. It is sufficient to prove that bilinear Cu(·, ·) defined by (4.16) is weak coer-
cive. In fact,

inf
||w||=1

sup
||v||≤1

||v||6=0

Cu(w, v) = inf
||w||=1

sup
||v||≤1

||v||6=0

||ν((w, v)) + b(w, u, v)||

≥ inf
||w||=1

{ν||w||2 + b(w, u,w)} ≥ ν − ρ(u) ≡ δ > 0

On the other hand,

sup |Cu(w, v)| ≥ ν||v||2 + b(v, u, v)

≥ (ν − ρ(u))||v||2, ∀v ∈ V.

Therefore, (4.22) yields that Cu(·, ·) satisfies weak coercive condition. �

Lemma 4.6. Assume that ν and f satisfy

ν − c0ν
−1‖f‖V ′ > 0.(4.23)

Then the solution u of (3.9) is a nonsingular solution.

Proof. It is clear that (4.23) and (4.23) are equivalent, therefore, solution of (3.9)
is unique in view of theorem 3.1.

Moreover, by virtue of (4.15) and (4.23), we have

ν − ρ(u) ≥ ν − c0ν
−1||f ||

V ′ > 0

Therefore, by lemma 4.5 it is obvious that u is an nonsingular solution. �

Theorem 4.7. Assume that the solution u of (3.9) satisfies (4.22), and n is
sufficiently large such that

δ − c0ν
−1λ

−1/2
n+1 ||f ||

V ′ > 0.(4.24)

Then the solutions uO and uN of (3.16)–(3.17) and (3.18)–(3.19) are unique,
respectively.

Proof. It is enough to prove the uniqueness of uO. Assume that u1 and u2 are two
solutions of (3.16)-(3.17). Let w = u1 −u2. Then it follows from (3.16), (3.17) that

νAw + PN (B(w, u1) +B(u2, w)) −QN
n [B(QN

n w,Q
N
n u1) +B(QN

n u2, Q
N
n w)] = 0.

(4.25)

Taking the scalar product in H of (4.25) with w and using (3.5), we derive

(ν − ρ(u1))||w||2 ≤ |b(QN
n w,Q

N
n u1, Q

N
n w)| ≤ c0|QN

n w|‖QN
n w‖‖QN

n u1‖
≤ c0λ

−1/2
n+1 ν

−1‖f‖V ′‖w‖2.

By applying (4.24) it follows that ||w|| = 0. �
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5. Convergence Analysis

In this section, we aim to derive the convergence rates of the numerical solutions
uG, uO and uN to the nonsingular solution u of the abstract equation (3.9).
Theorem 5.1. Assume that f ∈ H and u is a nonsingular solution of (3.9). Then
uG satisfies the following convergence rate:

||u− uG|| ≤M2(c0α
−1λ

−1/2
1 M2λ

−1/2
n+1 + 1)λ

−1/2
n+1(5.1)

Remark 5.1. If n is chosen such that

c0α
−1λ

−1/2
1 M2λ

−1/2
n+1 ≤ 1,(5.2)

then

‖u− uG‖ ≤ 2M2λ
−1/2
n+1 .(5.3)

This proof is classical, it can be omitted.
Theorem 5.2. Assume that f ∈ H and u is a nonsingular solution of (3.9). Then
the following estimate holds:

‖u− uO‖ ≤ α−1[c0M
2
2λ

−3/2
n+1 + (|f | + c0λ

−1/2
1 M

3/2
1 M

1/2
2 )λ

−1/2
N+1 ],(5.4)

where α is a constant defined by (4.20).

Proof. Setting E = u− uO, we derive from (3.9) and (4.7) that

νAE + PN (B(E, u) +B(uO, E)) +QNB(u, u) +QN
n B(z, z) = QNf,

where z = QN
n u0. Taking the scalar product in H of the above equality with v ∈ V ,

we derive

ν(AE, v) +b(E, u, PNv) + b(uO, E, PNv) + b(u, u,QNv)
+B(z, z,QN

n v) = (f,QNv).
(5.5)

Noting that

b(uO, E, PNv) = b(u,E, PNv) − b(E,E, PNv),

we obtain

ν(AE, v) + b(E, u, v) + b(u,E, v) = (g, v),(5.6)

where

(g, v) ≡ b(E,E, PNv) + b(E, u,QNv) + b(u,E,QNv)
−b(u, u,QN

n v) − b(z, z,QN
n v) + (f,QNv).

(5.7)

(5.7) is equivalent to the following

(DuF(u, ν)E, v) = (g, v).(5.8)

Therefore, E can be looked as a solution of (5.9). On the other and

‖DuF (u, ν)E‖ = sup
v∈V

(DuF (u, ν)E, v)

‖v‖ = sup
v∈V

(g, v)

‖v‖ ≥ (g,E)

‖E‖ .(5.9)
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Simplifying calculation shows that

(g,E) = b(E,E, PNE) + b(E, u,QNE) + b(u,E,QNE)
−b(u, uE,QNE) − b(z, z,QN

n E) + (f,QNE)
= −b(E,E,QNE) + b(E, u,QNE) − b(u, uO, QNE)

−b(z, z,QN
n E) + (f,QNE)

= b(E, uO, QNE) − b(u, uO, QNE)
−b(z, z,QN

n E) + (f,QNE)
= −b(uO, uO, QNE) − b(z, z,QN

n E) + (f,QNE).

Comparing (5.6) with (4.12), we assert that

α‖E‖2 ≤ (g,E) ≤ c0|uO|1/2|AuO|1/2‖uO‖|QNE| + c0|z|‖z‖‖QN
n E‖

≤ c0λ
−1/2
1 M

3/2
1 M

1/2
2 λ

−1/2

N+1 ‖E‖ + c0λ
−3/2
n+1 |AuO|‖E‖

+ |f |λ−1/2
N+1 ‖E‖.

Therefore

‖E‖ ≤ α−1((c0λ
−1/2
1 M

3/2
1 M

1/2
2 + |f |)λ−1/2

N+1 + c0M
2
2λ

−3/2
n+1 ).

This yields (5.4). �

Remark 5.2. If n and N are chosen such that

λ−1
N+1 = O(λ−3

n+1),(5.10)

then

‖u− uN‖ = O(λ
−3/2
n+1 ).(5.11)

Recalling (5.3), we obtain

‖u− uO‖ = O(‖u− uG‖3).(5.12)

Theorem 5.3. Assume that f ∈ H and u is a nonsingular solution of (3.9). Then
the following estimate holds

‖u− uN‖ ≤ α−1[(|f | + c0λ
−1/2
1 M

3/2
1 M

1/2
2 )λ

−1/2
N+1 + 2c0M

2
2λ

−1
n+1],(5.13)

where α is a constant defined by (4.12).

Proof. Set EN = u− uN . Then (3.18) and (3.19) can be rewritten as

νAuN + PNB(uN , uN ) − PNB(z, z) −QN
n (B(y, z) +B(z, y)) = PNf.(5.14)

Subtracting (5.14) from (3.9) we derive

νAEN +PN (B(u, u) −B(uN , uN )) +QNB(u, u) +QN
n B(z, z)

+QN
n (B(y, z) +B(z, y)) = QNf.

(5.15)

Noticing that

B(u, u)−B(uN , uN ) = B(EN , u)+B(uN , EN ) = B(EN , z)+B(u,EN )−B(EN , EN ),

and taking scalar product in H of (5.15) with v ∈ V , we have

ν(AEN , v) + b(EN , u, PNv) + b(u,EN , PNv) − b(EN , EN , PNv)

+ b(u, u,Qnv) + b(z, z, PNv) + b(y, z,QN
n v)

+ b(z, y,QN
n v) = (f,QNv).

It is equivalent to the following formulation

(DuF(u, ν)EN , v) = (g, v), ∀v ∈ V,(5.16)
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where

(g, v) = b(EN , u,QNv) + b(u,EN , QNv) + b(EN , EN , PNv)

−b(u, u,QNv) − b(z, z, PNv) − b(y, z,QN
n v) − b(z, y,QN

n v) + (f,QNv).

By similar manner as in proof of theorem 5.1 we obtain

α‖EN‖2 ≤ (g,EN ) = b(EN , u,QNEN ) + b(u,EN , QNEN ) − b(EN , EN , QNEN )
−b(u, u,QNEN ) − b(z, z, PNEN ) − b(y, z,QNEN )
−b(z, y,QN

n EN ) + (f,QNEN ),

(5.17)

|b(uN , uN , QNEN )| ≤ c0|uN |1/2|AuN |1/2||uN |‖QNEN‖
≤ c0λ

−1/2
1 M

3/2
1 M

1/2
2 λ

−1/2
N+1 ‖EN‖,(5.18)

|b(z, z, PNEN )| ≤ c0|z|||z||||PNEN || ≤ c0λ
−3/2
n+1 |AuN |2‖EN‖

≤ c0M
2
2λ

−3/2
n+1 ‖EN‖,

(5.19)

|b(z, y,QN
n EN ) +b(y, z,QN

n EN )| ≤ 2c0|y|1/2|Ay|1/2‖QN
n EN‖|z|

≤ 2c0λ
−1/2M2‖EN‖λ−1/2

N+1 |AuN |
≤ 2c0λ

−1/2
1 M2

2λ
−1
n+1‖EN‖,

(5.20)

|(f,QNEN )| ≤ |f |λ−1/2
N+1 ‖EN‖,(5.21)

we derive from (5.17) that

‖EN‖ ≤ α−1[(|f | + c0λ
−1/2
1 M

3/2
1 M

1/2
2 )λ

−1/2
N+1

+c0M
2
2λ

−3/2
n+1 + 2c0λ

−1/2
N+1M

2
2λ

−1
n+1].

This yields (5.13). The proof ends. �

Remark 5.3 If n and N are chosen such that

λ−1
N+1 = O(λ−2

n+1),(5.22)

then

‖u− uN || = O(λ−1
N+1),(5.23)

Recalling (5.3) we obtain

‖u− uN‖ = O(‖u− uG‖2).(5.24)

Remark 5.4 According to Remarks 5.1-5.3, we conclude that the ONG method
provides the higher convergence than the SG method:

‖u− uO‖ = O(‖u− uG‖3), ‖u− uN‖ = O(‖u− uG‖2),

provide

λ−1
N+1 = O(λ−3

n+1) for the ONG method,

λ−1
N+1 = O(λ−2

n+1) for the NG method.

However, the extra cost of the ONG method and the NG method consist of solving
a linear subproblem in space HN\Hn. Hence the ONG Method is superior to the
NG Method and the NG Method is superior to the SG Method.
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6. Approximation of Branches of Nonsingular Solution

We rewrite the Navier-Stokes Equations by the following

F(u, ν) ≡ u+ νA−1(B(u, u) − f) = 0(NSE)

where A is the abstract stokes operator and A−1 is its inverse which is compact
from H into H. By a similar manner, (3.18)-(3.19) can be rewritten by

FN (uO, ν) ≡ uO + ν−1A−1(B(uO, uO) −QN
n B(QN

n uO, Q
N
n uO) − f) = 0.(ANSE)

Let

G(u, u) = ν−1(B(u, u) − f),(6.1)

GN (u, u) = ν−1(B(u, u), QN
n B(QN

n u,Q
N
n u) − f).(6.2)

Then

DuF(u, ν)v = v +A−1DuG(u, u)v,(6.3)

DuFN (uO, ν)v = v +A−1DuGN (uO, uO)v,(6.4)

where

DuG(u, u)v = ν−1(B(u, v) +B(v, u)), ∀v ∈ H,(6.5)

DuGN (uO, uO)v = ν−1[(B(uO, v) +B(v, uO)
−QN

n (B(QN
n uO, v) +B(v,QN

n uO))], ∀v ∈ HN .
(6.6)

Let us assume that {(ν, u(ν)); ν ∈ I ⊂ R} is a branch of nonsingular solutions
of (NES). We want to find some sufficient conditions ensuring the existence and
uniqueness of a branch {(ν, u(ν)); ν ∈ I} of the solutions of (ANSE) in a suitable
neighborhood of the branch {(ν, u(ν)); ν ∈ I} of the solutions of (NSE).

In first stage we fix ν in I. We introduce

γ(u, ν) = ‖DuF(u, ν)−1‖L(V ),

µN (ν, ũ0) = ‖DuF(u, ν) −DuFN (ũ0, ν)‖L(V ),

where ũ0 is an arbitrary element of HN .
Lemma 6.1. Under the condition

γ(u, ν)µN (ν, ũ0) < 1,(6.7)

the mapping DuFN (ũ0, ν) is an isomorphism from HN onto HN . For the proof,
the reader can refer to lemma 3.3 in chapter V of [11].
Corollary 6.2. Under the condition

µN (ν, ũ0)α
−1 < 1,(6.8)

where α is a constant defined by (4.12), the mapping DuFN (ũ0, ν) is an isomor-
phism from HN onto HN .

Proof. (4.12) shows, γ(ν) ≤ α−1. Taking (6.7) and (6.8) into account, we obtain
the conclusion of Corollary 6.2. �
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Next,we calculate µN (ν, u0)

µN (ν, u0) = sup
v,w∈V

(((DuF(u, ν) −DuFN (u0, ν))v, w))

‖v‖‖w‖ .(6.9)

In view of (6.3)-(6.6), we have

I = (((DuF(u, ν) −DuFN (u0, ν))v, w))

= ν−1((A−1(B(u− u0, v) +B(v, u− u0)) +QN
n (B(QN

n u0, v) +B(v,QN
n u0)), w))

= ν−1((A−1/2(B(u− u0, v) +B(v, u− u0))

+QN
n (B(QN

n u0, v) +B(v,QN
n u0)), A

−1/2w)).

Let A−1/2g = ξ,A−1/2h = η, i.e. g = A1/2ξ, η = A1/2η. This yields

((A−1/2g,A−1/2h)) = ((ξ, η)) = (A1/2, A1/2η) = (g, h).(6.10)

Therefore,

I = ν−1(b(u− u0, v, w) + b(v, u− u0, w) + b(QN
n u0, v,Q

N
n w) + b(v,QN

n u0, Q
N
n w)),

or

|I| ≤ ν−1[c0‖u0‖‖v‖‖w‖ + c0‖v‖|QN
n u0|1/2‖QN

n u0‖1/2|QN
n |w|1/2‖QN

n w‖1/2

+c0|v|1/2‖v‖1/2‖QN
n u0‖|QN

n w|]
≤ ν−1[c0‖u0‖‖v‖‖w‖ + c0(1 + λ

−1/2
1 )λ

−1/2
n+1 ‖v‖|u0|‖w‖],

µN (ν, u0) ≤ ν−1c(λ−1
n+1‖u0‖ + ‖u− u0‖).

By using (5.4),

µN (ν, u0) ≤ ν−1c(M1λ
−1/2
n+1 + (|f | + c0λ

−1/2
1 M

3/2
1 M

1/2
0 )λ

−1/2
N+1 +M2

2λ
−3/2
N+1 )

≤ cλ
−1/2
n+1 .

Combining this inequality with (4.12) yields the following result.
Lemma 6.3. Assume that n is chosen enough large such that

cλ
−1/2
n+1 α

−1 < 1,

where c is defined by (6.11). Then the ONG approximate solution uO of (3.16)-
(3.17) is a nonsingular solution.

7. Numerical Example

Here we study numerically the Navier-Stokes equations between two con-
centric rotating spheres by using the nonlinear Galerkin method and the optimal
nonlinear Galerkin method, respectively.



472 K. LI AND Y. HE

We introduce the following notations:
(r, φ, θ) spherical polar coordinates,
R1, R2 radii of inner and outer spheres, respectively,
ω1, ω2 angular velocity of inner and outer spheres,
ω2 = 0 outer sphere is held fixed,
ω2 > 0 corotating case,
ω2 < 2 counter rotating case,
ω = ω2/ω1, ǫ = 1 − ω = ω1−ω2

ω1

, η = R2/R1, η = 1 + σ, σ = (R2 −R1)/R1,

Re = ω1R
2
1/ν Reynolds Number,λ = Re−1,

u = (ur, uφ, uθ), p physical components of velocity of the fluids and pressure,
ui, ui contravariant components and covariant components of velocity,
ur = u1 = u1, uφ = u2r sin θ = u2/r sin θ, uθ = ru3 = u3/r,
ψ, ξ Stream Function and Vorticity Function, respectively.
The Navier-Stokes equations and boundary conditions of a constant-density fluid

between two concentric rotating at R1 and R2 with different angular velocity ω1, ω2

respective are given

∂u

∂t
+ (u · ∇)u+ ∇p− ν∆u = 0,(7.1)

∇ · u = 0,(7.2)

u|r=1 = sin θ−→e φ, u|r=η = ωη sin θ−→e φ,(7.3)

where we use dimensionless,and (−→er ,
−→eφ,

−→eθ) is a local coordinate frame of spherical
coordinate.

Later on,we shall refer to the φ–component of the velocity uφ as the agimuthal
flow and to the remaining components of the velocity as the meridional flow um =
ur

−→e r + uθ
−→e θ. The Stokes flow u∗ is the time-independent solution to (7.1)-(7.3)

in the limit Re→ 0(ν → ∞):

u∗ = (η3ω − 1)/(η3 − 1), β = η3(1 − ω)/(η3 − 1),(7.4)

where

α = (η3ω − 1)/(η3 − 1), β = η3(1 − ω)/(η3 − 1).(7.5)
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Although the Stokes solution is exclusively agimuthal,it is a function of θ. Note
that the angular velocity u∗/r sin θ is not a function of θ, so that each radial shell
moves with a constant velocity. In the spherical couette flow a small meridional
velocity is generated from the nonlinear interaction of the Stokes solution with itself
via the adventive terms in the Navier-Stokes equation. This caused the true flow to
deviate from the Stokes solution at all finite Reynolds numbers. At very small Re,
the flow is still mostly agimuthal and does not depart greatly from stokes flow.The
meridional motion which driven by Ekman pumping, expele fluids out from the
pales along the surface of the rotating inner sphere. The streamline resulting from
the superposition of the agimuthal and the weaker meridional motion are helices.
Despite being three-dimensional, the flow remains axis-symmetric. Set

ur =
1

r2 sin θ

∂

∂θ
(r sin θψ), uθ =

−1

r sin θ

∂

∂r
(r sin θψ),(7.6)

ξ = (ξr, ξφ, ξθ) = ∇× u,

we obtain vorticity-stream function formulation for the Navier-Stokes equations
with axis-symmetry

∂uφ

∂t
+

1

r3 sin2 θ

∂(r sin θuφ, r sin θψ)

∂(r, θ)
− λL2uφ = 0(7.7)

∂ξφ
∂t

+
1

r2 sin θ

∂(ξφ, r sin θψ)

∂(r, θ)
+ (−2uφNuφ + ξφNψ) − λL2ξφ = 0,(7.8)

L2ψ = ξφ,(7.9)

where

N =
cot θ

r

∂

∂r
− 1

r2
∂

∂θ
,

L2 = ∂2

∂r2 + 2
r

2
∂r + cot θ

r2

∂
∂θ + 1

r2

∂2

∂θ2 − 1
r2 sin2 θ

= 1
r

∂2

∂r2 (r) + 1
r2

∂
∂θ ( 1

sin θ
∂
∂θ (sin θ·)).

(7.10)

Boundary conditions are given by




uφ|r=1 = sin θ, uφ|r=η = ηω sin θ

ϕ = ∂ϕ
∂r = 0, r = 1, r = η,

ϕ = 0, for θ = 0, θ = π.
(7.11)

Let

uφ = U + u∗φ,(7.12)

where u∗φ is defined by (7.4). It is easy to verify that u∗φ satisfy (7.11) and

L2u∗φ = 0.(7.13)

Thus, we obtain the equations for U and ψ:

∂U

∂t
+

1

r3 sin2 θ

∂(r sin θU, r sin θψ)

∂(r, θ)
+

1

r3 sin2 θ

∂(r sin θu∗φ, r sin θψ)

∂(r, θ)
− λL2U

= 0,(7.14)

∂ξφ
∂t

+
1

r2 sin θ

∂(ξφ, r sin θψ)

∂(r, θ)
+ (2(U + u∗φ)NU + 2UNu∗φ + ξφNψ) − λ2ξφ

= f,(7.15)

L2ψ = ξφ,(7.16)



474 K. LI AND Y. HE

with boundary conditions

U |r=1 = U |r=η = 0, ψ|r=1 =
∂ψ

∂r
|r=1 = ψ|r=η =

∂ψ

∂r
|r=η = 0,(7.17)

where

f(r, θ) = −3β(αr−3 + βr−6) sin θ.(7.18)

Next we consider the following eigenvalue and eigenfunction

λL2U + µU = 0, U |r=1 = U |r=0 = 0,

λL4ψ + µL2ψ = 0, ψ|r=0,1 =
∂φ

∂r
|r=0,1 = 0.

The calculation shows the eigenfunctions are given

Ul,n = Ql,n(αl,n)P 1
l (cos θ),

ψl,n(r, θ) = bl(βl,nr)P
1
l (cos θ),

with eigenvalues
µl,n = α2

l,nλ,

µl,n = β2
l,nλ,

where αl,n and βl,n are the roots of the following equations

Ql(α) = 0, bl(β) = 0,

and

Ql(αr) =

∣∣∣∣
jl(αr) yl(αr)
jl(αη) yl(αη)

∣∣∣∣ ,

bl(βr) =

∣∣∣∣∣∣∣∣

rl r−l−1 jl(βr) yl(βr)
ηl η−l−1 jl(βη) yl(βη)

l −l − 1 βj
′

l (β) βy
′

l(β)

lηl−1 −(l + 1)η−1−l βj
′

l (βη) βy
′

l(βη)

∣∣∣∣∣∣∣∣
,

jl(z) =

√
2

π

1√
z
Jl+1/2(z), yl(z) =

√
2

πz
Il−1/2(z),

where Jl+1/2(z) is a Bessell’s function of half integer order and jl(z),yl(z) are spher-
ical Bessel’s functions, and Pm

l (x) is a general Legendre’s polynomial.
We choose basic space

H = H1
0 (Ω) ×H2

0 (Ω)

and finite dimensional subspaces

HN = span{Ul,n, φl,n, l, n ≤ N}.
Let uL, uH be the lower and higher components ofuφ, respectively, ψL, ψH

lower and higher components of ψ, respectively, Λ1
L,Λ

1
H index set of lower and

higher components of uφ, respectively, Λ2
L,Λ

2
H index set of lower and higher

components of ψ, respectively.
Assume that

uL =
∑

l,n∈Λ1

L

xl,nUl,n(r, θ), uH =
∑

l,n∈Λ2

H

zl,n(t)Ul,n(r, θ),

ψL =
∑

l,n∈Λ2

L

zl,n(t)ψl,n(r, θ), ψH =
∑

l,n∈Λ2

H

zl,n(t)ψl,n(r, θ),

uH = uL + uH , ψH = ψL + ψH ,

Λ1
H = Λ1

L ∪ Λ1
H , Λ2

H = Λ2
L ∪ Λ2

H .
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By applying the orthogonality
∫

Ω

r2 sin θUl,nUm,kdrdθ = Nl,nδl,mδn,k,

∫

Ω

r2 sin θL2ψl,nψk,mdrdθ = Ml,nδl,mδn,k,

where

Nl,n =

∫

Ω

r2 sin θUl,ndrdθ

Ml,n =

∫

Ω

r2 sin θL2ψl,nψl,ndrdθ

we can rewrite the SG method, the NG method and the ONG method as follows:
The SG method:

d

dt
xk,m +

1

Re
α2

k,mxk,m +
1

Nk,m
b1(uH + u∗ϕ, ψH , Uk,m) = 0, ∀k,m ∈ Λ1

N ,

dzk,m

dt
+

1

Re
β2

k,mzk,m +
1

Mk,n
[b1(ψH , ψH , ψk,m) + 2b2(uH + u∗ϕ, uH + u∗ϕ, ψk,m),

+ 2b2(L
2ψH , ψH , ψk,m)] = 0, ∀k,m ∈ Λ2

N .

The NG method:
d
dtxk,m + 1

Reα
2
k,mxk,m +N−1

k,m[b1(uN + u∗ϕ, ϕH , Uk,m)] = 0, ∀k,m ∈ Λ1
L,

d

dt
zk,m +

1

Re
β2

k,mzk,m + M−1
k,m[b1(ϕH , ϕH , ϕk,m) + 2b2(uH + u∗ϕ, uH + u∗ϕ, ϕk,m)

+ 2b2(L
2ϕH , ϕH , ϕk,m)] = 0, ∀k,m ∈ Λ2

L,

1
Reα

2
k,mxk,m +N−1

k,mb1(uL + u∗ϕ, ϕL, Uk,m) = 0, ∀k,m ∈ Λ1
H ,

1

Re
β2

k,mzk,m + M−1
k,m[b1(L

2ϕL, ϕL, ϕk,m) + 2b2(u
∗
ϕ + uL, u

∗
ϕ + uL, ϕk,m)

+ 2b2(L
2ϕL, ϕL, ϕk,m)] = 0, ∀k,m ∈ Λ2

H .

The ONG method:
d
dtxk,m + 1

Reα
2
k,mx

+
k,mN

−1
k,mb1(u

∗
ϕ + uH , ϕH , Uk,m) = 0 ∀k,m ∈ Λ1

L,

d

dt
zk,m + 1

Reβ
2
k,mzk,m +M−1

k,m[b1(L
2ϕH , ϕH , ϕk,m) + 2b2(u

∗
ϕ + uH , u

∗
ϕ + uH , ϕk,m)

+2b2(L
2ϕH , ϕH , ϕk,m)] = 0, ∀k,m ∈ Λ2

L,

d

dt
xk,m +

1

Re
α2

k,mxk,m +N−1
k,m[b1(u

∗
ϕ + uL, ϕL, Uk,m)

+ b1(u
∗
ϕ + uL, ϕH , Uk,m)b1(uH , ϕL, Uk,m)] = 0, ∀k,m ∈ Λ1

H ,

d

dt
zk,m +

1

Re
β2

k,mzk,m +M−1
k,m[b1(L

2ϕL, ϕL, ϕk,m)

+2b2(uL + u2
ϕ, uL + u∗ϕ, uL + u∗ϕ, ϕk,m) + 2b2(L

2ϕL, ϕL, ϕk,m)

+b1(L
2ϕL, ϕH , ϕk,m) + b1(L

2ϕH , ϕL, ϕk,m)

+2b2(uL + u∗ϕ, uH , ϕk,m) + 2b2(uH , uL, ϕk,m)

+2b2(L
2ϕL, ϕH , ϕk,m) + 2b2(L

2ϕH , ϕL, ϕk,m)] = 0, ∀k,m ∈ Λ2
H .

Our numerical computation will appear in the Fig.2-Fig.7.
Fig.2: (r, θ)-Projection of the meridional streamlines of the 0-vortex flow at Re =
600, η = 0.18.
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Fig.3: The meridional velocity of the 0-vortex flow with pinches at Re = 650, η =
0.l8.
Fig.4: The meridional streamlines of the 1-vortex flow at Re = 750, η = 0.18
Taylor-vortex separated from large basic vortices.
Fig.5: The meridional streamlines of the 2-vortex flow at Re = 1100, η = 0.18.
Fig.6: When one applies time evolution method to approximate stead state. The
energy curves with time evolution are showed by using the SG method it is blow
up at finite time.
Fig.7: The energy curves are showed by using the ONG method it converges to
steady state as t→ ∞ without blow up.

The calculations show that though extra cost of the ONG method and the
NG method consists in solving the similar linear subproblem in HN\Hn the ONG
method is superior to the NG method and the NG method is superior to the SG
method.
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