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A PIECEWISE CONSTANT LEVEL SET FRAMEWORK

JOHAN LIE, MARIUS LYSAKER, AND XUE-CHENG TAI

Abstract. In this work we discuss variants of a PDE based level set method.

Traditionally interfaces are represented by the zero level set of continuous level

set functions. We instead use piecewise constant level set functions, and let

interfaces be represented by discontinuities. Some of the properties of the stan-

dard level set function are preserved in the proposed method. Using the meth-

ods for interface problems, we need to minimize a smooth convex functional

under a constraint. The level set functions are discontinuous at convergence,

but the minimization functional is smooth and locally convex. We show nu-

merical results using the methods for segmentation of digital images.

Key Words. image segmentation, image processing, PDE, variational, level

set, piecewise constant level set

1. Introduction

The level set method was proposed by Osher and Sethian in [1] as a versatile
tool for tracing interfaces separating a domain Ω into subdomains. Interfaces are
treated as the zero level set of higher dimensional functions. Moving the interfaces
can implicitly be done by evolving level set functions instead of explicitly moving
the interfaces. We give a brief introduction to the level set method in §2. For a
recent survey on the level set methods see [2, 3, 4, 5]. Applications of the level set
method include image analysis, reservoir simulation, inverse problems, computer
vision and optimal shape design [6, 7, 8, 9]. In this work, we present variants of the
level set method. The primary concern for our approach is to remove the connection
between the level set functions and the signed distance function and thus remove
some of the computational difficulties associated with the calculation of the Eikonal
equation, see §2. Another motivation is to avoid the non-differentiability associated
with the Heaviside and Delta functions used in some of the level set formulations
[6, 10]. This will also turn the minimization functional into a locally convex and
smooth functional. The third concern of this approach is to develop fast algorithms
for level set methods. Due to the fact that the functional and the constraints for
this approach are rather smooth, it is possible to apply Newton types of iterations
to construct fast algorithms for the proposed model. One of the variants extends
the level set models proposed in [11, 12] and it is also closely related to the phase-
field methods [13, 14, 15, 16]. Our framework can be used for different applications
where a domain should be divided into subdomains. In this work, we concentrate
on image segmentation problems.

For a given digital image u0 : Ω → R, the aim is to separate Ω into a set of
subdomains Ωi such that Ω = ∪n

i=1Ωi and u0 is nearly a constant in each Ωi.
Having determined the partition of Ω into a set of subdomains Ωi, one can do
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further modelling on each domain independently and automatically. One general
image segmentation model was proposed by Mumford and Shah in [17]. Numerical
approximations are thoroughly treated in [18]. Using this model, the image u0 is
decomposed into Ω = ∪iΩi∪Γ, where Γ is a curve separating the different domains.
Inside each Ωi, u0 is approximated by a smooth function. The optimal partition of
Ω is found by minimizing the Mumford-Shah functional (6). This is explained in §2.
Following the Mumford-Shah formulation for image segmentation, Chan and Vese
[6, 10] solved the minimization problem by using level set functions. The interface Γ
is traced by the level set functions. Motivated by the Chan-Vese approach, we will
in this article solve the segmentation problem in a different way, i.e. by introducing
a piecewise constant level set function φ. Instead of using the zero level of a function
to represent the interface between subdomains, we let the interface be represented
implicitly by the discontinuities of a set of basis functions ψi(φ). In order to divide
Ω into subdomains Ωi, such that Ω = ∪iΩi, we use a set of functions ψi satisfying
ψi = 1 in Ωi and ψj = 0 in Ωi when j 6= i, see Figure 1.

The rest of this article is structured as follows. In §2 we give a brief review
of the traditional level set method. Our general framework and the minimization
functional used for image segmentation is formulated in §3. The segmentation
problem is formulated as a minimization problem with a smooth cost functional
under a constraint. We are essentially minimizing the Mumford-Shah functional
associated with the new level set model. In §4 and §5 we explain our two variants of
the level set method for image segmentation in more detail. Both sections include
algorithms and numerical results. We conclude with a brief discussion. For a more
detailed treatment of the two methods, including more numerical results we refer
the reader to [19, 20].

2. Standard Level Set Methods

The main idea behind the level set formulation is to represent an interface Γ(t)
bounding a possibly multiply connected region in Rn by a Lipschitz continuous
function φ, having the following properties

(1)





φ(x, t) > 0, if x is inside Γ,
φ(x, t) = 0, if x is at Γ,
φ(x, t) < 0, if x is outside Γ.

Some regularity must be imposed on φ to prevent the level set function of being
too steep or too flat near the interface. This is normally done by requiring φ to be
a signed distance function to the interface

(2)





φ(x, t) = d(Γ, x), if x is inside Γ,
φ(x, t) = 0, if x is at Γ,
φ(x, t) = −d(Γ, x), if x is outside Γ,

where d(Γ, x) denotes Euclidean distance between x and Γ. Having defined the level
set function φ as in (2), there is a one to one correspondence between the curve Γ
and the function φ. The distance function φ obeys the Eikonal equation

(3) |∇φ| = 1.

The solution of (3) is not unique in the distributional sense. Finding the unique
vanishing viscosity solution of (3) is usually done by solving the following initial
value problem to steady state

φt + sgn(φ̃)(|∇φ| − 1) = 0(4)

φ(x, 0) = φ̃(x).(5)
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In the above, φ̃ may not be a distance function. When the steady state of equation
(4) is reached, it will be a distance function having the same zero curve as φ̃. This
is commonly known as the reinitialization procedure. For numerical computations
this procedure is crucial. Some finite difference schemes exists, see [2, 3, 9] for some
details.

2.1. Level Set Methods and Image Segmentation. The active contour (snake)
model evolves a curve Γ(t) in order to detect objects in an image u0 [21]. The curve
is moved from an initial position Γ(0) in the direction normal to the curve, sub-
ject to constraints in the image. An edge detector g(∇u0) determines when Γ(t)
is situated at the boundary of an object. One limitation of the snake model is
that the curve is represented explicitly, thus topological changes like merging and
breaking of the curve may be hard to handle. To address this problem, a level set
formulation of the active contour model was introduced in [22]. Later, Chan-Vese
introduced a level set model for active contour segmentation, with the very impor-
tant property that the stopping criteria is independent of ∇u0 [6]. This means that
boundaries not defined by gradients can be detected. Instead, the evolvement of the
curve is based on the general Mumford-Shah formulation of image segmentation,
by minimizing the functional

(6) FMS(u, Γ) =
∑

i

∫

Ωi

|ci − u0|2dx + µ|Γ|+ ν

∫

Ω\Γ

|∇u|2dx.

In the above, |Γ| is the length of Γ. A minimizer of this functional is smooth in
Ω\Γ. The piecewise constant Mumford-Shah formulation of image segmentation is
to find a partition of Ω such that u in Ωi equals a constant ci, and Ω = ∪n

i Ωi ∪ Γ.
The two last terms in (6) are regularizers measuring curve-length of the curves
bounding the phases, and smoothness of u in Ω\Γ. Based on (6), Chan and Vese
[6] proposed the following minimization problem for a two-phase segmentation
(7)

min
c1, c2, φ

{ ∫

Ω

|u0−c1|2H(φ)dx+
∫

Ω

|u0−c2|2(1−H(φ))dx+ν

∫

Ω

H(φ)dx+µ

∫

Ω

δ(φ)|∇φ|dx
}

.

Here φ is the level set function satisfying (1) and H(φ) is the Heaviside function

(8) H(φ) =
{

1, φ ≥ 0,
0, φ < 0.

Finding a minimum of (7) is done by introducing an artificial time variable, and
moving φ in the steepest descent direction to steady state

φt = δε(φ)
(
−(u0 − c1)2 + (u0 − c2)2 − ν + µ∇·

( ∇φ

|∇φ|
))

,(9)

φ(x, 0) = φ0(x).(10)

Here δε is a globally positive approximation to the δ function, see [6]. The recovered
image is a piecewise constant approximation to u0.

If we do not impose any other conditions on the level set functions φ, then the
minimizer of FMS with respect to φ may not be unique. Thus, we require the level
set function φ to be a distance function. This means that the level set function is
a steady state of both (4) and (9). In practice, this means we need to reinitialize
the level set function.
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This level set framework was later generalized to multiple phase segmentation
using multiple level set functions [10]. A four phase segmentation can be accom-
plished by minimizing the functional

F (c,φ1,φ2)=
∫

Ω

|c1 − u0|2H(φ1)H(φ2)dx +
∫

Ω

|c2 − u0|2H(φ1)(1−H(φ2))dx

+
∫

Ω

|c3 − u0|2(1−H(φ1))H(φ2)dx +
∫

Ω

|c4 − u0|2(1−H(φ1))(1−H(φ2))dx(11)

+ν

∫

Ω

H(φ1)dx + ν

∫

Ω

H(φ2)dx + µ

∫

Ω

δ(φ1)|∇φ1|dx + µ

∫

Ω

δ(φ2)|∇φ2|dx.

Having determined c = {ci}4i=1, φ1 and φ2 by the minimization of (11), four differ-
ent regions can be identified by the sign of the two level set functions such that

(12) u(x) =





c1, if φ1(x) > 0 , φ2(x) > 0,
c2, if φ1(x) > 0 , φ2(x) < 0,
c3, if φ1(x) < 0 , φ2(x) > 0,
c4, if φ1(x) < 0 , φ2(x) < 0.

By utilizing (8), the recovered cartoon image u consisting of four phases can be
written as

u = c1H(φ1)H(φ2) + c2H(φ1)(1−H(φ2))
+ c3(1−H(φ1))H(φ2) + c4(1−H(φ1))(1−H(φ2)).(13)

Increasing the number of phases is done by increasing the number of level set
functions. With the use of N level set functions it is possible to represent up to 2N

phases.
In this work we solve the piecewise constant Mumford-Shah segmentation using

a slightly different level set approach. We separate the connection between the
level set function and the distance function. This means that we get rid of the
reinitialization procedure. Our approach is truly variational, i.e. the equations
we need to solve are coming from the Euler-Lagrange equations for some smooth
convex functions. The problem of point-wise non-differentiability of the Heaviside
and Delta functions is avoided and the cost functional is also convex.

3. A General Framework

In this section a general framework for representing subdomains of Ω is devel-
oped. To each subdomain Ωi corresponds a basis function ψi, such that ψi = 1
in Ωi and zero elsewhere. Two different realizations of the basis functions ψi are
developed in §4 and §5. The basis functions are constructed using one or several
level set functions {φj}l

j=1. As mentioned in the introduction, each ψi is compactly
supported in Ωi. Using this property, we can construct a piecewise constant func-
tion u by a weighted sum of the basis functions. If we let c = {ci}n

i=1 be a set of real
scalars, we can represent a piecewise constant function u taking these n distinct
constant values by

(14) u =
n∑

i=1

ciψi.

In Figure 1 we demonstrate the relationship between an image function u, the
partition of Ω associated with this image, and the corresponding basis functions ψi,
i = 1, 2, 3.
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(a) Image u with 3 objects.
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(c) Function ψ1. ψ1 = 0 or 1.
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(d) Function ψ2. ψ2 = 0 or 1.
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(e) Function ψ3. ψ3 = 0 or 1.

Figure 1: The relationship between an image function u ∈ BV (Ω), the partition of
Ω associated with the image, and the corresponding basis functions ψi, i = 1, 2, 3.

A function u0 being almost equal to a constant in n subdomains can thus be
approximated by (14) provided we optimally choose c and {ψi}n

i=1. This is done by
solving a minimization problem subject to a constraint corresponding to the choice
of basis functions. The constraint controls the structure of possible solutions. We
will not go into details concerning K(φ) here, but instead return to that issue in §4
and §5.

The simple structure of the basis functions gives us the opportunity to measure
the lengths of curves surrounding Ωi and the area of each region Ωi by

(15) |∂Ωi| =
∫

Ω

|∇ψi|dx, and |Ωi| =
∫

Ω

ψidx.

Here we note that |∂Ωi| is the Total Variation (TV)-norm of ψi [23].
The above framework can be used as a tool for image segmentation. Let u0 be

an image to be segmented, where u0 might contain noise. We want to construct
a piecewise constant function u which approximates u0 in a proper sense. The
segmentation can be formulated as a minimization of the following functional

(16) F (φ, c) =
1
2

∫

Ω

|u− u0 | 2dx + β

n∑

i=1

∫

Ω

|∇ψi|dx,

where u is related to c and u as in (14). The first term of F is a least squares
fidelity term, measuring the closeness of u to u0. The second term measures the
length of all the curves. To be able to pick out different subdomains in the image in
an automatic way, we also impose a constraint, i.e. we try to solve the constrained
minimization problem

(17) min
c,φ

F (c, φ) subject to K(φ) = 0.
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This problem can be solved by using the augmented Lagrangian method of opti-
mization [24, 25]. A minimizer of F corresponds to a saddle-point of the augmented
Lagrangian functional

(18) L(c, φ, λ) = F (c, φ) +
∫

Ω

λK(φ) dx +
r

2

∫

Ω

|K(φ)|2dx,

where r > 0 is a penalty parameter which needs to be chosen properly, and λ is a
function defined on the same domain as φ called the Lagrangian multiplier. At a
saddle-point of (18) we must have

(19)
∂L

∂φ
= 0,

∂L

∂ci
= 0 and

∂L

∂λ
= 0.

Essentially we minimize L w.r.t c and φ, and maximize L w.r.t λ. In §4 and §5
we introduce iterative algorithms to find the saddle-points in (19) coming from two
different level set formulations. However, below we go through some calculations
that both these two formulations have in common.

As u is linear with respect to the ci values, we see that L is quadratic with
respect to ci. Thus the minimization problem w.r.t c can be solved exactly. Note
that

(20)
∂L

∂ci
=

∫

Ω

∂L

∂u

∂u

∂ci
=

∫

Ω

(u− u0)ψi dx, for i = 1, 2, . . . n.

Therefore, the minimizer satisfies a linear system of equations Ack = b in the
following form:

(21)
n∑

j=1

∫

Ω

(ψjψi)ck
i dx =

∫

Ω

u0ψi dx, for i = 1, 2, . . . n.

In the above ψj = ψj(φk), ψi = ψi(φk) and thus, ck = {ck
i }n

i=1 depends on φk.
We form the matrix A and vector b and solve the equation Ack = b using an exact
solver. The minimization with respect to φ will be solved by the following gradient
method:

(22) φnew = φold −∆t
∂L

∂φ
(c, φold, λ),

where ∆t is a small positive number called the time-step. For a given c and λ, we
need to iterate many times in order to find the minimizer with respect to φ. In our
simulations, we mostly just do a fixed number of iterations or stop the iteration
after the norm of gradient ∂L/∂φ has been reduced by a given factor. This is the
most time-consuming part of the algorithms. Therefore we are currently working
on the issue of accelerating the convergence by using a Newton-type of iteration.

4. Piecewise Constant Level Set Method with the Polynomial Approach

We shall first present the piecewise constant level set method (PCLSM). Assume
that we need to find n regions {Ωi}n

i=1 which form a portion of Ω. In order to find
the regions, we want to find a piecewise constant function which takes values

(23) φ = i in Ωi, i = 1, 2, . . . , n.
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With this approach we just need one function to identify all the phases in Ω. The
basis functions ψi associated with φ are defined in the following form:

(24) ψi =
1
αi

n∏

j=1
j 6=i

(φ− j) and αi =
n∏

k=1
k 6=i

(i− k).

It is clear that the function u given by (14) is a piecewise constant function and
u = ci in Ωi if φ is as given in (23). The function u is a polynomial of order n−1
in φ. Each ψi is expressed as a product of linear factors of the form (φ − j), with
the ith factor omitted. Thereupon ψi(x)=1 for x ∈ Ωi, and ψi(x) equals zeros
elsewhere as long as (23) holds.

To ensure that equation (14) gives us a unique representation of u, i.e. at con-
vergence different values of φ should correspond to different function values u(φ) in
(14), we introduce

(25) K(φ) = (φ− 1)(φ− 2) · · · (φ− n) =
n∏

i=1

(φ− i).

If a given function φ : Ω 7→ R satisfies

(26) K(φ) = 0,

there exists a unique i ∈ {1, 2, . . . , n} for every x ∈ Ω such that φ(x) = i. Thus,
each point x ∈ Ω can belong to one and only one phase if K(φ) = 0. The constraint
(26) is used to guarantee that there is no vacuum and overlap between the different
phases. In [26] some other constraints for the classical level set methods were used
to avoid vacuum and overlap.

Following the framework in §3, we will use the basis functions (24), the constraint
(25) and the representation (14) of u. To find a minimizer for (18), we need to find
the saddle point which satisfies ∂L

∂φ = 0, ∂L
∂c = 0 and ∂L

∂λ = 0. Remember that ∂L
∂ci

is
zero if {ci}n

i=1 are computed from (21). We use the Uzawa-type Algorithm 1 to find
a saddle point for L(c, φ, λ). This algorithm has a linear convergence rate and its
convergence has been analyzed by Kunisch and Tai [27] under a slightly different
context. The algorithm has also been used by Chan and Tai [7, 28] for a level set
method for elliptic inverse problems.

Algorithm 1. Choose initial values for φ0 and λ0. For k = 1, 2, . . ., do:
• Find ck from

(27) L(ck, φk−1, λk−1) = min
c

L(c, φk−1, λk−1).

• Use (14) to update u =
∑n

i=1 ck
i ψi(φk−1).

• Find φk from

(28) L(ck, φk, λk−1) = min
φ

L(ck, φ, λk−1).

• Use (14) to update u =
∑n

i=1 ck
i ψi(φk).

• Update the Lagrange-multiplier by

(29) λk = λk−1 + rK(φk).

• If not converged: Set k=k+1 and go to step 1.

To compute dL
dφ we utilize the chain rule to get
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(30)
∂L

∂φ
= (u− u0)

∂u

∂φ
− β

n∑

i=1

∇·
( ∇ψi

|∇ψi|
)∂ψi

∂φ
+ λ

∂K

∂φ
+ rK

∂K

∂φ
.

It is easy to get ∂u/∂φ, ∂ψi/∂φ and ∂K/∂φ from (14), (24) and (25). We use the
gradient method (22) to solve (28). We do a fixed number of iterations, for example
400 iterations or stop the iteration after the L2 norm of gradient has been reduced
by 10%.

Remark 1. The updating for the constant values in (27) is very ill-posed. A small
perturbation of the φ function produces a large perturbation for the ci values. Due
to this reason, we have tried out a variant of Algorithm 1. In each iteration we
alternate between (28) and (29), while (27) is only carried out if ‖K(φnew)‖L2 <
1
10‖K(φold)‖L2 . Here, φold denotes the value of φ when (27) was carried out the
last time and φnew denotes the current value of φ. If we use such a strategy, we
can do just one or a few iterations for the gradient scheme (22) and Algorithm 1
is still convergent. This strategy is particular efficient when the amount of noise is
high.

Remark 2. In Algorithm 1, we give initial values for φ and λ. We first minimize
with the constant values, and then minimize with the level set function. The multi-
plier is updated in the end of each iteration. In situations where good initial values
for c are available, an alternative variant of Algorithm 1 may be used, i.e. we first
minimize with the level set function followed by a minimization for the constant
values and then update the multiplier.

4.1. Numerical Experiments with the Polynomial Approach. In this sec-
tion we validate the piecewise constant level set method with numerical examples.
We consider only two-dimensional cases and restrict ourself to gray-scale images,
but the model can handle any dimension and can be extended to vector-valued
images as well. Our results will be compared with the related works [6, 10]. The
original image is known for the cases we evaluate here, thereupon it is trivial to find
the perfect segmentation result. To complicate such a segmentation process we typi-
cally expose the original image with Gaussian distributed noise and use the polluted
image as the observation data u0. To indicate the amount of noise that appears in
the observation data, we report the signal-to-noise-ratio: SNR= variance of data

variance of noise.
To demonstrate a 4-phase segmentation we begin with a noisy synthetic image

containing 3 objects (and the background) as shown in Figure 2(a). This is the
same image as Chan and Vese used to examine their multiphase algorithm [6, 10].

A careful evaluation of our algorithm is reported below. The observation data
u0 is given in Figure 2(a) and the only assumption we make is that a 4-phase
model should be utilized to find the segmentation. In Figure 2(d) the φ function is
depicted at convergence. The function φ approaches the predetermined constants
φ = 1 ∨ 2 ∨ 3 ∨ 4. Each of these constants represents one unique phase as seen
in Figure 2(c). Our result is in accordance with what Chan and Vese reported
in [6, 10].

In many applications the number of objects to detect are not known a priori. A
robust and reliable algorithm should find the correct segmentation even when the
exact number of phases is not known. By introducing a model with more phases
than one actually needs, we can find the correct segmentation if all superfluous
phases are empty when the algorithm has converged. To see if our algorithm can
handle such a case we again use Figure 2(a) as the observation image and utilize
a 5-phase model. Our results are reported Figure 3. One of the 5 phases must
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Figure 2: (a) Observed image u0 (SNR≈ 5.2). (b) Initial level set function φ. (c)
Each separate phase φ = 1 ∨ 2 ∨ 3 ∨ 4 are depicted as a bright region. (d) At
convergence φ approaches 4 constant values.
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Figure 3: (a) Each separate phase φ = 1 ∨ 2 ∨ 3 ∨ 4 ∨ 5 are depicted as a bright
region. (b) At convergence φ approaches 4 constant values.

be empty if a 5-phase model is used to find a 4-phase segmentation. Due to the
high noise level some pixels can easily be misclassified and contribute to the phase
that should be empty. The level set function shown in Figure 3(b) approaches the
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(a) Real image of a car plate.
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(b) Initial image (SNR≈ 1.7).
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(c) Segmented with PPCLSM.
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(d) Segmented with CVM.

Figure 4: Character and number segmentation from a car plate.

constants φ = 1 ∨ 2 ∨ 4 ∨ 5, except from the few misclassified pixels where φ = 3
as seen in Figure 3(a). By comparing Figure 2(c) (where a 4-phase model is used)
and Figure 3(a) (where a 5-phase model is used), we observe only small changes in
the segmented phases, except from the extra nonempty phase φ = 3 in Figure 3(a).
For a test like this, we can not control which phase that ends up empty.

Both the examples above indicate that our algorithm is an interesting alternative
to the multiphase algorithm [6, 10] where standard level set formulation is utilized.
We have shown that our algorithm is robust with respect to noise.

Below we proceed with one example using a real picture. We want to demonstrate
that PPCLSM (polynomial PCLSM) can be use to extract characters or numbers
from images. We use an image of a car plate where only two phases are needed;
one phase to represent the characters and one phase to represent the remaining.
To evaluate the segmentation process, the Chan/Vese method [6, 10], for short
(CVM), is examined using the same input image. A perfect segmentation was
found with both PPCLSM and CVM if no noise is added. We challenge these two
segmentation techniques by adding Gaussian distributed noise to the real image and
use the polluted image in Figure 4(b) as the observation data. With this amount of
noise both PPCLSM and CVM miss some details along the edges for the characters
and numbers. By increasing the regularization term for CVM we obtain smoother
edges but then each character or number may be broken into several pieces. From
Figure 4(c) we see that each character and number appear as unbroken.



432 J. LIE, M. LYSAKER, AND X-C. TAI

5. The Binary Approach for PCLSM

We will now introduce an alternative realization of the basis functions in (14).
Using the following approach, we can represent a maximum of 2N subdomains,
using N level set functions {φi}N

i=1. To simplify notation, we form the vector
φ = {φ1, φ2, . . . , φN}. To introduce the binary level set idea, let us first assume
that the interface Γ is enclosing Ω1 ⊂ Ω. By standard level set methods the interior
of Ω1 is represented by points x : φ(x) > 0, and the exterior of Ω1 is represented
by points x : φ(x) < 0, as in (1). We instead let

φ(x) = 1 if x ∈ interior ofΩ1, φ(x) = −1 if x ∈ exterior of Ω1

. As proposed, Γ is implicitly defined as the discontinuity of φ. Representing four
subdomains is done in an analogous way as (12), by

u(x) =





c1, if φ1(x) = 1, φ2(x) = 1,
c2, if φ1(x) = 1, φ2(x) = −1,
c3, if φ1(x) = −1, φ2(x) = 1,
c4, if φ1(x) = −1, φ2(x) = −1.

Thus, a piecewise constant function taking four different constant values can be
written

u =
c1

4
(φ1 + 1)(φ2 + 1)− c2

4
(φ1 + 1)(φ2 − 1)

−c3

4
(φ1 − 1)(φ2 + 1) +

c4

4
(φ1 − 1)(φ2 − 1)(31)

Using (31), we can form the set of basis functions ψi as in the following

(32) u = c1
1
4
(φ1 + 1)(φ2 + 1)

︸ ︷︷ ︸
ψ1

+c2 (−1)
1
4
(φ1 + 1)(φ2 − 1)

︸ ︷︷ ︸
ψ2

+ . . . ,

and we can write: u =
∑4

i=1 ciψi. This mechanism can also be easily generated to
the case using more level set functions. For i = 1, 2, . . . , 2N , let (bi−1

1 , bi−1
2 , . . . , bi−1

N )
be the binary representation of i−1, where bi−1

j = 0∨1. Let s(i) =
∑N

j=1 bi−1
j , and

write ψi and u as

ψi = (−1)s(i)

2N

∏N
j=1(φj + 1− 2bi−1

j ) and u =
2N∑

i=1

ciψi.(33)

It is now easy to see that these basis functions have the properties needed for the
framework in §3. Using this representation for the basis functions, we need N
constraints, one constraint Ki to each of the level set functions φi. Let use define
Ki(φi) = φ2

i − 1 ∀ i. Setting Ki(φi) = 0 implies φi can only take the values ±1 at
convergence.

Having determined the choice of basis functions {ψi}n
i=1 and the representation

of u by (33), we need to find the saddle point of L by the augmented Lagrangian
method. This means that we must minimize L w.r.t φ and c, and maximize L w.r.t
λ, which is of the same dimension as φ.

We minimize L w.r.t φ by using the gradient method (22) for all the N level set
functions. The gradients for the level set functions are given as:

∂L

∂φi
=(u− u0)

2N∑

j=1

cj
∂ψj

∂φi
− β

2N∑

j=1

∇·
( ∇ψj

|∇ψj |
)∂ψj

∂φi
+ 2λiφi + 2r(φ2

i − 1)φi.(34)
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The constraints Ki are independent of the constant values ci and thus the same
formula (21) can be used to update the ci values.

Similar to the algorithm used for the polynomial approach for the PCLSM, we
could use the following algorithm to find a saddle point for the binary approach
for the PCLSM. Note that we may need more than one level set function in this
approach and the constraint K also has a different meaning now.

Algorithm 2. Choose initial values for φ0 and λ0. For k = 1, 2, . . ., do:
• Update φk by (22), to approximately solve

(35) L(ck−1, φk, λk−1) = min
φ

L(ck−1, φ, λk−1)

• Construct u(ck−1, φk) by u =
∑2N

i=1 ck−1
i ψk

i .
• Update ck by (21), to solve

(36) L(ck, φk, λk−1) = min
c

L(c, φk, λk−1).

• Update the multiplier by

(37) λk = λk−1 + rK(φk).

• If not converged: Set k=k+1 and go to step 1.

Remark 3. In most of our simulations we have set r to be constant during the
processing. This is done to make the simulations as ”safe” as possible. Better
convergence behavior can be expected if r is increased during the iterations, but be
aware of ill-conditioning if r is increased too quickly. This is a common approach
when using the augmented Lagrangian method. See [24, 25] for details concerning
the general algorithm.

Remark 4. The minimization w.r.t c done in step 3 should not be done too early
in the process, e.g. not before |φi| ≈ 1.

If |φi| is far from 1, then ψi is far from orthogonal to ψj, and the inner product
(ψi, ψj) in (21) will give contributions at points where it should not. This means
that the matrix inversion in (21) does not give a good approximation to c unless
|φi| ≈ 1 ∀i. See Remark 1 of Algorithm 1.

Remark 5. In this algorithm, ∆t in the gradient iteration depends on both β and
r. Larger r or β requires a small ∆t. A bigger β will suppress oscillations, while
a bigger r makes the level set functions φi converge to ±1 quicker. Choosing r too
big will reduce the influence of the fitting term F (φ, c) and thus may increase the
iteration number needed to converge to the true solution. For practical problems, it
is normally not too difficult to find a approximate range for these two parameters.

5.1. Numerical Experiments with the Binary Approach. Now we will present
some of the numerical results achieved using the binary piecewise constant level set
formulation (BPCLSM). First of all, the image depicted in Figure 2 (a) has been
processed using the BPCLSM and two level set functions, giving similar results
as the PPCLSM. We here note that the processing of images without knowing
the number of phases present is possible also using the BPCLSM, however not as
elegantly as by PPCLSM.

We now give an example where one level set function is used to segment a
grayscale image of a galaxy into two phases. The initial image u0 is not easily
approximated by a constant function taking only two different constant values. By
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(a) (b)

(c) (d)

Figure 5: An image of a galaxy is processed using the modified (quicker) version of
the augmented Lagrangian algorithm. (a) The original image u0. (b) A piecewise
constant approximation to u0 after 20 iterations with β = 1 · 10−6. (c) Another
piecewise constant approximation with β = 3 · 10−4. We compare with the result
using CV in (d), using 300 iterations.

varying the regularization term β we control the connectivity of the segmented
image. In Figure 5 we show u0 and results of two choices for the regularization
parameter β.

By inspecting the results in figure 5 (b) and (c) we see that we can control the
segmented image according to what is important for the observer. The portion of
the galaxy where the density of stars is high is best expressed when β is chosen to
be big. Not so dense regions of the galaxy are taken into account when the regular-
ization parameter is relaxed. As expected, the resulting image is more oscillatory
when a smaller β is used.

We also segment an MR-image of a brain by using two level set functions. The
goal is to partition the image into three different tissue classes in addition to the
background. The numerical result is shown in Figure 6. Note that the connectivity
of each phase can be controlled by β.

6. Extension of PPCLSM to 3D-images

Before we conclude this paper, we return to PPCLSM and show a preliminary
numerical example where a 3D volume is segmented into four different subdomains
of R3 (three objects and the background). The only difference from the 2D case is
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(a) (b)

(c) (d)

Figure 6: Two level set functions are used to find four regions in a MR-image
u0 of a brain. (a) This is a synthetically produced image, downloaded from
www.bic.mni.mcgill.ca/brainweb. The value for β = 1e−3. (b) The piecewise con-
stant approximation to u0. (c)–(d) The piecewise constant level set functions φ1

and φ2. In (c)–(d), white represents 1 and black represents −1.

that now φ is defined on a subset of R3 instead of R2. We observe that the method
is able to extract the different objects in a very precise sense.

7. Conclusion

In this article we have introduced a framework for subdomain identification. We
have also pointed out two methods for image segmentation using this framework.
The method is easy to be extended to high dimensional problems. We are also
working on a Newton-type of iteration for improving the convergence properties of
the method. Numerical experiments indicate that these methods are able to trace
interfaces with complicated geometries and sharp corners. The level set functions
are discontinuous at convergence, but the minimization functionals are smooth and
at least locally convex.The PPCLSM is favorable in terms of computational com-
plexity and memory requirements, and in terms of handling cases where a priori
information of the number of subdomains is lacking. Molding BPCLSM into ex-
isting software for level set methods is possibly easier than PPCLSM because of
similarities in the machinery of standard level set methods. Our methods are not
moving the interfaces during the iterative procedure, and thus have some advan-
tages in treating geometries, for example in situations where inside ”holes” need
to be identified. Using our approach, we have removed the reinitialization proce-
dure sometimes needed in traditional level set methods. We have proposed and
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Figure 7: Example of 3D segmentation where a box holds several objects that
should be identified. First row: True objects inside the box. Second row: Observed
objects with noise inside the box. Last row: Objects found by PPCLSM.

demonstrated the validity of an alternative approach for interface identification, in
particular for image segmentation.
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