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BASIS FOR THE QUADRATIC NONCONFORMING
TRIANGULAR ELEMENT OF FORTIN AND SOULIE

HEEJEONG LEE AND DONGWOO SHEEN

Abstract. A basis for the quadratic (P2) nonconforming element of Fortin and

Soulie on triangles is introduced. The local and global interpolation operators

are defined. Error estimates of optimal order are derived in both broken energy

and L2(Ω)-norms for second-order elliptic problems. Brief numerical results are

also shown.
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1. Introduction

Recently the nonconforming finite element method draws increasing attention
from scientists and engineers as it has successfully provided stable numerical so-
lutions to many practical fluid and solid mechanics problems: see, for instance,
[1, 8, 9, 12, 15, 16, 17, 18, 28, 29, 32] for linear or nonlinear Navier-Stokes problems
and [2, 5, 10, 13, 14, 21, 22, 19, 24, 23, 26, 27, 33] for elasticity related problems,
and the references therein.

In order to approximate the velocity and pressure by the finite element method
based on triangulations, the use of the usual P1-P0 conforming finite element pair
lacks in stability that is required to satisfy the discrete inf-sup condition [7]. Also the
P1 conforming element suffers from numerical locking when applied to approximate
elasticity problems [3, 6]. In case the triangulation is based on quadrilaterals rather
than on triangles and the Q1 element is used instead of the P1 element accordingly,
similar instability patterns are inevitable.

A common and simple solution to resolve this kind of instability problems has
been made by using nonconforming finite element instead. In 1973 Crouzeix and
Raviart [12] introduced the linear nonconforming finite elements for triangles or
tetrahedrons and a cubic nonconforming element for triangles. The idea, at least in
the P1 nonconforming element case, is to employ the degrees of freedom associated
with the values at the midpoints of edges of triangles or those at the centroids of
faces of tetrahedrons, by replacing the values imposed at the vertices in the con-
forming element cases. These nonconforming elements were shown to supply stable
finite element pairs for Stokes problems and to give optimal orders of convergence
[12].

A generalization of this idea to higher degree nonconforming elements requires
the patch test [20], which implies that a Pk nonconforming element needs to satisfy
that on each interface the jump of adjacent polynomials be orthogonal to Pk−1
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polynomials on the interface. This implies that a P2 nonconforming element must
be continuous at the two Gauss points on each edge. However, to define the degrees
of freedom at the two Gauss points leads to a problem due to the existence of a
quadratic polynomial that vanishes at the six Gauss points of edges of any triangle.
Therefore, the definition of the degrees of freedom for P2 nonconforming elements
addresses a special attention.

A successful quadratic nonconforming element has been introduced by Fortin
and Soulie [17] by adding nonconforming bubble functions, “semi-loop functions”,
which can be eliminated by static condensation. (The three dimensional analogue
has been introduced by Fortin [16].) It is shown in [17] that the global P2 non-
conforming space is identical to the union of the standard quadratic conforming
element space, say, Vh, and the space of semi-loop functions, say Φh; moreover,
their intersection Vh ∩ Φh, that is, “the set of the globally conforming and locally
P2 bubble functions”, turns out to be one dimensional space. Therefore, in imple-
menting the P2 nonconforming element, one can modify the P2 conforming code
with a suitable addition of nonconforming bubble functions.

The purpose of the present paper is to propose another set of global basis func-
tions for the P2 nonconforming element, which have more nonconforming structure.
For this, we define three kinds of basis functions with local supports: (1) edge-based
basis (which are nonconforming), (2) vertex-based basis (which are nonconforming),
and (3) triangle-based basis functions (which are bubble functions that are noncon-
forming). We then show that these functions form a basis for the P2 nonconforming
element space. The associated degrees of freedom and an interpolation operator
are also defined. The basis functions corresponding to rectangular elements are
constructed in [25].

The plan of the paper is as follows. In §2 the P2 nonconforming basis functions
are defined on triangular meshes. Interpolation and projection operators are defined
in §3 and optimal order error estimates are shown. Finally in §4, brief numerical
results are shown.

2. The P2-nonconforming element on triangular meshes

In this section we introduce three kinds of basis functions for the P2-nonconforming
finite element on triangular meshes. The dimensions and basis functions are then
computed for both Dirichlet and Neumann problems.

2.1. The P2-nonconforming triangular elements. For a triangle T with the
vertices vj , 1 ≤ j ≤ 3, denote by ej , 1 ≤ j ≤ 3, the edges from vj+1 to vj+2,
respectively, with the identification v1 = v4 and v2 = v5. Also, let mj be the
midpoint of ej , j = 1, 2, 3. Throughout the paper we shall assume that the vertex
indices are oriented counter clockwise. Designate by τ the unit tangent vector on
the boundary ∂T with the direction from vj+1 to vj+2, respectively, and by ∂ϕ

∂τ its
tangential derivative. Let g be the barycenter of T . As usual, for a nonnegative
integer k, denote by Pk(T ) and Pk(ej) the spaces of polynomials on T and ej ,
respectively, of degree ≤ k. We begin with the following fact.

Lemma 2.1. Let e be an edge of T . Then if ϕ ∈ P2(T ) satisfies
∫

e
ϕds = 0 and∫

e
∂ϕ
∂τ ds = 0, ϕ vanishes at the two Gauss points on e.

Proof. Since ∂ϕ
∂τ ∈ P1(e),

∫
e

∂ϕ
∂τ ds = |e| ∂ϕ

∂τ (m) = 0, where |e| denotes the length
of e. This implies that ϕ|e is symmetric with respect to the midpoint of e. Then∫

e
ϕds = 0 implies that ϕ|e ∈ P2(e) vanishes at the two Gauss points on e. This

proves the lemma. ¤
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Recall also the following lemma:

Lemma 2.2. Suppose that ϕ ∈ P2(T ) vanishes at the two Gauss points on each ej,
for j = 1, 2, 3. Then if

∫
T

ϕdx = 0 or ϕ(g) = 0, where g is the barycenter of T , it
follows that ϕ ≡ 0 in T.

Next, set

P ∗2 (T ) = {ϕ ∈ P2(T )|
∫

ej

ϕds = 0, j = 1, 2, 3,

∫

T

ϕdx = 0}.

and, define ϕj ∈ P ∗2 (T ) for 1 ≤ j ≤ 3, by

∫

ek

∂ϕj

∂τ
ds =





1, k = j + 1 mod 3,
−1, k = j + 2 mod 3,
0, k = j mod 3.

One then has the following simple lemma.

Lemma 2.3. Span{ϕ1, ϕ2, ϕ3} = P ∗2 (T ). Indeed, any two of ϕ1, ϕ2, ϕ3 span
P ∗2 (T ).

Proof. Clearly Span{ϕ1, ϕ2, ϕ3} ⊂ P ∗2 (T ). Therefore it suffices to show that P ∗2 (T )
⊂ Span{ϕ1, ϕ2} because of rotational symmetry. Let ϕ ∈ P ∗2 (T ) be arbitrary with∫

e1

∂ϕ
∂τ ds = α,

∫
e2

∂ϕ
∂τ ds = β, and

∫
e3

∂ϕ
∂τ ds = γ such that α + β + γ = 0. Set

ψ = βϕ1 + (β + γ)ϕ2. Then it is easy to see that
∫

e1

∂ψ
∂τ ds = α,

∫
e2

∂ψ
∂τ ds = β,

and
∫

e3

∂ψ
∂τ ds = γ. Lemma 2.2 implies that ϕ is identical to ψ. This proves that

P ∗2 (T ) = Span{ϕ1, ϕ2}. ¤
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(a) The P2-nonconforming triangle of type
1
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(b) The P2-nonconforming triangle of type
2

Figure 1. The P2-nonconforming triangles with vertices v1, v2,
and v3. (a) The six degrees of freedom are

∫
ej

ϕds for j = 1, 2, 3,∫
ej

∂ϕ
∂τ ds for j = 1, 2, and

∫
T

ϕdx. (b) The six degrees of freedom

are
∫

ej
ϕds for j = 1, 2, 3, ∂ϕ

∂τ (mj) for j = 1, 2, and ϕ(g).

Due to Lemmas 2.2 and 2.3, we have the following unisolvency result, which
motivates to define the local degrees of freedom for a P2(T ) nonconforming element:
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Proposition 2.1. A function ϕ in P2(T ) is uniquely determined by the six degrees
of freedom: the three

∫
ej

ϕds for j = 1, 2, 3, any two among the three
∫

ej

∂ϕ
∂τ ds for

j = 1, 2, 3, and
∫

T
ϕ dx.

Remark 2.1. We remark that a function ϕ in P2(T ) is uniquely determined by the
six degrees of freedom: the three

∫
ej

ϕds for j = 1, 2, 3,, any two among the three
∂ϕ
∂τ (mj) for j = 1, 2, 3, and ϕ(g); these six values can be used as alternative degrees
of freedom.

Summarizing our P2 triangular nonconforming elements as shown in Figure 1,
let us proceed to define the nonconforming element space for the triangulation
of a simply connected polygonal domain Ω in R2 with boundary Γ. Let (Th)h>0

be a regular family of triangulations of Ω into triangles Tj j = 1, · · · , NT , where
h = maxT∈Th

hT with hT = diam(T ). For a given triangulation Th of Ω, let NV , NE ,
and NT denote the numbers of vertices, edges, and triangles, respectively. Then set

Th = {T1, T2, · · · , TNT };
NT⋃

j=1

T j = Ω,

Vh = {v1, v2, · · · , vNV
} : the set of all vertices in Th,

Eh = {e1, e2, · · · , eNE
} : the set of all edges in Th,

Gh = {g1, g2, · · · , gNT
} : the set of all barycenters of triangles in Th.

In particular, let N i
V and N i

E denote the numbers of interior vertices and edges
in Th, respectively. For a function f defined in Ω, denote by fj its restriction to
Tj . Similarly, τjk

, k = 1, 2, 3, will mean the positively oriented unit tangent vector
on ∂Tj . Denoting ejk the interface between elements Tj and Tk, we are now in a
position to define the following nonconforming finite element spaces.

NCh =

{
ϕ : Ω → R | ϕ|T ∈ P2(T ) for all T ∈ Th,

∫

ejk

ϕj ds =
∫

ejk

ϕk ds,

∫

ejk

∂ϕj

∂τj
ds +

∫

ejk

∂ϕk

∂τk
ds = 0 on each interface ejk ∈ Eh

}

= {ϕ : Ω → R | ϕ|T ∈ P2(T ) for all T ∈ Th, ϕ is continuous at
the Gauss points of each interior edge ∈ Eh} ,(2.1)

NCh
0 =

{
ϕ ∈ NCh|

∫

e

ϕ ds = 0,

∫

e

∂ϕ

∂τ
ds = 0 for all e ⊂ ∂Ω, and e ∈ Eh

}

=
{

ϕ ∈ NCh|ϕ is vanish at the Gauss points of boundary edges

of Eh} .(2.2)

Notice that the equalities (2.1) and (2.2) follow from Lemma 2.1. Notice that the
nonconforming spaces are identical to those defined by Fortin and Soulie [17].

2.2. Three types of basis functions. We first define the three types of basis
functions in NCh, which will serve as global bases for the nonconforming finite
element spaces.
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Definition 2.1. The first type of basis functions are associated with edges: define
ϕE

j ∈ NCh, j = 1, 2, · · · , NE , by
∫

ek

ϕE
j ds = δjk for all k = 1, 2, · · · , NE ,

∫

ek

∂ϕE
j

∂τ
ds = 0 for all k = 1, 2, · · · , NE ,

∫

Tk

ϕE
j dx = 0 for all k = 1, 2, · · · , NT .

The second type of basis functions are associated with vertices: define ϕV
j ∈ NCh, j =

1, 2, · · · , NV , by∫

ek

ϕV
j ds = 0 for all k = 1, 2, · · · , NE ,

∫

ek

∂ϕV
j

∂τ
ds =





1 if e is an edge from the vertex vj to an adjacent vertex
vk ∈ Vh with τ being the unit tangent vector on e

with the direction from vk to vj ,

0 otherwise.

for all k = 1, 2, · · · , NE ,

∫

Tk

ϕV
j dx = 0 for all k = 1, · · · , NT .

The last type of local function is associated with triangles: define ϕT
j ∈ NCh, j =

1, · · · , NT , by ∫

ek

ϕT
j ds = 0 for all k = 1, · · · , NE ,

∫

ek

∂ϕT
j

∂τ
ds = 0 for all k = 1, · · · , NE ,

∫

Tk

ϕT
j dx = δjk for all k = 1, · · · , NT .

Remark 2.2. In Figure 2.2 the values of
∫

e

∂ϕV
j

∂τ ds are demonstrated. Indeed, ϕV
j

has value 2
3 at the vertex vj, − 1

3 at the neighboring vertices, and 0 at all other
vertices. Its values at the Gauss points on the edges joining to vj are ±

√
3

6 with the
signatures ± are + if the points are nearer to the vertex vj and − otherwise. All
the other Gauss point values of the remaining edges are 0.

Due to Proposition 2.1, it is immediate to see that the above three types of
functions have local supports as stated below:

Remark 2.3. The three types of basis functions, ϕE
j , j = 1, · · · , NE , ϕV

j , j =
1, · · · , NV , and ϕT

j , j = 1, · · · , NT , have local supports. Moreover, ϕE
j , j = 1, · · · , NE ,

ϕV
j , j = 1, · · · , NV , and ϕT

j , j = 1, · · · , NT , are nonconforming; ϕT
j , j = 1, · · · , NT ,

are bubble functions that can be eliminated by static condensation at the implemen-
tation stage.

Remark 2.4. Alternatively the basis functions can be defined by replacing
∫

ek

∂ϕi
j

∂τ ds

and
∫

Tk
ϕi

j dx by ∂ϕi
j

∂τ (mk) and ϕi
j(gk), respectively, for i = E, V, T.
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Figure 2. The values of
∫

e

∂ϕV
j

∂τ ds are equal to 1 if e = ek is
regarded as an edge of ∂Tk, k = 1, · · · , 6; -1 if e = ek is regarded
as an edge of Tk−1, k = 1, · · · , 6; and 0 if e = ek, k = 7, · · · , 12.
Here, the identification T0 = T6 is assumed and the direction of
the unit tangent vector τ is positively oriented on ∂Tk.

If e is a common edge of Tj and Tk with j < k, and τj and τk are positively
oriented unit tangent vectors on ∂Tj and ∂Tk, respectively, we have

∫
e

∂ϕj

∂τj
ds +∫

e
∂ϕk

∂τk
ds = 0 for all ϕ ∈ NCh; in this case it is convenient to represent the

integral values of
∫

e
∂ϕj

∂τj
ds and − ∫

e
∂ϕk

∂τk
ds by

⌈∫
e

∂ϕ
∂τ ds

⌋
, and this convention will

be assumed in what follows. We are now ready to investigate on the dimension and
basis functions for NCh and NCh

0 .

2.3. The dimension and basis functions for NCh. The dimension of NCh is
given by Fortin and Soulie in [17].

Lemma 2.4.
dim(NCh) = 2NE = NV + NE + NT − 1.

Proof. According to Fortin and Soulie [17], NCh consists of the union of the stan-
dard P2 conforming element space of dimension NV +NE and the space of noncon-
forming bubbles of dimension NT . Since the standard P2 conforming element space
and the space of nonconforming bubbles have a one dimensional intersection space
of the global conforming bubbles, the dimension of NCh is NE + NV + NT − 1.
Due to Euler’s formula, dim(NCh) = NV + NE + NT − 1 = 2NE . ¤

The basis for NCh is given in the following theorem.

Theorem 2.1. For i = E, V, T, j = 1, · · · ,Mi with ME = NE ,MV = NV −
1,MT = NT , let ϕi

j be the functions defined in Definition 2.1. Then {ϕE
1 , · · · , ϕE

NE
,

ϕV
1 , · · · , ϕV

NV −1, ϕ
T
1 , · · · , ϕT

NT
} forms a basis for NCh.
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Proof. It suffices to show that {ϕE
1 , · · · , ϕE

NE
, ϕV

1 , · · · , ϕV
NV −1, ϕ

T
1 , · · · , ϕT

NT
} is lin-

early independent. For this, suppose that
∑

i=E,V,T

∑Mi

j=1 ci
jϕ

i
j = 0. For any k, k =

1, · · · , NE , by integrating on ek, one sees that 0 =
∑

i=E,V,T

∑Mi

j=1 ci
j

∫
ek

ϕi
j ds = cE

k .

Similarly, for any k, k = 1, · · · , NT , an integration on Tk leads to 0 =
∑

i=E,V,T∑Mi

j=1 ci
j

∫
Tk

ϕi
j dx = cT

k . It remains to show that all cV
j vanishes for j = 1, · · · , NV −

1. Let vk be a vertex connected to vNV
by an edge ekNV

. Then it follows that

0 =

∣∣∣∣∣∣

NV −1∑

j=1

cV
j

⌈∫

ekj

∂ϕV
j

∂τ
ds

⌋∣∣∣∣∣∣
= |cV

k |.

In this fashion one sees that all the coefficients cV
k ’s associated with such vertices

vk’s that are connected by an edge to vNV
vanish. Then delete all the triangles

whose vertices are connected to vNV
by an edge, and call the remaining domain

Ω1. We proceed with a deleted vertex vk and let vl be a vertex in Ω1 that is
connected by an edge, say em. By repeating the above argument, we see that cV

l =
0, and so on. Consequently, we have all the coefficients cV

l ’s associated with the
vertices vl’s that are connected by an edge to the already deleted vertices vk’s must
vanish. Then strip out such vertices vl’s again, and repeat the argument until the
domain is exhausted. This shows that cV

j = 0 for all j = 1, · · · , NV − 1. Therefore,
{ϕE

1 , · · · , ϕE
NE

, ϕV
1 , · · · , ϕV

NV −1, ϕ
T
1 , · · · , ϕT

NT
} is linearly independent, and forms a

basis for NCh by Lemma 2.4. ¤

Remark 2.5. The proof of Remark 2.4 suggests an alternative choice of basis for
NCh using the P2 conforming basis. Choose any triangle, say TNT

. Then a basis
for NCh can be chosen as the union of P2 conforming basis and the nonconforming
bubbles consisting of semi-loop functions based on the triangles T1, · · · , TNT−1.

2.4. The dimension and basis functions for NCh
0 . We now consider the case

of NCh
0 whose dimension and basis functions can be obtained from the case of

NCh.

Lemma 2.5.

dim(NCh
0 ) = NE + NV + NT − 1− 2(NE −N i

E).

Proof. This follows from the dimension of NCh and the definition of NCh
0 that has

two restrictions at each boundary edge of Ωh. ¤

The global basis functions are given in the following theorem.

Theorem 2.2. For i = E, V, T, j = 1, · · · , Mi with ME = N i
E ,MV = N i

V ,MT =
NT , let ϕi

j be the function defined in Definition 2.1. Then

{ϕE
1 , · · · , ϕE

Ni
E
, ϕV

1 , · · · , ϕV
Ni

V
, ϕT

1 , · · · , ϕT
NT
}

forms a basis for NCh
0 . Consequently, dim(NCh

0 ) = N i
E + N i

V + NT = 2N i
E + 1.

Proof. Suppose that
∑

i=E,V,T

∑Mi

j=1 ci
jϕ

i
j = 0. For any k, k = 1, · · · , N i

E , by inte-
grating on ek, one sees that 0 =

∑
i=E,V,T

∑Mi

j=1 ci
j

∫
ek

ϕi
j ds = cE

k . Similarly, for any

k, k = 1, · · · , NT , an integration on Tk leads to 0 =
∑

i=E,V,T

∑Mi

j=1 ci
j

∫
Tk

ϕi
j dx =

cT
k . It remains to show that all cV

j vanishes for j = 1, · · · , N i
V . For this, let vk and

vl be two interior and boundary vertices, respectively, which are connected by an
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edge ekl in Th. Without loss of generality let τ be the positive oriented unit tangent
vector on ekl Then,

0 =

∣∣∣∣∣∣

Ni
V∑

j=1

cV
j

⌈∫

ekl

∂ϕV
j

∂τ
ds

⌋∣∣∣∣∣∣
= |cV

k |.

In this way one sees that all the coefficients cV
k ’s associated with such interior

vertices vk’s that are connected to boundary vertices vanish. Then strip out all
the triangles whose vertices meet the boundary Γ. Apply the same argument to the
stripped domain and repeat until the domain is exhausted. This shows that cV

j =
0 for all j = 1, · · · , N i

V . Therefore, {ϕE
1 , · · · , ϕE

Ni
E
, ϕV

1 , · · · , ϕV
Ni

V
, ϕT

1 , · · · , ϕT
NT
} is

linearly independent, and thus forms a basis for NCh
0 by Lemma 2.5. ¤

3. The interpolation and projection operators and convergence analysis

In this section we define an interpolation operator and analyze convergence in
the case of Dirichlet problem. The case of Neumann or Robin problem is quite
similar and we omit the details, but state the results.

To begin with, consider the following Dirichlet problem:{ −∇ · α∇u + βu = f, Ω,
u = 0, Γ,

(3.1)

with α = (αjk), αjk, β ∈ L∞(Ω), j, k = 1, 2, 0 < α∗|ξ|2 ≤ ξtα(x)ξ ≤ α∗|ξ|2 < ∞,
ξ ∈ R2, β(x) ≥ 0, x ∈ Ω, and f ∈ H1(Ω). Moreover, we will assume that the
data and the domain are sufficiently smooth so that the elliptic problem (3.1) be
H3(Ω)- regular. Let (·, ·) be the L2(Ω) inner product and (f, v) is understood as
the duality pairing between H−1(Ω) and H1

0 (Ω) which is an extension of the duality
paring between L2(Ω). The weak problem is then given as usual: find u ∈ H1

0 (Ω)
such that

a(u, v) = (f, v), v ∈ H1
0 (Ω),(3.2)

where a is the bilinear form defined by a(u, v) = (α∇u,∇v) + (βu, v) for all u, v ∈
H1

0 (Ω).
Our P2-nonconforming method for Problem (3.1) states as follows: find uh ∈

NCh
0 such that

ah(uh, vh) = (f, vh), vh ∈ NCh
0 ,(3.3)

where

ah(u, v) =
∑

T∈Th

aT (u, v),

with aT being the restriction of a to T. From (3.2) and (3.3), we have the error
equation.

ah(u− uh, vh) = 0, vh ∈ NCh
0 .(3.4)

3.1. The interpolation and projection operators. For a triangle T ∈ Th,
define the local interpolation operator ΠT : H1(T ) → P2(T ) by

∫

ej

(v −ΠT v) ds = 0,

∫

ej

∂(v −ΠT v)
∂τ

ds = 0,

∫

T

(v −ΠT v) dx = 0,

for all edges ej of the T. The global interpolation operator Πh : H1
0 (Ω) → NCh

0

is then defined through the local interpolation operator ΠT by Πh|T = ΠT for all
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T ∈ Th. Since Πh preserves P2(T ) for all T ∈ Th, it follows from the Bramble-Hilbert
Lemma [4, 11] that

∑

T∈Th

||ϕ−Πhϕ||L2(T ) + h
∑

T∈Th

||ϕ−Πhϕ||H1(T ) ≤ Chk||ϕ||Hk(Ω),(3.5)

ϕ ∈ Hk(Ω) ∩H1
0 (Ω), 1 ≤ k ≤ 3.

Denote the intersection ∂Tj ∩ ∂Tk by ejk for all Tj , Tk ∈ Th and let Γj ’s be the
boundary edges of Th. Then define

Λh = {λ ∈ Πj,kP1(ejk) |λjk + λkj = 0, where λjk = λ|ejk
for all j, k},

where P1(e) denotes the set of linear functions on the edge e, and Πj,kP1(ejk)
means that we have two copies of linear functions λjk and λkj on ejk whose signs
are opposite. Also define the projection P1 : H

3
2 (Ω) → Λh such that〈

α
∂vj

∂νj
− P1vj , z

〉

e

= 0 for all z ∈ P1(e) for all e ∈ Eh,(3.6)

where vj = v|Tj and νj is the unit outward normal to Tj . Then we have the following
standard polynomial approximation result.





∑

j

||α∂vj

∂νj
−P1vj ||2L2(∂Tj)





1
2

≤ Chk− 3
2 ‖v‖Hk(Ω), k = 2, 3.(3.7)

Since wj −wk has zero values at the Gauss points on ejk for all w ∈ NCh
0 and the

two-point Gaussian quadrature is exact on polynomials of degree 3, the following
useful orthogonalities hold.

Lemma 3.1. If u ∈ H
3
2 (Ω), then the following equality hold:

〈P1uj , wj〉ejk
+ 〈P1uk, wk〉ekj

= 〈P1uj , wj − wk〉ejk
= 0 for all w ∈ NCh

0 .(3.8)

3.2. The energy-norm error estimate. Denote the broken energy norm

‖ϕ‖h = ah(ϕ,ϕ)
1
2 .

We next recall the following Strang lemma [30, 31].

Lemma 3.2. Let u ∈ H1(Ω) and uh ∈ NCh
0 be the solutions of (3.2) and (3.3),

respectively. Then,

‖u− uh‖h ≤ C

{
inf

v∈NCh
0

‖u− v‖h + sup
w∈NCh

0

|ah(u,w)− 〈f, w〉 |
‖w‖h

}
.(3.9)

Assume that u ∈ H3(Ω) ∩H1
0 (Ω). Due to (3.5), the first term in the right side

of (3.9) is bounded by

inf
v∈NCh

0

‖u− v‖h ≤ Ch2‖u‖H3(Ω).(3.10)

Proceed to estimate the second term in the right side of (3.9). A simple calculation
shows that

ah(u,w)− 〈f, w〉 =
∑

j

〈
α

∂uj

∂νj
, w

〉
∂Tj\Γj

,

and the two orthogonalities (3.6) and (3.8) imply that

ah(u,w)− 〈f, w〉 =
∑

j

〈
α

∂uj

∂νj
−P1uj , w −mj

〉

∂Tj\Γj

,(3.11)
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where mj is chosen to be the P1 projection of w on ∂Tj . Applying the trace theorem,
(3.5), and (3.7), we get∣∣∣∣∣∣

∑

j

〈
α

∂uj

∂νj
−P1uj , w −mj

〉

∂Tj

∣∣∣∣∣∣

≤ Ch
3
2 ‖u‖H3(Ω)


∑

j

||w −mj ||L2(Tj)||∇(w −mj)||L2(Tj)




1
2

≤ Ch
3
2 ‖u‖H3(Ω)h

1
2 ‖∇w‖h.(3.12)

Equations (3.11) and (3.12) result in

sup
w∈NCh

0

|ah(u,w)− 〈f, w〉 |
‖w‖h

≤ Ch2‖u‖H3(Ω),

which, combined with (3.10) in Lemma 3.2, gives the following energy-norm error
estimate.

Theorem 3.1. Let u ∈ H3(Ω) ∩ H1
0 (Ω) and uh ∈ NCh

0 be the solutions of (3.2)
and (3.3), respectively. Then we have

||u− uh||h ≤ Ch2||u||H3(Ω).

3.3. The L2 Error Estimate. In order to apply the duality argument, let η =
u− uh and ψ ∈ H2(Ω) be the solution of the dual problem:

L∗(ψ) = −∇ · α∇ψ + βψ = η, Ω,

ψ = 0, Γ.

Owing to the elliptic regularity,

‖ψ‖H2(Ω) ≤ C‖η‖L2(Ω).(3.13)

Recalling the error equation (3.4) and the orthogonality (3.6), we have

‖η‖2 = (L∗ψ, η) = (−∇ · (α∇ψ) + βψ, η)

=
∑

j

(α∇ψj ,∇ηj)Tj + (βψ, η)−
∑

j

〈
α

∂ψj

∂νj
, ηj

〉

∂Tj\ej

= ah(ψ, η)−
∑

j

〈
α

∂ψj

∂νj
− P1ψj , ηj

〉

∂Tj\ej

= ah(η, ψ −Πhψ)−
∑

j

〈
α

∂ψj

∂νj
− P1ψj , ηj

〉

∂Tj\ej

.(3.14)

Owing to (3.5) the first term on the right-hand side of (3.14) can be bounded as
follows:

|ah(η, ψ − v)| ≤ Ch3‖u‖H3(Ω)‖η‖L2(Ω)(3.15)

Choosing qj to be the P1 projection of ηj on each edge of Tj ⊂ Γ, again due to
Theorem 3.1, (3.7), (3.13), the latter term on the right-hand side of (3.14) can be
bounded as follows:∣∣∣∣∣∣

∑

j

〈
α

∂ψj

∂νj
− P1ψj , ηj

〉

∂Tj\Γ

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

j

〈
α

∂ψj

∂νj
− P1ψj , ηj − qj

〉

∂Tj\Γ

∣∣∣∣∣∣
≤ Ch‖ψ‖H2(Ω)‖η‖h ≤ Ch3‖η‖L2(Ω)‖u‖H3(Ω).(3.16)
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Combining (3.14), (3.15), and (3.16), we obtain the following L2(Ω) error estimate:

Theorem 3.2. Let the elliptic problem (3.1) be sufficiently regular and u ∈ H3(Ω)∩
H1

0 (Ω) and uh ∈ NCh
0 be the solutions of (3.2) and (3.3), respectively.

||u− uh||L2(Ω) ≤ Ch3||u||H3(Ω).

3.4. The Robin boundary value problem. Instead of the Dirichlet problem
(3.1), if the following Robin boundary value problem:

{ −∇ · α∇u + βu = f, Ω,
α ∂u

∂n + γu = g, Γ,
(3.17)

is considered, The weak problem is then replaced by finding u ∈ H1(Ω) such that

aR(u, v) = (f, v) + 〈g, v〉 , v ∈ H1(Ω),(3.18)

where aR is the bilinear form defined by aR(u, v) = (α∇u,∇v)+(βu, v)+〈γu, v〉 for
all u, v ∈ H1(Ω), and 〈·, ·〉 is the duality paring between H− 1

2 (Γ) and H
1
2 (Γ). The

P2-nonconforming method for Problem (3.17) then states as follows: find uh ∈ NCh

such that

aR
h (uh, vh) = (f, vh) + 〈g, vh〉 , vh ∈ NCh.(3.19)

Then all the arguments given above for the Dirichlet case hold analogously, whose
details are omitted here,

Theorem 3.3. Let u ∈ H3(Ω) and uh ∈ NCh be the solutions of (3.18) and
(3.19), respectively. Then we have

||u− uh||h ≤ Ch2||u||H3(Ω).

Theorem 3.4. Let the elliptic problem (3.17) be sufficiently regular, u ∈ H3(Ω)
and uh ∈ NCh be the solutions of (3.18) and (3.19), respectively. Then we have

||u− uh||L2(Ω) ≤ Ch3||u||H3(Ω).

4. Numerical Examples

In this section we illustrate two numerical examples. First, consider the following
Dirichlet problem:

−4u = f, Ω,

u = 0, Γ,

where Ω =]0, 1[2 and the source term f is calculated from the the exact solution
u(x, y) = sin(2πx) sin(2πy)(x3 − y4 + x2y3). Table 1 shows the numerical results,
where the error reduction ratios in L2(Ω) and broken energy norm are optimal.

Next, turn to the following Neumann problem:

−4u + u = f, Ω,

∂u

∂n
= g, Γ,

with the same domain Ω =]0, 1[2 as above and the source terms f and g are gen-
erated from the same exact solution as in the above Dirichlet problem case. Again
Table 2 shows the numerical results, where the error reduction ratios in L2(Ω) and
broken energy norm are optimal.
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h D.O.F ‖u− uh‖L2(Ω) ratio ‖u− uh‖h ratio
1/4 81 0.193226E-01 - 0.570856E+00 -
1/8 353 0.212760E-02 3.18 0.154522E+00 1.97
1/16 1473 0.244224E-03 3.12 0.393285E-01 1.99
1/32 6017 0.296812E-04 3.18 0.987574E-02 1.99
1/64 24321 0.368206E-05 3.04 0.247166E-02 2.00
1/128 97793 0.459366E-06 3.00 0.618087E-03 2.00
1/256 392193 0.573927E-07 3.00 0.154532E-03 2.00

Table 1. The Dirichlet problem: The apparent L2 and broken
energy norm errors and their reduction ratios.

h D.O.F ‖u− uh‖L2(Ω) ratio ‖u− uh‖h ratio
1/4 112 0.140301E-01 - 0.518300E+00 -
1/8 416 0.170392E-02 3.04 0.140810E+00 1.88
1/16 1600 0.212157E-03 3.01 0.359839E-01 1.97
1/32 6272 0.266717E-04 2.99 0.905582E-02 1.99
1/64 24832 0.334975E-05 2.99 0.226905E-02 2.00
1/128 98816 0.419889E-06 3.00 0.567752E-03 2.00
1/256 394240 0.525646E-07 3.00 0.141990E-03 2.00

Table 2. The Neumann problem: The apparent L2 and broken
energy norm errors and their reduction ratios.
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