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NONSTANDARD NONCONFORMING APPROXIMATION OF
THE STOKES PROBLEM, I: PERIODIC BOUNDARY

CONDITIONS

J.-L. GUERMOND1,‡

Abstract. This paper analyzes a nonstandard form of the Stokes problem

where the mass conservation equation is expressed in the form of a Poisson

equation for the pressure. This problem is shown to be wellposed in the d-

dimensional torus. A nonconforming approximation is proposed and, contrary

to what happens when using the standard saddle-point formulation, the pro-

posed setting is shown to yield optimal convergence for every pairs of approxi-

mation spaces.
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1. Introduction

Consider the Stokes equations in a bounded domain Ω:

(1.1) −∆u +∇p = f ; u|∂Ω = 0; ∇·u = 0.

The objective of the present work is to analyze the following nonstandard form of
the Stokes equations:

(1.2) −∆u +∇p = f ; u|∂Ω = 0; ∆p = ∇·f ; ∂np|∂Ω = (−∇×∇×u + f)·n|∂Ω.

The Poisson equation for the pressure is obtained formally by taking the divergence
of the momentum equation, and the Neumann boundary condition is obtained by
taking the normal component of the momentum equation at the boundary of the
domain and substituting −∆u by ∇×∇×u since ∇·u is expected to be zero (recall
that −∆u = −∇∇·u + ∇×∇×u). This way of solving the Stokes (or Navier–
Stokes) equations seems to be standard in the literature dedicated to the analysis
of turbulence in the d-torus. It currently seems also to attract a growing interest
in the literature dealing with the approximation of the time-dependent Stokes (and
Navier–Stokes) equations. This form of the Stokes equations is one building block
of a splitting algorithm proposed by Orszag et al. [7] and Karniadakis et al. [6]. This
problem has also been shown to play an important role in a new type of splitting
algorithm proposed in [5]. A recurrent claim in the literature about this strange
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form of the Stokes equations is that when discretized it does not require the velocity
and the pressure spaces to satisfy the so-called Babuška–Brezzi condition, i.e., there
are no spurious pressure modes. To the present time, this claim has never been
proved. The main reason for the lack of proof is that, mathematically speaking,
the problem (1.2) is far from being standard. Actually, this form of the problem is
more prone to raise eyebrows of mathematically minded readers than to attract their
interest. Since the usual setting for this problem is to assume that f is in [H−1(Ω)]d,
the velocity is in [H1(Ω)]d and the pressure is in L2(Ω). This type of regularity
is incompatible with the boundary condition ∂np|∂Ω = (∇×∇×u + f)·n|∂Ω since
it is not legitimate to speak of the normal derivative of a function in L2(Ω), nor
is it legitimate to speak of the normal component of a Rd-valued distribution in
[H−1(Ω)]d.

This work is an attempt at tackling the above issue. We first analyze a slightly
modified version of (1.2), (See problem (2.1)) and we show that this modified version
is wellposed. Although, we do not solve exactly (1.2), we think that the setting
used for the analysis of the modified problem gives hints of what should be used to
seriously tackle (1.2). Since the bothering issue in (1.2) is the boundary condition,
in the second part of this work we analyze (1.2) in the periodic d-torus. To the best
of our knowledge, the analysis of this problem using finite elements does not seem
to have been done yet. In this setting we are able to conduct a full analysis. We
propose a discrete formulation and we show that it is optimally convergent. The
main result of the paper is Theorem 3.1. The main conclusion of our analysis is
that, yes indeed, (1.2) in the d-torus yields an optimal approximation setting that
does not require the approximation spaces to satisfy the Babuška–Brezzi condition.

2. The continuous problem

This section is composed of two subsections. First we consider a slightly modified
version of (1.2), which we prove to be wellposed. Second we analyze (1.2) adopting
periodic boundary conditions.

2.1. First formulation. The problem that we consider can be written formally
in the following form

(2.1) −∆u +∇p = f ; u|∂Ω = 0; ∆∇·u = 0; ∂n∇·u|∂Ω = 0.

To give sense to the above problem we introduce the spaces
(2.2)

X = [H1
0 (Ω)]d; M = L2∫

=0(Ω); Z = {φ ∈ H1∫
=0; ∆φ ∈ L2(Ω); ∂nφ|∂Ω = 0},

where L2∫
=0(Ω) is composed of those functions in L2(Ω) whose mean-value is zero.

We equip X, M and Z with the following norms ‖u‖X = ‖u‖1,Ω, ‖p‖M = ‖p‖0,Ω,
‖q‖Z = ‖q‖1,Ω + ‖∆q‖0,Ω, where ‖ · ‖s,Ω denotes the norm in Hs(Ω). No notational
distinction is made between the norm of scalar-valued and vector-valued functions.
The product spaces X×M and X×Z are equipped with the norms ‖(u, p)‖X×M =
‖u‖X +‖p‖M and ‖(u, p)‖X×Z = ‖u‖X +‖p‖Z . All the above normed vector spaces
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are clearly Hilbert spaces. We define the bilinear form
(2.3)

a : (X×M)×(X×Z) 3 ((u, p), (v, q)) 7−→ (∇u,∇v)− (p,∇·v) + (∇·u,∆q) ∈ R.

This bilinear form is clearly continuous.
The formal problem (2.1) can be reformulated as follows: For f ∈ [H−1(Ω)]d,

seek (u, p) ∈ X×M such that

(2.4) a((u, p), (v, q)) = 〈f, v〉−1,1,Ω, ∀(v, q) ∈ X×Z,

where 〈·, ·〉−1,1,Ω denotes the duality pairing between [H−1(Ω)]d and [H1
0 (Ω)]d.

Lemma 2.1. There is α > 0 such that

(i) inf
(u,p)∈X×M

u 6=0,p 6=0

sup
(v,q)∈X×Z

v 6=0,q 6=0

a((u, p), (v, q))
‖(u, p)‖X×M‖(v, q)‖X×M

≥ α.

(ii) ∀(v, q) ∈ X×Z,
(∀(u, p) ∈ X×M, a((u, p), (v, q)) = 0

) ⇒ (
(v, q) = (0, 0)

)
.

Proof. (1) Let (u, p) ∈ X×M , then

a((u, p), (u, 0)) = ‖∇u‖20,Ω − (p,∇·u) ≥ ‖∇u‖20,Ω − γ1‖p‖20,Ω − cγ1‖∇·u‖20,Ω,

where γ1 > 0 can be chosen as small as we want, and cγ1 is a constant that only
depends on γ1. Define q ∈ Z solving ∆q = ∇·u. Clearly, ‖q‖Z ≤ c‖∇·u‖0,Ω. Then
we observe that

a((u, p), (0, q)) = ‖∇·u‖20,Ω.

Combining these two bounds we obtain

a((u, p), (u, cγ1q)) ≥ ‖∇u‖20,Ω − γ1‖p‖20,Ω.

Now, using the fact that the linear mapping ∇· : X −→ L2∫
=0(Ω) is continuous and

surjective, we deduce form the Open Mapping Theorem that there is β > 0 such
that for all p ∈ L2∫

=0(Ω) there is v ∈ X verifying ∇·v = −p and β‖∇v‖0,Ω ≤ ‖p‖0,Ω.
Then

a((u, p), (v, 0)) ≥ −‖∇u‖0,Ω‖∇v‖0,Ω + ‖p‖20,Ω

≥ −cβ‖∇u‖20,Ω − β
2 ‖∇v‖20,Ω + ‖p‖20,Ω

≥ −cβ‖∇u‖20,Ω + 1
2‖p‖20,Ω.

Set γ1 = 1
8cβ

, w = u + 1
2cβ

v, and r = γ1q, then

a((u, p), (w, r)) ≥ 1
2‖∇u‖20,Ω + 1

8cβ
‖p‖20,Ω.

Using the bounds ‖q‖Z ≤ c‖∇·u‖0,Ω and β‖∇v‖0,Ω ≤ ‖p‖0,Ω we infer

sup
(v,q)

a((u, p), (v, q))
‖(v, q)‖X×M

≥ a((u, p), (w, r))
‖(w, r)‖X×Z

≥ c(‖∇u‖0,Ω + ‖p‖0,Ω) = c‖(u, p)‖X×M .

(2) Assume now that (v, q) ∈ X×Z is such that a((u, p), (v, q)) = 0 for all (u, p) in
X×M . Using u = 0 yields (p,∇·v) = 0 for all p in M ; moreover, since ∇·v ∈ M ,
we infer ∇·v = 0. This in turn implies 0 = a((v, 0), (v, q)) = ‖∇v‖20,Ω, meaning that
v is zero. Moreover, (∆q,∇·u) = 0 for all u ∈ X. Since ∇· : X −→ M is surjective
and ∆q is in M , we infer that ∆q = 0, meaning that q is zero since ∂nq|∂Ω = 0. ¤
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As consequence of the above lemma, we infer the following

Corollary 2.1. The problem (2.4) is wellposed and the couple (u, p) solves (1.1)
and (2.1).

Proof. Apply the Banach–Nečas–Babuška (BNB) Theorem, see e.g., [1, Th. 3.6] or
[3, Th. 2.6]. ¤

We do not go any further in the analysis of (2.1) since it is not really the problem
we started with; however, we now show how (2.1) relates to (1.2).

2.2. Second formulation with periodic boundary conditions. Using the fact
that u solves −∆u+∇p = f , another way to reformulate (2.1) consists of observing
that

(2.5) 0 = ∆∇·u = ∇·∆u = ∇·(∇p− f) = ∆p−∇·f,

and using the equality ∇∇·u = ∇×∇×u +∇p− f , we infer

(2.6) 0 = ∂n∇·u = n·∇∇·u = n·(∇×∇×u +∇p− f).

In other words, (2.1) is formally equivalent to

(2.7) −∆u +∇p = f ; u|∂Ω = 0; ∆p = ∇·f ; ∂np|∂Ω = (−∇×∇×u + f)·n|∂Ω.

Then, we introduce the bilinear form

(2.8) b((u, p), (v, q)) = (∇u,∇v)− (p,∇·v) + (∇p +∇×∇×u,∇q).

Formally,(2.5)–(2.6) is equivalent to

(2.9) b((u, p), (v, q)) = (f, v) + (f,∇q), ∀v, q.

To make this rigorous, we need to state the domain of b and the regularity we
expect for f . It is clear that if u and v are picked in X, (∇u,∇v) is well defined.
The term that poses difficulties is (∇p + ∇×∇×u,∇q). Actually (∇p,∇q) can
be rewritten −(p, ∆q) if p is picked in M and q is picked in Z; then this term is
well defined. The term that is really troublesome at this point is (∇×∇×u,∇q).
Formally integrating by parts, it can be rewritten − ∫

∂Ω
(∇×u×n)·∇q, but as far as

regularity is concerned this does not really help. At this point, it seems mandatory
to assume u be in H2(Ω)d or at least ∇×∇×u be square integrable. Note however
that this difficulty does not arise if periodic boundary conditions are enforced since
in this case (∇×∇×u,∇q) is zero.

We henceforth assume that Ω is the d-torus in Rd. We set

X# = {v ∈ [H1(Ω)]d; v periodic;
∫
Ω

v = 0},(2.10)

M# = L2∫
=0(Ω),(2.11)

Z# = {φ ∈ H2(Ω); φ|∂Ω and ∂nφ|∂Ω periodic;
∫

Ω

φ = 0}.(2.12)

Then we define

(2.13) c((u, p), (v, q)) = (∇u,∇v)− (p,∇·v) + 〈∇p,∇q〉−1,1,Ω.
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Clearly c is bilinear and bounded on (X#×M#)×(X#×Z#). Furthermore, consider
the following problem: For f ∈ [H−1(Ω)]d, seek (u, p) ∈ X#×M# such that

(2.14) c((u, p), (v, q)) = (f, v) + 〈f,∇q〉−1,1,Ω, ∀(v, q) ∈ X#×Z#.

Lemma 2.2. The is α > 0 such that

(i) inf
(u,p)∈X#×M#

u 6=0,p 6=0

sup
(v,q)∈X#×Z#

v 6=0,q 6=0

c((u, p), (v, q))
‖(u, p)‖X×M‖(v, q)‖X×Z

≥ α.

(ii) ∀(v, q)∈X#×Z#,
(∀(u, p)∈X#×M#, c((u, p), (v, q)) = 0

)⇒(
(v, q) = (0, 0)

)
.

Proof. (1) Let (u, p) be a nonzero member of X#×M#. Let q ∈ Z# solve ∆q =
−∇·u. Then

c((u, p), (u, q)) = ‖∇u‖20,Ω − (p,∇·u)− (p, ∆q) = ‖∇u‖20,Ω.

Since the linear mapping ∇· : X# −→ M# is continuous and surjective, there
is β > 0 such that for all p ∈ M# there is v ∈ X# verifying ∇·v = −p and
β‖∇v‖0,Ω ≤ ‖p‖0,Ω. Then

c((u, p), (v, 0)) ≥ −‖∇u‖0,Ω‖∇v‖0,Ω + ‖p‖20,Ω

≥ −cβ‖∇u‖20,Ω − β
2 ‖∇v‖0,Ω + ‖p‖20,Ω

≥ −cβ‖∇u‖20,Ω + 1
2‖p‖20,Ω.

Set w = u + 1
2cβ

v, and r = q, then

c((u, p), (w, r)) ≥ 1
2‖∇u‖20,Ω + 1

4cβ
‖p‖20,Ω.

The rest of the proof is similar to that of Lemma 2.1. ¤

As a direct consequence of the BNB Theorem, the above lemma implies the
following

Corollary 2.2. The problem (2.14) is wellposed and the couple (u, p) solves (1.1)
and (2.1).

The rest of the paper is devoted to the analysis of nonconforming approximations
of (2.14).

3. Nonconforming approximation to (2.14)

3.1. The discrete problem. Let {Th}h>0 be a regular family of affine meshes.
For the sake of simplicity, we assume that the mesh family is quasi-uniform. We
denote by Fh the set of interfaces of the mesh (including those that are on the
periodic boundary of Ω). We define Xh ⊂ X# to be a finite element space for
approximating the velocity, and we define Mh ⊂ M# to be a finite element space
for approximating the pressure.

We now construct a nonconforming approximation of Z# by using Mh to ap-
proximate function in Z#; that is, we set Zh = Mh. Let qh be a function in Mh

and let F be an interface in Fh. Let K1 and K2 be the two elements in Th such
that F is the interface between K1 and K2. We denote by qh1, qh2 the restriction
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of qh to K1 and K2, respectively. The unit outward normal to K1, K2 is denoted
by n1, n2, respectively. We define the jump of qh across F to be

[[qh]] = qh1n1 + qh2n2.

We introduce the following norm

(3.1) ‖qh‖21,h = ‖qh‖20,Ω +
∑

K∈Th

‖∇qh‖20,K +
∑

F∈F i
h

h−1
F ‖[[qh]]‖20,F

Owing to the quasi-uniformity property, the following inverse inequality holds:
There is ci > 0 independent of h such that

(3.2) ∀qh ∈ Mh, ‖qh‖1,h ≤ cih
−1‖qh‖0,Ω.

To approximate the bilinear form (−∆q, p), we introduce a bilinear mapping lh :
(Mh +Z#)×Mh −→ R that we assume to be coercive in the following sense: There
is cl > 0 independent of h such that

(3.3) ∀qh ∈ Mh, lh(qh, qh) ≥ cl‖qh‖21,h.

We assume also that the following boundedness property holds: There is cL > 0
such that

(3.4) ∀φh, ψh ∈ Mh, lh(φh, ψh) ≤ cL‖φh‖1,h‖ψh‖1,h.

We define

(3.5) ∀qh ∈ Mh, ‖qh‖2,h = sup
ψh∈Mh

ψh 6=0

lh(qh, ψh)
‖ψh‖0,Ω

.

Since ‖qh‖2,h ≥ cl‖qh‖1,h, the mapping ‖ · ‖2,h : Mh −→ R+ is clearly a norm. We
now define product norms as follows

‖(uh, ph)‖Xh×Mh
= ‖∇uh‖0,Ω + ‖ph‖0,Ω = ‖(uh, ph)‖X×M(3.6)

‖(vh, qh)‖Xh×Zh
= ‖∇vh‖0,Ω + ‖qh‖2,h.(3.7)

We define the bilinear form

(3.8) ch((uh, ph), (vh, qh)) = (∇uh,∇vh)− (ph,∇·vh) + lh(qh, ph).

We now consider discrete counterparts of (2.14). We introduce the linear form
fh : Zh −→ R that we assume to be uniformly continuous with respect to the
‖ · ‖2,h-norm and consistent with f in the sense that there exists a constant c

independent of h such that for all p ∈ M#

(3.9) sup
qh∈Mh

|fh(qh)− lh(p, qh)|
‖qh‖2,h

≤ c inf
ψh∈Mh

‖p− ψh‖0,Ω.

Then, we consider the following problem: Seek the couple (uh, ph) ∈ Xh×Mh such
that for all (vh, qh) in Xh×Zh

(3.10) ch((uh, ph), (vh, qh)) = 〈f, vh〉−1,1,Ω + fh(qh).
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Example 3.1.
(i) If f is only in [H−1(Ω)]d, we denote by πh : [H−1(Ω)]d −→ Xh the projection

such that (πhf, vh) = 〈f, vh〉−1,1,Ω. Then fh(qh) can be defined to be equal to
−(∇·(πhf), qh).

(ii) If f is in [L2(Ω)]d and Mh is H1-conforming, then one can set fh(qh) =
(f,∇qh).

(iii) If Mh is H1-conforming, lh can be simply defined by lh(qh, ph) = (∇qh,∇ph).
If f is in [L2(Ω)]d and fh(qh) = (f,∇qh), then u ∈ [H2(Ω)]d and p ∈ H1(Ω) and

fh(qh)− lh(p, qh) = (−∆u +∇p,∇qh)− (∇p,∇qh) = 0.

3.2. Error analysis. The error analysis is performed using the second Strang
Lemma. For this purpose we go through a series of Lemma establishing stability,
continuity, and consistency.

Lemma 3.1 (Stability). There is α > 0 independent of h such that

(3.11) inf
(uh,ph)∈Xh×Mh

uh 6=0,ph 6=0

sup
(vh,qh)∈Xh×Mh

vh 6=0,qh 6=0

ch((uh, ph), (vh, qh))
‖(uh, ph)‖Xh×Mh

‖(vh, qh)‖Xh×Zh

≥ α.

Proof. We proceed similarly to the proof of Lemma 2.2.
(1) Let (uh, ph) be a nonzero member of Xh×Mh. Let qh ∈ Zh solve lh(qh, ψh) =
(∇·uh, ψh) for all ψh in Mh; note that a solution to this problem exists since lh is
coercive. Then

ch((uh, ph), (uh, qh)) = ‖∇uh‖20,Ω − (ph,∇·uh) + lh(qh, ph) = ‖∇uh‖20,Ω.

We now use the fact that there is β > 0 such that for all ph ∈ Mh ⊂ M# there is
v ∈ X# verifying ∇·v = −ph and β‖∇v‖0,Ω ≤ ‖ph‖0,Ω. Let Chv be the Clément
interpolant of v or any other H1-stable interpolant with the following local inter-
polation properties [2]:

‖Chv − v‖0,K ≤ chK‖∇v‖0,∆K , ‖Chv − v‖0,F ≤ ch
1
2
K‖∇v‖0,∆F ,

where ∆K is the collection of all the element having a nonzero intersection with K

and ∆F is that of those elements that have a nonzero intersection with F . Since
Chv and v are continuous across interfaces, we have

−(ph,∇·(Chv)) = −(ph,∇·(Chv − v)) + ‖ph‖20,Ω

= ‖ph‖20,Ω +
∑

K∈Th

∫

K

(Chv − v)·∇ph −
∑

F∈Fh

∫

F

[[ph]]·(Chv − v)

≥ ‖ph‖20,Ω −
∑

K∈Th

‖Chv − v‖0,K ‖∇ph‖0,K −
∑

F∈Fh

‖[[ph]]‖0,F ‖Chv − v‖0,F

≥ ‖ph‖20,Ω −
∑

K∈Th

chK‖∇v‖0,∆K ‖∇ph‖0,K −
∑

F∈Fh

h
1
2
F ‖[[ph]]‖0,F ‖∇v‖0,∆F

≥ ‖ph‖20,Ω − ch‖∇v‖0,Ω‖ph‖1,h ≥ ‖ph‖20,Ω − cβh‖ph‖0,Ω‖ph‖1,h.

≥ 1
2‖ph‖20,Ω − c h2‖ph‖21,h.
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Let γ > 0 be a, yet arbitrary, positive real number. Then, using the above bound

ch((uh, ph), (Chv, γh2ph)) ≥ −‖∇uh‖0,Ω‖∇Chv‖0,Ω

− (ph,∇·(Chv)) + γh2lh(ph, ph)

≥ −c1‖∇uh‖0,Ω‖∇v‖0,Ω

+ 1
2‖p‖20,Ω − c2h

2‖ph‖21,h + c3γh2‖ph‖21,h

≥ −cβ‖∇u‖20,Ω − β
4 ‖∇v‖0,Ω + 1

2‖p‖20,Ω

+ (c3γ − c2)h2‖ph‖21,h

≥ −cβ‖∇u‖20,Ω + 1
4‖p‖20,Ω + (c3γ − c2)h2‖ph‖21,h.

We now choose γ = 2c2/c3. We set wh = uh + 1
2cβ

Chv and rh = qh + γh2ph. Then,

ch((uh, ph), (wh, rh)) ≥ 1
2‖∇uh‖20,Ω + 1

8cβ
‖ph‖20,Ω.

It is clear that ‖∇wh‖0,Ω ≤ c‖∇uh‖0,Ω +‖ph‖0,Ω. Furthermore, using the definition
of qh together with (3.4) and (3.2), we infer

‖rh‖2,h = sup
ψh∈Mh

lh(rh, ψh)
‖ψh‖0,Ω

= sup
ψh∈Mh

lh(qh, ψh)
‖ψh‖0,Ω

+ c‖ph‖0,Ω

≤ ‖∇·uh‖0,Ω + c‖ph‖0,Ω.

Then (3.11) follows readily. ¤

Lemma 3.2 (Continuity). There is c > 0 independent of h such that

(3.12) sup
(w,r)∈(X#+Xh)×(M#+Mh)

uh 6=0,ph 6=0

sup
(vh,qh)∈Xh×Zh

vh 6=0,qh 6=0

ch((w, r), (vh, qh))
‖(w, r)‖X×M‖(vh, qh)‖Xh×Zh

≤ c.

Proof. Clearly

ch((w, r), (vh, qh)) ≤ ‖∇w‖0,Ω‖∇vh‖0,Ω + c ‖r‖0,Ω‖∇vh‖0,Ω + ‖qh‖2,h‖r‖0,Ω.

Then the conclusion follows readily. ¤

Lemma 3.3 (Consistency). Let (u, p) ∈ X#×M# solve (1.1), then
(3.13)

sup
(vh,qh)∈Xh×Zh

vh 6=0,qh 6=0

|〈f, vh〉−1,1,Ω + fh(qh)− ch((u, p), (vh, qh))|
‖(vh, qh)‖Xh×Zh

≤ c inf
ψh∈Mh

‖p− ψh‖0,Ω

Proof. Clearly,

〈f, vh〉−1,1,Ω + fh(qh)− ch((u, p), (vh, qh)) = fh(qh)− lh(p, qh).

The conclusion is a consequence of the consistency hypothesis (3.9). ¤

We are now in measure to state the main theorem of this paper.

Theorem 3.1. Under the above assumptions, there is are constants c1, c2 inde-
pendent of h such that

(3.14) ‖u− uh‖1,Ω + ‖p− ph‖0,Ω ≤ c1 inf
vh∈Xh

‖u− vh‖1,Ω + c2 inf
ψh∈Mh

‖p− ψh‖0,Ω.
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Proof. This is a simple consequence of Lemma 3.1, Lemma 3.2, Lemma 3.3 together
with the second Strang Lemma. ¤

Remark 3.1.
(i) One striking property of the above approximation method is that convergence

is ensured for all pairs of spaces Xh, Mh. In other words, these spaces do not need
be compatible, i.e. they do not need satisfy the so-called Babuška-Brezzi condition.
Note that this property is not due to the fact that we have adopted periodic bound-
ary conditions, since, as shown in Figure 1, the usual saddle-point P1–P1 setting
has spurious modes even if periodic boundary conditions are adopted.

(ii) Note that the solution method (3.10) is not a stabilized method, i.e., there
is no tunable coefficient entering in the formulation, see e.g., [4, 8].

−1 0 +1 −1

+1 −1 0 +1

0 +1 −1 0

0 +1 −1−1

Figure 1. One pressure spurious mode for the P1–P1 periodic setting.
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