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L∞-ERROR ESTIMATES AND SUPERCONVERGENCE IN
MAXIMUM NORM OF MIXED FINITE ELEMENT METHODS

FOR NONFICKIAN FLOWS IN POROUS MEDIA

RICHARD E. EWING, YANPING LIN, JUNPING WANG, AND SHUHUA ZHANG

Abstract. On the basis of the estimates for the regularized Green’s functions

with memory terms, optimal order L∞-error estimates are established for the

nonFickian flow of fluid in porous media by means of a mixed Ritz-Volterra

projection. Moreover, local L∞-superconvergence estimates for the velocity

along the Gauss lines and for the pressure at the Gauss points are derived for the

mixed finite element method, and global L∞-superconvergence estimates for

the velocity and the pressure are also investigated by virtue of an interpolation

post-processing technique. Meanwhile, some useful a-posteriori error estimators

are presented for this mixed finite element method.
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1. Introduction

The nonFickian flow of fluid in porous media can be modelled by an integro-
differential equation which seeks u = u(x, t) such that

(1.1)

ut = ∇ · σ + cu + f in Ω× J,

σ = A(t) · ∇u−
∫ t

0

B(t, s) · ∇u(s)ds in Ω× J,

u = g on ∂Ω× J,

u = u0(x) x ∈ Ω, t = 0,

where Ω ⊂ Rd (d = 2, 3) is an open bounded domain with smooth boundary ∂Ω,
J = (0, T ) with T > 0, A(t) = A(x, t) and B(t, s) = B(x, t, s) are two 2× 2 or 3× 3
matrices, and A is positive definite, c ≤ 0, f , g and u0 are known smooth functions.
This kind of flow is complicated by the history effect characterizing various mixing
length growth of the flow, which has been investigated, for example, in [9, 10] and
references cited therein.
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The numerical approximations of the problem (1.1) are available in extensive
literature. See, for instance, [2, 3, 12, 13, 16, 14, 15, 20, 21, 22], where some
optimal order error estimates and superconvergence have been established.

In the present paper, the solutions of (1.1) are approximated by mixed finite
element methods [14, 15, 16]. Optimal order L∞-error estimates are obtained by
employing a mixed Ritz-Volterra projection introduced in [16]. In addition, local
L∞-superconvergence estimates for the velocity along the Gauss lines and for the
pressure at the Gauss points are derived, and with the aid of an interpolation post-
processing method global L∞-superconvergence estimates are also derived for the
velocity and the pressure approximations. As a result of the global superconver-
gence, a-posteriori error indicators of the mixed finite element method are presented
in the paper.

Compared with [16], where the optimal and superconvergence estimates of the
mixed finite element method in L2-norm have been discussed for the problem (1.1),
the key point of the present paper is the introduction of the regularized Green’s
functions with memory terms and the establishment of the various estimates for
them and their mixed finite element approximations, which will play an important
role in the forthcoming analysis in deriving the above optimal and superconvergence
L∞-error estimates. As a result, the methodology and the techniques used in this
paper are quite different from those in [16].

The paper is organized in the following manner. In Section 2, we give the
approximate sub-space and the approximate problem. Two regularized Green’s
functions and a Ritz-Volterra projection with memory terms for the mixed form
for the problem (1.1) are introduced in Section 3. Also, in Section 3 the L1-error
estimates and related estimates for the mixed finite element approximations of the
regularized Green’s functions are stated, and the L∞-error estimates for the mixed
Ritz-Volterra projection are established. In Section 4, optimal order error estimates
in maximum norm are given for the mixed finite element approximations. Section 5
is devoted to the local and global L∞-superconvergence analysis of the mixed finite
element method, by which some a-posteriori error estimators are obtained for the
mixed finite element method. Finally, the L1-error estimates and related estimates
for the mixed finite element approximations of the regularized Green’s functions
are proved in Section 6.

2. The mixed finite element method

In this section, we give the mixed finite element approximate scheme for the
parabolic integro-differential equation (1.1). For simplicity, the method will be
presented on plane domains.

Let W := L2(Ω) be the standard L2 space on Ω with norm ‖ · ‖0. Denote by

V := H(div, Ω) =
{
σ ∈ (L2(Ω))2 | ∇ · σ ∈ L2(Ω)

}

the Hilbert space equipped with the following norm:

‖σ‖V :=
(‖σ‖20 + ‖∇ · σ‖20

) 1
2 .

There are several ways to discretize the problem (1.1) based on the variables σ and
u; each method corresponds to a particular variational form of (1.1) [14, 22].

Let Th be a finite element partition of Ω into triangles or quadrilaterals which
is quasi-uniform. Let Vh × Wh denote a pair of finite element spaces satisfying
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the Brezzi-Babǔska condition. Although there are now several choices for Vh and
Wh, here we only consider the Raviart-Thomas elements of order k ≥ 0 [24]. The
extension to other stable elements can be made without any difficulty.

Recall from [14] that the weak mixed formulation of (1.1) is given by finding
(u, σ) ∈ W ×V such that

(2.1)

(ut, w)− (∇ · σ,w)− (cu, w) = (f, w), w ∈ W,

(ασ,v) +
∫ t

0

(M(t, s)σ(s),v)ds + (∇ · v, u) = 〈g,v · n〉, v ∈ V,

u(0, x) = u0(x) in L2(Ω),

where α = A−1(t), M(t, s) = R(t, s)A−1(s) and R(t, s) is the resolvent of the matrix
A−1(t)B(t, s) and is given by

R(t, s) = A−1(t)B(t, s) +
∫ t

s

A−1(t)B(t, τ) R(τ, s)ds, t > s ≥ 0.

Here 〈·, ·〉 indicates the L2-inner product on ∂Ω.
The corresponding semi-discrete version is to seek a pair (uh, σh) ∈ Wh × Vh

such that
(2.2)

(uh,t, wh)− (∇ · σh, wh)− (cuh, wh) = (f, wh), wh ∈ Wh,

(ασh,vh) +
∫ t

0

(M(t, s)σh(s),vh)ds + (uh,∇ · vh) = 〈g,n · vh〉, vh ∈ Vh.

The discrete initial condition uh(0, x) = u0,h, where u0,h ∈ Wh is some appropri-
ately chosen approximation of the initial data u0(x), should be added to (2.2) for
starting. The pair (uh, σh) is a semi-discrete approximation of the true solution of
(1.1) in the finite element space Wh×Vh [1, 6, 16, 14, 15], where σh(0, x) is chosen
to satisfy the equation (2.2) with t = 0; namely, it is related to u0,h as follows:

(2.3) (ασh(0),vh) + (u0,h,∇ · vh) = 〈g0,n · vh〉,
where g0 = g(0, x) is the initial value of the boundary data.

From (2.1) and (2.2) we derive the following mixed finite element error equation:
(2.4)
(ut − uh,t, wh)− (∇ · (σ − σh), wh)− (c(u− uh), wh) = 0, wh ∈ Wh,

(α(σ − σh),vh) +
∫ t

0

(M(t, s)(σ − σh)(s),vh)ds + (u− uh,∇ · vh) = 0, vh ∈ Vh.

Throughout the paper, we often need the following Raviart-Thomas projection
[7, 24].

Πk
h × P k

h : V ×W → Vh ×Wh,

which has the properties:
(i) P k

h is the L2(Ω) projection.
(ii) Πk

h and P k
h satisfy

(2.5) (∇ · (σ −Πk
hσ), wh) = 0, wh ∈ Wh and (∇ · vh, u− P k

h u) = 0, vh ∈ Vh.

(iii) the following approximation properties hold
(2.6)

||σ −Πk
hσ||0,p ≤ Chr||σ||r,p, 1 ≤ r ≤ k + 1, 1 ≤ p ≤ ∞,

||∇ · (σ −Πk
hσ)||−s,p ≤ Chr+s||∇ · σ||r,p, 0 ≤ r, s ≤ k + 1, 1 ≤ p ≤ ∞,

||u− P k
h u||−s,p ≤ Chr+s||u||r,p, 0 ≤ r, s ≤ k + 1, 1 ≤ p ≤ ∞.
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Remark 2.1. Πk
h is defined on a dense subspace of V.

3. The mixed Ritz-Volterra projection and its L∞-error estimates

In this section, we consider optimal order error estimates and superconvergence
in L∞-norm for the mixed Ritz-Volterra projection. It is well-known that the reg-
ularized Green’s function plays an essential role in the analysis of maximum norm
error estimates and superconvergence for finite element methods and mixed finite
element methods of elliptic equations [8, 11, 19, 26, 27, 28] and parabolic equations
[19]. For the finite element method of parabolic integro-differential equations, max-
imum norm error estimates and superconvergence have been obtained in [20, 21]
using the modified regularized Green’s function with memory term. Here we con-
sider the mixed finite element approximations for parabolic equations with memory,
and it is expected that certain modification form of the standard regularized Green’s
function with memory should be introduced, analyzed and used in our analysis.

First, let us define the following two linear operators M∗ and M ∗ ∗ for any
smooth function f(t) defined on (0, T ) by

(M ∗ f)(t) :=
∫ t

0

M(t, s)f(s)ds and (M ∗ ∗f)(t) :=
∫ T

t

M(s, t)f(s)ds.

Then, from exchanging the order of integration we have

Lemma 3.1. There holds

〈M ∗ f, g〉T :=
∫ T

0

M ∗ f(t) g(t)dt =
∫ T

0

f(t) M ∗ ∗g(t)dt := 〈f,M ∗ ∗g〉T .

Lemma 3.2. Assume that f(t), g(t) ∈ L1(0, T ∗) and there exists C > 0 such that
for any non-negative φ(t) ∈ C∞(0, T ),

∣∣∣∣∣
∫ T

0

f(t)φ(t)dt

∣∣∣∣∣ ≤ C

∣∣∣∣∣
∫ T

0

g(t)(1 + φ(t))dt

∣∣∣∣∣ , 0 ≤ T ≤ T ∗.

Then, we have

|f(t)| ≤ C

∣∣∣∣g(t) +
∫ t

0

g(s)ds

∣∣∣∣ , ∀t ∈ (0, T ), a.e.

Especially,
|f(t)| ≤ C|g(t)|, ∀t ∈ (0, T ), a.e. if
∣∣∣∣∣
∫ T

0

f(t)φ(t)dt

∣∣∣∣∣ ≤ C

∣∣∣∣∣
∫ T

0

g(t)φ(t)dt

∣∣∣∣∣ .

Proof. Take µ > 0 and let

φµ(t, t0) =

{
(Cµ)−1 exp

(
− µ2

µ2−|t−t0|2
)

, |t− t0| < µ,

0, |t− t0| ≥ µ,

where t0 is any fixed point in (0, T ) and Cµ := µ
∫
|t|<1

exp(− 1
1−t2 )dt. We see easily

that for almost all t0 ∈ (0, T ),

f(t0) = lim
µ→0

∫ T

0

f(t)φµ(t, t0)dt, f ∈ C∞(0, T ).



MAXIMUM NORM ERROR ESTIMATES AND SUPERCONVERGENCE 305

Thus, if we take fn(t) ∈ C∞(0, T ) such that fn(t) → f(t) as n → ∞ in L1(0, T ),
then the result is true for all fn(t). Therefore, it is true for f(t) via a limiting
procedure. ¤

Now let us introduce some notations for the use later. For an arbitrary point
z0 ∈ Ω̄, let

β(z, z0) := (|z − z0|2 + θ2)1/2

be the weight function used in [25, 26, 28], where z = (x, y) ∈ R2, θ = γh, and γ

is a positive number chosen appropriately. Moreover, as usual, for any α ∈ R we
define a weighted norm by

||u||2βα,Q :=
∫

Q

βαu2dQ,

and || · ||βα is the weighted norm for Q = Ω. Then, we have [26, 28]

(3.1)
∫

Ω

β−2dΩ ≤ C| log h|.

Next we shall define two regularized Green’s functions with memory terms for the
problem (1.1) in mixed form in the fashion analogous to that employed earlier for
Galerkin methods [28]. Our results concerning the regularized Green’s functions and
their mixed finite element approximations are very useful for establishing L∞-error
estimates and superconvergence in maximum norm for the mixed finite element
solution of (1.1).

For simplicity, we assume that c = 0. Thus, for an arbitrary point z0 ∈ Ω̄ the
first pair of modified regularized Green’s function (G1, λ1) = (G1(z, z0), λ1(z, z0))
with memory is defined as the solution of the following system:

(3.2)
αG1 + M ∗ ∗G1 −∇λ1 = 0, in Ω× (0, T ),

divG1 = δh
1 φ1(t), in Ω× (0, T ),

λ1 = 0, on ∂Ω× (0, T ),

where φ1(t) ∈ C∞(0, T ), and δh
1 = δh

1 (z, z0) ∈ Wh is the regularized Dirac δ-function
at any fixed point z0 ∈ Ω̄ such that ([8, 11, 26, 27])

(3.3) ||wh||∞ ≤ C|(wh, δh
1 )|, wh ∈ Wh.

We also introduce the second pair of regularized Green’s function (G2, λ2) =
(G2(z, z0),
λ2(z, z0)) such that

(3.4)
αG2 + M ∗ ∗G2 −∇λ2 = δh

2 φ2(t), in Ω× (0, T ),
divG2 = 0, in Ω× (0, T ),

λ2 = 0, on ∂Ω× (0, T ),

where φ(t) ∈ C∞(0, T ) and δh
2 is either (δh

2 , 0) or (0, δh
2 ) with δh

2 being a regularized
Dirac δ-function at z0, which depends upon the needs of our analysis, such that an
analogue of (3.3) is also valid for δh

2 . In addition, δh
2 , φ1(t) and φ2(t) are required

to satisfy

(3.5) δh
2 ≥ 0,

∫

Ω

δh
2 dΩ = 1; φi(t) ≥ 0,

∫ T

0

φi(t)dt ≤ 1, i = 1, 2.

Now and in what follows of this paper, the domain Ω is assumed to be H2-regular
[7]. Therefore, it is not difficult to show (see, for example, (3.6a) − (3.6d) in [26])
that the following result is true.
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Theorem 3.1. There exists a positive constant C > 0, independent of h, t, and
φ1(t), such that

||∇λ1||0 ≤ C| log h|1/2(1 + φ1(t)),
||∇2λ1||0 ≤ Ch−1(1 + φ1(t)),
||∇2λ1||β2 ≤ C| log h|1/2(1 + φ1(t)),
||∇2λ1||L1(Ω) ≤ C| log h|(1 + φ1(t)).

Our main results regarding error estimates between (G1, λ1) and (Gh
1 , λh

1 ), and
(G2, λ2) and (Gh

2 , λh
2 ) are contained in the following two theorems.

Theorem 3.2. Assume that (G1, λ1) and (Gh
1 , λh

1 ) are the exact solution and the
mixed finite element approximation of (3.2), respectively. Then, there exists a pos-
itive constant C > 0, independent of h, t, and φ1, such that

||Gh
1 −G1||0 ≤ C(1 + φ1(t)),

||Gh
1 −G1||L1(Ω) ≤ Ch| log h|(1 + φ1(t)),

||λh
1 − λ1||0 ≤ Ch| log h|1/2(1 + φ1(t)).

Theorem 3.3. Assume that (G2, λ2) and (Gh
2 , λh

2 ) are the exact solution and the
mixed finite element approximation of (3.4), respectively. Then, there exists a pos-
itive constant C > 0, independent of h, t, and φ2, such that

||Gh
2 −G2||0 ≤ Ch−1(1 + φ2(t)),

||Gh
2 −G2||L1(Ω) ≤ C| log h|1/2(1 + φ2(t)),

||λh
2 − λ2||0 ≤ C(1 + φ2(t)),

||λ2||0 ≤ C(1 + | log h|1/2)(1 + φ2(t)),
||∇λ2||0 ≤ Ch−1(1 + φ2(t)),
||∇λ2||L1(Ω) ≤ C| log h|(1 + φ2(t)),
||∇2λ2||L1(Ω) ≤ Ch−1| log h|1/2(1 + φ2(t)).

Remark 3.1. We would like to point out that the estimate

||∇2λ2||L1(Ω) ≤ Ch−1

(
log

1
h

)1/2

(1 + φ2(t))

is not sharp, since it can be improved to

(3.6) ||∇2λ2||L1(Ω) ≤ Ch−1(1 + φ2(t))

if the domain is smooth enough. A proof of (3.6) can be found in [25].

Remark 3.2. The proofs of Theorems 3.2 and 3.3 will be postponed to Section 6
where the weighted norm estimates are used.

Following the procedure for Theorems 3.3 and 3.4 in [26] together with the
application of Gronwall’s lemma, we can also obtain the following results to be
used in the superconvergence analysis.

Theorem 3.4. Assume that Ω is a plane rectangular domain and q ∈ [1,∞]. Then,
we have

||Gh
1 ||q ≤ Chmin{0, 2

q−1}| log h|1/2(1 + φ1(t))
||G1 −Gh

1 ||q ≤ (C(q) + C| log h|)h1− 2
p (1 + φ1(t)), 1 < q < ∞,

where p = q
q−1 is the conjugate of q.
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Theorem 3.5. For q ∈ [1,∞], there hold

||Gh
2 ||q ≤

{
Ch−

2
p | log h|(1 + φ2(t)), 1 ≤ q < 2,

Ch−
2
p (1 + φ2(t)), q ≥ 2,

||G2 −Gh
2 ||q ≤ (

C(q) + C| log h|1/2
)
h−

2
p (1 + φ2(t)), 1 < q < ∞,

where p = q
q−1 .

In the following we shall present the error estimates in the maximum norm for
the mixed Ritz-Volterra projection. To this end, we first give its definition [16].

Definition 3.1 For (u, σ) ∈ W ×V we define a pair (ūh, σ̄h) : [0, T ] → Wh×Vh

such that

(3.7)
(α(σ − σ̄h) + M ∗ (σ − σ̄h),vh) + (u− ūh, divvh) = 0, vh ∈ Vh

(div(σ − σ̄h), wh) = 0, wh ∈ Wh,

where α = A−1. The pair (ūh, σ̄h) is called the mixed Ritz-Volterra projection of
(u, σ). It has been proved in [16] that the solution of (3.7) exists uniquely for a
given pair (u, σ).

The following lemma is basic to the main results of this section.

Lemma 3.3. Assume that (ūh, σ̄h) is the mixed Ritz-Volterra projection of (u, σ) ∈
W ×V. Then we have

∫ T

0

(ūh − P k
h u, δh

1 )φ1(t)dt =
∫ T

0

(α(σ −Πk
hσ) + M ∗ (σ −Πk

hσ), Gh
1 )dt,

∫ T

0

(σ̄h −Πk
hσ, δh

2 )φ2(t)dt =
∫ T

0

(α(σ −Πk
hσ) + M ∗ (σ −Πk

hσ), Gh
2 )dt.

Proof. It follows from (3.2) and its corresponding mixed finite element error equa-
tion to (2.4) that

(ūh − P k
h u, δh

1 φ1(t)) = (ūh − P k
h u, divG1) = (ūh − P k

h u, divGh
1 ).

Note that P k
h is a local L2-projection operator. Thus, we know from (2.5) that

(ūh − P k
h u, δh

1 φ1(t)) = (ūh − u,divGh
1 )

which, together with (3.7), leads to

(ūh − P k
h u, δh

1 φ1(t)) = (α(σ − σ̄h) + M ∗ (σ − σ̄h),Gh
1 )

= (α(σ −Πk
hσ) + M ∗ (σ −Πk

hσ), Gh
1 )

+(α(Πk
hσ − σ̄h) + M ∗ (Πk

hσ − σ̄h), Gh
1 ).

Hence,
(3.8)∫ T

0

(ūh − P k
h u, δh

1 )φ1(t)dt =
∫ T

0

(α(σ −Πk
hσ) + M ∗ (σ −Πk

hσ), Gh
1 )dt

+
∫ T

0

(α(Πk
hσ − σ̄h) + M ∗ (Πk

hσ − σ̄h), Gh
1 )dt

:= K1 + K2.
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However, it follows from Lemma 3.1 and the mixed finite element approximation
of (3.2) as well as Green’s formula that

K2 =
∫ T

0

(αGh
1 + M ∗ ∗Gh

1 , Πk
hσ − σ̄h)dt

=
∫ T

0

(∇λh
1 , Πk

hσ − σ̄h)dt

= −
∫ T

0

(λh
1 ,div(Πk

hσ − σ̄h))dt,

which, together with (2.5) and (3.7), yields

K2 = −
∫ T

0

(λh
1 , div(Πk

hσ − σ))dt−
∫ T

0

(λh
1 ,div(σ − σ̄h))dt = 0.

Thus, from (3.8) we know that the first identity in Lemma 3.3 is true.
To prove the second identity, we use (3.4) and its mixed finite element error

equation to see that

(σ̄h −Πk
hσ, δh

2 )φ2(t) = (αGh
2 + M ∗ ∗Gh

2 , σ̄h −Πk
hσ) + (λh

2 ,div(σ̄h −Πk
hσ)).

Thus, by means of Lemma 3.1, (2.5) and (3.7) we have

∫ T

0

(σ̄h −Πk
hσ, δh

2 )φ2(t)dt =
∫ T

0

(α(σ̄h −Πk
hσ) + M ∗ (σ̄h −Πk

hσ), Gh
2 )dt

+
∫ T

0

(λh
2 ,div(σ̄h − σ))dt +

∫ T

0

(λh
2 , div(σ −Πk

hσ))dt

=
∫ T

0

(α(σ̄h −Πk
hσ) + M ∗ (σ̄h −Πk

hσ), Gh
2 )dt

=
∫ T

0

(α(σ −Πk
hσ) + M ∗ (σ −Πk

hσ),Gh
2 )dt

+
∫ T

0

(u− ūh, divGh
2 )dt

=
∫ T

0

(α(σ −Πk
hσ) + M ∗ (σ −Πk

hσ), Gh
2 )dt,

where divGh
2 = 0 has been used. This completes the proof. ¤

We are now ready to show the maximum norm error estimate for the mixed
Ritz-Volterra projection. First, we consider it for ūh − P k

h u.

Theorem 3.6. Let (ūh, σ̄h) be the Ritz-Volterra projection of (u, σ). Then, there
exists a constant C > 0, independent of h and t, such that

||ūh−P k
h u||∞ ≤





Ch| log h|(|||σ −Π0
hσ|||∞ + | log h|−1/2|||(I − P 0

h )∇ · σ|||0), k = 0,

C(|||σ −Π0
hσ|||0 + h| log h|1/2|||(I − P 0

h )∇ · σ|||0), k = 0,

Ch| log h|(|||σ −Πk
hσ|||∞ + h|||(I − P k

h )∇ · σ|||∞), k ≥ 1,

where |||u|||r,p := ||u(t)||r,p +
∫ t

0

||u(s)||r,pds, −∞ ≤ r ≤ ∞, 1 ≤ p ≤ ∞, t > 0. As

usual, |||u|||r,p is simply denoted by |||u|||r when p = 2.
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Proof. For any point z0 ∈ Ω̄, let δh
1 be the regularized Dirac δ-function associated

with this point z0, and then we find from Lemma 3.3 that
∫ T

0

(ūh − P k
h u, δh

1 )φ1(t)dt =
∫ T

0

(
α(σ −Πk

hσ) + M ∗ (σ −Πk
hσ), Gh

1 −G1

)
dt

+
∫ T

0

(
α(σ −Πk

hσ) + M ∗ (σ −Πk
hσ), G1

)
dt

:= K11 + K22.

It is easy to see from Lemma 3.1, (2.5) and (3.2) that

(3.9)

K22 =
∫ T

0

(αG1 + M ∗ ∗G1, σ −Πk
hσ)dt

=
∫ T

0

(∇λ1, σ −Πk
hσ)dt

= −
∫ T

0

(λ1,div(σ −Πk
hσ))dt

= −
∫ T

0

(λ1 − P k
h λ1,div(σ −Πk

hσ))dt

= −
∫ T

0

(λ1 − P k
h λ1,divσ)dt

= −
∫ T

0

(λ1 − P k
h λ1, (I − P k

h )divσ)dt.

Thus, we have for k = 0 that∣∣∣∣∣
∫ T

0

(ūh − P 0
hu, δh

1 )φ1(t)dt

∣∣∣∣∣

≤
{

C
∫ T

0
(|||σ −Π0

hσ|||∞||Gh
1 −G1||L1(Ω) + ||λ1 − P 0

hλ1||0||(I − P 0
h )divσ||0)dt,

C
∫ T

0
(|||σ −Π0

hσ|||0||Gh
1 −G1||0 + ||(I − P 0

h )λ1||0||(I − P 0
h )divσ||0)dt.

Noticing that for k = 0 by Theorem 3.1,

||λ1 − P 0
hλ1||0 ≤ Ch||∇λ1||0 ≤ Ch| log h|1/2(1 + φ1(t)),

it follows from the above inequality and Theorem 3.2 that for k = 0∣∣∣∣∣
∫ T

0

(ūh − P 0
hu, δh

1 )φ1(t)dt

∣∣∣∣∣

≤
{

Ch| log h| ∫ T

0
(|||σ −Π0

hσ|||∞ + | log h|−1/2||(I − P 0
h )divσ||0)(1 + φ1(t))dt,

C
∫ T

0
(|||σ −Π0

hσ|||0 + h| log h|1/2||(I − P 0
h )divσ||0)(1 + φ1(t))dt.

We now see from Lemma 3.2 and the arbitrariness of φ1(t) that

|(ūh − P 0
hu, δh

1 )| ≤
{

Ch| log h|(|||σ −Π0
hσ|||∞ + | log h|−1/2|||(I − P 0

h )divσ|||0),
C(|||σ −Π0

hσ|||0 + h| log h|1/2|||(I − P 0
h )divσ|||0),

from which and (3.3) we derive that for k = 0

||ūh − P 0
hu||∞ ≤

{
Ch| log h|(|||σ −Π0

hσ|||∞ + | log h|−1/2|||(I − P 0
h )divσ|||0),

C(|||σ −Π0
hσ|||0 + h| log h|1/2|||(I − P 0

h )divσ|||0).
Therefore, Theorem 3.6 is true for k = 0.

For k ≥ 1, we have by Theorem 3.1 that

||(I − P k
h )λ1||L1(Ω) ≤ Ch2||∇2λ1||L1(Ω) ≤ Ch2| log h|(1 + φ1(t)),
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which, together with Theorem 3.2, leads to
∣∣∣∣∣
∫ T

0

(ūh − P k
h u, δh

1 )φ1(t)dt

∣∣∣∣∣

≤ C

∫ T

0

(|||σ −Πk
hσ|||∞||Gh

1 −G1||L1(Ω)

+||(I − P k
h )λ1||L1(Ω)||(I − P k

h )divσ||∞)dt

≤ Ch| log h|
∫ T

0

(|||σ −Πk
hσ|||∞ + h||(I − P k

h )divσ||∞)(1 + φ1(t))dt.

This, together with Lemma 3.2 and (3.3), yields that for k ≥ 1

||ūh − P k
h u||∞ ≤ Ch| log h|(|||σ −Πk

hσ|||∞ + h|||(I − P k
h )divσ|||∞).

This completes the proof of Theorem 3.6. ¤

Theorem 3.7. Under the same conditions as for Theorem 3.6, there exists a con-
stant C > 0, independent of h and t, such that

||σ − σ̄h||∞ ≤ C| log h|1/2(|||σ −Πk
hσ|||∞ + h| log h|δk0/2|||(I − P k

h )divσ|||∞),

where δkj is the usual Kronecker symbol.

Proof. It suffices to bound σ̄h −Πk
hσ in L∞-norm. By Lemma 3.3 we have that

∫ T

0

(σ̄h −Πk
hσ, δh

2 )φ2(t)dt =
∫ T

0

(α(σ −Πk
hσ) + M ∗ (σ −Πk

hσ),Gh
2 −G2)dt

+
∫ T

0

(α(σ −Πk
hσ) + M ∗ (σ −Πk

hσ),G2)dt

:= M1 + M2.

Similar to (3.9), it follows from Lemma 3.1, (2.5) and (3.4) that

M2 =
∫ T

0

(αG2 + M ∗ ∗G2, σ −Πk
hσ)dt

=
∫ T

0

(∇λ2 + δh
2 φ2(t), σ −Πk

hσ)dt

= −
∫ T

0

(λ2, div(σ −Πk
hσ))dt +

∫ T

0

(δh
2 , σ −Πk

hσ)φ2(t)dt

=
∫ T

0

(P k
h λ2 − λ2, (I − P k

h )divσ)dt +
∫ T

0

(δh
2 , σ −Πk

hσ)φ2(t)dt.

Thus, we have by (3.5) and Theorem 3.3 that
∣∣∣∣∣
∫ T

0

(σ̄h −Πk
hσ, δh

2 )φ2(t)dt

∣∣∣∣∣

≤ C

∫ T

0

|||σ −Πk
hσ|||∞(||Gh

2 −G2||L1(Ω) + ||δh
2 ||L1(Ω)φ2(t))dt

+
∫ T

0

||λ2 − P k
h λ2||L1(Ω)||(I − P k

h )divσ||∞dt

≤ C| log h|1/2

∫ T

0

|||σ −Πk
hσ|||∞(1 + φ2(t))dt

+Ch| log h| 1+δk0
2

∫ T

0

||(I − P k
h )divσ||∞(1 + φ2(t))dt,



MAXIMUM NORM ERROR ESTIMATES AND SUPERCONVERGENCE 311

which implies by virtue of Lemma 3.2 and the analogue of (3.3) for δh
2 that

||σ̄h −Πk
hσ||∞ ≤ C| log h|1/2(|||σ −Πk

hσ|||∞ + h| log h|δk0/2|||(I − P k
h )divσ|||∞).

This, together with the standard triangle inequality, yields Theorem 3.7. ¤

Remark 3.3. By (3.6) we have

(3.10) ||λ2 − P k
h λ2||L1(Ω) ≤ Ch(1 + φ2(t)), k ≥ 1,

for sufficiently regular ∂Ω. Thus, Theorem 3.7 can be improved to become

(3.11) ||σ − σ̄h||∞ ≤ C(| log h|1/2|||σ −Πk
hσ|||∞ + h|||(I − P k

h )divσ|||∞)

for k ≥ 1 if ∂Ω is sufficiently smooth.

Corollary 3.1. Under the assumptions of Theorem 3.6, we have

||ūh − P k
h u||∞ ≤

{
Ch2| log h|(|||σ|||1,∞ + | log h|−1/2|||σ|||2), k = 0,

Chk+2| log h||||σ|||k+1,∞, k ≥ 1.

Proof. By (2.6) we have for the interpolation operators Πk
h and P k

h that

||f −Πk
hf ||0,p ≤ Chk+1||f ||k+1,p, 1 ≤ p ≤ ∞,

||g − P k
h g||0,p ≤ Chk+1||g||k+1,p, 1 ≤ p ≤ ∞.

Then, we find from Theorem 3.6 that for k = 0

||ūh − P 0
hu||∞ ≤ Ch| log h|(|||σ −Π0

hσ|||∞ + | log h|−1/2|||(I − P 0
h )divσ|||0)

≤ Ch2| log h|(|||σ|||1,∞ + | log h|−1/2|||σ|||2).
The estimates for k ≥ 1 can be derived along the same line. ¤
Similarly, from Theorem 3.7 we can establish the following result.

Corollary 3.2. We have under the assumptions of Theorem 3.6 that

||σ − σ̄h||∞ ≤ Chk+1| log h|(δk0+1)/2|||σ|||k+1,∞, k ≥ 0.

4. Optimal order L∞-error estimates for mixed finite element solutions

In this section we consider error estimates in maximum norms for the mixed
finite element approximation of (1.1) by means of the L∞-error estimates for the
mixed Ritz-Volterra projection and the estimates for the regularized Green’s func-
tions given in the last section. First, the following error estimate of ||ut − uh,t|| is
demonstrated for the future needs. To this purpose, we recall from [16] the following
two lemmas.

Lemma 4.1. Assume that the matrix A(t) is positive define. Then, the norms
||σ||20 := (σ, σ) and ||σ||2A−1 := (A−1σ, σ) are equivalent.

Lemma 4.2. Let (ūh, σ̄h) be the mixed Ritz-Volterra projection of (u, σ) ∈ W ×V
defined by (3.7). Then, there is a positive constant C > 0, independent of h > 0,
such that, for any positive integer m,

||Dm
t (u− ūh)||0 ≤ C

{
h|||u(t)|||2,2,m, k = 0,

hr|||u(t)|||r,2,m, k ≥ 1 and 2 ≤ r ≤ k + 1,

||Dm
t (σ − σ̄h)||0 ≤ Chr|||u(t)|||r+1,2,m, 1 ≤ r ≤ k + 1,

where |||u(t)|||r,p,m :=
m∑

j=0

||Dj
t u(t)||r,p +

∫ t

0

m∑
j=0

||Dj
t u(s)||r,pds, −∞ ≤ r ≤ ∞, 1 ≤

p ≤ ∞, t ≥ 0.
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Theorem 4.1. Assume that (u, σ) and (uh, σh) are the solutions of (2.1) and (2.2),
respectively, and (uh(0), σh(0)) are chosen as follows:

(4.1)
(α(0)(σh(0)− σ(0)),vh) + (divvh, uh(0)− u0) = 0, vh ∈ Vh,

(div(σh(0)− σ(0)), wh) = 0, wh ∈ Wh.

Then we have for k = 0 that

||ut − uh,t||0 ≤ Ch

{
||u||2 + ||ut||2 +

[∫ t

0

(||u||22 + ||ut||22 + ||utt||22)ds

]1/2
}

and for k ≥ 1 that

||ut − uh,t||0 ≤ Chk+1 {||u||k+1 + ||ut||k+1

+
[∫ t

0

(||u||2k+1 + ||ut||2k+1 + ||utt||2k+1)ds

]1/2
}

.

Proof. Let
u− uh = (u− ūh) + (ūh − uh) := ρ + ρh,

σ − σh = (σ − σ̄h) + (σ̄h − σh) := θ + θh,

where (ūh, σ̄h) is the Ritz-Volterra projection of (u, σ). Then, by Lemma 4.2 we
have

(4.2)
||ρt||0 ≤

{
Ch|||u|||2,2,1, k = 0,

Chk+1|||u|||k+1,2,1, k ≥ 1,

||ρtt||0 ≤
{

Ch|||u|||2,2,2, k = 0,

Chk+1|||u|||k+1,2,2, k ≥ 1.

Thus, only ||ρh,t||0 needs to be estimated in order to get the estimate for ||ut−uh,t||0.
For this purpose, we first get the estimate for θh(t).

We derive from (3.7) and (4.1) that

(α(0)θh(0),vh) + (divvh, ρh(0)) = 0, vh ∈ Vh,

(divθh(0), wh) = 0, wh ∈ Wh,

which, together with the uniqueness of the solution to (3.7), implies

(4.3) θh(0) = ρh(0) = 0.

It follows from (3.7) and (2.4) that (ρh, θh) satisfies

(4.4)
(αθh + M ∗ θh,vh) + (divvh, ρh) = 0, vh ∈ Vh,

(ρh,t, wh)− (divθh, wh) = −(ρt, wh), wh ∈ Wh.

Differentiate (4.4) to obtain

(αtθh + αθh,t + M(t, t)θh + Mt ∗ θh,vh) + (divvh, ρh,t) = 0, vh ∈ Vh,

and then we have by setting vh = θh in the above equation and wh = ρh,t in (4.4)
that

(4.5) ||ρh,t||20 + (αθh,t, θh) + (αtθh, θh) = −(Mθh + Mt ∗ θh, θh)− (ρt, ρh,t).

Since
α(θ2

h)t = (αθ2
h)t − αtθ

2
h,

then

(αθh,t, θh) =
1
2

d

dt
||θh||2A−1 − 1

2
(αtθh, θh).
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Hence, (4.5) can be rewritten as

||ρh,t||20 +
1
2

d

dt
||θh||2A−1 +

1
2
(αtθh, θh) = −(Mθh + Mt ∗ θh, θh)− (ρt, ρh,t).

Thus, we find via integrating the above equation, and using Lemma 4.1, (4.3),
Gronwall’s lemma and the ε-inequality that

(4.6) ||θh||20 ≤ C

∫ t

0

||ρt||20ds.

Next we shall obtain the estimate for ||ρh,t||0. To this end, we differentiate (4.4)
to obtain
(4.7)

(αtθh + αθh,t + M(t, t)θh + Mt ∗ θh,vh) + (divvh, ρh,t) = 0, vh ∈ Vh,

(ρh,tt, wh)− (divθh,t, wh) = −(ρtt, wh), wh ∈ Wh.

And hence, we have by setting vh = θh,t and wh = ρh,t in (4.7) and following the
procedure for (4.6) that

(4.8) ||ρh,t||20 ≤ C

{
||ρh,t(0)||20 +

∫ t

0

||ρt||20ds +
∫ t

0

||ρtt||20ds

}
.

By letting t = 0 and wh = ρh,t(0) in (4.4) we obtain from (4.3) that

||ρh,t(0)||0 ≤ ||ρt(0)||0,
which, together with (4.8) and (4.2), leads to

||ρh,t||20 ≤ C

{
||ρt(0)||20 +

∫ t

0

(||ρt||20 + ||ρtt||20)ds

}

≤





Ch2

[
||u(0)||22 + ||ut(0)||22 +

∫ t

0

(||u||22 + ||ut||22 + ||utt||22)ds

]
, k = 0,

Ch2k+2
[||u(0)||2k+1

+||ut(0)||2k+1 +
∫ t

0

(||u||2k+1 + ||ut||2k+1 + ||utt||2k+1)ds

]
, k ≥ 1.

This completes the proof of the theorem by (4.2). ¤
Now we are in a position to get our main theorem in this section.

Theorem 4.2. We have under the assumptions of Theorem 4.1 that for k = 0

||u− uh||∞ ≤ Ch
[||u||1,∞ + | log h|1/2(||u||2 + ||ut||2)

]

+Ch| log h|1/2

[∫ t

0

(||u||22 + ||ut||22 + ||utt||22)ds

]1/2

and

||σ − σh||∞ ≤ Ch| log h|1/2
(| log h|1/2|||u|||2,∞ + ||u||2 + ||ut||2

)

+Ch| log h|1/2

[∫ t

0

(||u||22 + ||ut||22 + ||utt||22)ds

]1/2

;

for k ≥ 1

||u− uh||∞ ≤ Chk+1| log h|1/2
(| log h|1/2|||u|||k+1,∞ + ||u||k+1 + ||ut||k+1

)

+Chk+1| log h|1/2

[∫ t

0

(||u||2k+1 + ||ut||2k+1 + ||utt||2k+1)ds

]1/2
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and

||σ − σh||∞ ≤ Chk+1| log h|1/2 (|||u|||k+2,∞ + ||u||k+1 + ||ut||k+1)

+Chk+1| log h|1/2

[∫ t

0

(||u||2k+1 + ||ut||2k+1 + ||utt||2k+1)ds

]1/2

.

Proof. With the same decomposition of the errors as that in Theorem 4.1, we know
from Corollaries 3.1 and 3.1 that

(4.9)

||ρ||∞ ≤ ||u− P k
h u||∞ + ||P k

h u− ūh||∞
≤

{
Ch

(||u||1,∞ + | log h|1/2|||u|||2
)
, k = 0,

Chk+1| log h||||u|||k+1,∞, k ≥ 1,
||θ||∞ ≤ Chk+1| log h|(δk0+1)/2|||σ|||k+1,∞.

Therefore, only ||ρh||∞ and ||θh||∞ are left to be estimated.
Set vh = Gh

1 in (4.4) to obtain from the mixed finite element approximation of
(3.2) that

(δh
1 φ1(t), ρh) = (divGh

1 , ρh) = −(αθh + M ∗ θh,Gh
1 ),

so that it follows from the integration, Lemma 3.1, and the mixed finite element
solution of (3.2) that

(4.10)

∫ T

0

(δh
1 , ρh)φ1(t)dt = −

∫ T

0

(αGh
1 + M ∗ ∗Gh

1 , θh)dt

=
∫ T

0

(λh
1 , divθh)dt

=
∫ T

0

(λh
1 − λ1, divθh)dt +

∫ T

0

(λ1, divθh)dt.

Since λ1|∂Ω = 0, it follows from Theorems 3.1 and 3.2 that

||λ1||0 ≤ C||∇λ1||0 ≤ C| log h|1/2(1 + φ1(t)),
||λ1 − λh

1 ||0 ≤ Ch| log h|1/2(1 + φ1(t)).

Hence, we find from (4.10), Lemma 3.2 and (3.3) that

(4.11) ||ρh||∞ ≤ C| log h|1/2(h + 1)|||divθh|||0.

We know from (3.7) and the mixed finite element error equation (2.4) that

(div(σ − σ̄h), wh) = 0, wh ∈ Wh,

(div(σ − σh), wh) = (ut − uh,t, wh), wh ∈ Wh.

This implies

(divθh, wh) = (div(σ̄h − σh), wh) = (div(σ − σh), wh) = (ut − uh,t, wh), wh ∈ Wh,

from which we have by means of the arbitrariness of wh ∈ Wh that

(4.12) ||divθh||0 ≤ ||ut − uh,t||0.
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Combining (4.11) with (4.12) and Theorem 4.1 leads to
(4.13)

||ρh||∞ ≤





Ch| log h|1/2 [||u0||2 + ||ut(0)||2 + ||u||2 + ||ut||2]

+Ch| log h|1/2

[∫ t

0

(||u||22 + ||ut||22 + ||utt||22)ds

]1/2

, k = 0,

Chk+1| log h|1/2[||u0||k+1 + ||ut(0)||k+1 + ||u||k+1 + ||ut||k+1]

+Chk+1| log h|1/2

[∫ t

0

(||u||2k+1 + ||ut||2k+1 + ||utt||2k+1)ds

]1/2

, k ≥ 1.

Next we shall give the estimate for ||σ−σh||∞. For this purpose, we let vh = Gh
2

in (4.4) to get according to (3.4) that

(αθh + M ∗ θh,Gh
2 ) = −(divGh

2 , ρh)
= −(div(Gh

2 −G2), ρh)− (divG2, ρh)
= 0.

This yields by Lemma 3.1 and Green’s formula that

0 =
∫ T

0

(αθh + M ∗ θh,Gh
2 )dt =

∫ T

0

(αGh
2 + M ∗ ∗Gh

2 , θh)dt

=
∫ T

0

(δh
2 , θh)φ2(t)dt−

∫ T

0

(λh
2 ,divθh)dt,

which, together with Theorem 3.3, implies that
∣∣∣∣∣
∫ T

0

(δh
2 , θh)φ2(t)dt

∣∣∣∣∣ =

∣∣∣∣∣
∫ T

0

(λh
2 − λ2, divθh)dt +

∫ T

0

(λ2, divθh)dt

∣∣∣∣∣

≤
∫ T

0

C||divθh||0(1 + φ2(t))dt

+
∫ T

0

C(1 + | log h|1/2)||divθh||0(1 + φ2(t))dt.

Thus, we derive from Lemma 3.2 and (4.12) that
∣∣(δh

2 , θh)
∣∣ ≤ C| log h|1/2|||divθh|||0 ≤ C| log h|1/2|||ut − uh,t|||0

which, together with Theorem 4.1 and an analogue of (3.3) for δh
2 , shows that

||θh||∞ ≤





Ch| log h|1/2(||u||2 + ||ut||2)

+Ch| log h|1/2

[∫ t

0

(||u||22 + ||ut||22 + ||utt||22)ds

]1/2

, k = 0,

Chk+1| log h|1/2(||u||k+1 + ||ut||k+1)

+Chk+1| log h|1/2

[∫ t

0

(||u||2k+1 + ||ut||2k+1 + ||utt||2k+1)ds

]1/2

, k ≥ 1.

This, together with (4.9) and (4.13), completes the proof of the theorem. ¤

5. Superconvergence in L∞-norm and a-posteriori error estimates

The aim of this section is to give local and global maximum norm superconver-
gence and a-posteriori error estimators for the mixed finite element approximation
of (2.1). First of all, we consider the local superconvergence. To this end, let us
define some seminorms as follows.



316 R. E. EWING, Y. LIN, J. WANG, AND S. ZHANG

Following [11] we assume that Ω ⊂ R2 is a rectangle and e = [a, b]× [c, d] ∈ Th is
an arbitrary element of the partition Th. We denote by (g1, g2, · · · , gk+1) the Gauss
points in [a, b] and (ĝ1, ĝ2, · · · , ĝk+1) the Gauss points in [c, d], and define

|||w|||∗,∞ := max
e∈Th

max
1≤i,j≤k+1

|w(gi, ĝj)|,
|||v|||∗,∞ := |||v1|||∗∞,1 + |||v2|||∗∞,2,

where
|||v1|||∗∞,1 := max

e∈Th

max
1≤j≤k+1

max
(x,ĝj)∈e

|v1(x, ĝj)|,
|||v2|||∗∞,2 := max

e∈Th

max
1≤i≤k+1

max
(gi,y)∈e

|v2(gi, y)|.
By assuming that the matrices A and B are diagonal or the partition Th is

uniform in this section, we recall from [8, 19] and [16] the following Lemma 5.1 and
Lemma 5.2, respectively.

Lemma 5.1. Let σ be a sufficiently smooth vector-valued function, B = (bij) be a
2× 2 matrix with bij ∈ W 1,∞(Ω) and Ω be a rectangular domain. Then, we have

|(B · (σ −Πk
hσ),vh)| ≤ Chk+2|σ|k+2,p||vh||0,p′ , ∀vh ∈ Vh,

where |f |m,q :=


 ∑

|i|=m

||Dif ||q0,q,Ω




1/q

, 1 ≤ q < ∞, |f |m,∞ := max
|i|=m

{ess sup
Ω
|Dif |}

and p′ = p
p−1 is the conjugate of p ≥ 1.

Lemma 5.2. Let (ūh, σ̄h) be the mixed Ritz-Volterra projection of (u, σ). Then,
we have

||ūh − P k
h u||W + ||σ̄h −Πk

hσ||V ≤ Chk+2(||u||k+1 + |||σ|||k+2),

where ||u||W := ||u||0 and ||σ||V :=
(||σ||20 + ||∇ · σ||20

)1/2.

From now on, for convenience in writing, we shall refrain from tracing the exact
dependence on the smoothness of u and σ, and only give the order of errors.

Theorem 5.1. Assume that (u, σ) and (uh, σh) are the solutions of (2.1) and (2.2),
respectively, and (uh(0), σh(0)) are chosen to satisfy (4.1). If the exact solution u

and σ satisfies σ, σt ∈ (Hk+2(Ω))2, then we have

||uh − P k
h u||0 + ||(uh − P k

h u)t||0 + ||σh −Πk
hσ||0 ≤ C(u, σ)hk+2.

Proof. Let ρ∗h := uh − P k
h u and θ∗h := σh − Πk

hσ. Then, it follows from (2.4) and
(2.5) that
(5.1)
(αθ∗h + M ∗ θ∗h,vh) + (ρ∗h,∇ · vh) = (α(σ −Πk

hσ) + M ∗ (σ −Πk
hσ),vh), vh ∈ Vh,

(ρ∗h,t, wh)− (∇ · θ∗h, wh) = 0, wh ∈ Wh.

Thus, letting wh = ρ∗h and vh = θ∗h in (5.1) we obtain from Lemmas 4.1, 5.1, the
ε-type inequality, the integration and Gronwall’s lemma that

(5.2) ||ρ∗h||20 +
∫ t

0

||θ∗h||20ds ≤ C(u, σ){||ρ∗h(0)||20 + h2(k+2)}.

From (4.3) we know

(5.3) ūh(0)− uh(0) = σ̄h(0)− σh(0) = 0.
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Therefore, from Lemma 5.2 we have

||ρ∗h(0)||0 = ||ūh(0)− P k
h u0||0 ≤ C(u, σ)hk+2,

and then from (5.2) we further obtain

(5.4) ||ρ∗h||0 ≤ C(u, σ)hk+2.

Again, we have according to (5.3) and Lemma 5.2 that

(5.5) ||θ∗h(0)||0 = ||σ̄h(0)−Πk
hσ(0)||0 ≤ C(u, σ)hk+2.

The second equation in (5.1) implies

(5.6) ρ∗h,t = ∇ · θ∗h,

which, together with (5.3) and Lemma 5.2, implies

(5.7) ||ρ∗h,t(0)||0 = ||∇ · θ∗h(0)||0 = ||∇ · (σ̄h −Πk
hσ)(0)||0 ≤ C(u, σ)hk+2.

Following the steps for θh and ρh,t in Theorem 4.1 and using the initial approxima-
tions (5.5) and (5.7) we obtain

(5.8) ||θ∗h||0 + ||ρ∗h,t||0 ≤ C(u, σ)hk+2.

The proof of Theorem 5.1 is completed by (5.4) and (5.8). ¤
Now we are ready to obtain our superapproximation theorem.

Theorem 5.2. In addition to the conditions of Theorem 5.1, if the exact solution
σ is such that σ ∈ (

W k+2,∞(Ω)
)2, then we have

| log h|1/2||uh − P k
h u||∞ + ||σh −Πk

hσ||∞ ≤ C(u, σ)hk+2| log h|.
Proof. Taking vh = Gh

1 in (5.1) we see from the mixed finite element approximation
of (3.2), Theorems 3.4 and 5.1, and Lemmas 5.1 and 3.1 that

∣∣∣∣∣
∫ T

0

(ρ∗h, δh
1 )φ1(t)dt

∣∣∣∣∣ ≤
∣∣∣∣∣
∫ T

0

(αGh
1 + M ∗ ∗Gh

1 , θ∗h)dt

∣∣∣∣∣

+C(u, σ)hk+2| log h|1/2

∫ T

0

(1 + φ1(t))dt

≤ C(u, σ)hk+2| log h|1/2

∫ T

0

(1 + φ1(t))dt.

Thus, Lemma 3.2 and (3.3) imply

||ρ∗h||∞ ≤ C(u, σ)hk+2| log h|1/2.

Next we shall obtain the superapproximation estimate for θ∗h in the L∞-norm.
Taking vh = Gh

2 in (5.1) and noticing ∇ · Gh
2 = 0 by the mixed finite element

approximation of (3.4), we have by Lemmas 3.1, 5.1 and Theorem 3.5 that
∣∣∣∣∣
∫ T

0

(αGh
2 + M ∗ ∗Gh

2 , θ∗h)dt

∣∣∣∣∣ ≤ C(u, σ)hk+2| log h|
∫ T

0

(1 + φ2(t))dt,

which, together with Theorem 3.3, (5.6) and (5.8), leads to
∣∣∣∣∣
∫ T

0

(δh
2 , θ∗h)φ2(t)dt

∣∣∣∣∣ ≤
∫ T

0

||λh
2 ||0||ρ∗h,t||0dt + C(u, σ)hk+2| log h|

∫ T

0

(1 + φ2(t))dt

≤ C(u, σ)hk+2| log h|
∫ T

0

(1 + φ2(t))dt.
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This implies by Lemma 3.2 that

||θ∗h||∞ ≤ C(u, σ)hk+2| log h|.
¤

Remark 5.1. From Lemmas 3.3 and 5.1 we can derive the following L∞-norm
superapproximation for the mixed Ritz-Volterra projection of (u, σ):

| log h|1/2||ūh − P k
h u||∞ + ||σ̄h −Πk

hσ||∞ ≤ C(u, σ)hk+2| log h|.
Hence, there holds the L∞-superapproximation estimate under the conditions of
Theorem 5.2,

| log h|1/2||ūh − uh||∞ + ||σ̄h − σh||∞ ≤ C(u, σ)hk+2| log h|.

In order to obtain the local superconvergence for the mixed finite element solution
(uh, σh), we need the following lemmas which come from [11] and [8], respectively.

Lemma 5.3. Assume that u ∈ W k+2,∞(Ω). Then,

|||u− P k
h u|||∗,∞ ≤ C(u)hk+2.

Lemma 5.4. If σ ∈ (
W k+2,∞(Ω)

)2, then we have

|||σ −Πk
hσ|||∗,∞ ≤ C(σ)hk+2.

We are now in the position to get our local superconvergence on the Gauss
points for the approximation of the pressure field and along the Gauss lines for the
approximation of the velocity field, respectively.

Theorem 5.3. In addition to the conditions of Theorem 5.2, if the exact solution
u is such that u ∈ W k+2,∞(Ω), then we have

| log h|1/2|||u− uh|||∗,∞ + |||σ − σh|||∗,∞ ≤ C(u, σ)hk+2| log h|.
Proof. From Lemma 5.3 and Theorem 5.2 we have

|||u− uh|||∗,∞ ≤ |||u− P k
h u|||∗,∞ + |||P k

h u− uh|||∗,∞
≤ C(u)hk+2 + C(u, σ)hk+2| log h|1/2

≤ C(u, σ)hk+2| log h|1/2.

Similarly, we obtain by means of Theorem 5.2 and Lemma 5.4 that

|||σ −Πk
hσ|||∗,∞ ≤ C(u, σ)hk+2| log h|.

¤
Next we shall consider the global superconvergence for the pressure and the

velocity fields by virtue of post-processing methods. Analogous to [16] we need to
construct two post-processing interpolation operators Πk+1

2h and P k+1
2h to satisfy

(5.9)

Πk+1
2h Πk

h = Πk+1
2h ,

||Πk+1
2h vh||0,p ≤ C||vh||0,p, ∀vh ∈ Vh,

||Πk+1
2h σ − σ||0,p ≤ Chk+2||σ||k+2,p, ∀σ ∈ (W k+2,p(Ω))2,

P k+1
2h P k

h = P k+1
2h ,

||P k+1
2h wh||0,p ≤ C||wh||0,p, ∀wh ∈ Wh,

||P k+1
2h u− u||0,p ≤ Chk+2||u||k+2,p, ∀u ∈ W k+2,p(Ω),

where 1 ≤ p ≤ ∞ and || · ||0,∞ = || · ||∞. Here we take for example k = 3 to
demonstrate the construction of the projection interpolation operators Πk+1

2h and
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P k+1
2h satisfying (5.9). To this purpose, we assume that the rectangular partition Th

has been obtained from T2h = {τ} with mesh size 2h by subdividing each element
of T2h into four small congruent rectangles. Let τ :=

⋃4
i=1 ei with ei ∈ Th. Thus,

we can define two projection operators Π4
2h and P 4

2h associated with T2h of degree
at most 4 in x and y on τ , respectively, according to the following conditions:

Π4
2hσ|τ ∈ (Q4,4(τ))2 , P 4

2hu|τ ∈ Q4,4(τ),∫

li

(σ −Π4
2hσ) · nqds = 0, ∀q ∈ P2(li), i = 1, 2, · · · , 12,

∫

ei

(σ −Π4
2hσ) = 0, i = 1, 2, 3, 4,

∫

τ

(σ −Π4
2hσ) · φ = 0, ∀φ ∈ (Q1,1(τ)\Q0,0(τ))2 , and

∫

ei

(u− P 4
2hu)ψ = 0, ∀ψ ∈ Q2,1(ei), i = 1, 2, 3, 4,

∫

τ

(u− P 4
2hu)ψ = 0, ∀ψ ∈ Q3,0(τ)\Q2,0(τ), respectively,

where li (i = 1, 2, · · · , 12) is one of the twelve sides of the four small elements ei

(i = 1, 2, 3, 4).
Similarly, we can also define Πk+1

2h and P k+1
2h for the case of k 6= 3 such that (5.9)

is satisfied.
By the two projection interpolation operators Πk+1

2h and P k+1
2h we can immedi-

ately gain the following global superconvergence result.

Theorem 5.4. Assume that (u, σ) and (uh, σh) are the solutions of (2.1) and (2.2),
respectively. Then, we have under the conditions of Theorem 5.3 that

| log h|1/2||P k+1
2h uh − u||∞ + ||Πk+1

2h σh − σ||∞ ≤ C(u, σ)hk+2| log h|.
Proof. We see from one of the properties of the operator P k+1

2h described in (5.9)
that

P k+1
2h uh − u = P k+1

2h (uh − P k
h u) + (P k+1

2h u− u).
Therefore, it follows from Theorem 5.2 and (5.9) that

||P k+1
2h u− u||∞ ≤ C||uh − P k

h u||∞ + C(u)hk+2 ≤ C(u, σ)hk+2| log h|1/2.

Analogously, we can obtain

||Πk+1
2h σ − σ||∞ ≤ C(u, σ)hk+2| log h|.

¤

Remark 5.2. From the superapproximation estimates of ||ūh−P k
h u||∞ and ||σ̄h−

Πk
hσ||∞ indicated in Remark 5.1 we can obtain the following global superconvergence

under the conditions of Theorem 5.3 by the post-processing method:

| log h|1/2||P k+1
2h ūh − u||∞ + ||Πk+1

2h σ̄h − σ||∞ ≤ C(u, σ)hk+2| log h|.
As a by-product, Theorem 5.4 can be employed to construct a-posteriori error

estimators to assess the accuracy of the mixed finite element solution in applications.

Theorem 5.5. We have under the conditions of Theorem 5.3 that

(5.10) ||u− uh||∞ = ||P k+1
2h uh − uh||∞ + O(hk+2| log h|1/2),

(5.11) ||σ − σh||∞ = ||Πk+1
2h σh − σh||∞ + O(hk+2| log h|).
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In addition, if there exist positive constants C1, C2 and small ε1, ε2 ∈ (0, 1) such
that

(5.12) ||u− uh||∞ ≥ C1h
k+2−ε1 ,

(5.13) ||σ − σh||∞ ≥ C2h
k+2−ε2 ,

then there hold

(5.14) lim
h→0

||u− uh||∞
||P k+1

2h uh − uh||∞
= 1,

(5.15) lim
h→0

||σ − σh||∞
||Πk+1

2h σh − σh||∞
= 1.

Proof. Following the procedure for Theorem 5.3 in [16] we can immediately obtain
the desired results. ¤

We see from (5.10) that the computable error quantity ||P k+1
2h uh − uh||∞ is the

principal part of the mixed finite element error ||u− uh||∞. Moreover, by (5.14) it
can be used as a reliable a-posteriori error indicator to assess the accuracy of the
mixed finite element solution under the condition (5.12). Meanwhile, (5.12) seems
to be a reasonable assumption since O(hk+1) is the optimal convergence rate of the
mixed finite element solution in L∞-norm subject to the conditions of Theorem 5.3.
The same comments are also valid for (5.11), (5.13) and (5.15).

6. Estimates for the regularized Green’s functions

In the previous sections, we have seen that the regularized Green’s functions play
an important role in the analysis of convergence and superconvergence estimates
in maximum norms for the mixed finite element method of (1.1). We present the
proofs of Theorems 3.2 and 3.3 in this section. The proofs are based on a series of
lemmas. First, we prove the following result.

Lemma 6.1. We have under the assumptions of Theorem 3.2 that

||Gh
1 −G1||0 ≤ C(1 + φ1(t)).

Proof. It follows from (3.2), Gronwall’s lemma and Theorem 3.1 that

||G1||0 ≤ C||∇λ1||0 ≤ C| log h|1/2(1 + φ1(t)),

which yields via using the estimate for ||∇2λ1||0 in Theorem 3.1 that

||divG1||0 ≤ Ch−1(1 + φ1(t)) + C| log h|1/2(1 + φ1(t)) ≤ Ch−1(1 + φ1(t)).

Decompose the error G1 −Gh
1 as follows:

G1 −Gh
1 = (G1 −Πk

hG1) + (Πk
hG1 −Gh

1 ) := θ∗∗ + θ∗∗h .

Then, θ∗∗h satisfies the following equation by (2.5) and the mixed finite element
error equation of (3.2) that

(αθ∗∗h + M ∗ ∗θ∗∗h ,vh) = −(αθ∗∗ + M ∗ ∗θ∗∗,vh)− (λ1 − λh
1 ,∇ · vh)

= −(αθ∗∗ + M ∗ ∗θ∗∗,vh)− (P k
h λ1 − λh

1 ,∇ · vh),vh ∈ Vh.

Since
(P k

h λ1 − λh
1 ,∇ · θ∗∗h ) = 0,
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by (2.5) and the mixed finite element error equation of (3.2), taking vh = θ∗∗h in
the above equation leads to

(αθ∗∗h + M ∗ ∗θ∗∗h , θ∗∗h ) = −(αθ∗∗ + M ∗ ∗θ∗∗, θ∗∗h ).

Thus, we know from Lemma 4.1 and Gronwall’s lemma that

||θ∗∗h ||0 ≤ C

(
||θ∗∗||0 +

∫ T

t

||θ∗∗||0ds

)
.

Hence, we obtain by virtue of the above estimate for divG1 in L2-norm and (3.5)
that

||G1 −Gh
1 ||0 ≤ C

(
||θ∗∗||0 +

∫ T

t

||θ∗∗h ||0ds

)

≤ Ch

(
||divG1||0 +

∫ T

t

||divG1||0ds

)

≤ C(1 + φ1(t)).

This completes the proof of Lemma 6.1. ¤

Lemma 6.2. Under the assumptions of Theorem 3.2,

||λh
1 − P k

h λ1||0 ≤ Ch(1 + φ1(t)),
||λh

1 − λ1||0 ≤ Ch| log h|δk0/2(1 + φ1(t)).

Proof. Let (w, λ) ∈ V × L2(Ω) be defined such that

(6.1)
αw + M ∗w −∇λ = 0, in Ω× (0, T ),

divw = (λh
1 − P k

h λ1)φ(t), in Ω× (0, T ),
λ = 0, on ∂Ω× (0, T ),

where φ(t) ≥ 0 and
∫ T

0
φ(t)dt ≤ 1. Clearly, (w, λ) is well defined and satisfies

||∇2λ||0 ≤ C

(
||λh

1 − P k
h λ1||0φ(t) +

∫ t

0

||λh
1 − P k

h λ1||0φ(s)ds

)

by the regularity assumption on Ω. Now, it follows from (2.5), the mixed finite
element error equation of (3.2) and Lemma 3.1 that
(6.2)∫ T

0

||λh
1 − P k

h λ1||20φ(t)dt =
∫ T

0

(λh
1 − P k

h λ1,divΠk
hw)dt

=
∫ T

0

(λh
1 − λ1, divΠk

hw)dt

=
∫ T

0

(α(G1 −Gh
1 ) + M ∗ ∗(G1 −Gh

1 ), Πk
hw)dt

=
∫ T

0

(α(G1 −Gh
1 ) + M ∗ ∗(G1 −Gh

1 ), Πk
hw −w)dt

+
∫ T

0

(λ, div(Gh
1 −G1))dt := N1 + N2.
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Obviously, we have by using (3.2) and (2.5) that

N2 =
∫ T

0

(P k
h λ, divGh

1 )dt−
∫ T

0

(λ, δh
1 )φ1(t)dt

=
∫ T

0

(P k
h λ, P k

h δh
1 )φ1(t)dt−

∫ T

0

(λ, δh
1 )φ1(t)dt

=
∫ T

0

(P k
h λ− λ, δh

1 )φ1(t)dt.

Thus, we have for k ≥ 1 that

(6.3)

|N2| ≤
∫ T

0

Ch2||∇2λ||0||δh
1 ||0φ1(t)dt

≤ Ch

∫ T

0

(
||λh

1 − P k
h λ1||0φ(t) +

∫ t

0

||λh
1 − P k

h λ1||0φ(s)ds

)
φ1(t)dt

≤ Ch

∫ T

0

(
φ1(t) +

∫ T

t

φ1(s)ds

)
||λh

1 − P k
h λ1||0φ(t)dt

≤ Ch

∫ T

0

(φ1(t) + 1)||λh
1 − P k

h λ1||0φ(t)dt.

Similarly, we have for N1 by virtue of Lemma 6.1 and (6.1) that

(6.4)
|N1| ≤ Ch

∫ T

0

(1 + φ1(t))||divw||0dt

≤ Ch

∫ T

0

(1 + φ1(t))||λh
1 − P k

h λ1||0φ(t)dt.

We have by combining (6.2) with (6.3) and (6.4), and using Lemma 3.2 that

||λh
1 − P k

h λ1||0 ≤ Ch(1 + φ1(t)), for k ≥ 1.

It remains to treat N2 for k = 0. Since
∫ T

0

(P 0
hλ− P 1

hλ, δh
1 )φ1(t)dt = 0 (see [26, 27]),

we know from the same arguments as those for (6.3) that

|N2| =

∣∣∣∣∣
∫ T

0

(P 1
hλ− λ, δh

1 )φ1(t)dt

∣∣∣∣∣

≤ Ch

∫ T

0

(1 + φ1(t))||λh
1 − P 0

hλ1||0φ(t)dt.

Finally, the second inequality in Lemma 6.2 is a result of the first inequality in
the same lemma and Theorem 3.1 together with the standard triangle inequality.

¤

Remark 6.1. Using the similar duality argument to that as above we can easily
obtain [26]

||λh
2 − P k

h λ2||0 + ||λh
2 − λ2||0 ≤ C(1 + φ2(t)).

Here we omit the details.

Lemma 6.3. We have under the assumptions of Theorem 3.2 that

||Gh
1 −G1||L1(Ω) ≤ Ch| log h|(1 + φ1(t)).
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Proof. By Schwartz inequality and (3.1) we have

(6.5) ||Gh
1 −G1||L1(Ω) ≤ C| log h|1/2||Gh

1 −G1||β2 .

Let
Ψ1 := β2(G1 −Gh

1 ).

Then, we derive from Lemma 4.1 and (3.2) that
(6.6)

||Gh
1 −G1||2β2 ≤ C0(α(G1 −Gh

1 ),Ψ1 −Πk
hΨ1)

+C0(α(G1 −Gh
1 ) + M ∗ ∗(G1 −Gh

1 ),Πk
hΨ1)

−C0(M ∗ ∗(G1 −Gh
1 ),Πk

hΨ1)
= C0(α(G1 −Gh

1 ),Ψ1 −Πk
hΨ1)− C0(λ1 − λh

1 , divΠk
hΨ1)

−C0(M ∗ ∗(G1 −Gh
1 ),Πk

hΨ1)
:= M1 + M2 + M3.

Now we consider Mi’s individually. First, it follows from Lemma 6.5 below that

(6.7)
|M1| ≤ C0||α(G1 −Gh

1 )||β2 · ||Ψ1 −Πk
hΨ1||β−2

≤ ε||G1 −Gh
1 ||2β2 + Ch2| log h|(1 + φ1(t))2.

We know from (2.5) that

(divΠk
hσ,wh) = (divσ,wh), ∀ wh ∈ Wh,

which, together with Lemma 6.2, implies

(6.8)
|M2| = C0|(P k

h λ1 − λh
1 , divΠk

hΨ1)|
= C0|(P k

h λ1 − λh
1 , divΨ1)|

≤ Ch(1 + φ1(t))||divΨ1||0.
Since there holds by (3.2)

divΨ1 = ∇(β2) · (G1 −Gh
1 ) + β2(δh

1 − P k
h δh

1 )φ1(t),

we have
||divΨ1||0 ≤ C||G1 −Gh

1 ||β2 + Chφ1(t).

Thus, we obtain from (6.8) that

(6.9) |M2| ≤ Ch2(1 + φ1(t))2 + ε||G1 −Gh
1 ||2β2 .

It follows from Schwartz inequality and Lemma 6.5 that

(6.10)

|M3| ≤ C

(∫ T

t

||G1 −Gh
1 ||β2ds

)
||Πk

hΨ1 −Ψ1||β−2

+C

(∫ T

t

||G1 −Gh
1 ||β2ds

)
||Ψ1||β−2

≤ C

(∫ T

t

||G1 −Gh
1 ||β2ds

)
h| log h|1/2(1 + φ1(t))

+C

(∫ T

t

||G1 −Gh
1 ||β2ds

)
||G1 −Gh

1 ||β2

≤ ε||G1 −Gh
1 ||2β2 + C

(∫ T

t

||G1 −Gh
1 ||β2ds

)2

+Ch2| log h|(1 + φ1(t))2.
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Combining (6.6) with (6.7), (6.9) and (6.10) gives for small and fixed ε > 0 that

||G1 −Gh
1 ||2β2 ≤ Ch2| log h|(1 + φ1(t))2 + C

(∫ T

t

||G1 −Gh
1 ||β2ds

)2

,

so that Gronwall’s lemma yields

(6.11) ||G1 −Gh
1 ||β2 ≤ Ch| log h|1/2(1 + φ1(t)).

Hence, Lemma 6.3 follows from (6.5) and (6.11). ¤.

Lemma 6.4. Under the assumptions of Theorem 3.3, we have

||G2 −Gh
2 ||L1(Ω) ≤ C| log h|1/2(1 + φ2(t)),

||G2 −Gh
2 ||0 ≤ Ch−1(1 + φ2(t)),

||∇λ2||0 ≤ Ch−1(1 + φ2(t)).

Proof. We have by virtue of Schwartz inequality and (3.1) that

(6.12) ||G2 −Gh
2 ||L1(Ω) ≤ C| log h|1/2||G2 −Gh

2 ||β2 .

Let
Ψ2 := β2(G2 −Gh

2 ).

Then, it follows from a similar argument to that for Lemma 6.3 that
(6.13)

||G2 −Gh
2 ||2β2 ≤ C0(α(G2 −Gh

2 ), Ψ2 −Πk
hΨ2)− C0(λ2 − λh

2 ,divΠk
hΨ2)

−C0(M ∗ ∗(G2 −Gh
2 ), Πk

hΨ2)
:= M ′

1 + M ′
2 + M ′

3.

Thus, we know from Lemma 6.5 below that

(6.14) |M ′
1| ≤ ε||G2 −Gh

2 ||2β2 + C(1 + φ2(t))2.

Moreover, we see from Remark 6.1 and the same arguments as those for (6.8) that

(6.15) |M ′
2| ≤ C(1 + φ2(t))||divΨ2||0.

It follows from (3.4) that

divΨ2 = ∇(β2) · (G2 −Gh
2 ),

which yields by (6.15) that

(6.16) |M ′
2| ≤ ε||G2 −Gh

2 ||2β2 + C(1 + φ2(t))2.

Also, we obtain according to the similar steps for (6.10) that

(6.17) |M ′
3| ≤ ε||G2 −Gh

2 ||2β2 + C

(∫ T

t

||G2 −Gh
2 ||β2ds

)2

+ C(1 + φ2(t))2.

Combining (6.14), (6.16) and (6.17) with (6.13), we have via using Gronwall’s
lemma that

||G2 −Gh
2 ||β2 ≤ C(1 + φ2(t)).

Hence, from (6.12) we obtain

||G2 −Gh
2 ||L1(Ω) ≤ C| log h|1/2(1 + φ2(t)).

By the H2-regularity assumption, we have

||∇λ2||0 ≤ Ch−1(1 + φ2(t)).
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Thus, from [26] we see that

||G2 −Gh
2 ||0 ≤ Ch−1(1 + φ2(t)).

¤

Lemma 6.5. Let Ψi (i = 1, 2) be the functions defined as before. Then, we have

||Ψ1 −Πk
hΨ1||β−2 ≤ Ch| log h|1/2(1 + φ1(t)),

||Ψ2 −Πk
hΨ2||β−2 ≤ C(1 + φ2(t)).

Proof. Recall
Ψi = β2(Gi −Gh

i ), i = 1, 2,

and rewrite them as

Ψi = β2(Gi −Πk
hGi) + β2(Πk

hGi −Gh
i ) := Ψi1 + Ψi2.

Thus,

(6.18) ||Ψi −Πk
hΨi||β−2 ≤ ||Ψi1 −Πk

hΨi1||β−2 + ||Ψi2 −Πk
hΨi2||β−2 .

Since Πk
h is a local projection operator, it follows from [26] that

||Ψi1 −Πk
hΨi1||β−2 ≤ C||Ψi1||β−2 ≤ C||Gi −Πk

hGi||β2 ≤ Ch||∇2λi||β2 .

Then, Theorem 3.1 and (6.28) below lead to

(6.19) ||Ψi1 −Πk
hΨi1||β−2 ≤

{
Ch| log h|1/2(1 + φ1(t)), for i = 1,

C(1 + φ2(t)), for i = 2.

Following [26] we obtain from Lemmas 6.1 and 6.4 that

(6.20) ||Ψi2 −Πk
hΨi2||β−2 ≤

{
Ch(1 + φ1(t)), for i = 1,

C(1 + φ2(t)), for i = 2.

Now, (6.19) and (6.20) lead (6.18) to

||Ψi −Πk
hΨi||β−2 ≤

{
Ch| log h|1/2(1 + φ1(t)), for i = 1,

C(1 + φ2(t)), for i = 2,

which verifies the conclusions of Lemma 6.5. ¤

Lemma 6.6. Under the assumptions of Theorem 3.3 there hold

||λ2||0 ≤ C| log h|1/2(1 + φ2(t)),
||∇λ2||L1(Ω) ≤ C| log h|(1 + φ2(t)),
||∇2λ2||L1(Ω) ≤ Ch−1| log h|1/2(1 + φ2(t)).

Proof. From Schwarz’s inequality and (3.1) we have

(6.21) ||∇λ2||L1(Ω) ≤ C| log h|1/2||∇λ2||β2 .

Furthermore, it follows from (3.4) and Green’s formula that

(6.22)
||∇λ2||2β2 = (∇λ2, β

2∇λ2) = −(∆λ2, β
2λ2) +

1
2
(λ2, ∆(β2)λ2)

≤ |(divδh
2 φ2(t), β2λ2)|+ C||λ2||20

≤ C(φ2
2(t) + ||λ2||20).

Now, let us consider the following auxiliary Dirichlet problem to bound ||λ2||0 :

−∆r = λ2 in Ω,

r = 0 on ∂Ω.
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From the regularity assumption on the domain Ω we have

(6.23) ||∇2r||0 ≤ C||λ2||0.
In addition, it follows from (3.4) and Green’s formula that

(6.24)
||λ2||20 = (∇λ2,∇r) = −(∇2λ2, r)

= (divδh
2 , r)φ2(t) = −(δh

2 ,∇r)φ2(t)
:= N∗.

Following the procedure in [26], we have, according to (3.5), (6.23) and the
standard inverse estimate, that

||(∇r)I ||∞ ≤ C| log h|1/2||(∇r)I ||1 ≤ C| log h|1/2||∇2r||0,
and

(6.25)
|N∗| ≤ {|(δh

2 ,∇r − (∇r)I)|+ |(δh
2 , (∇r)I)|}φ2(t)

≤ C
(||∇2r||0 + ||δh

2 ||L1(Ω)||(∇r)I ||∞
)
φ2(t)

≤ C
(
1 + | log h|1/2

) ||λ2||0φ2(t),

where f I stands for the standard locally regularized piecewise linear interpolation
of f (see, for example, [26]).

Combining (6.25) with (6.24) yields

(6.26) ||λ2||0 ≤ C
(
1 + | log h|1/2

)
φ2(t).

Now, (6.26) and (6.22) lead (6.21) to

||∇λ2||L1(Ω) ≤ C| log h|(1 + φ2(t)).

Again, we use Schwarz’s inequality and (3.1) to obtain

(6.27) ||∇2λ2||L1(Ω) ≤ C| log h|1/2||∇2λ2||β2 .

Following [26] we further have

(6.28) ||∇2λ2||β2 ≤ Ch−1(1 + φ2(t)).

Thus,
||∇2λ2||L1(Ω) ≤ Ch−1| log h|1/2(1 + φ2(t)).

¤
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