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L>*-ERROR ESTIMATES AND SUPERCONVERGENCE IN
MAXIMUM NORM OF MIXED FINITE ELEMENT METHODS
FOR NONFICKIAN FLOWS IN POROUS MEDIA

RICHARD E. EWING, YANPING LIN, JUNPING WANG, AND SHUHUA ZHANG

Abstract. On the basis of the estimates for the regularized Green’s functions
with memory terms, optimal order L°°-error estimates are established for the
nonFickian flow of fluid in porous media by means of a mixed Ritz-Volterra
projection. Moreover, local L°-superconvergence estimates for the velocity
along the Gauss lines and for the pressure at the Gauss points are derived for the
mixed finite element method, and global L*°-superconvergence estimates for
the velocity and the pressure are also investigated by virtue of an interpolation
post-processing technique. Meanwhile, some useful a-posteriori error estimators

are presented for this mixed finite element method.
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1. Introduction

The nonFickian flow of fluid in porous media can be modelled by an integro-
differential equation which seeks u = u(x,t) such that

u =V-ot+cu+f in Q x J,
¢
11 o :A(t)-Vu—/ B(t,s) - Vu(s)ds in Qx J,
(1.1) 0
u =g on 9§ x J,
u = ug(x) x e, t=0,

where Q C R? (d = 2,3) is an open bounded domain with smooth boundary 052,
J=(0,T) with T > 0, A(t) = A(z,t) and B(t,s) = B(x,t,s) are two 2 x 2 or 3 x 3
matrices, and A is positive definite, ¢ < 0, f, g and ug are known smooth functions.
This kind of flow is complicated by the history effect characterizing various mixing
length growth of the flow, which has been investigated, for example, in [9, 10] and
references cited therein.
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The numerical approximations of the problem (1.1) are available in extensive
literature. See, for instance, [2, 3, 12, 13, 16, 14, 15, 20, 21, 22], where some
optimal order error estimates and superconvergence have been established.

In the present paper, the solutions of (1.1) are approximated by mixed finite
element methods [14, 15, 16]. Optimal order L*-error estimates are obtained by
employing a mixed Ritz-Volterra projection introduced in [16]. In addition, local
L -superconvergence estimates for the velocity along the Gauss lines and for the
pressure at the Gauss points are derived, and with the aid of an interpolation post-
processing method global L°°-superconvergence estimates are also derived for the
velocity and the pressure approximations. As a result of the global superconver-
gence, a-posteriori error indicators of the mixed finite element method are presented
in the paper.

Compared with [16], where the optimal and superconvergence estimates of the
mixed finite element method in L?-norm have been discussed for the problem (1.1),
the key point of the present paper is the introduction of the regularized Green’s
functions with memory terms and the establishment of the various estimates for
them and their mixed finite element approximations, which will play an important
role in the forthcoming analysis in deriving the above optimal and superconvergence
L*-error estimates. As a result, the methodology and the techniques used in this
paper are quite different from those in [16].

The paper is organized in the following manner. In Section 2, we give the
approximate sub-space and the approximate problem. Two regularized Green’s
functions and a Ritz-Volterra projection with memory terms for the mixed form
for the problem (1.1) are introduced in Section 3. Also, in Section 3 the L!-error
estimates and related estimates for the mixed finite element approximations of the
regularized Green’s functions are stated, and the L*-error estimates for the mixed
Ritz-Volterra projection are established. In Section 4, optimal order error estimates
in maximum norm are given for the mixed finite element approximations. Section 5
is devoted to the local and global L*°-superconvergence analysis of the mixed finite
element method, by which some a-posteriori error estimators are obtained for the
mixed finite element method. Finally, the L'-error estimates and related estimates
for the mixed finite element approximations of the regularized Green’s functions
are proved in Section 6.

2. The mixed finite element method

In this section, we give the mixed finite element approximate scheme for the
parabolic integro-differential equation (1.1). For simplicity, the method will be
presented on plane domains.

Let W := L?(Q) be the standard L? space on 2 with norm | - ||o. Denote by

V= H(div,Q) = {0 € (L*(?))* | V-0 € L*(Q)}
the Hilbert space equipped with the following norm:
1
lollv == (lollg + 11V - ali5) > -

There are several ways to discretize the problem (1.1) based on the variables o and
u; each method corresponds to a particular variational form of (1.1) [14, 22].

Let T}, be a finite element partition of € into triangles or quadrilaterals which
is quasi-uniform. Let V; x W}, denote a pair of finite element spaces satisfying
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the Brezzi-Babiuiska condition. Although there are now several choices for V;, and
W), here we only consider the Raviart-Thomas elements of order k > 0 [24]. The
extension to other stable elements can be made without any difficulty.

Recall from [14] that the weak mixed formulation of (1.1) is given by finding
(u,0) € W x V such that

(utvw)f(vt' a,w)—(cu,w):(f,w), U/€Wa

(2.1) (ao,v) + / (M(t,s)o(s),v)ds+ (V- -v,u) = (g,v-n), vev,
0
u(0,7) = up(z) in L?(Q),
where « = A7Y(t), M(t,s) = R(t,s)A~1(s) and R(t, s) is the resolvent of the matrix
A~Y(t)B(t,s) and is given by
t
R(t,s) = A~ (t)B(t, s) —|—/ A7 (t)B(t,7) R(t,s)ds, t>s>0.

Here (-, -) indicates the L2-inner product on 9.
The corresponding semi-discrete version is to seek a pair (up,op) € Wi X Vy,
such that

(2.2)
(up,e,wp) — (Vt on,wp) — (cun, wr) = (f, wp), wp, € Wh,
(aop,vi) + /0 (M(t, s)on(s),vp)ds + (up, V- vy) = (g,n-vp), v € V.

The discrete initial condition up(0,z) = ug n, where ugn € Wy, is some appropri-
ately chosen approximation of the initial data ug(x), should be added to (2.2) for
starting. The pair (up,0y) is a semi-discrete approximation of the true solution of
(1.1) in the finite element space W}, x 'V, [1, 6, 16, 14, 15], where 0}, (0, ) is chosen
to satisfy the equation (2.2) with ¢ = 0; namely, it is related to g, as follows:

(2.3) (ao4(0), vi) + (uo,n, V- vi) = (go,m- Vi),

where go = ¢g(0, z) is the initial value of the boundary data.
From (2.1) and (2.2) we derive the following mixed finite element error equation:
(2.4)
(ug — upp,wp) — (V- (0 —op),wp) — (clu —up),wp) =0, wp, € Wh,

(o —op),vR) + /0 (M(t,s)(oc —on)(s),vh)ds + (u—up,V-vp) =0, v € V.

Throughout the paper, we often need the following Raviart-Thomas projection
[7, 24].
IF x PF -V xW — V), x Wy,
which has the properties:
(i) PF is the L?(£2) projection.
(ii) IF and PF satisfy

(2.5) (V- (0 —TIFo),w,) =0, wy, € W), and (V-vu,u— Pfu) =0, v, € V.

(iii) the following approximation properties hold
(2.6)
llo = ollo, < CR|o]lrp, 1<r<k+1, 1<p<oo,
IV (0 = o) |y < CHT*[[V - 0llrye 07, s<k+1, 1<p< oo,
\lu — PFul|_s,, < CR™ 8| |u|yp, 0<r s<k+1, 1<p<co.
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Remark 2.1. HZ is defined on a dense subspace of V.

3. The mixed Ritz-Volterra projection and its L°°-error estimates

In this section, we consider optimal order error estimates and superconvergence
in L*-norm for the mixed Ritz-Volterra projection. It is well-known that the reg-
ularized Green’s function plays an essential role in the analysis of maximum norm
error estimates and superconvergence for finite element methods and mixed finite
element methods of elliptic equations [8, 11, 19, 26, 27, 28] and parabolic equations
[19]. For the finite element method of parabolic integro-differential equations, max-
imum norm error estimates and superconvergence have been obtained in [20, 21]
using the modified regularized Green’s function with memory term. Here we con-
sider the mixed finite element approximations for parabolic equations with memory,
and it is expected that certain modification form of the standard regularized Green’s
function with memory should be introduced, analyzed and used in our analysis.

First, let us define the following two linear operators M* and M * x for any
smooth function f(¢) defined on (0,T") by

t T
(M = f)(t) := / M(t,s)f(s)ds and (M =xf)(t) ::/ M (s,t)f(s)ds.
0 t
Then, from exchanging the order of integration we have

Lemma 3.1. There holds
T T
(M fg)r = [ M4 1(0) gtde = [ 70 Mxsg(t)dti= (M sg)y.
0 0

Lemma 3.2. Assume that f(t), g(t) € L*(0,T*) and there exists C > 0 such that
for any non-negative ¢(t) € C*(0,T),

T T
| swewal <c| [ gwa+ sy, o< <1
0 0

Then, we have

ft) <C ’g(t) +/0 g(s)ds|, Vte (0,T), a.e.

Especially,
lf@®) < Clg(t)], Vvte(0,T), ae. if
<C

/0 f(t)p(t)dt /O g(t)o(t)dt| .

Proof. Take p > 0 and let

—1 2
bulttg) = | (G TP (‘Mﬁ) |t —to| < p,
0 It = tol = p,

where tg is any fixed point in (0,7") and C), := '“f\t|<1 exp(— 174z )dt. We see easily

that for almost all ¢y € (0,T),

T
f(to) = limy A f(®)ou(t to)dt, feC=(0,T).
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Thus, if we take f,(t) € C°°(0,T) such that f,(t) — f(t) as n — oo in L*(0,T),
then the result is true for all f,(t). Therefore, it is true for f(¢) via a limiting
procedure. O

Now let us introduce some notations for the use later. For an arbitrary point
20 € Q, let

B(z,20) == (|z — z0|* + 6°)"/°

be the weight function used in [25, 26, 28], where z = (x,y) € R?, § = ~vh, and 7
is a positive number chosen appropriately. Moreover, as usual, for any a € R we
define a weighted norm by

il = | 5,
Q
and || - [|ge is the weighted norm for @ = . Then, we have [26, 28]

(3.1) / B72dQ < C|logh.
Q

Next we shall define two regularized Green’s functions with memory terms for the
problem (1.1) in mixed form in the fashion analogous to that employed earlier for
Galerkin methods [28]. Our results concerning the regularized Green’s functions and
their mixed finite element approximations are very useful for establishing L°°-error
estimates and superconvergence in maximum norm for the mixed finite element
solution of (1.1).

For simplicity, we assume that ¢ = 0. Thus, for an arbitrary point zg € Q the
first pair of modified regularized Green’s function (G1, A1) = (G1(z, 20), M1(2, 20))
with memory is defined as the solution of the following system:

oG+ Mx+xGy — VA = 0, in Q x (O,T),
(3.2) divG, = 6&'¢1(t), inQx(0,7T),
A = 0, on 00 x (0,T),

where ¢, (t) € C*(0,T), and 6} = 6%(2, z9) € W}, is the regularized Dirac d-function
at any fixed point zy € Q such that ([8, 11, 26, 27])

(33) ||whHoo < C|(wh,5?)|, wy, € Wh,.

We also introduce the second pair of regularized Green’s function (Ga, As) =
(G2 (Z7 ZO)a
A2(z, 20)) such that

aGo + M xxGg — VA = 5£L¢2(t), in Q x (O,T),
(3.4) divGy = 0, in Q x (0,7,
Ay = 0, on 99 x (0,7,

where ¢(t) € C*(0,T) and 6 is either (6%,0) or (0,6%) with 6% being a regularized
Dirac d-function at zg, which depends upon the needs of our analysis, such that an
analogue of (3.3) is also valid for 6%. In addition, 6%, ¢;(t) and ¢a(t) are required
to satisfy

T
(3.5) 5y >0, /5§d9:1; i(t) > 0, / Git)dt <1, i=1,2.
Q 0

Now and in what follows of this paper, the domain € is assumed to be H2-regular
[7]. Therefore, it is not difficult to show (see, for example, (3.6a) — (3.6d) in [26])
that the following result is true.
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Theorem 3.1. There exists a positive constant C > 0, independent of h,t, and
¢1(t), such that

19 u]lo < Cllog h|Y2(1 + 61 (1)),

IV2Aillo < CR™HL + 1 (1)),

IV2A1]lg2 < Cllog h['2(1 4 ¢u (1)),

IVl ) < Cllog h|(1+ ¢1(t)).

Our main results regarding error estimates between (G, A1) and (G}, \}), and
(G2, \2) and (G%, \}) are contained in the following two theorems.

Theorem 3.2. Assume that (G1,\1) and (G?, \!) are the exact solution and the
mized finite element approzimation of (3.2), respectively. Then, there exists a pos-
itive constant C > 0, independent of h,t, and ¢1, such that

|G — Gillo < C(1 + ¢1(2)),

IG! = Gullz () < Chllogh|(1 +61(t)),
[IAT = Adllo < Chllog b2 (1 + ¢1(1)).

Theorem 3.3. Assume that (Ga, \2) and (G5, \8) are the evact solution and the
mized finite element approximation of (3.4), respectively. Then, there exists a pos-
itive constant C > 0, independent of h,t, and ¢2, such that

IG3 = Gallo < CR™H (1 + 6a(1)),

IG5 — Gal[11() < Cllog h['/2(1 + ¢a(1)),

(1A = Aollo < C(1+ 62(t)),

[Aello < C(L+ [log A|"/2)(1 + 62 (1)),

IVAzllo < Ch™H(1 + ¢2(1)),

IV A2]|Lr () < Cllog h[(1 + ¢a(t)),

IV2 2|1 (@) < Ch™log hM2(1 + ¢a(t)).

Remark 3.1. We would like to point out that the estimate

1/2
1
IV23ullirey < O (log ) (14 6a)
is not sharp, since it can be improved to
(3.6) HVQ)\QHLI(Q) < Ch_l(l + ¢2(t>)
if the domain is smooth enough. A proof of (3.6) can be found in [25].

Remark 3.2. The proofs of Theorems 3.2 and 3.3 will be postponed to Section 6
where the weighted norm estimates are used.

Following the procedure for Theorems 3.3 and 3.4 in [26] together with the
application of Gronwall’s lemma, we can also obtain the following results to be
used in the superconvergence analysis.

Theorem 3.4. Assume that §) is a plane rectangular domain and q € [1,00]. Then,
we have
in{0.2_
1GHlly < CR™™MOT log h|V2(1+ n (1))
1G1 = GHlly < (C(a) + Clloghl) k' ™7 (14 ¢:1(1)), 1 < ¢ < oo,

where p = # is the conjugate of q.
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Theorem 3.5. For g € [1,00], there hold

. Ch™r|logh|(1+ ¢2(t)), 1<q<2,
IG5, < 2
Ch™ 7 (14 ¢a(t)), q>2,
1G2 = Ghl; < (Clq) +Cllogh|'?) h™% (14 ¢a(t)), 1 < g < o0,

where p = #.

In the following we shall present the error estimates in the maximum norm for
the mixed Ritz-Volterra projection. To this end, we first give its definition [16].

Definition 3.1 For (u,0) € W x V we define a pair (g, d4) : [0,T] — W xVy,
such that

(a(o—&h)+M*(0—6h)7vh)—|—(u—ﬂh7divvh) = 0, vpbeVy

(3.7) (diV(O’ — a’h)7’wh) = 0, wy €Wy,

where o = A~!. The pair (uy, o) is called the mixed Ritz-Volterra projection of
(u,0). It has been proved in [16] that the solution of (3.7) exists uniquely for a
given pair (u, o).

The following lemma is basic to the main results of this section.

Lemma 3.3. Assume that (an,dp) is the mized Ritz-Volterra projection of (u,0) €
W x V. Then we have

T T

/ (@p, — Plu, M) (t / (0 —fo) + M x (o — IIf o), GMdt,
0 0
T T

/ (51 — Ko, 62)po(t / alc —TEe) + M * (o — II}o), GE)dt
0 0

Proof. Tt follows from (3.2) and its corresponding mixed finite element error equa-
tion to (2.4) that

(n — Pyu, 671 (1) = (an — Pyu,divGy) = (un — Pu, divG]).
Note that P[f is a local L2-projection operator. Thus, we know from (2.5) that
(@, — Pfu, 01 (t)) = (an — u, divG})
which, together with (3.7), leads to
(@ — Phu,0791(t)) = (a(o —Gn) + M * (0 — Gn), G')
= (a(o ~Ijo) + M * (0 —II}0), GY)
+(a(lfo — &) + M x (ko — 54,), GP).

Hence,
(3.8)

T T
/ (iin — Plu, M) on(H)dt = / (a0 —TE0) + M s (o — ko), GM)dt
0 0

T

+/ (a(Ilfo —5,) + M (ITko — 51,), Gh)dt
0

= K1 +K2
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However, it follows from Lemma 3.1 and the mixed finite element approximation
of (3.2) as well as Green’s formula that

T
Ky, = /0 (aGh + M * G 1Ko — &y,)dt
T
:/ (VAP TTEo — &) dt
0
T
= —/ (A, div(ITF o — a3,))dt,
0

which, together with (2.5) and (3.7), yields

T T
Ko = [ Oldiv(itfo - o)t = [ divio — o)de =0,
0 0

Thus, from (3.8) we know that the first identity in Lemma 3.3 is true.
To prove the second identity, we use (3.4) and its mixed finite element error
equation to see that

(6h - Hg(ﬂ §§L)¢2(t) = (aG}ZL + M * *Gg> Op — HZU) + (/\37 div(a—h - HZO'))

Thus, by means of Lemma 3.1, (2.5) and (3.7) we have

T T
/0 (01 — o, 8)da(t)dt = / (a(on —Tio) + M (o4 — o), GL)dt
T

T
+ [ (\Ediv(G), — 0))dt + / (A, div(o — TTo))dt
0

S~

!

(a(e), —Mfo) + M * (6, — Ifo), Gh)dt

(a(c —Tfo) + M * (o — T} o), Gh)dt

ﬁ%

T
(u — ap, divGE)dt

+
S~

T
= /0 (o —IIFo) + M x (0 — I} o), Gh)at,

where divG? = 0 has been used. This completes the proof. ([
We are now ready to show the maximum norm error estimate for the mixed
Ritz-Volterra projection. First, we consider it for u; — P}’fu.

Theorem 3.6. Let (uy,dy) be the Ritz-Volterra projection of (u,c). Then, there
exists a constant C' > 0, independent of h and t, such that

. Chllogh|(|||o — T} 0][| + [log h| =2 |I|(T = PV - o[l0), k=0,
lan—Pyullec < § Clllo =} alllo + Al log hl/2[[|(1 — PY)V - olllo), k=0,
Chlloghl(|lo = IT;olllec + Al = PY)V - olll), k=1,

t

where |||ul||r,p == ||u(t)|\7.,p—|—/ [lu(s)||rpds, —00 <7 <00, 1 <p<oo, t>0.4s

0
usual, |||u|llrp is simply denoted by |||u|||, when p= 2.
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Proof. For any point zg € Q, let 67 be the regularized Dirac J-function associated
with this point zg, and then we find from Lemma 3.3 that

T T
/0 (iip — Phu, M on()dt = /O (a(o —TtEo) + M * (0 — Tio), Gb — Gy) dt

T
+/ (a(o —Tfo) + M = (0 —fo), Gy)dt
0
= K11 + Kag.
It is easy to see from Lemma 3.1, (2.5) and (3.2) that

T
Koo 2/ (aG1 + M * xGq, U—H’ZO’)dt
0

T
=/ (VA1, o —I¥o)dt
T
(A1, div(e — IT¥o))dt

H

— PP div(e — TTFo))dt

H

T
— PFAy, (I — PF)divo)dt.

0

=)

/ — PP, divo)dt
0

0
Thus, we have for kK = 0 that

T
/ (@p, — PPu, 61 (t)dt
0
T .

CfoT(IHU — Moll|l|GY = Gillzi() + [IA = PP o [(1 — Py)diva||o)dt
C [y (llo =mM3alllol|GT — Gallo + [I(Z = P)illo] (I — Py)dive]|o)dt.

Noticing that for £k = 0 by Theorem 3.1,

1M = PPAdllo < Ch|[VAlo < Chllog b2 (1 + ¢1(2)),

it follows from the above inequality and Theorem 3.2 that for k =0

T
/ (an — PP, 60)n (1)dt
0

< Ch|10gh|foT lle = I} 0 [[[oc + [log h|7/2|(1 — P)dive|o) (1 + ¢1(1))dt
C Jy (lle =15 0[lo + hllog Al /2|(I — PP)divallo)(1 + 1 (t))dt.

We now see from Lemma 3.2 and the arbitrariness of ¢4 (t) that

) Ol log h|([[lo — 1001l + |log hl=1/2][[(Z — PY)diverllo)
u —POU,(S < h e ) h )
(n = P, 1)l —{ C(lllo = T061[[o + A log h|Y2[[[(Z — P)dive]llo),

from which and (3.3) we derive that for k =0

[ — POul| { Chllog h|(|llo — 1T} ol||sc + [log h|~1/2|||(1 — P7)diva]|lo),
P Cllle — 1 olllo + hllog hV2[[|(1 = Py)divell]o)-

Therefore, Theorem 3.6 is true for k = 0.
For k£ > 1, we have by Theorem 3.1 that

I~ Pz < ORIV M|y < CR2 log Al(L + 61 (1),
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which, together with Theorem 3.2, leads to

T
/ (an — Plu,81)n (1)t
0

T
< 0/0 (lllo — oo IGY — [z

THI(I— Pl oll(I = Py)divel|)dt
< Chlloghl /0 (Illo = 5o lloo + hl[(I — Py)divolle) (1 + ¢1(2))dt.
This, together with Lemma 3.2 and (3.3), yields that for £ > 1
llan = Pyullse < Chlloghl(lllo —ITo]l|sc + AlI|(I = Py)divol[]so).
This completes the proof of Theorem 3.6. O

Theorem 3.7. Under the same conditions as for Theorem 3.6, there exists a con-
stant C > 0, independent of h and t, such that

llo = nllee < Clloghl'?(|l|lo — o |lloo + hllog h|™*/2[||(1 = PY)divo|||c),
where 6y; s the usual Kronecker symbol.

Proof. Tt suffices to bound &;, — I¥o in L>-norm. By Lemma 3.3 we have that
T T
/ (G — o, 60 )go(t)dt = / (a0 — T50) 4+ M s (0 — o), GE — Ga)dt
0 0

+/ (oo —TIEo) + M * (0 — I} o), Gy)dt
0
= M1 + Mg.
Similar to (3.9), it follows from Lemma 3.1, (2.5) and (3.4) that
T
My = / (aGo + M * xGg,0 — Hia)dt
0
T
= / (Vo + 05 a(t), 0 —TNo)dt
o 7 T
= —/ (Mg, div(o — ITI¥o))dt + / (68 0 —TIF o) o (t)dt
0 0
T T
= / (PFXy — o, (I — PF)dive)dt + / (68 0 — TIF o) pa(t)dt.
0 0

Thus, we have by (3.5) and Theorem 3.3 that

T
/ (61 — T, 34)da(t)dt
0

T
<c / o — 50l 1oo (1GE — Gl + 116211y o(£) )t
T
+ / A2 — Pl | — BF)divojaodt
0
T
< Cllog h[1/2 / o = Tl oo (1 + o (6))dt
0

1450

T
L Chllog h| / (I — PE)divolloo (1 + da(t))dt,
0
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which implies by virtue of Lemma 3.2 and the analogue of (3.3) for 6% that

171 — Mollee < Cllog h|"2(|[|o — To][|so + | log h|?*/2[||[(I — Py)divo][|so).
This, together with the standard triangle inequality, yields Theorem 3.7. g
Remark 3.3. By (5.6) we have
(3.10) A2 = Pidelloie) < Ch(1+é2(t), k=1,
for sufficiently regular 0. Thus, Theorem 3.7 can be improved to become

(3.11) llo = anlloe < C(|log h|"?|[lo = Lo [oo + Rl — Pif) divo]||oo)

for k> 1 if 0 is sufficiently smooth.

Corollary 3.1. Under the assumptions of Theorem 3.6, we have

Ch?(log hl(|[|olllc + [log A~ 2(llo]l2), k=0,

— o k <
o = Pholle < { G i ] B>l

Proof. By (2.6) we have for the interpolation operators IIf and P} that

If = TIEE]o,p < CRFF[E][k41,p, 1<p< oo,
||9_Pilfg‘|0,pgCh’H_ngHkJrl,pv I <p<oo.

Then, we find from Theorem 3.6 that for k =0

llan — Plullec < Chllogh|(|llo — I o][|ec + [log h|~/2||(I — PP)divalllo)
< Ch?|log hl(|[|o|ll1,00 + [log h| =/ l|or]]]2).

The estimates for k£ > 1 can be derived along the same line. O
Similarly, from Theorem 3.7 we can establish the following result.

Corollary 3.2. We have under the assumptions of Theorem 3.6 that
o= Fnlloe < CHE*log Bl D/2|[o] |y 1,00, 2 0.

4. Optimal order L>°-error estimates for mixed finite element solutions

In this section we consider error estimates in maximum norms for the mixed
finite element approximation of (1.1) by means of the L*-error estimates for the
mixed Ritz-Volterra projection and the estimates for the regularized Green’s func-
tions given in the last section. First, the following error estimate of ||u; — wp¢|| is
demonstrated for the future needs. To this purpose, we recall from [16] the following
two lemmas.

Lemma 4.1. Assume that the matriz A(t) is positive define. Then, the norms
lo]l§ := (0,0) and [|o]% - :

(A7Yo,0) are equivalent.

Lemma 4.2. Let (ap,dy) be the mized Ritz-Volterra projection of (u,0) € W x'V
defined by (3.7). Then, there is a positive constant C > 0, independent of h > 0,
such that, for any positive integer m,

_ hllu(®)ll2,2.m k=0,
m _ < =
Iprte-—mle <C{ A LY <<k
1D =anllo < Chllu@®)lllrirem,  1<T<k+1,

where [||u(t)][|rpm = ZOIID§U(15)
j=
p<oo,t>0.

m .
lrp + f3 3 1 DJu(s)|pds, —00 <7 < o0, 1<
j=0
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Theorem 4.1. Assume that (u,o) and (up,op) are the solutions of (2.1) and (2.2),
respectively, and (up(0),04(0)) are chosen as follows:

(@(0)(94(0) = (0)), vn) + (divvp, up(0) —uo) =0, vi € Vp,
(div(o,(0) — 0(0)), wp) = 0, wy, € W,

Then we have for k =0 that

(4.1)

' 1/2
e — unello < Ch{||u||2 T e + [/ (Il 3+ [l + ||utt||§>ds} }
0

and for k > 1 that

ue —unello < CAF {Jfullegr + ||uel ks

. 1/2
+[/ <||u|i+1+||ut||i+1+|utt||i+1>ds} }

Proof. Let
u—up = (u—1ap)+ (an —up) := p+ pa,
oc—op=(0c—ap)+ (Gn—op) =0+ 06y,

where (@, dy) is the Ritz-Volterra projection of (u,o). Then, by Lemma 4.2 we

have
Ch”|u|”2217 ]{}207
< 2,
(4 2) HptHO = { Chk+1‘|‘u|”k+1,2,1, k>,
oull { Ol |22 iy
Chk+1|\|u\|\k+1,2,2, k>1.

Thus, only ||pn,¢]|o needs to be estimated in order to get the estimate for ||u;—up, ¢||o-
For this purpose, we first get the estimate for 0y (t).
We derive from (3.7) and (4.1) that

((0)0,(0), vi) + (divvy, pr(0)) = 0, Vi € Vp,
(div@h(()),wh) =0, wp, € Wh,

which, together with the uniqueness of the solution to (3.7), implies
(4.3) 0r(0) = pn(0) = 0.
It follows from (3.7) and (2.4) that (pp,8),) satisfies

(a&h + M % gh,Vh) + (diVVh,ph) =0, Vi € Vi,
(pn,tywn) — (divly, wp) = —(pe, wh), wp, € Wh.
Differentiate (4.4) to obtain

(4.4)

(Ozteh + a&h,t + M(t, t)eh + My * 0y, Vh) + (divvh, Ph7t) =0, v, € Vy,

and then we have by setting vj, = 6}, in the above equation and wy, = pp, ¢ in (4.4)
that

(4.5) 5+ (abht,0n) + (atOh, 0p) = —(MOy + My 04, 01) — (pr, prst)-
Since
a(07) = (ab})e — auby,
then L4 .
(abn,t,0n) = 2dt||9h||A 1= §(at9ha9h)'
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Hence, (4.5) can be rewritten as

1d 1
5@”‘%”124—1 + §(at9ha9h) = —(M0Op + My % 01,0) — (pt; prt)-
Thus, we find via integrating the above equation, and using Lemma 4.1, (4.3),
Gronwall’s lemma and the e-inequality that

[lon.ellg +

t
(4.6) 6|12 < © / el 2.

Next we shall obtain the estimate for ||pp+||o. To this end, we differentiate (4.4)
to obtain
(4.7
(Oztah + Ot@h,t + M(t, t)@h + My * 0y, Vh) + (diVVh7 Ph,t) =0, v € Vi,
(Ph,tts wr) — (divln ¢, wr) = —(psr, wh), wp, € Wh.

And hence, we have by setting vy, = 0+ and wp, = pp ¢ in (4.7) and following the
procedure for (4.6) that

t t
(4.8) lonall? < C{|ph,t<o>|3 " / lor|2ds + / ||ptt||3ds} .
By letting ¢t = 0 and wy, = p,+(0) in (4.4) we obtain from (4.3) that

[pn,e(0)]lo < [lp(0)[lo,
which, together with (4.8) and (4.2), leads to

t
lonel 2 sc{|pt<o>||%+/o <||pt|3+|ptt|3>ds}
t

Ch? [IIU(O)II§+|Iut(0)I§+/O (||u||§+|ut|§+||utt||§)d5:|v k=0,
<9 CRPF2{|lu(0)][7

Hlue (0[] 44 +/0 (el R+ el R4 + ||Utt||i+1)d8} s k=L

This completes the proof of the theorem by (4.2). O
Now we are in a position to get our main theorem in this section.

Theorem 4.2. We have under the assumptions of Theorem 4.1 that for k=0
lu—unlloe < Ch[[[ull,00 + [log h[*/>(|[ullz + [|ue]]2)]
t
+Cnltog 2 | [ (lull + s+l )05

and
o= onlloe < OBlIog P2 ([log W2l + sl + ).
t 1
O log |12 [ / <|u||§+||ut||§+||utt||§>ds] ;
0
fork>1
lu—unlloo < CRE1)log A1/ (J1og AIV2I[ful lst.o0 + ulliss + fuellisa)

, 1/2
O log B2 [ [ it + el + Iluwllimdﬂ
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and

llo —onlloe < CHM*Hlog b2 ([[]ull k42,00 + [l + [[ue]541)

t 1/2
+ChE L log h|'/2 {/0 (el gy + el 7y + Nueel 1) ds

Proof. With the same decomposition of the errors as that in Theorem 4.1, we know
from Corollaries 3.1 and 3.1 that

1ol < |t = Pulloo + [|Pyu = tnlloo
<{ Ch (|[ull100 + [log h'?||[ulll2) , k=0,
= | CrFH log Al [ull[k+1,00, k=1,
10llc < CR*H|log h| O+ /2|0 |11 00-

(4.9)

Therefore, only ||pn||co and |||l are left to be estimated.
Set v, = G in (4.4) to obtain from the mixed finite element approximation of
(3.2) that

(5{L¢1 (t), ,Dh) = (leG}ll7 ph) = *(Ol@h + M x* gh, Glll)a

so that it follows from the integration, Lemma 3.1, and the mixed finite element
solution of (3.2) that

T T
/O O pr)dn(B)dt = — / (Gl + M % <Gl 0,)dt
T
(4.10) :/ (Al divey,)dt
0

T T
= / ()\}11 — A1, div@h)dt + / (/\1, diVQh)dt.
0 0

Since A1|asq = 0, it follows from Theorems 3.1 and 3.2 that

A\illo < ClIVAlo < Cllog hV/2(1 + (1)),
1AL = Atllo < Chllog h['/*(1 + ¢1(1)).

Hence, we find from (4.10), Lemma 3.2 and (3.3) that
(4.11) llonlloe < Cllog AIY?(h+ 1)][|div6a]llo.

We know from (3.7) and the mixed finite element error equation (2.4) that

(diV(O‘ — 6h),wh) =0, wp, € Wh,
(diV(U - Uh),wh) = (us — Uh,tawh), wp, € W,

This implies
(divey, wp,) = (div(Gy, — op), wp) = (div(c — op), wr) = (Ug — Unt, Wh), Wy, € Wh,
from which we have by means of the arbitrariness of wy € W}, that

(4.12) Idivnllo < [|us — un.tllo-
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Combining (4.11) with (4.12) and Theorem 4.1 leads to
(4.13)

Chl1og b2 [[uollz + [lue(O) 12 + [[ullz + [l
t
vcnltoghp 2 | [ (lull + hull + lalB)as] k=0
lonlloe < oht+1 log A1/ 2] ol s + llue(O)lisn + lleallen + el ]

t
+Chk-+1|10gh|1/2[/0 <||u||z+1+|ut||i+1+||utt||i+1>ds} L kL

Next we shall give the estimate for ||0 —o||so. For this purpose, we let v, = G&
in (4.4) to get according to (3.4) that

(@b + M %0, GE) = —(divG¥:, py)
= —(div(G} — Gy), pr) — (divGa, pp)
=0.

This yields by Lemma 3.1 and Green’s formula that
T T
0= / (b, + M %0, GhYdt = / (aGhE + M * «GE, 6,)dt
0 0

T T
= / (6%, 0,)po(t)dt — / (AL, divey,)dt,
0 0
which, together with Theorem 3.3, implies that

T T T
/ (65, 0,)po(t)dt / Ny — No, dive)y, )dt + / (A2, divey, )dt
0 0 0

T
< / C|ldivBylo(1 + do(t))dt
0
T
+/ C(1 + |log h|Y?)||divOy |0 (1 + ¢2(t))dt.
0

Thus, we derive from Lemma 3.2 and (4.12) that
(83, 6n)| < Cllog h|*/?|||divérlllo < Cllog hl'/2|||ue — unq[lo

which, together with Theorem 4.1 and an analogue of (3.3) for §%, shows that

Ch|log h|M2([ullo + [Jue]]2)
t 1/2
+Ch]log h|*/? [/ (|lull3 + [Juel I3 + |Utt|§)d3} ; k=0,
0 < 0
Orlloe = o B/l + i)
t 1/2

+On O tog k2 | [ (Il + el + el Eadds| o k=1

This, together with (4.9) and (4.13), completes the proof of the theorem. O

5. Superconvergence in L*°-norm and a-posteriori error estimates

The aim of this section is to give local and global maximum norm superconver-
gence and a-posteriori error estimators for the mixed finite element approximation
of (2.1). First of all, we consider the local superconvergence. To this end, let us
define some seminorms as follows.
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Following [11] we assume that Q C R? is a rectangle and e = [a, b] x [c,d] € T}, is
an arbitrary element of the partition Tj,. We denote by (g1, 92, , gk+1) the Gauss

points in [a,b] and (g1, §2, -, Jx+1) the Gauss points in [c, d], and define
llellls o0 :=max max fuw(gi;)l;
Hvilleoo = lloalllZe 1 + llv2]ll% 2,
where
* . 0.
lvrllloe, +=max max (e lvi(z, 351,
l[v2]ll%,2 :=max max —max |va(gi,y)l.

e€Th 1<i<k+1 (g;,y)€e
By assuming that the matrices A and B are diagonal or the partition T}, is
uniform in this section, we recall from [8, 19] and [16] the following Lemma 5.1 and
Lemma 5.2, respectively.

Lemma 5.1. Let o be a sufficiently smooth vector-valued function, B = (b;;) be a
2 x 2 matriz with b;; € W>(Q) and Q be a rectangular domain. Then, we have

(B- (0 —T}0),vi)| < CB**?olky2,lValloy, Vv € Vi,
1/q

where ‘f|m,q = Z HDif”g,q,Q ;1< g < oo, |f|m,oo = ‘Igllj;i{esssgp |D2f|}

|i]=m

and p’ = L5 is the conjugate of p > 1.

Lemma 5.2. Let (up,dp) be the mized Ritz-Volterra projection of (u,0). Then,
we have
llan — Pyullw + [|on — Wiollv < CAPF2([ullisr + [llo]][r+2),

1/2
where ||ullw = [lullo and |lo|lv := (llo[[§ + ||V - ol5)

From now on, for convenience in writing, we shall refrain from tracing the exact
dependence on the smoothness of u and o, and only give the order of errors.

Theorem 5.1. Assume that (u, o) and (up, oy) are the solutions of (2.1) and (2.2),
respectively, and (un(0),0n(0)) are chosen to satisfy (4.1). If the exact solution u
and o satisfies o, o, € (H*2(Q))2, then we have

llun — Pfullo + l(un — PEw)llo + llon — Tollo < Clu, o) 2,

Proof. Let p; := uj, — PFu and 0} := o4, — Fo. Then, it follows from (2.4) and
(2.5) that

(5.1)
(aby + M « 65, vy)+ (p5,, V- vi) = (a0 — H’fba) + M * (o — HZO’),Vh), v, € Vp,
(Pz,t»wh) — (V- 05, wp) =0, wp, € Wh.

Thus, letting wy, = pj and vj, = 65 in (5.1) we obtain from Lemmas 4.1, 5.1, the
e-type inequality, the integration and Gronwall’s lemma that

¢
5:2) o3+ [ 1611345 < o)l @)1 + 122,
From (4.3) we know

(5.3) up(0) — up(0) =, (0) — 04 (0) = 0.
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Therefore, from Lemma 5.2 we have
[19%(0)[lo = |[an(0) = Pyuollo < C(u, 0)h**2,

and then from (5.2) we further obtain

(5.4) l1oillo < C(u, o)h**2.

Again, we have according to (5.3) and Lemma 5.2 that

(5.5) 167(0) o = [l74(0) = ;o (0)lo < C(u,)h*F2.

The second equation in (5.1) implies

(5.6) Pt =V - Op,

which, together with (5.3) and Lemma 5.2, implies

(5.7) 167,400 = IV - 5 (0)][o = |V - (74 — IT;0) (0)[lo < C(u, o)A *2.

Following the steps for §;, and pj, ; in Theorem 4.1 and using the initial approxima-
tions (5.5) and (5.7) we obtain

(5-8) 167 1lo + 11p5.ello < C(u,0)h*+2.

The proof of Theorem 5.1 is completed by (5.4) and (5.8). O
Now we are ready to obtain our superapproximation theorem.

Theorem 5.2. In addition to the conditions of Theorem 5.1, if the exact solution
o is such that o € (W’”Q"”(Q))Q, then we have

[log h[*[Jur, — Piiulloe + llon =10 llse < C(u,0)h**?|log .
Proof. Taking v, = G in (5.1) we see from the mixed finite element approximation

of (3.2), Theorems 3.4 and 5.1, and Lemmas 5.1 and 3.1 that

T
<|[ (Gl a1 vsGhoar
0

/O (o 60 (£)dt

T
+C(u,o)hk+2\1ogh\1/2/ (1+ o ())dt

SC(u,o)hk+2|logh\1/2/ (1 + ¢1(2))dt.
0

Thus, Lemma 3.2 and (3.3) imply
197 ]oe < C(u, o) R |log h|'/2.
Next we shall obtain the superapproximation estimate for ¢; in the L°°-norm.
Taking v, = G in (5.1) and noticing V - G = 0 by the mixed finite element
approximation of (3.4), we have by Lemmas 3.1, 5.1 and Theorem 3.5 that

T T
/ (Gl + M * xGh, 607)dt| < C(u,o)h* 2| 1log h| / (14 ¢o(t))dt,
0 0

which, together with Theorem 3.3, (5.6) and (5.8), leads to
T T T

/ (6. 60)ba(0)dt| < / IS oo ollodt + Ca, o)A+ log | / (1+ go(t))dt
0 0 0

T
< C(u, 0)h 2| log | / (1 + ¢o(t))dt.
0
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This implies by Lemma 3.2 that
167100 < C(u, 0)h**?|log .
|

Remark 5.1. From Lemmas 3.3 and 5.1 we can derive the following L°°-norm
superapproximation for the mized Ritz-Volterra projection of (u,o):

|log h|*/?||an — Pullse + [|on — IT0] oo < C(u,0)h"* | log h|.

Hence, there holds the L°°-superapproximation estimate under the conditions of
Theorem 5.2,

[Log h|"/2|[an, — unlloo + |6n — nllo < C(u,0)h"*?[log .
In order to obtain the local superconvergence for the mixed finite element solution
(un,on), we need the following lemmas which come from [11] and [8], respectively.
Lemma 5.3. Assume that u € W*+2:°(Q). Then,

Ilw = Pyulllsc0 < Cu)h*+2.

Lemma 5.4. Ifo € (Wk+27°°(f2))2, then we have
llo ~ Mol o < Clo)hb+2.

We are now in the position to get our local superconvergence on the Gauss
points for the approximation of the pressure field and along the Gauss lines for the
approximation of the velocity field, respectively.

Theorem 5.3. In addition to the conditions of Theorem 5.2, if the exact solution

u is such that u € Wk+2°°(Q), then we have
[log h|*2[[w = unllls,0 + [llo = nlllo0 < Cu, 0)* | log h].

Proof. From Lemma 5.3 and Theorem 5.2 we have

roo <= Prullleoo + 1 Pfu — unll]s, 00
< C(u)hF*2 + C(u, 0)h*+2|log h|'/?
< C(u,0)h 2| 1log h|'/2.

Similarly, we obtain by means of Theorem 5.2 and Lemma 5.4 that

llo = ol < Clu,0)h"*2[log h.

[l = un]

|

Next we shall consider the global superconvergence for the pressure and the

velocity fields by virtue of post-processing methods. Analogous to [16] we need to
construct two post-processing interpolation operators H’;;fl and PQkh+ L to satisfy

k+117k _ 17k+1
H2h Hh - H2h )

15 vallop < Cllvallo, YVh € Vi,
(5.9) ||Ikl_l2z_10k_ UHIS-)&S Chk+2‘|0'||k+2,p7 Vo € (Wk+27p<Q))2’
Py Py =Py,
1P willo.p < Cllwnllop, Vwn € W,
1Py w = ullop < OO 2[Julljzp,  Yu € WET2P(Q),
where 1 < p < oo and || - ||o,co = || - ||cc- Here we take for example k = 3 to

demonstrate the construction of the projection interpolation operators H’;Z‘l and
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sz}f ! satisfying (5.9). To this purpose, we assume that the rectangular partition T},
has been obtained from T, = {7} with mesh size 2h by subdividing each element
of T, into four small congruent rectangles. Let 7 := U?:l e; with e; € Ty. Thus,
we can define two projection operators H%h and P24h associated with Ty, of degree
at most 4 in z and y on 7, respectively, according to the following conditions:

3,0l- € (Qua(r))?, Pyulr € Qua(7),
lv(U—thU)~nqu:O7 Vg e Py(ly), i =1,2,---,12,

/(a—ngha)_o, i=1,2,34,

[e-1ho)o=0. € @ur\Qua(r)?, and

/ (u— Pyu)p =0, Vi) € Qa1(es), i=1,2,3,4,

/(U — Pju)p =0, Vi) € Q3,0(7)\Q2,0(7), respectively,
where [; (; =1,2,---,12) is one of the twelve sides of the four small elements e;
(i=1,2,3,4).

Similarly, we can also define TI5,™! and Py for the case of k # 3 such that (5.9)
is satisfied.

By the two projection interpolation operators Hg;{l and PQI?L ! we can immedi-
ately gain the following global superconvergence result.

Theorem 5.4. Assume that (u,o) and (up,oy) are the solutions of (2.1) and (2.2),
respectively. Then, we have under the conditions of Theorem 5.3 that

| log h|1/2||P2k,j’1uh — ul]oo + ||H§;{10h — 0|se < C(u,o)h** 2| logh.
Proof. We see from one of the properties of the operator sz,j'l described in (5.9)
that
PQk}jrluh —u= szfjrl(uh — Pfu) + (Pfhﬂu —u).
Therefore, it follows from Theorem 5.2 and (5.9) that
1P u = oo < Cllun — Plullso + C(w)h* 2 < C(u, 0)h* 2| log h|'/.
Analogously, we can obtain
T8 o — 0|0 < C(u, o)W 2| log hl.

U

Remark 5.2. From the superapprozimation estimates of ||y, — PFul|s and ||5h —
HfLU\ |oo indicated in Remark 5.1 we can obtain the following global superconvergence
under the conditions of Theorem 5.3 by the post-processing method:

|log A2 (| Py an — ulloo + [T 7 — 0lloc < Clu,0)h*+2[log hl.

As a by-product, Theorem 5.4 can be employed to construct a-posteriori error
estimators to assess the accuracy of the mixed finite element solution in applications.

Theorem 5.5. We have under the conditions of Theorem 5.3 that
(5.10) u = unlloc = [P ur = unloc + O(H*+2[log | /2),

(5.11) o= nlloc = T 0% — onloc + O(H*+2log ).
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In addition, if there exist positive constants C1, Cy and small €1, €2 € (0,1) such
that

(5.12) [t — up|oo > CrRFFTETeL,

(5.13) |0 — op|]oe > CohF+2—e2,
then there hold

ol

(5.14) -
h=0 || Py, un — up[oo

lo—onllee |

(5.15) i =
h=0 [y o — oo

Proof. Following the procedure for Theorem 5.3 in [16] we can immediately obtain
the desired results. ]

We see from (5.10) that the computable error quantity ||Pauy, — up||oo is the
principal part of the mixed finite element error ||u — up||s. Moreover, by (5.14) it
can be used as a reliable a-posteriori error indicator to assess the accuracy of the
mixed finite element solution under the condition (5.12). Meanwhile, (5.12) seems
to be a reasonable assumption since O(h**1) is the optimal convergence rate of the
mixed finite element solution in L*°-norm subject to the conditions of Theorem 5.3.
The same comments are also valid for (5.11), (5.13) and (5.15).

6. Estimates for the regularized Green’s functions

In the previous sections, we have seen that the regularized Green’s functions play
an important role in the analysis of convergence and superconvergence estimates
in maximum norms for the mixed finite element method of (1.1). We present the
proofs of Theorems 3.2 and 3.3 in this section. The proofs are based on a series of
lemmas. First, we prove the following result.

Lemma 6.1. We have under the assumptions of Theorem 3.2 that
G} = Gillo < C(1+ (1))
Proof. Tt follows from (3.2), Gronwall’s lemma and Theorem 3.1 that
1G1llo < ClIVllo < Cllogh"2(1 + ¢ (1)),
which yields via using the estimate for ||[V?A1||o in Theorem 3.1 that
1divGillo < Ch™H (1 + ¢1()) + Cllog h|'2(1+ (1)) < Ch™ (1 + ¢n (1))
Decompose the error G; — G as follows:
G, -Gl = (G, —TI}Gy) + II} G, — Gl .= 6™ + 65~
Then, 6;* satisfies the following equation by (2.5) and the mixed finite element
error equation of (3.2) that
(03 + M xx0;*,v,) = —(af* + M x%0** vy) — (A — A2,V - vp)
= —(af** + M % x0™* vy) — (PFA; — A2,V - vp), vy € V.
Since

(PFXN = AV -0:7) =0,
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by (2.5) and the mixed finite element error equation of (3.2), taking v, = 6;* in
the above equation leads to

(@01* + M %05, 057) = — (a0 + M % +0**, 07%).

Thus, we know from Lemma 4.1 and Gronwall’s lemma that

T
165110 < C <|9**||o +/t |9**||ods> |

Hence, we obtain by virtue of the above estimate for divG; in L?-norm and (3.5)

that
T
1G1 = Glllo <C <|9**|Io +/ ||97§*||od8>
t
T
S Ch <|d1VG1||0 +/ ||diVG1||0dS
t
<C(+61(1)).
This completes the proof of Lemma 6.1. g

Lemma 6.2. Under the assumptions of Theorem 3.2,

AL = PEMlo < Ch(1+ ¢1(2)),
AT = Ao < Ch|log h|%x0/2(1 + ¢ (t)).

Proof. Let (w,\) € V x L?(Q) be defined such that

aw +Mxw—-VA =0, in Qx (0,7),
(6.1) divw = (A} — PEN)o(t), in Q x (0,7),
A =0, on 90 x (0,7),

where ¢(t) > 0 and foT o(t)dt < 1. Clearly, (w, ) is well defined and satisfies

t
V%Mo < © (w ~ Pinlos(t) + [ I - P;]f)\1||0¢(5)d5>
0

by the regularity assumption on . Now, it follows from (2.5), the mixed finite
element error equation of (3.2) and Lemma 3.1 that
(6.2)

T T
|1 = PinlBotnde = [ - Pl divitiw)a
0 0
T

:/ (A — Ay, divITow)dt
0

T
= / ((Gy — G + M+ %(Gy — GI), TTFw)dt
0

T
= / ((Gy — G + M+ %(Gy — GI), TIfw — w)dt
0

T
+/ (A, div(G? — Gy))dt :== Ny + Na.
0
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Obviously, we have by using (3.2) and (2.5) that

T T
Ny = / (PEX, divG!)di — / (A 80 (1)t
OT 0 T
- / (PEX, PEOY) by (t)dE — / (M 80 (1)t
OT 0
= [ @i ashen
0
Thus, we have for £ > 1 that

T
R e R ATACE

<Ch/ (138~ PEAulogt) /w PNl (s)ds ) or (1)

<Ch/ <¢1 / P1(s >|)\h Piallog(t)dt
< Ch / (61() + DIINE — P [loo()dt
0

Similarly, we have for Ny by virtue of Lemma 6.1 and (6.1) that

T
Ny < Ch / (1 + 6 (1)) |divw]Jodt
(6.4) 0

T
<Ch [ 1+ o) - PEnlloo oy
0
We have by combining (6.2) with (6.3) and (6.4), and using Lemma 3.2 that
IA? = Pidallo < Ch(1+ ¢u(t)), for k> 1.
It remains to treat No for k = 0. Since
T
| E0x=Pix a6t =0 (see (26, 21),
0

we know from the same arguments as those for (6.3) that

T
Ny = / (PIA— A, 81 (1)t

T
<Ch [ (14 ai@)I; - PAulloo(o)de
0

Finally, the second inequality in Lemma 6.2 is a result of the first inequality in
the same lemma and Theorem 3.1 together with the standard triangle inequality.
d

Remark 6.1. Using the similar duality argument to that as above we can easily
obtain [26]
1IA3 = Pidallo + [IAF = Xello < C(1+ 62(t))-

Here we omit the details.

Lemma 6.3. We have under the assumptions of Theorem 3.2 that

||GY — G1ll1(q) < Chllog h|(1 + ¢1(t)).
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Proof. By Schwartz inequality and (3.1) we have

(6.5)
Let

|G} = Gill11() < Cllogh|'?||G} — G| ge.

\I’l = ﬁQ(Gl — G;L)

Then, we derive from Lemma 4.1 and (3.2) that

(6.6)

IGY = Gi][%: < Co(a(Gr — GY), ¥y — 115 ¥,)

—‘rCo(Oé(Gl — G’f) + M * *(Gl - G?),Hﬁqll)
—C()(M * *(G1 — G?), HE‘PI)

= Co(Oé(Gl — G]f), \1’1 — Hﬁ‘l’l) — Co(>\1 — )\?, leHﬁ‘I’l)

—Co(M + #(Gy — G, T3 ¥1)
= My + Ms 4+ Ms.
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Now we consider M;’s individually. First, it follows from Lemma 6.5 below that

(6.7)

|My| < Colla(Gy — G|z - |[®1 — T} @[] 5
< €e|G1 — G[|2: + Ch?[log h|(1 + ¢1(t))2.

We know from (2.5) that

divilfo, wp) = (dive, wp), YV wp € Wh,
h

which, together with Lemma 6.2, implies

(6.8)

[My| = Col(PFA — Ab, divII} W)
= Co|(PFAL — AL, divey)|
< Ch(1 + ¢ (1))||divi ||o.

Since there holds by (3.2)

we have

divil; = V(8%) - (G1 — G}) + B°(6} — Pfot) e (t),

|div®[lo < C[|G1 — G|z + Cheu (t).

Thus, we obtain from (6.8) that

(6.9)

|Ma| < CR*(1+ ¢1(t))* + €]|G1 — G2

It follows from Schwartz inequality and Lemma 6.5 that

(6.10)

T
M3 <C (/t 1G1 — G}f||ﬁ2d8> [T ®y — @y|5-»
T
+C </ |G1 — G}f||ﬁ2d5> [P g2
t
T
<C (/ 1G1 — G}f||ﬁ2d5> h|log h|'/2(1 + ¢1(t))
t
T
+C </ 1G1 — G?HB?dS) |G1 — G| 52
t

2
T
< |G- GY[E +C (/ |G1 — Gﬁﬂ?dé’)
t

+Ch2|log h|(1 + ¢1(t))2.
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Combining (6.6) with (6.7), (6.9) and (6.10) gives for small and fixed € > 0 that
2

T
1G1 — G[[3= < Ch?|logh|(1 + ¢1(t))* + C (/ IG1 - GTII52d8> ;
t

so that Gronwall’s lemma yields
(6.11) |G1 — GP||g> < Ch|log h|Y2(1 + ¢ (1)).
Hence, Lemma 6.3 follows from (6.5) and (6.11). O.

Lemma 6.4. Under the assumptions of Theorem 3.3, we have

|G — G4 |10y < Cllog h[Y2(1 + ¢a(1)),
[|G2 — Ghllo < Ch™1(1 + ¢2(t)),
[IVX2llo < Ch™H(1 4 ¢a(t)).

Proof. We have by virtue of Schwartz inequality and (3.1) that
(6.12) 1G2 — G5 |11 (o) < Cllogh|"/?||G2 — G| 2.
Let
\IJQ = ﬂZ(GQ - Gg)
Then, it follows from a similar argument to that for Lemma 6.3 that
(6.13)
||G2 - G’21||%2 < CQ(O&(GQ — Gg), \DQ — HZ\IIQ) — Co()\g — )\§L7diVHZ‘l/2)
—Co(M * *(G2 — Gg),Hz‘llg)
= M + M} + Mj.
Thus, we know from Lemma 6.5 below that
(6.14) |M{| < €|Ga — G5[5 + C(1+ ¢a(t))*.
Moreover, we see from Remark 6.1 and the same arguments as those for (6.8) that
(6.15) Mj] < C(1+ 6o (£))||div s o.
It follows from (3.4) that
divly, = V(3?) - (G — G§)7
which yields by (6.15) that
(6.16) |My| < €|Ga — G532 + C(1 + ¢a(1)).
Also, we obtain according to the similar steps for (6.10) that

2
T
(6.17) |M§,|§e||G2—G§||§2+C</ |G2—Gg|ﬁzds> + C(1 + ¢a(t))2
t

Combining (6.14), (6.16) and (6.17) with (6.13), we have via using Gronwall’s
lemma that

1G2 = G5 llg2 < C(1+ a(t)).
Hence, from (6.12) we obtain
1G2 — G5 || 1) < Cllogh'?(1+ ¢s(1)).
By the H?-regularity assumption, we have

|VA2|lo < CR™H1 + ¢2(1)).
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Thus, from [26] we see that
1G> = G0 < Ch™' (1 + a(t)).
O
Lemma 6.5. Let U; (i = 1,2) be the functions defined as before. Then, we have

Wy — T W [|5-2 < Chllogh|Y2(1+ ¢u(t)),
[Wy — TTEWs |52 < O(1+ ¢a(t)).

Proof. Recall

U, =p4%G; —Gl), i=1,2,
and rewrite them as

U, = fX(Gy — II}Gy) + B2 (IIEG; — Gl == Wy + T
Thus,
(6.18) 19 = TR |g-2 < || Wi — T Wan|lg—2 + |[Wio — T Wiz | g2
Since HZ is a local projection operator, it follows from [26] that
Wi =T Wi |g-2 < Cl|Wallg-2 < |Gy — I Gillge < CR[VA[ 2.

Then, Theorem 3.1 and (6.28) below lead to
Chllogh|'2(1 4 ¢1(t)),  fori=1,
C(1+ ¢a(2)), for i = 2.
Following [26] we obtain from Lemmas 6.1 and 6.4 that

Ch(1+¢1(t),  fori=1,
C(1+ ¢a(t)), for i = 2.

(6.19) Wi — W] g-2 < {

(6.20) [ W2 — I Wi g-2 < {

Now, (6.19) and (6.20) lead (6.18) to

Chllogh['2(1 4 ¢1(t)),  fori=1,
C(1+ ¢a(t)), for i = 2,

which verifies the conclusions of Lemma 6.5. O

[0 — I3[ g-2 < {

Lemma 6.6. Under the assumptions of Theorem 3.3 there hold

[[X2]]o < Cllog h|Y2(1 + ¢a(t)),
[IVAallLi) < Cllogh|(1+ ¢2(t)),
IV2Xo|lLi() < Ch™Y|log h|Y2(1 + ¢a(t)).

Proof. From Schwarz’s inequality and (3.1) we have
(6.21) IV A2l L1 () < C|log hM/2[|V As | g2
Furthermore, it follows from (3.4) and Green’s formula that
1
IVX2llZ: = (VA2,8°VA2) = —(AXg, B7X2) + Q(AQ,A(ﬂz)Az)

(6.22) < [(diveg 2 (t), 2 X2)] + C||A|[
< C(B5(1) + [ h][)-

Now, let us consider the following auxiliary Dirichlet problem to bound ||A2]|o :

—Ar = A2 in Q,
r=20 on 0N.
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From the regularity assumption on the domain €2 we have

(6.23) IV27]lo < C| A2 lo-

In addition, it follows from (3.4) and Green’s formula that
P2|lf = (VA2, Vr) = —(VZAg,7)

(6.24) = (divo}, r)¢a(t) = — (05, Vr)pa(t)

= N,.

Following the procedure in [26], we have, according to (3.5), (6.23) and the
standard inverse estimate, that

(V) |so < Cllog h|2[(Vr)![]1 < C|log h|*2||V2r]|o,
and
IN. < {105, Vr = (V)| + (8%, (Vr)T) [} a(t)

<
(6.25) < C (IIV%r]lo + 11051 L@ 1 (VF) o) ¢2(t)
< C (1+ [log h[*2) [[A2lloga(t),

where f! stands for the standard locally regularized piecewise linear interpolation
of f (see, for example, [26]).
Combining (6.25) with (6.24) yields

(6.26) [Rello < € (1+1og hl'/2) 62(0).
Now, (6.26) and (6.22) lead (6.21) to
IVA2|lz1 (@) < Cllog hl(1 + ¢2(t))-

Again, we use Schwarz’s inequality and (3.1) to obtain

(6.27) 1V Xa L1 () < Cllog h['/2[|V? Ao | g2
Following [26] we further have

(6.28) IV2Mallse < ChA(1+ (1)),
Thus,

IV Xall @y < Ch{og A*(1 + 6 ().
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