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Abstract. The paper discusses a general framework for handling curvilinear

geometries in high accuracy Finite Element (FE) simulations, for both elliptic

and Maxwell problems. Based on the differential manifold concept, the domain

is represented as a union of geometrical blocks prescribed with globally com-

patible, explicit or implicit parameterizations. The idea of parametric H1−,

H(curl)− and H(div) - conforming elements is reviewed, and the concepts of

exact geometry elements and isoparametric elements are discussed. The paper

focuses then on isoparametric elements, and two ways of computing FE dis-

cretization errors: a popular one, neglecting the geometry approximation, and

a precise one, utilizing the exact geometry representation. Presented numeri-

cal examples indicate the necessity of accounting for the geometry error in FE

error calculations., especially for the H(curl) problems.

Key Words. Geometry approximation, curvilinear hp Finite Element (FE)

meshes, error evaluation, Exact Geometry Integration (EGI).

1. Introduction

The hp-adaptive FE methods are some of the most powerful methodologies for
simulating complex engineering problems. These numerical methods provide op-
timal sequences of hp-grids that achieve exponential convergence, whereas h or p
method converges only, at best algebraically [1, 6]. The advantages of hp methods
are achieved by the proper choice of meshing and mapping procedures to create a
finite element mesh over an arbitrary domain.

Sizable errors are introduced into the prediction of parameters when the geo-
metric approximation is too low w.r.t. 1 the polynomial order of the discretization.
[15, 16] show the importance of using properly mesh entities in high order dis-
cretization to solve partial differential equations. Current development efforts in
hp methods are aimed not only at a curvilinear mesh geometry representation over
curved domains [12], but also at the effective definition of meshes consisting of
mixed order elements.

Solving Boundary Value Problems(BVP) in complex geometries using hp finite
elements consists of a double discretization. First, a mesh is introduced in order to
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Figure 1. The exact and approximate domain of Finite Element Method.

create a discrete geometrical domain. Then, the solution function space is approxi-
mated by a finite dimensional function space. Both geometrical and function space
approximations introduce discretization errors into the solution. The element level
integral is represented abstractly as,

I =
∫

Ω

K(x)dx =
∫

Ω̂

K(Xex(ξ))dξ,(1)

where K represents integrands associated with the interior of element domain Ω.
The approximations can be introduced at one or more following basic functional lev-
els: approximation of Ω, approximation of K, approximation of integration method
over domain Ω. To evaluate the integral, the traditional method uses isoparametric
geometry representation Xhp(ξ) ∈ Ωhp, followed by the error integration on the ap-
proximate geometry domain Ωhp. We will refer to it as the Approximate Geometry
Integration (AGI),

I ≈ Ihp =
∫

Ωhp

Khp(x) d x =
∫

Ω̂

Khp(Xhp(ξ)) d ξ(2)

≈
∑

ξl

Khp(Xhp (ξl))ωl.

Here the weights ωl and quadrature points ξl are determined by the order of in-
tegration. Approximate geometry representation leads to inexact representation of
boundary and initial conditions and, therefore, inappropriate evaluation of element
level integrals. The exact solution u : Ω → IR cannot be compared directly to
the approximate solution uhp : Ωhp → IR because they are computed on different
physical domains, see Fig.1. This prompts us to develop a element mapping scheme
resulting in a modified meaning of the FE solution defined on the exact physical
domain:

uhp : Ω → IR(3)

Our study is primarily motivated with geometry induced error control. In this
paper, we consider the following two issues:

• A proper definition of the geometry error and its assessment.
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• A proper evaluation of hp FE discretization errors for both elliptic and
Maxwell problems.

Functional error evaluation requires the study of convergence and accuracy for
domains where geometric error is carefully controlled. The influence of geometry
induced errors in the context of Boundary Element discretization has also been
studied in [13]. The effect of geometry approximation in the p-version of the FEM
has been addressed recently in [14].

A broad outline of the paper follows. Section 2 describes an element mapping
scheme that exactly conforms to the curved domain with arbitrary high orders.
Consideration is then given in Section 3 to a set of procedures being developed for
the proper definition of geometry induced error. Section 4 analyzes the approx-
imation error with the EGI computations for both L2 norm and H(curl) norm.
Section 5 presents numerical examples for specific curved domain problems with a
known exact solution for both elliptic and Maxwell problems. The results clearly
demonstrate the role of the geometry approximation in the accuracy of the hp FE
method.

2. Element mapping scheme in the hp FE method

In the hp FE simulations, a meshed geometry serves two purposes. First, it
represents an arbitrary domain by a finite element mesh on which piecewise poly-
nomial functions are defined. Second, it controls the error of approximation. The
error of approximation depends on the finite element mesh and the polynomial de-
gree of elements. In our hp FEM, the primary role of the meshed geometry is to
represent the topological and geometric description of the object being modeled by
a collection of elements. The error is controlled by both the element size h and the
polynomial degree of elements p. The error is reduced as p is increased or element
size h is decreased.

This paper presents a finite element mapping scheme based on an EGI geometric
modeling system, Geometrical Modeling Package (GMP) [2, 11]. This system re-
lates mesh entities directly to specific topological entities through an initial isotropic
mesh generation scheme. The method is well suited for the hp-adaptive environ-
ment, because it provides direct access to the shape information of the problem
domain, and makes possible to update geometry approximation during mesh re-
finements. The geometry representation scheme for hp finite elements then breaks
into two parts: exact geometric modeling, and high order mesh generation.

2.1. Exact geometric modeling. The Geometrical Modeling Package provides a
foundation for a multi-block hp mesh generator.The package allows for maintaining
a continuous interface with the adaptive code to update the geometry information
during mesh refinements.

In our geometric modeling, a 2D object is presented as a union of curvilinear
triangles or rectangles, while a 3D object is represented with an FE-like mesh of
curvilinear hexahedral blocks. The geometry of the object is prescribed then by
constructing parameterizations for each of the blocks.

XG : Ω̃ 3 η → x ∈ Ω(4)

where η are coordinates in reference domain Ω̃; x are coordinates in physical domain
Ω, see Fig.2. In GMP, each of the local edges or faces has its own global orientation.
Adjusting edge and face parameterizations involves transforming local edge and
face coordinates into the global ones. We handle the coordinate transformations
in a hierarchical manner and ensure the compatibility of parameterizations. For
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example, parameterizations for adjacent hexahedra is compatible if we obtain the
same FE mesh when we use either of the two parameterizations of their boundary,
i.e., the common rectangle.

We have explored a number of novel geometrical modeling techniques and im-
plemented them in GMP. The GMP not only supports the construction of exact
parameterizations for a general class of 2D (BEM) [9] and 3D (FEM) [10] manifolds
in IR3, but also provides the derivatives of the mappings w.r.t reference coordinates
for any given points in reference frame. The two particular techniques of interest
are:
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Figure 2. The element mapping scheme based on exact geometric
representations and isotropic initial mesh generations.

• Implicit parameterizations.
In this case, a map is defined implicitly by a system of nonlinear algebraic
equations. In order to assess the value of the mapping for some specific
choice of reference coordinates, the system has to be solved using Newton-
Raphson iterations. As a result, the constructed geometric models can
conform to any arbitrary high order surfaces. For example, the implicit
rectangle lies on a given surface with its four edges cut off by four additional
surfaces, see Fig. 3. Denoting the surface equations by ϕi(x) = 0, i =
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1, . . . , 5, we introduce the following nonlinear equations:

ϕ1(x) = 0
(1− η2)(1− f1(η1))ϕ5(x) + f1(η1)ϕ3(x)

η2(1− f2(η1))ϕ5(x) + f2(η1)ϕ3(x) = 0(5)
(1− η1)(1− f3(η2))ϕ2(x) + f3(η2)ϕ4(x)

+η1(1− f4(η2))ϕ2(x) + f4(η2)ϕ4(x) = 0

ϕ
ϕ (x,y,z)=0

(x,y,z)=0

ϕ

ξ
ξ

1

(x,y,z)=0

1

5

3
ϕ

2

(x,y,z)=0ϕ

(x,y,z)=0

4

1
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Figure 3. Implicit rectangle

where fi(η), i = 1, . . . , 4 are the stretching functions determined by re-
questing the compatibility of the rectangle parameterization with the ex-
isting, specified parameterizations for its edges:

(1− f1(η1))ϕ(x1
c(η1)) + f1(η1)ϕ3(x1

c) = 0
(1− f2(η1))ϕ(x3

c(η1)) + f2(η1)ϕ3(x3
c) = 0

(1− f3(η2))ϕ(x4
c(η2)) + f3(η2)ϕ4(x4

c) = 0(6)
(1− f4(η2))ϕ(x2

c(η2)) + f4(η2)ϕ4(x2
c) = 0

with x1
c(η1),x2

c(η2),x3
c(η1),x4

c(η2) being the parameterizations of the edges.
From the equation above, we can get the physical coordinates in terms

of parameter η1, η2 The parameterization map is XG(η1, η2).
• Transfinite interpolation.

In this case, a mapping is defined explicitly by a specific formula. The sim-
plest examples include objects which are characterized uniquely by entities
of lower dimension, and a specific interpolation rule. Thus, the geomet-
ric parameterizations can be defined by building them from the “bottom
up”. For instance, the parameterization of a rectangle can be obtained
once we know the parameterizations for its four edges (curves). The edge
parameterizations are extended to the whole reference rectangle using the
classical transfinite interpolation and linear blending functions technique.
Similarly, we can construct the parameterization for a transfinite interpola-
tion hexahedron. The connectivity information includes the local ordering
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of vertexes, edges and faces, and the orientations for each of the twelve
edges and six faces. The hexahedron function can be written as,

XG(η) =
8∑
1

xvψv +
12∑
1

φeψe +
6∑
1

φsψs(7)

where xv denote the global physical coordinates of the vertex v; ψv,ψe and
ψs are blending functions for vertex, edge and face respectively; φe is the
edge bubble function,

φe = φ̂e −
2∑

i=1

xviψvi ,(8)

here φ̂e is the GMP parametrization for the edge, adjusted for orientation;
φs is the face bubble function,

φs = φ̂s −
4∑

i=1

xvi
ψvi

−
4∑

i=1

φei
ψei

,(9)

here φ̂s is the GMP parameterization for the face, adjusted for orientation.
(7) can be simplified as,

XG(η) =
8∑
1

xvψv +
12∑
1

φ̂eψe −
6∑
1

φ̂sψs(10)

2.2. High order mesh generation. For an elliptic problem, any solution u ∈
IR can be approximated as a linear combination of basis functions φi defined on
physical domain Ω with unknown coefficient d.o.f.2 ui [29,20] ,

uhp(x) =
N∑

j=1

uiφi(x).(11)

The integration of element matrices is always done in terms of master element
coordinates ξ, therefore, it is convenient to define the shape functions on master el-
ement domain as φ̂(ξ). Given a bijective map XK(ξ), we define the H1-conforming
shape functions on the physical element as compositions of the inverse X−1

K and
the master element polynomial shape functions φ̂,

φ(x) = φ̂(ξ) = φ̂(X−1
K (x)) = (φ̂ ◦X−1

K )(x)(12)

Eq.(12) is a classical framework for the specification and evaluation of high order
shape functions on FE meshes. The element mapping that transforms a master
element onto a physical element, XK(ξ) : ξ ∈ Ω̂ → x ∈ Ω, is necessary for solving
partial differential equations over a curved domain. Element map XK(ξ) can ei-
ther be used directly during element computations, or approximated to construct
element-level geometric approximations.

In the hp method, the mesh generators are based on a consistent representation
of the domain as a manifold, with underlying global maps parameterizing portions
of the domain. Section 2.1 depicts the scheme used to construct map XG from
reference element Ω̃ to physical domain Ω. The reference hexahedron in Fig.2 is
divided into a 2× 2× 1 uniform grid. Any element in the grid (the red hexahedron

2degrees of freedom
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in Fig.2) has a corresponding affine map from a master hexahedron element to the
reference hexahedron element,

ηM : Ω̂ 3 ξ → η ∈ Ω̃.(13)

Besides the number of subdivisions, we specify the corresponding order of approx-
imation, which may vary from one GMP entity to another.

Fig.2 depicts two geometric mapping schemes that can be used to in high order
FE computations: the isoparametric element (the red hexahedron in physical do-
main) and the exact geometry element (the underlying black hexahedron in physical
domain.)

In the isoparametric element mesh, the approximation of the exact geometry
is done with the same polynomials as those used to approximate the solution in
Eq.(11). The components of the transformation map XK come from the space of
the H1-conforming master element shape functions,

XK = XI(ξ) =
N∑

j=1

xj φ̂j(ξ).(14)

Here xj denote geometry d.o.f obtained by projection-based interpolation [21, 22],
and XI(ξ) ∈ Ωhp. The parametric element shape functions can reproduce any
linear function ajxj . As isoparametric elements reproduce also constants, the space
of the shape functions contains the space of all linear polynomials in x. However,
the isoparametric element mesh, in general,does not reproduce the exact shape of
the curvilinear domain. In Fig.2, the red curvilinear hexahedron does not physically
match the underlying black hexahedron. Thus, it may be essential to use advanced
mapping procedures so that the domain geometry is more precisely represented and
integrated into FE computations.

The exact geometry element mesh provides an ideal means to construct the map
XK(ξ) ∈ Ω based on the shape of the curvilinear domain boundary entities within
the GMP. Upon a change of variables, the original problem can then be redefined
in the reference domain discretized with affine elements. The desired map can be
obtained as

XK = XG(η(ξ)).(15)

In this case, the exact mathematical representation of the curvilinear domain is
expressed within the reference element framework with corresponding order of ap-
proximation for each subelement. The association of mesh topological entities w.r.t.
the topological entities of the geometric model, is central to obtain the shape in-
formation for individual mesh entities in Eq.(12).

2.3. Parametric elements. This paper focuses on the geometrical modeling is-
sues in context of two classes of PDEs: elliptic problems and Maxwell problems. In
order to solve the Maxwell’s equations using finite elements, a family of H(curl)
conforming elements is needed, since the space of admissible solutions E is con-
tained in H(curl). Nedelec introduced two families of finite elements that conform
in H(curl,Ω) = {E ∈ L2(Ω) : ∇ × E ∈ L2(Ω)}, Ω ⊂ IR3 [3, 4]. The relation
between the two spaces, H1 and H(curl), is part of a more general exact sequence
of spaces and operators,

IR −→ H1 ∇−→ H(curl) ∇×−→ H(div) ∇◦−→ L2 −→ 0.(16)

Recall that, in an exact sequence of operators, the range of each operator coincides
with the null space of the next operator in the sequence.
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The exact sequence property is crucial in proving stability for the variational for-
mulation for the time- harmonic Maxwell equations. This suggest that the (piece-
wise) polynomial Finite Element discretization of the H(curl) space should be con-
structed in such a way that the exact sequence property is also satisfied at the
discrete level. The de Rham diagram [5, 7] relates then the two exact sequences of
spaces, on both continuous and discrete levels, and the corresponding interpolation
operators.

To keep the exact sequence property, we define the H(curl)-, H(div)-conforming
elements according to transformation rule (12). The transformation rule for gradi-
ents implies the transformation rule for H(curl) conforming elements,

∂u

∂xi
(x) =

3∑

k=1

∂û

∂ξk

∂ξk

∂xi
(17)

Ei(x) =
3∑

k=1

Êk(ξ)
∂ξk

∂xi
,

where Ei are components of the admissible solutions E ∈ H(curl, Ω), with cor-
responding Êk defined on the master element Ω̂. The transformation rule for the
curl operator implies similarly the transformation rule for the H(div)-conforming
elements,

(∇× E)i(x) =
3∑

k=1

J−1 ∂xi

∂ξk
(∇× Ê)k(ξ)(18)

Hi(x) =
3∑

k=1

J−1 ∂xi

∂ξk
Ĥk(ξ),

where J−1 is the inverse Jacobian. Defining the parametric element spaces using
the transformation rules listed above, we preserve for the parametric element the
exact sequence in Eq.(16). The hp-edge elements, resulting from the H(curl)-
conforming FE approximation, involve the implementation of vector-valued shape
functions with different d.o.f., in order to take into account tangential and normal
components of the electric field [8, 7].

3. Geometry discretization error

The approximation error depends both on the finite element mesh and the poly-
nomial degree of elements. The accuracy of geometry approximation is a key issue
which must be accounted for, during element level computations within an adaptive
environment. Since the available theory is unable to specifically quantify the influ-
ence of the geometry approximation, a simple numerical study was performed. To
assess the quality of the isoparametric approximation of exact geometry, we define
the geometry error function as,

δ(x) = id(x)−Xhp(x)(19)

where function Xhp represents the approximate geometry map defined on the phys-
ical domain. More precisely,

Xhp(x) = (Xhp ◦ η−1
M ◦X−1

G )(x) = Xhp(ξ),(20)

where

XG(ηM (ξ)) = x.(21)
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In a rather arbitrary way, we choose the H1-(semi) norm to measure the geometry
error, (according to FE error analysis [23], the W 1,∞ norm would a better choice),
and report always the geometry error related to the norm of the exact geometry
element map,

Eg,H1 =
||δ||H1(Ω)

||id(x)||H1(Ω)
,(22)

where ||id(x)||H1(Ω) is equal to three times of the volume of Ω. The H1 semi norm
of the geometry error function is evaluated on the corresponding reference domain
Ω̃ by using GMP parametrization and the affine map ηM ,

||id− xhp||H1 = ||δ||H1 =

(∫

Ω

(
∂(id− xhp)

∂x

)2

dx

)1/2

(23)

=

(∫

Ω̃

[
3∑

k=1

3∑

l=1

akl
∂δ

∂ηk

∂δ

∂ηl

]
J1dη

)1/2

.

The derivatives of δ w.r.t. reference coordinates are calculated as follows,

∂δ

∂ηi
(η) =

∂XG

∂ηi
(η)−

N∑

j=1

xj

3∑

k=1

∂φ̂j

∂ξk
(ξ)

∂ξk

∂ηi
(η);(24)

where ηM (ξ) = η; J1 is the Jacobian,

J1 =
∣∣∣∣
∂x

∂η

∣∣∣∣ ,(25)

and akl is the metric resulting from the change of variables from x to η,

akl =
3∑

p=1

∂ηk

∂xp

∂ηl

∂xp
.(26)

In order to sustain the exponential rate of convergence of hp-refinements, the ge-
ometry error should also converge exponentially.

4. A precise definition of FE discretization errors

In this section, we propose a precise definition of the FE error incorporating the
effects of geometry approximation. We discuss then the computation of the error
for both elliptic and Maxwell boundary-value problems.

4.1. H1 norm for elliptic problems. Solution u of an elliptic problem is con-
tained in H1(Ω), and the relative FE error is defined as,

Es,H1 =
||u(x)− uhp(x)||H1(Ω)

||u(x)||H1(Ω)
.(27)

Here uhp represents the FE solution evaluated on the exact geometry,

uhp(x) =
(
ûhp ◦ η−1

M ◦X−1
G

)
(x) = ûhp(ξ)(28)

where x is given by (21).
For the case of second-order elliptic equations, the first order norm can be re-

placed with the (equivalent) first order semi-norm,

||e||L2 =

(∫

Ω

3∑

i=1

∂e

∂xi

∂e

∂xi
dx

)1/2

.(29)
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The norm of the exact solution is integrated in practice in the reference domain,

||u||2L2 =
∫

Ω

3∑

i=1

∂u

∂xi

∂u

∂xi
dx =

∫

Ω̃

3∑

i=1

∂u

∂xi

∂u

∂xi
J1dη.(30)

Let e(x) be the difference between exact solution and hp FE solution, e(x) = u(x)−
uhp(x). We transform the difference e from physical element Ω to reference element
Ω̃ by using the transformation rule for the H1-conforming element in Eq.(12),

e(x) = u(x)− uhp(x)(31)

= (ũ ◦X−1
G )(x)− (

ûhp ◦ η−1
M ◦X−1

G

)
(x)

= ũ(η)−
N∑

i=1

uiφ̂i(ξ),

where x is given by (21) and ũ(η) = u(XG(η)). Consequently, the finite element
discretization error evaluated with EGI is,

||e||H1 =
∫

Ω̃

[
3∑

k=1

3∑

l=1

akl
∂ẽ

∂ηk

∂ẽ

∂ηl

]
J1dη,

where

∂ẽ

∂ηk
=

3∑

i=1

∂u

∂xi

∂xi

∂ηk
−

3∑

i=1

∂ûhp

∂ξi

∂ξi

∂ηk
.(32)

Note that ∂xi

∂ηk
and ∂ξi

∂ηk
are derived from exact geometry map XG(η) in (4) and

initial mesh affine map η−1
M (η) in (13), respectively. ∂û

∂ξi
are the derivatives of exact

solution w.r.t. master element coordinates,

∂uhp

∂ξk
=

N∑

j=1

uj
∂φ̂j

∂ξk
.(33)

As a result, the approximate error now can be expressed on the reference element.
In order to eliminate quadrature error, we evaluate the EGI error by using an
adaptive tensor-product Gaussian quadrature integration.

4.2. H(curl) norm for Maxwell problems. The relative approximation error,
measured in H(curl) norm can be expressed as,

Es,H(curl) =
||E(x)−Ehp(x)||H(curl)

||E(x)||H(curl)
.(34)

Here

||e||H(curl) =
(∫

Ω

|e|2 + |∇ × e|2 dx

)1/2

.

In view of (19), the use of curl term in the definition indicates that the geometry
induced error may have more impact on the H(curl) norm.

Once the exact solution is known, the corresponding norm is evaluated by inte-
grating on the reference domain,

||E||2H(curl) =
∫

Ω̃

(
|E(x(η))|2 + |∇ ×E(x(η))|2

)
J1d η(35)

The error evaluation is more complicated for the FE error function e(x) = E−Ehp,
as the FE solution involves the use of Piola-Kirchhoff transformation [10].
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Integration on the physical element is performed by changing variables and mov-
ing function e from the physical to the reference element. The exact geometry
XG(η) in (4) is used to transform the integrals to the reference parametric ele-
ments by using transformation rule for the H(curl) -conforming elements,

ei(x) =
3∑

k=1

ẽk(η)
∂ηk

∂xi
(x).(36)

Equivalently,

ẽk(η) =
3∑

i=1

ei(x)
∂xi

∂ηk
(η).(37)

Similarly, using the transformation for H(div)-conforming elements, we have

(∇x × e)i = J−1
1

3∑

k=1

∂xi

∂ηk
(∇η × ẽ)k,(38)

and,

(∇η × ẽ)k = J1

3∑

i=1

∂ηk

∂xi
(∇x × e)i.(39)

where Jacobian J1 is given by (25). The finite element discretization error of E
evaluated with EGI is,

||e||2H(curl) =
∫

Ω̃

3∑

k=1

3∑

l=1

[
aklẽkẽl + bkl(∇η × ẽ)k · (∇η × ẽ)l

]
J1dη,(40)

where coefficients akl is given by (26) and bkl is also obtained from exact geometry
modeling framework,

bkl =
3∑

i=1

(J−1
1 )2

∂xi

∂ηk

∂xi

∂ηl
.(41)

The exact solution E = (E1, E2, E3), defined on physical domain, and the FE
solution Ehp =

∑N
j=1 ujφ̂j (uj are d.o.f.), defined on the master element, can

finally both switch to the reference element coordinates η. Since affine map ηM

does not induce any additional error, from Eq. (18) and (19), we have

ẽk(η) =
3∑

i=1

Ei
∂xi

∂ηk
−

3∑

i=1

N∑

j=1

uj(φ̂j)i
∂ξi

∂ηk
(42)

and,

(∇× ẽ)k(η) =
3∑

i=1

J1
∂ηk

∂xi
(∇x ×E)i −

3∑

i=1

N∑

j=1

J1
∂ηk

∂ξi
uj(∇ξ × φ̂j)i.(43)

Here (φ̂j)i and (∇ξ × φ̂j)i denote the ith component of the corresponding vectors.

5. Numerical Examples

We illustrate the proposed error evaluation scheme with three numerical exam-
ples for elliptic and Maxwell problems defined on a unit spherical domain. The
technique is compared with a customary error evaluation procedure in which the
FE discretization error is evaluated directly on the approximate geometry, neglect-
ing the geometry approximation error.
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5.1. Elliptic problems.

5.1.1. Example 1: A Dirichlet problem for the Poisson equation. A nu-
merical example based on the solution of Poisson’s equation in three dimensions
illustrates the impact of the mapping scheme on the convergence rate of finite ele-
ment error. Consider the solution of boundary-value problem,

−4u(x) = f(x) |x| < 1,(44)
u(x) = 0 |x| = 1

where Ω is a sphere of unit radius and f(x) is specified such that the exact solution
is

u(x) = r2(1− r2), r = (
3∑

i=1

x2
i )

1/2.(45)

Example meshes are included to demonstrate features of the procedure. Fig.4
shows the exact solution evaluated on the initial mesh. The real physical domain Ω
(unit sphere) is represented by using a coarse curvilinear mesh consisting of seven
hexahedra with uniform subdivision number 1/h = 3. The exact energy of the
solution is

||u||H1 = 4π

∫ 1

0

∣∣∣∣
∂u

∂r

∣∣∣∣
2

r2dr = 4
√

π

5
.(46)

We compare the relative Laplace solution error Es,H1 evaluated on the approx-
imate domain Ωhp with the one evaluated on the exact physical domain Ω, the
AGI and EGI, in Fig.5. Fig. 5 also plots the relative geometry error Eg,H1 versus
the order of approximation p. Since the solution is smooth, the logarithm of the
error is expected to decrease linearly with the approximation order p (exponential
convergence). Note that the AGI error is one order of magnitude bigger than the
EGI error. The EGI error curve seems also to be displaying less variation than its
AGI counterpart.

5.1.2. Example2: A Neumann problem for the Laplace equation. A more
complicated example for the Laplace equation is provided by the Neumann problem,

−4u(x) = 0, |x| < 1(47)
∇nu(x) = g(x) |x| = 1

where g(x) is the Neumann boundary condition data on the sphere. Using spherical
coordinates (r, θ, φ) in (47), the separation of variables u = f(r)g(θ)h(φ) leads to,

• Euler equation in r
∂

∂r

(
r2 ∂f(r)

∂r

)
− λ2f(r) = 0(48)

with solutions

fn(r) = anrn n ≥ 0(49)

• Legendre equation in θ

θ

g(θ)
∂

∂θ

(
sinθ

∂g(θ)
∂θ

)
+ λ2sin2θ = const(50)

with solution

gm
n (θ) = bnmPm

n (cosθ), 0 ≤ m ≤ n(51)

where Pm
n (cosθ) are Legendre functions defined in [24].
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• second-order linear ordinary differential equation in φ

∂2h(φ)
∂φ2

= −µ2h(φ)(52)

with solutions

hm(φ) = Amcos(mφ) + Bmsin(mφ), ∀m ≥ 0.(53)

Figure 4. Example 1: Contour plots of the exact solution on the
sphere and cross section z = 0

We choose,

g(η, φ) =
4∑

m=0

Pm
4 (cosθ)(cos(mφ) + sin(mφ)).(54)

The corresponding exact solution is then

u(r, η, φ) =
4∑

m=0

1
4
r4Pm

4 (cosθ)(cos(mφ) + sin(mφ)).(55)

Fig.6 shows the exact solution evaluated on the initial mesh with uniform subdivi-
sion number 1/h = 3.

Fig. 7 plots the relative geometry error Eg,H1 and the relative solution error
Es,H1(x) versus order of approximation p. The logarithm of the errors in (22) and
(27) are expected to decrease linearly when the sphere is approximated with seven
hexadra with quadratic, cubic, quartic and higher order element maps. In this
case, the two curves are practically identical and display the expected exponential
convergence rates. (The AGI error is slightly less than the EGI error.)

5.2. Maxwell problems.

5.2.1. Example 3: Plane wave. Our final example deals with a Dirichlet bound-
ary value problem for the time-harmonic Maxwell equation in a unit spherical do-
main,

∇× (
1
µ
∇×E)− (ω2ε− jωσ)E = −jωJ imp, |x| < 1(56)

n×E = n×E0, |x| = 1.
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Figure 5. Example 1: Geometry and solution errors.

Figure 6. Example 2: Contour plots of the exact solution on the
sphere and cross section z = 0

Here ω, ε, µ, σ denote the angular frequency, permittivity, permeability and conduc-
tivity, respectively; J imp stands for an impressed surface current.
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Figure 7. Example 2: Geometry and solution errors

Figure 8. Example 3: Contour plots of the exact solution Ex on the
sphere and cross section z = 0

A particular solution to the homogeneous ( J imp = 0) problem with constant
material data, is provided by the plane wave

E(x) = E0e
ik·x.(57)
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The polarization vector E0 = (E1, E2, E3) and wave vector k = (k1, k2, k3) must
satisfy the conditions,

E1k1 + E1k1 + E1k1 = 0(58)
k2
1 + k2

2 + k2
3 = ω2ε− jωσ

We choose σ = 0, ω2εµ = 1, k = (0, 0, ω
√

εµ) = (0, 0, 1), E0 = (1, 0, 0).
Fig.8 shows the components of the exact solution evaluated on the initial mesh

with uniform subdivision number 1/h = 2. The evaluation of the error has been
discussed in Section 4.2. Fig.9 shows both the geometry error and the FE errors
using the two different error evaluation techniques. Both the error value and the
represented convergence rates depend strongly upon the way of evaluating the error.
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Figure 9. Example 3: Geometry and solution errors

6. Conclusions and future work

The paper reviews the theoretical framework for a general class of parametric
H1−, H(curl)− and H(div) - conforming elements, with both exact and isopara-
metric geometry description. A systematic way of computing the H1− and H(curl)−
discretization errors, accounting for the error in geometry approximation, has been
proposed. The technique has been illustrated with three numerical examples and
compared with the customary error evaluation neglecting the geometry approxi-
mation error. The presented examples demonstrate that the two errors may differ
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by an order in magnitude, indicating the care with which convergence results for
higher order elements on curved geometries should be reported.

Future work will focus on a comparison of exact geometry and isoparametric
elements and possible means to control the geometry induced errors for both CAD-
based and reconstructed geometry models, focusing on a human head model with
a G1-continuous reconstructed geometry model [19, 20]. In order to simulate the
absorption and diffraction of EM waves in the human head using the hp method, we
intend to investigate how the G1 regular parametrization will affect the convergence
rates of high order methods. Among other tasks, the multi-resolution techniques
[17, 18] and hierarchical geometry reconstruction schemes are under study to obtain
a efficient and effective coarse head model conforming to fine grid representations.
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