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A POSTERIORI ERROR ESTIMATOR FOR FINITE ELEMENT
DISCRETIZATIONS OF QUASI-NEWTONIAN STOKES FLOWS

ABDELLATIF AGOUZAL

Abstract. In this paper, we consider mixed finite elements discretizations
of a class of Quasi-Newtonian Stokes flow problem. Unified a posteriori error
estimator for conforming, nonconforming, with or without stabilization is ob-
tained. We prove, without Helmholtz decomposition of the error, nor regularity

and saturation assumptions, the reliability and the efficiency of our estimator.
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1. Introduction

Adaptive finite element method is justified by using a posteriori error estimate
which provides computable upper and lower error bounds, it serves then, as error
indicators. The aim of the work is to unify, generalize and refine the derivation of
residual error estimator for a class of Quasi-Newtonian Stokes flow problem. Indeed,
the present work take on unifying proof for conforming, nonconforming, and even
conforming-nonconforming scheme, with or without stabilization [4], and also mixed
formulation, in two and three dimensional cases [9]. We generalize, simplify and
refine the works of Verfurth [12] , Dari, Durdn a nd Padra [8], Carstensen and
Funcken [6] and Gatica et al [9]. We prove, without Helmholtz decomposition of
the error, nor regularity of the solution or the domain, nor saturation assumption,
the efficiency and the reliability of our estimator.

Let Q C IR? (d=2,3), be a bounded open connected and polyhedral set. In €2, we
consider the following model problem:

Find  (u,p) such that
—div(A(Vu))+Vp = f, inQ,
divu =0, in Q,
v =0, onI' =099,

where u the velocity, p the pressure, f a regular function in the sapce (L?(2))% and
A R4 — [R¥*4 is Lipschitz continuous function satisfying, there are positives
constants ¢; and ¢y such that: for all a, 3 € R?*¢,

(1.1) alla=BII° < (Ala) = A(B)) : (a = B),
and
(1.2) [A(c) = AB)| < ezl — B,

(Colon denotes the scalar product in R*?).
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This kind of nonlinear Stokes problem appears in the modeling of a large class
of non-Newtonian fluids. In the particular case of Carreau law for viscoelastic flows
( see, e.g. [11]), we have

Va € R, A(a) = (ko + k1 (1 + [|a]?) =),

with kg > 0,k; > 0 and 8 > 1. It is easy to verify that the Carreau law satisfies
(1.1) and (1.2) for all kg > 0 and § € [1,2]. In particular, with § = 2 we find the
usual linear Stokes model.

In the sequel, we denote by W*P(Q) and W*P(T"),0 < s and 1 < p < +o0, the
usual Sobolev spaces (see e.g [1]), endowed with the norms ||.||sp0 and ||.||sp,r
respectively. For a non integer s, we use the notations |.|s, o and [.|spr, given
explicitely, as following:

_ |[DFly(z) — DElu(y)||P
if p < +o0, P = // dzdy,
hpa QxQ |x —y|¥ree

. Dbly(z) — Dlsly P
if p = oo, (W] o0 = SUP [|Do(z) . @)l
axQ |z —yl

Dlsl — Dl P
‘ |pp // || — 1+U( )H dxdy,
»r I'xI |x—y| pa

where [s] is the integer part of s and o = s — [s]. H*(Q) is the usual space W*?2
and H(Q) the closure of D(Q) in H*(Q).

In order to state the precise form of our estimator, we specify the hypothesis on
the class of finite elements spaces under questions. Let 7; be a family of regular
triangulations by triangles or tetrahedron of © in the sens of Ciarlet [7], We denote
by N the set of all nodes in 73, and by K := AN/T the set of free nodes. Let
¢q denotes a hat function for a € N which is piecewise linear function such that
Vb €N ¢o(b) = 6%, by wy := {x € Q, ¢o(x) > 0} we denote the patch of a € N
and we set h, := diam(w,). Finally, we denoted by £ the set of all edges ( faces )
of 7}, and by &; the set of all interior edges ( faces ) of 7j,.

We introduce the following spaces:

and

Vi = {’Uh S LQ(Q)7 VT € 77“ Uh|T S (Pl(T))d,Ve c 51, /[’Uh]dO' =0,

e

Ve edge (face ) C T /vhda =0},
and
Mh = {C]h S L[Q)(Q)7VT S %la qh|T S Pl(T)}7
In the sequel, we consider (up,pn) € (Vi)4 x My, verifying: Yo, € (Vi N HE(Q))4,

(1.3) Z /AVuh ).V, — Z /phdwvhdxf/fvhdz

TeT, TeT),

For abbreviation, we frequently write ||.||1,p0 = { Z H||%T}% and neglect
TeT,,TCw
the domain when w := € if there is no risk of confusion, and we denote by div,, the

operator defined from
H(div;Tp) == {o € (L*()*% VT € T, 07 € H(div;T)}

onto L?(Q)? by:
VT €71,, divpo=dive onT.
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Furthermore, we define, using classical notations, the following residuals:

o= |divusl§ 7,
TeT,
=Y h2|divn(A(Vun) — prlda) + f
z€)€1
T di AV —ppld dz||?
meas(w;) /T( W(A(NVur) = prlda) + flde|s.,,
TeT, ,TCw,
g = helll(AVun) = prlda)-ngl|l} .
Ee&
i o= hpllunleld g
Ee&E

where [r.ng| is the jump of r.ng across an interior element boundary of E € &,
and is defined by [r.ng] = 0 on I', and [vp]g is the jump of v;, across an interior
element boundary of E € &7, and is defined by (vs)p on T

In the sequel, we denoted by C, Cy, Cq, .. various positive generic constants not
dependent of {hr}rer, and not necessarily the same.

Our main results is

Theorem 1.1. Let (up,pp) € (V)¢ x My, verifying (1.3), we have

4

o < C{>_n?}e.

=1

|u—un|in + P — P

Moreover, for all T € Ty, for all E € £, we have

|divup|lo,r < Clu — up|1,7,

hz||div(A(1Vuh) —pnldg) + f
¥ (div(A(Vup) — pplda) + fda|? .

meas (Wz) T€Th,TCw: T

1
< C{lu —upl1,nw. + I — prllow. + Rl f — 7/ fdzllow. }s
meas(w.) J,.

VE: =0T MoK €&,
REN(A(Vur) — prlda).nglllog < C{lu—un|inrur + ||p — Prlloruk }

O {R3If — /T fdalZn I~ /T fal)2 0 }E.

measq(T) measq(K)

1
VE := 0T NoK € &y, hE2 ||[uh]|\0,E < C|u — uh|1,h7TUK7
and
1
VE : =0T NT, hE2||[uh]||0’E §C|u—uh|1,T.

2. Efficiency of the estimator

This section is devoted to the estimator efficiency. For this, we give the two fol-
lowing lemmas,the proof of the first lemma follows the ideas developed by Verfurth
[13]:
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Lemma 2.1. Let (up,pr) € (Vi) x My, for all T € Ty, for all E := 0TNIOK € &,
we have

h.||divn, (A(Vun) — prldg) + f

1
- div(A(Vup) — ppldg) + f)dz|2
meas(@.) TET}“ZT@Z T( (A(Vun) = prlda) + fdz|[g.,

1
< O{u—unlipe. +Ip - prllow. +hallf — ———— / fdzlo. )
meas(w.) J,.
and

1
hzlll(A(Vun) — prlda)nglllos
< C{Ju —un|1,n,rux + |Ip — Prllo,ruk }

OIS = e [ falfr 411 -

_ _
easq(T)

s |, faelBc
We have also
Lemma 2.2. Let (un,pn) € (Vi) x My, for all T € Ty, for all E € £, we have
| divup|lor < Clu — up|1,7,

IfE = 8T N 8K S 5], h};§||[uh]||0,E § C|u — uh|17h,TuK,
and )
]fEZZ 8TQF, h;§||[uh]||07}3 < C’|u—uh|17T.

Proof. First, it is clear that
|divup|lo,r < Clu — up|1,7.

Let us prove the second estimation. Let E := 0T NIK € &;, since uy, € (Vh)d and
u € (HE(Q))?, we have

[ Awnyir = o = [ (e~ ubio
then

1
hi® [[un —w = celllo.e

_1
hig® [[unlllo.z

N

_1
< hp?([(un)ir —u—cellog + [|(un)|x —u—cello,r),

where
1

1
.= —ulMdo = ———— —u}ldo.
" meass_1(E) /E{(uh)lT updo measq—1(FE) /E{(uh)lK updo
Using trace lemma, and the fact that
/ {(up)jr —u — cc}do = / {(un)|x —u —ce}do =0,
E E

we obtain

1
hg® {l[(un)jr = u = cello.g + [[(un)jx — v = cello,p}

Clu —upl1,n, 10K -

_1
hg® [lunlllos <
<

fEe&ENIT with T € Ty, and E C T, since u = 0 on I' and / updo = 0, using
E
the same arguments, we have

_1 _ 1 _1
hg? lunlllo.g == hg?unllo.e = hg® lun — ullo,g < Clu — up|i n 1
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3. Reliability of the estimator
Before proving the reliability of the estimator, let us recall the following [5]:

Theorem 3.1. There exist a linear mapping T : (H}(Q))? — (Vi)4 N (HE ()<,
bounded if domain and space range are endowed with H'-semi norms, which satis-
fies, for all ¢ € (HZ(Q))%:

{3 Wdllo -T2 +}2 < Clolia
TeT;,

and

D" hptle —Zol3 5} < Cloha.

Eecg
In addition, there holds for all R € (L?(Q))4

1 1
_ < 2 IR —— 2 3.
| 7 Zoyda < Clolal 3 KIR - 2o R

We need also the following technical lemma.

Lemma 3.1. There exzists a linear mapping R = (V)¢ — (V)% N (HL(Q))?,
satisfies the following estimate:

1_
‘v’uh S (Vh)d, VTE’];“I:O,L \uh—'Ruh\l,T SC Z h% l||[uh]E
EcE,ENT#0

0,E-

Proof. Let R the operator, defined by: Yu;, € (V3,)¢ , Ruy, is the unique element
of (V)N (H(Q))? where
1

Vz € K, Rup(z) = Y

Z (un) x (%),

KeM,

and M, :={T € Tp,, 2 € T}. Let T € Tj,, we denoted by Vr the set of the vertex
of T. On one hand, we have

#% > ((un)yr(2) = (un) i (2))]
? KeM,

<supgeens, |(un)ir(2) — (un) x (2)]

Vz € Ve NEL |(un)r(2) — Run(z)| =

and
Vze ENVyp with E CT,|(un)r(2) — Run(2)| = [(un)|r(2)] < ||[un]e
Since up — Rup, € Pi(T), we have

[(un)ir = Runlloser = sup |(un)r(z) = Run(z)| < > lunlelo.ce.e
zeVr Beg  BNT0

0,00,E-

using the inverse inequality, we obtain
1—d
(3.1) I(un)ir = Runllocor <C D> hg? |lunlello.e-
Ec&E,ENT#D

On the other hand, using again the inverse inequality, we have

4y
(3.2) [ (un)jr — Runllir < Chi |[(un)r — Runllo,00,7-

Finally, by using (3.1)-(3.2), we obtain the result. 0
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Lemma 3.2. We have the generalized inf-sup condition:

for all ((u,p), (v,q)) € ((Hg(Q))* x L§(2))?,

APS
lu—vli0+I[p—glloa <C sup e
(wsei@)x @) oo+ vhe’
where
APS = / ((A(Vu) — A(Vv)).Vwdz — / (p — q)divwdz +/ s div(u — v)da.
Q o 0

Proof: Let (,4) € (H}(2))? x LZ(Q) the unique weak solution of Stokes problem
Aw—-V§g=0 and diviwv=p—gq on .

we set w = y(u — v) — w, with v > 0. On one hand, we have

/ ((A(Vu) — A(Vv)).Vwdx — / (p — q)divwdz
Q Q

/ A(Vu) — A(Vv)).V(u—v)de — / (p — @)div(u — v)dz
Q
- / A(V0).Vide + o = alR g
Since
7 [ (AT0) = AT0).9 (0 = 0)da = erlu = of g
Q
/((A(Vu) —A(Vv)).Vide < co|w|i,olu— v 0
Q
cac 1
< lu—vffa+;lp
and
7 [ o= adivtu =)z < Al o(u =)o
) 1
< Pldiv(u—0)[ga+ 7l - dle,
we obtain

/Q (A(Vu) — A(Vv)) Vwdz — / (p — q)divwdz

Q
> ceylu—vlf g — ||P qll%g V2| div(u — v)
Ca2C3
_TU_UH,Q ||p ,Q+||p—q
which implie
C2C3
(ey — T)HU —vl} QT 1 ||p - (I||(2),Q

< / ((A(Vu) — A(Vv)).Vwdx — / (p — q)divwdz + || div(u — v)||gg
Q Q
On the other hand, since

kl )7

(Ju =v|ia+lp

and
s = div(u —v) € LE(),
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we deduce for ¢y = cocg that

/Q (A(Vu) — A(Vv)).Vwdz — /

(p — q)divwdz + ~* / sdiv(u — v)dx
Q

Q
= C(lwh,o + lIslloe)(ju = vho+ llp = qlloe)-
which implies

APS
lu—vli0+I[p—glloa <C sup el
(w,s)e(HL @) x (2@ [dllo,e + vl

0
With slightly modification of last argument we can prove more general results,

more precisely, let {Q;}_; a domain decomposition without overlapping of 2. We
I

introduce the bilinear form defined on (H(Hl(Qi))d) x L(Q) by
i=1
I

V((u,p); (v,0)) € (JTH () x L2(Q))%,

i=1

I I I
a((u,p); (v,q)) = Z/Q Vu.Vudx — Z/Q pdivvdx + Z/Q qdivudz.
i=178% i=17%% i=175%

We have the following

I
Theorem 3.2. Let (X, M) two subspaces of H(Hl(ﬂ))d and L*(Q). We assume
i=1
that there exist two spaces (X, M) such that:

(1) X c X c T, (H (Q)* and M c M C L2(%).
(2) There exist C > 0 such that

I
Z/ qdivvdz
i=1 /%%
I

lalloa{d_ vl }
i=1

>C

inf sup
qeEM UEM

Nl

3)
I
— 1
Ifve X and {Z v[§,}? =0 then v=0.
i=1
Then, there exist a constant Cy such that, for all ((u,p);(v,q)) € X x M, we have

a((u, p); (w, 8)) — a((v,q); (w, s))
I
Isllog + {3 lwlf, }

I
1
O lu—vld,}2 +llp—dglloo <C>  sup
i=1 (w,s) X xR

)

where
R:={q € L*(Q); there exist u € X such that ¢ = divu on Q;,i=1,..,I}.

Now we are able to prove the reliability of our estimator, more precisely, we have



228 A. AGOUZAL

Theorem 3.3. Let (un,pn) € (V)¢ x My, verifying (2.1), we have

4

1
lu—unlin + Ip = prlloe < O nite.
=1

Proof . Since (Rupn,pr) € (H}(2))? x LE(Q), let us remark that

lu — Rupli,0+ |lp — prllo,a <
(3.1) c sup a((u, p); (v,q)) — a((Run, pn); (v, 9))
(v.) €(HL ()4 x L2 () [vl1,0 + llgllo.e ’

where a(.;.) is defined by

¥((u,p): (v,9)) € (H5(2))? x L§(Q))?,

a((u,p); (v, q)) 2/.A(Vu).Vvdx—/pdivvdx—l—/qdivudx.
Q Q Q

On one hand, since divu = 0 on 2, we have

o,7|ldivRup]lo,r,

|/ gdiv(u - Rup)dz| < C 3" |ql
Q

TeT,
using Lemma 3.1, we obtain

VT € Ty, ||divRupllor < ||divupllor + ||divuy, — divRug||or
1

(3.2) < |ldivupllor +C D by llunlello.e
ecEeNT#)

then
|/mmm—nwmﬂ§cwmmﬁ+ﬁﬁ.
Q

On the other hand, we have

/ (A(Vu) — A(VRup,)).Vodr — / (p — ppr)divvdz
Q

_ /T (A(Vu) — A(Vup)).Vodz '

et

+T;h T(A(Vuh) — A(VRup)).Vdz — /Q (p — pn)divvdz
- _T;h TA(Vuh).Vvdx—i— /Q prdivoda

+ /Q fvdx—i—T;h /T (A(Vup) — A(VRun)) Voda.

First, Using lemma 3.1, it is clear that

(3.3) | Z /T(.A(Vuh)—.A(Ruh))Vvdx\ < Z lun, — Rup|1,r|v)1,r < Cna.lv|1q.

TeT), TeT),
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Since (up, pr) satisfies (2.1), by elementwise integration by parts, we infer

Z /A(Vuh).Vvdx—/phdivvdx—/ fvdx
T Q Q

TeT)

Z A(Vup).V(v—Tv)dx — /Qphdiv(v — Zv)dx — /Q flo—Zv)dx

TeT, T
Z (=div(A(Vup) — ppldg) + f)(v — Zv)dx

TeT, ' T

+ Z /E[(A(Vuh) — prldq).ng)(v — Zv)do,
EcE

Recall that [r.ng] is the jump of r.ng across an interior element boundary of E € &,
and is defined by [r.ng] = 0 on I'. From Cauchy inequality and using theorem 3.1,
we conclude

(3.4) | Z /TA(Vuh).Vvdx—/Qphdivvdx—/ﬂfvdﬂ <CmE+m)3v

TeT,

1,9

Finally, since
lu —uplin < |u—Runli,o+ |un — Run|ip < |u—Runli,o + Cna,

using (3.1)-(3.4), we obtain the result. 0

4. Applications.

4.1. Nonconforming Approximations. We consider the discrete problem:
Find (up,pn) € (Vi)? x M, such that:
Yo, € (Vi)4, Z /TA(Vuh).Vvhdac — Z /Tphdivvhdx = /vahdac7

TeTn TeT),

Vaqn € Mh, Z gndivvpdx = 0,
TeT, T

where
My = {qn € L§(Q); VT € Tp,, {on}r € Po(T)}-

We assume that, for all v, € (V4)* and T € Tj,, the matrix A(Vvy)|r is matrix
with constant components. It is clear that this problem has unique solution (up, pp)
([4],]10]), moreover (up,pn) satisfies (1.3) and

VT €7, divup,=0 onT.
Let 1T : (HE(Q))? — (V4,)9 the linear operator defined by:

Yo € (HY(Q)Y,VE € €, / (TTv — v)do = 0.
E

First, we have

Lemma 4.1. The linear operator 11 satisfies, for all v € (H(Q))? and for all
TeTy:

Vs, € (PO(T))dXd, / sp.V(v —Tv)dz = 0,
T

Yay, € Po(T), / grdiv(v — Iv)dz = 0,
T
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and

VR e (L*(Q))?, |Z/Rv—

TeT, TeTh

Proof First, let v € (HE(Q))¢ and s, € (Py(T))?*%, by elementwise integration by
part, we infer

/ sp.V(v—Iv)de = - / (v — w)divspdx + / (v — w) sp.ndo
T T aT
= / (v —Iv)sp.ndo = 0.
orT
Again, by elementwise integration by part, we infer
Yy, € Po(T), / gndiv(v—TIv)dx / Vap.(v— Hv)dx—i—/ gn(v—Tv).nyrdo = 0.
orT

Let R € (L*(Q))4, since
v —Iv[lo,r < Chrl|v|y,r,

we have

|Z/ 'U*HUd.’,U‘<C|U|1Q{Z h?

TeT, TeT,

Modification of the last arguments give to us the following

Theorem 4.1. Let (up,py) € (Vi)¢ x My, the solution of the the problem (Py) ,
we have

w—wnlin+ llp = prlloe < C{nd + Y b3l fllor}.
TeT,

Moreover, for all T € Ty, for all E € £ , we have

IfE = BT n 8K € g], h;én[Uh]“())E S C|'LL — uh|1,h,TuK,

IfECornT, hg*|l[un]llo.r < Clu—unlir,
and
hellfrllor < C{lu —unlliz + [lp — prllor + hellf — frllor}

Proof . Let us recall that ( see Lemma 3.2. ):

lu — Rup s,
(4.1) c sup a((u, p); (v, q)) — a((Run, pn); (v, q))
(0,0)€(HL(Q))Ix L2 () [v]1,0 + llgllo.

As in Theorem 3.3, since divup, = 0 on T € 7T}, on one hand:

(4.2) |/ qdiv(u — Rup)dz| < Cllgllo.ana-
Q
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On the other hand, we have
/Q (A(Vu) — A(VRuy)).Vodz — /Q (p — pn)divvdz
Z /T(A(Vu) — A(Vuy,)).Vodz — /Q(p — pp)divedz

TeT,

+ ) /T (A(Vup) — A(VRup)).Voda

TeT,

— Z /A(Vuh).Vvd:v+/phdivvdm+/ fvdx
T Q Q

TE,Z—}L
+ Z /(.A(Vuh) — A(VRuy))Vudz.
TeT, T
First, we have
(4.3) 'y / (A(Vun) — A(Rup))Vodz| < Cn[oh.o.
TeT;, ' T

Since (up,pr) is solution of discrete problem, we have

Z /A(Vuh).Vvdxf/phdivvdxf/ fodx
Ter, /T Q Q
(4.4) = Z /A(Vuh).VHvdm—/phdiv(Hv)dx—/ fodx
Tez, T Q Q
= [ S —v)de < Clolio{ > W7[IfI0}?.
Q2 TeT,

Finally, since
lu —upl|in < |u—Ruplio+ [un — Runlin < |u—Rupli,a + Cna,

using (4.1)-(4.4), we obtain the upper bound.
The lower bound can be proved using the same arguments as in section 2, and
so the details are omitted. 0

4.2. Dual Mixed Approximation. In this section, we assume that there exist
a function ¢ : IR¥?% — IR such that:

VYa € R™, A(a) = ¢(]|a|)a.

The mixed dual formulation of continuous problems is [9]: Find (¢,0,%,p,() €
(L2(2))™4 x H(div; Q) x (L?(2))? x L?(Q) x IR such that

Vs € (L2(Q)?x4, /A(t).sda:—/U.sdm—/ﬁtmce(s)dx:(),
Q Q Q
Y(r,q) € H(div; ) x L?(Q), —/ Ttdx—/qtrace(t)da:
Q Q
—/ﬂ.dim’dx—l—/ Ctrace(T)dx = 0,
Q Q

V(v,n) € (L?(Q))¢ x R, —/ UdiUUdﬂ:—!—/ ntrace(o)dx = / fvdz.
Q Q Q

In this section, we give a priori and a posteriori error estimates without using the
two-fold saddle point theory [9].
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Lemma 4.2. The mixed problem has unique solution
(t,o,u,p,¢) € (L*(Q)¥4 x H(div; Q) x (L*(Q))? x L*(Q) x IR,
where,
t=Vu , o=Au)—pldy , u=u , p=p and (=0,
and (u,p) is the weak solution of model problem.
Proof . Tt is clear that (¢,0,%,p, (), where
t=Vu , o=A(u)—pldg , u=u , p=p and { =0,

is weak solution of mixed problem. Let us prove the uniqueness.
Let (t;, 04,1, D;,Ci), i=1,2, be two weak solutions of mixed problem, we set:

t=t1—t2 ,0=01—02 ,u=u; —U2 , p=p; —Pp and ( = (1 — Ca.
First, we have

Y(v,n) € (L*(Q)? x R, —/ vdivodx —|—/ ntrace(o)dx = 0,
Q Q

which implies

divo =0 on £ and /trace(a)dx =0.
Q

Since Y(7,q) € H(div; Q) x L*(Q),

—/ Ttdx—/qtrace(t)dx—/ﬂ.didew—i—/ Ctrace(T)dx = 0,
Q Q Q Q

for 7 = o, and using the fact that
dive =0 and / trace(o)dz =0,
Q
we have
trace(t) =0 and / t.o = 0.
Q

By choosing the test function s = ¢ in the first equation, we obtain

/Q(.A(tl) - A(tg)) . (tl — tg)dw = O7

and then ¢t = ¢t; — ¢t = 0. Again, by choosing the test function s = o + pld, in
the first equation , we obtain o + pIdy = 0 on Q. By choosing s = Idy in the first

equation, we have
/ trace(o)dz + d/ pdx =0,
Q Q

which implies p € L3(Q), and since o € H(div;2), then dVp = —divo = 0, which
implies p = 0 and then o = 0.
Finally, Let (w, q) € (H}(Q)) x L3(2) the weak solution of
—Aw+Vg=u and divw=0 on £,
we set 7 = Vw — qldyg, it is clear that

T € H(div; Q) / trace(t)dr =0 and —divt =u on .
Q

since

V3 € H(div; Q) ; / udivfBdx + C/ trace(B)dz = 0,
Q Q
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we have, using 8 = 7 and 3 = Idy as test function:
u=0 and (=0.

Which prove the uniqueness of the mixed problem.
To be able to state the discrete mixed formulation, we introduce the finite ele-
ments spaces:

X17h = {S S (LQ(Q))dXd LS|T € (Po(T))dXd VT € /Th},
Mf,h = {T = (Tij) c H(dlU,Q) : (Ti,1~Ti,d)|T c RT()(T) = (Po(T))d + xPo(T)
i=1,..,d, VT € T},
Mh = {qh c LZ(Q)7 Gn|T S Po(T), VT € ’Th, },
and
My = {ve (L*(Q)* ,vr € (P(T))% VT € Tp}.

The discrete mixed problem is
Find (th,O'}“ph?ﬂh,C) S Xl,h X Mf,h X Mh X M;: x IR such that

Vsp, € Xi,h, /A(th).shdx—/ah.shdac—/phtrace(sh)daz =0,

Q Q Q
V(Th, qn) € M7 X Mp, —/ Ththdl'—/ gntrace(ty)dx
Q Q
—/ uy,.divrpdr —|—/ Cntrace(my)dz = 0,
Q Q

Y(vn,m) € M x IR, —/ Uhdivahdx—i—/ ntrace(ah)d;c:/f.vhdx,
Q Q Q

To prove the existence, uniqueness of discret solution and to obtain a priori and a
posteriori error estimate. We consider first, the discrete problem:

Find (up,pn) € (Vi)? x M, such that:
Yo € (V3,)4, Z A(Vuy,).Vuopde — Z /phdivvhdx
T T

Te€Th TeTh
(Ph) = fhvhdmv
Q
Van € Mh, Z / qndivvpdxr = 0,
TeT, ' T
where

My, = {qn € L3(); VT € Ty, vnr € Po(T)},
and

1
T € T, = — T.
VI'€Tn,  fn mes(T)/dex on

Theorem 4.2. The discret problem (Py,) has unique solution (up,, pp) € (Vi)%x M,.
Moreover, if the weak solution (u,p) of continuous problem satisfies

o= A(u) — pIdy € (H*(Q))¥*? N H(div; Q),
with s €0, 1], we have
lu—unlin+ I = palloq < Ch°llollse + £ D BEIFIG2}2)-
TeT)

Let us remark that the solution (up,pr) of (Pr) does not satisfies (1.3), but the
modification of the last arguments give the following
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Theorem 4.3. Let (up,pr) € (Vi)% x My, the solution of the the problem (Py)
we have

1 1
lw—unlun + o= prlloe < C{mi + D h3IfllF}? +{ D b2l — fulld )
TeT, TeT,
Moreover, for all T € Ty, for all E € £ |, we have

IfE = 8T08K € 5], h};§||[uh]||0,E § C|u — uh|17h,TuK,

_1
If E.coTnT, hE2||[uh]||0’E §C|u—uh|1’T,
and
hrll fallor < C{lu —unllvr + llp — pallor + kel f = fallor}-

To study the mixed formulation and to adapt the a posteriori error estimator to
it, we set
frn X (x—x4)

d )

where x4 is the barycenter of T' and by using the notations:

Vf,g € R (f x 9)ij = figj, 4,5 =1,..,d.

VT €Ty, on=A(Vup) —ppldg — onT

)

We have

Lemma 4.3. The tensor oy, satisfies
op € H(div; Q) , —divep = fr, on Q  and /trace(oh)dm =0.
Q
Proof: Remark that

VT € Tp, o € (RTH(T))?,
Let e=0T1 NOT5 € & and vy, € (Vh)d such that:

VfeE, /vhdcr =/
f

Since
T — )

VT € E,Vvh € Wi, / L.Vvhdx =0,
T

d

and using Green formula, we have:

2
[on-n]e = /g[oh.n]vhdo = ;{/Tl (o1, Vop, + vpdivoy)dx}
=S A - ptas - 22O g0, [ e
i=1 7T i

2
= Z{/ A(Vup).Vuy, —/ phdivvhdx—/ fropdz} =0,
i=1 JTi T; T;

then oy, € H(div, Q). Finally, it is clear that —divoy, = f5 on €, and since
vT € Ty, divup, =0 on T,

we have

/Qtrace(ah)dm = Z {/T a((|Vuh\)divuhdx—d/Tphdx—/T de =0.

TeTy
0
Concerning the existence and the uniqueness of mixed discrete problem solution,
we have:
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Theorem 4.4. Let (up,pp) € (Vh)dxMh the unique solution of the discrete problem
(Pr). We set

vT'€T,, tn=Vup, onT,

1
—_— d T.
mesq(T) /Tuh Looon

Then (tn,on,ph, U, =0) € Xy X MY, x M, x M} x IR is the unique solution
of the following mized problem:

VT €71, up=

Find (tn,on, pr, n,¢) € X1, X MYy, x My x My x IR such that
Vsy € X1 h, / A(tp).spdx — / op.Spdr — / pritrace(sy)dx = 0,
Q Q Q

V(7h, qn) € MY x My, —/ Ththdl'—/ gntrace(ty)dz
Q Q
—/ﬂh.divmda:—l—/ Cntrace(m,)dx = 0,
Q Q

Y(vn,m) € M x R, —/ vhdivahdx—i—/ ntrace(op)dx = / foondz,
Q Q Q

Proof . First, recall that o, € M. Using lemma 4.1, we have:

Y(vp,m) € Mf % ]R7—/ vhdivohdx—i—/ ntrace(op)dxr = / foopda.
Q Q Q

On the one hand, since VT' € T}, trace(ty) := divup, = 0 on T, we have

Vg, € My, | / gntrace(ty)dx = 0,
Q

and, using Green formula, we have:

VThEMg7 /Th.th-"-/ﬂhdi’UThd‘% = Z{/ Th.Vuhd:v+/uhdivThdx}
Q Q fet I T
h
= Z / Th-n . Updy
TeT;, 7T
=1 Z / Thn . [up]dy = 0.
TeT) oT

On the other hand Vs, € Xj,

/gb(chH)th.shdx—/ah.shdac—/phtrace(sh)dx
Q Q Q

/Q (OUtnl)tn — o — pnlda)snda
B O AL P
Q

d
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Then (tn, on, pn,Un, ¢ = 0) € X1 5 x M7, x My x M} x IR is solution of the following
problem:
Find (th,Jh,ph,ﬂh,C) € X17h X Mih X Mh X M;: x IR such that

Vsp € X1 p ,/A(th).shdx—/ah.shdx—/phtrace(sh)dxzo,
Q Q Q

V(7h, gn) € My x My, ,—/ Ththdx—/qhtrace(th)dm
Q Q
—/Hh.divThdz+/ Chtrace(m)dx = 0,
Q Q

Y(vp,m) € Mj* x R ,—/ vhdivahdx—i—/ ntrace(op)dx = / foopdz.
Q Q Q

The uniqueness of discrete solution can be proved using the same ideas as in Lemma
4.2, we need only to prove that If (up,() € M} x IR satisfies:

VﬁhEMg, /

Q

updivBpdr + | Ctrace(Bp)dx =0,
Q

then (up, () = (0,0).
Let (w,q) € (H}(2))? x LE(Q) the weak solution of
—Aw+Vqg=up and divw=0 on €,
we set 7 = Vw — qldg, it is clear that
T € H(div; Q) and — divt = up on .
Since 7 € (H*(2))™ N H(div; Q) with s > 0, we can define the equilibrium inter-
polation II,7 of 7 on M [2]. We set
1

= H _—_—
i M dx measq(§2)

(/ trace(Ily7)dx)Idg,
o

we have
divt, = divll,T = —u;,  and / trace(ry)dx = 0,
Q

By choosing 8y, = 7, and 3, = Idy as test function , we obtain (up,¢) = (0,0). O

Lemma 4.4. Let (up,pn) € (Vi) x M, the solution of nonconforming discrete
problem and

(th, OhsDp, Un, C) € X1 X M7, x My x M{* x IR the solution of discrete mized
formulation, we have l

lu —unlin + 1P —pulloe < llo—oanlloa+ It —tulloo + llp = Drlloc

1
< C{lu—unlin+ lIp = palloa} +{ Y PFIFIS )2
TeT,

Proof . On one hand, since

VT € Tp, tp =Vu, andp, =pp on 7T,

we have
[t —tullo,o + llp — Prllo,e = [u —unli,n + |lp — prllo.o;
and then
1
lu—unl1n+lp=palloo < {llo—anllootlt—talloo+Ip—Pulloo}+{ D PZIfIE >
TeT),
On the other hand, since
X —
VT €Ty, op=A(Vuy) — pnldy — fox@=zg) o p

d
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we have
1
lo = anlloe < C{lu—unlin + lp = palloe +{ > BFlFI5.2}2,
TG'Z’}L

Using the last inequalities, we have:

lo—anllo.o+lt—trllo.o+Ilp—Dullo.o < C{lu—unli n+|p—pn

o} +{ D WRlfIR )

TeTy

0
In the sequel, we set

vI' €T, t,=Vup, onT,
1
vT € Tp, thi/ updx,, onT),
mesq(T) Jr
where (up, pn) € (Vi,)? x M, is the unique solution of the discrete problem (Pr).

Lemma 4.5. Let (up,pn) € (Vi) x My, the solution of nonconforming discrete
problem and

(th, OhyDp, n, C) € X1p X M7, x My, x M x IR be the solution of discrete mized
formulation, we have '

1
lu—nlloe < Cllu—unlin+{ > bTltalE 2},
TeTy
and
VT €T, hrltullor < C{|t —tullor + llu —Tnllor}

Proof . One one hand, since

1

VT €7,, t, =Vu, andu, = 7/ updr on T,
measq(T) Jr

we have
VT €T, up=Tp+ Vup X (x —xy) =Tup+1t, X (x —x4) onT,
then

1
lu—Tnllo.e < llu—unllog + llun — Tnllo.o < Clu—unlin+{ Y PElltallsr}7-
TeT,

On the other hand, following [12], let by the bubble function on T’ with maxr by = 1.
Then the norms ||.||o,7 and ||bz.|jo.r are equivalent on (Py(T))?*4!, and so

”thHg,T § C/ th(bTﬁh)dSU = C{/ (t — th)(thh)dx -I—/ t(thh)dl'.
T T T

since / div(brty)dz = 0 and uy, € (Py(T))?, we have
T

/Tt(thh)d{E: /TVu(thh)dx: —/Tudiv(thh)dx:/(ﬂh—u)div(thh)dm,

T
now using the inverse inequality ||div(brtp)|lo.r < Chy'||thllo.r, we have

hrlltallor < C{[It —tn

o7 + lu —nllor}-

0

Now, we are able to give a priori and a posteriori error estimator for mixed

formulation, more precisely, on one hand, using Theorem 4.1 and Lemma 4.4, we
have
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Theorem 4.5. Let (tn, on, Pp,n,¢) € X1p x M), % My, x M} x IR the solution
of discrete mized formulation, we have If the weak solution (u,p) of continuous
problem satisfies

A(u) — pIdy € (H*(Q))™ N H(div; ),
with s €]0, 1], we have
lu=Tnllo.o+Hlo—0nlloa+t—tnlloa+p—Dulloa < Ch*lolaat+{ > WIfI3,}2).
TeT),

On the other hand, using Theorem 4.3, Lemmas 4.4 and 4.5, we have

Theorem 4.6. Let (t,,0p, Dy, Un,¢) € X1,n X Mﬁh X M, % M x IR the solution
of discrete mixzed formulation, we have

lo = onllog + llu =Tnllo,o + It —tallo.o + Ip = Ballo.o

< Cmi+ D BEIAIE s+ D0 hltallE otz + (D kIS — fald )

TET, TET, TET,
Moreover, for all T € Ty, for all E € £ , we have

hrlltllor < CLIt = trllo,r + [[u —Tnllor}-

_1
IfEI: 8T06K681, hEzmuh}HO,E§C|t_th|0,TUK7

_1
IfEIC ornr, hEQH[uh]HO,E §C|t—th|0,T,

and

hrllfullor < C{It = tallor + lIp = Prllor + hrllf = fallor},
where up, s defined by:
VT €T, up =1+t X (x—x4) onT.

4.3. Finite Element Pressure Gradient Stabilization. In this subsection, we
consider the Galerkin weighted least squares stabilizations (GLS) for our model
problem ( see e.g [3]). First, we set

Wi = (V, nHY Q)Y and Ny, = M, 0 HY(Q).
The discrete problem is
Find (up,pn) € Wp x Nj, such that:
Yoy € Wh, /Q.A(Vuh).Vvhd:c — / prdivvpdr = /vahdx,

Vqn € Ny, /qhdivvh—l— Z or | Vpr .Vapdr = Z (5T/ f-Vapdzx
Q TET, T TET, T

(Pn)

where, for all T' € 73, ClhzT <éor < Cgh%.
The discrete problem has unique solution (up,pr) € Wy X Np, which satisfies
(2.1) and uy, € (HE(Q))4. Using Theorem 1.1, we have the following

Theorem 4.7. Let (up,pp) € (Wi)? x Ny, the unique solution of (Py), we have

3

1

L) + 1P = palloe < C{_ni}>.
=1

Moreover, for all T € Ty, for all E := 0T NOK € &;, we have

|lu — up

HdivuhHQT < C|U - Ufh|1,T7
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hz||di'vh(A(VUh) —pulda) + f—
> [ @A) - pulda) + D),

meas(w:) TeT,,TCw,
1
< C{lu—unli,nw. + 1P = prllow. +hlf - 7/ fdzllow. },
meas(w.) J,.
and
1
lIl(A(VuR) = prida).nglllo,e < C{lu —unli,nrux + [|p — prllo,ror}
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