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Abstract. Several convergence and stability issues of the balanced implicit

methods (BIMs) for systems of real-valued ordinary stochastic differential equa-

tions are thoroughly discussed. These methods are linear-implicit ones, hence

easily implementable and computationally more efficient than commonly known

nonlinear-implicit methods. In particular, we relax the so far known conver-

gence condition on its weight matrices cj . The presented convergence proofs

extend to the case of nonrandom variable step sizes and show a dependence

on certain Lyapunov-functionals V : IRd → IR1
+. The proof of L2-convergence

with global rate 0.5 is based on the stochastic Kantorovich-Lax-Richtmeyer

principle proved by the author (2002). Eventually, p-th mean stability and

almost sure stability results for martingale-type test equations document some

advantage of BIMs. The problem of weak convergence with respect to the test

class C2
b(κ)

(IRd, IR1) and with global rate 1.0 is tackled too.

Key Words. Balanced implicit methods, linear-implicit methods, conditional

mean consistency, conditional mean square consistency, weak V -stability, sto-

chastic Kantorovich-Lax-Richtmeyer principle, L2-convergence, weak conver-

gence, almost sure stability, p-th mean stability.

1. Introduction

There are plenty of numerical methods for systems of ordinary stochastic differ-
ential equations (SDEs)

dXt = a(t,Xt) dt +
m∑

j=1

bj(t,Xt)dW j
t(1)

driven by standard one-dimensional Wiener processes W j = (W j
t )0≤t≤T and in-

terpreted in Itô sense (for the sake of simplicity of this representation), where
a, bj ∈ C0([0, T ]× IRd, IRd). For an overview, e.g. see Kloeden, Platen and Schurz
[8], Milstein [10], Talay [18] or Schurz [13]. However, only a few of them can tackle
the problem of almost sure stochastic stability (as seen section 3) or of invariances
with respect to certain subsets of IRd as commonly met in mathematical finance
or biology. One of the successful approximation techniques in this respect is given
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by the class of balanced implicit methods (BIMs) as introduced by Milstein, Platen
and Schurz [11]. They follow the iteration scheme

Yk+1 = Yk +
m∑

j=0

bj(tk, Yk)∆W j
k +

m∑

j=0

cj(tk, Yk)|∆W j
k |(Yk − Yk+1)(2)

where ∆W j
k = W j

tk+1
−W j

tk
, cj ∈ C0([0, T ]×IRd, IRd×d) with the convention W 0

t = t

and b0(t, x) = a(t, x) along discretizations

0 ≤ t0 < t1 < ... < tk < ... < tnT
≤ T(3)

with both variable or constant step sizes ∆k = tk+1 − tk, finite, nonrandom (fixed)
terminal time T > 0 and maximum step size

∆ = ∆max = max
k=0,1,...,nT−1

|tk+1 − tk|.(4)

For the sake of abbreviation, we use the identities b0(t, x) = a(t, x) and W 0
t = t

throughout this paper. In fact, these numerical methods (2) can be implemented in
explicit form thanks to their linear-implicit structure. Therefore, they are easily and
efficiently implementable. They can guarantee enlarged stability regions compared
to the forward Euler methods with the matrix-valued weights cj ≡ O, j = 1, 2, ...,m
(O denotes the d × d-zero matrix) contained in the family of BIMs (2). BIMs (2)
possess the one-step representations

Ys,y(t) = y + M−1
s,y (t)

m∑

j=0

bj(s, y)(W j
t −W j

s ) with(5)

Ms,y(t) = Id +
m∑

j=0

cj(s, y)|W j
t −W j

s |(6)

while assuming the existence of M−1
s,y (t) for all 0 ≤ t− s ≤ δ0 ≤ T and all y ∈ IRd

and all s, t ∈ [0, T ], where Id denotes the d × d unit matrix of IRd×d. Using the
one-step representation (5), the continuous polygonal representation of the scheme
(2) can recursively be written as

Y0,y0(t) = Yk + M−1
tk,Yk

(t)
m∑

j=0

bj(tk, Yk)(W j
t −W j

tk
) if tk ≤ t ≤ tk+1(7)

for all times t ∈ [0, T ], started at Y0 = Y0,y0(t0) = y0 ∈ IRd, where we have the
identity Y0,y0(tk+1) = Ytk,Yk

(tk+1) = Yk+1 for all k = 0, 1, ..., nT − 1.
The main interest of this paper is to prove rigorously convergence and stability of

BIMs (2) applied to systems of SDEs (1). In detail we are going to discuss the issues
of almost sure stability, exponential p-th mean and weak V -stability, conditional
mean consistency with rate r0 ≥ 1.5, conditional mean square consistency with
rate r2 ≥ 1.0, global L2-convergence with rate rg ≥ 0.5 and weak convergence
of these methods for the test class C2

b(κ) with coefficients bj ∈ C0
b(κ) ∩ C0

Lip along
nonrandom partitions of time-intervals [0, T ] with both variable and constant step
sizes with maximum step size ∆max ≤ δ0 ≤ min(1, T ). Due to the necessarily
immense volume, we refrain from a systematic comparison study comparing with
the pool of other, commonly known numerical methods in this paper. Such a more
laborious work is left to the future and needs extensive simulation studies.

The paper is organized as follows. After this introduction, Section 2 investigates
the class of BIMs (2) with respect to conditional mean and mean square consistency.
Thereafter, we study weak V -stability, exponential p-th mean and almost sure
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stability of them in Section 3. Thereafter, we deal with a p-th mean boundedness of
BIMs (2) which is needed to prove its maximum rate rw = 1.0 of weak convergence
later. Global convergence issues are the main topic of the closing Section 5. First,
we present estimations of their L2-convergence rates using the axiomatic approach
by the stochastic Kantorovich-Lax-Richtmeyer principle as presented in Schurz [13,
14, 15, 16]. We close this paper with some remarks on weak convergence with global
rate rw = 1.0 and implementation issues (i.e. how to choose the weights cj).

2. Conditional Mean and Conditional Mean Square Consistency

Consider the following definitions. Throughout the paper, fix the time interval
[0, T ] with finite and nonrandom terminal time T . Let ‖.‖d be the Euclidean vector
norm on IRd and M2([s, t]) the Banach space of (Fu)s≤u≤t-adapted and continuous
stochastic processes X with finite norm ‖X‖M2 = sups≤u≤t IE ||X(s)||2d < +∞.

A numerical method Y with one-step representation Ys,y(t) is said to be mean
consistent with rate r0 on [0, T ] if ∃ Borel-measurable function V : IRd → IR1

+ and ∃
real constants K0 ≥ 0, δ0 > 0 such that ∀(Fs,B(IRd))-measurable random variables
Z(s) with Z ∈M2([0, s]) and ∀s, t : 0 ≤ t− s ≤ δ0

||IE [Xs,Z(s)(t)− Ys,Z(s)(t)|Fs]||d ≤ K0

√
V (Z(s)) (t− s)r0 .(8)

Remark. It is well-known from Milstein [10] that the Euler methods are mean
consistent with rate r0 ≥ 1.5 and moment control function V (x) = 1 + ||x||2d for
SDEs (1) with global Lipschitz-continuous and linear growth-bounded coefficients
bj .

A numerical method Y with one-step representation Ys,y(t) is said to be mean
square consistent with rate r2 on [0, T ] if ∃ Borel-measurable function V : IRd → IR1

+

and ∃ real constants K0 ≥ 0, δ0 > 0 such that ∀(Fs,B(IRd))-measurable random
variables Z(s) with Z ∈M2([0, s]) and ∀s, t : 0 ≤ t− s ≤ δ0

(
IE [||Xs,Z(s)(t)− Ys,Z(s)(t)||2d|Fs]

)1/2

≤ K2

√
V (Z(s)) (t− s)r2 .(9)

Remark. It is well-known from Milstein [10] that the Euler methods are mean
square consistent with rate r2 ≥ 1.0 and moment control function V (x) = 1 +
||x||2d for SDEs (1) with global Lipschitz-continuous and linear growth-bounded
coefficients bj .

2.1. The main assumptions. The following list of assumptions is needed for a
thorough and rigorous analysis. Let all expressions K with subscripts below be non-
random real constants, and ||.||d×d represents a matrix norm on IRd×d which is com-
patible with the Euclidean vector norm ||.||d on IRd. Assume that the coefficients a
and bj of SDEs (1) are Caratheodory functions such that a strong, unique solution
X = (Xt)0≤t≤T of related initial value problems for (1) with X ∈M2([0, T ]) exists
and, in particular, we have

(A1) ∃ constants KB = KB(T ),KV = KV (T ) ≥ 0

∀t ∈ [0, T ] ∀x ∈ IRd :
m∑

j=0

||bj(t, x)||2d ≤ (KB)2V (x),(10)

sup
0≤t≤T

IE V (Xt) ≤ KV IE V (X0) < +∞(11)
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with appropriate Borel-measurable function V : IRd → IR1
+.

(A2) The forward Euler method Y E applied to Itô SDE (1) is assumed to be
mean consistent with rate rE

0 ≥ 1.5 and mean square consistent with rate
rE
2 = 1.0 with respect to V with real constants KE

0 ,KE
2 , δ0 > 0.

(A3) ∃ real constants KM = KM (T ) ≥ 0,KC = KC(T ) ≥ 0 such that, for the
chosen weight matrices cj ∈ IRd×d of BIMs (2), we have

∀t ∈ [0, T ], ∀x ∈ IRd :
m∑

j,k=0

||ck(t, x)bj(t, x)||2d ≤ (KC)2V (x),(12)

∀s, t : 0 ≤ t− s ≤ δ0, ∀x ∈ IRd ∃M−1
s,x(t) with ||M−1

s,x(t)||d×d ≤ KM .(13)

Remark. (A1) guarantees the existence of unique and continuous solutions to sys-
tems (1) with boundedness of moments along the function V . (A2) is needed to sim-
plify the proof-steps for mean, mean square consistency and global L2-convergence
by comparison with the behavior of related standard Euler methods. (A3) en-
sures that the BIMs (2) are well-defined (nonexploding) for maximum step sizes
∆max ≤ δ0. The existence and boundedness of matrices M−1

s,x(t) is guaranteed
with the choice of positive semidefinite weights cj . For example, one is tempted to
take nonnegative multiples of the positive semidefinite parts of the Jacobian ma-
trices ∇bj(t, x) or negative multiples of the negative semidefinite parts of ∇a(t, x)
in case of c0. The condition (12) is new compared to that in [11]. This allows
more flexibility. For example, one may numerically treat SDEs with vanishing drift
a(t, x) = 0 and diffusion term bj(t, x) = σj(t)|x|αj by BIMs with any bounded c0

and cj(t, x) = |σj(t)| · |x|αj−1 while αj ∈ [0.5, 1]. Another interesting example is
the Bessel-type diffusion

dXt =
m∑

j=1

σj(t)
√

Xt ◦ dW j
t :=

1
4

m∑

j=1

σ2
j (t) dt +

m∑

j=1

σj(t)
√

Xt dW j
t

with explicit solution Xt = (
√

X0 + Wt)2 if X0 ≥ 0, m = 1 and σ1 ≡ 2. Such an
equation could successfully be treated by BIMs (2) with weights c0(t, x) = 0 and
cj(t, x) = |σj(t)|

√
|x| which are unbounded (assuming σj ∈ L2([0, T ],B([0, T ]), µ)

- the Banach space of Borel-measurable and square µ-integrable functions f on
[0, T ]).

2.2. Mean consistency of BIMs (2). Using the mean consistency of forward
Euler methods, we may establish the mean consistency parameters for the BIMs
(2).

Theorem 2.1. Assume that (A1) - (A3) hold with a worst case rate rE
0 ≥ 1.5,

control functional V and consistency constants KE
0 and δ0. Then the BIMs (2)

are also mean consistent with worst case rate r0 ≥ 1.5, control functional V and
consistency constants δ0 and

(14) K0 ≤ KE
0 +

√
m + 1 ·KM ·KC .

Proof. Suppose that (A1) - (A3) hold. Let Z(s) ∈ M2([0, s]). Recall that Y E
s,z(t)

denotes the one-step representation of the standard Euler method and Ys,z(t) that
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of BIMs (2). Then, ∀s, t : 0 ≤ t− s ≤ δ0, we have

‖IE [Xs,Z(s)(t)− Ys,Z(s)(t)|Fs]‖d

≤ ‖IE [Xs,Z(s)(t)− Y E
s,Z(s)(t)|Fs]‖d + ‖IE [Y E

s,Z(s)(t)− Ys,Z(s)(t)|Fs]‖d

≤ KE
0

√
V (Z(s)) (t− s)3/2 +

+‖IE [M−1
s,Z(s)(t)(Ms,Z(s)(t)− Id)

m∑

j=0

bj(s, Z(s))(W j
t −W j

s )|Fs]‖d

= KE
0

√
V (Z(s)) (t− s)3/2 +

+‖
m∑

j,k=0

IE [M−1
s,Z(s)(t)c

k(s, Z(s))bj(s, Z(s))|W k
t −W k

s |(W j
t −W j

s )|Fs]‖d

= KE
0

√
V (Z(s)) (t− s)3/2 +

+‖
m∑

j,k=0

IE [M−1
s,z (t)ck(s, z)bj(s, z)|W k

t −W k
s |(W j

t −W j
s )]

∣∣∣
z=Z(s)

‖d

= KE
0

√
V (Z(s)) (t−s)3/2+

∥∥∥
m∑

k=0

IE [M−1
s,z (t)ck(s, z)a(s, z)|W k

t −W k
s |]

∣∣∣
z=Z(s)
(t−s)

∥∥∥
d

≤ KE
0

√
V (Z(s))(t− s)3/2 + KM

m∑

k=0

‖ck(s, Z(s))a(s, Z(s))‖d(t− s)3/2

≤
[
KE

0

√
V (Z(s))+KM (m+1)1/2

( m∑

k=0

‖ck(s, Z(s))a(s, Z(s))‖2d
)1/2

]
(t− s)3/2

≤
(
KE

0 + KMKC

√
m + 1

)√
V (Z(s)) (t− s)3/2

thanks to triangle and Hölder inequalities. Consequently, the BIMs (2) are mean
consistent with worst case rate r0 ≥ 1.5 along V , hence the proof is complete. ¤

Remark. There is also a proof of mean consistency rate r0 = 1.5 possible without
using the knowledge on the mean consistency rate rE

0 ≥ 1.5 of the related Euler
method. For details, see a forthcoming paper of the author. In fact, the standard
Euler method can have mean consistency rate rE

0 = 2.0 as best achievable rate of
mean convergence (local weak convergence) under more restrictive conditions on
bj . However, in view of mean square convergence, this fact would not improve the
global mean square rate rg = 0.5. For further details, see Section 4.

2.3. Mean square consistency of BIMs (2). Similarly as before, we verify the
mean square consistency parameters of the BIMs (2).

Theorem 2.2. Assume that (A1) - (A3) hold with a worst case rate rE
2 ≥ 1.0,

control functional V and consistency constants KE
2 and δ0. Then the BIMs (2)

are mean square consistent with worst case rate r2 ≥ 1.0, control functional V and
consistency constants δ0 and

(15) K2 ≤ KE
2 +

√
3 · (m + 1) ·KM ·KC .

Proof. Suppose that (A1) - (A3) holds. Let Z(s) be any (Fs,B(IRd))-measurable
random variable with Z ∈ M2([0, s]). Recall that Y E

s,z(t) denotes the one-step
representation of the standard Euler method and Ys,z(t) that of BIMs (2). Then,
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∀s, t : 0 ≤ t− s ≤ δ0, we have
(
IE [‖Xs,Z(s)(t)− Ys,Z(s)(t)‖2d|Fs]

)1/2

≤
(
IE [‖Xs,Z(s)(t)−Y E

s,Z(s)(t)‖2d|Fs]
)1/2

+
(
IE [‖Y E

s,Z(s)(t)−Ys,Z(s)(t)‖2d|Fs]
)1/2

≤ KE
2

√
V (Z(s)) (t− s) +

+
(
IE [‖M−1

s,Z(s)(t)(Ms,Z(s)(t)− Id)
m∑

j=0

bj(s, Z(s))(W j
t −W j

s )‖2d|Fs]
)1/2

= KE
2

√
V (Z(s)) (t− s) +

+
(
IE [‖

m∑

j,k=0

M−1
s,Z(s)(t)c

k(s, Z(s))bj(s, Z(s))|W k
t −W k

s |(W j
t −W j

s )‖2d|Fs]
)1/2

= KE
2

√
V (Z(s)) (t− s) +

+
(
IE [‖

m∑

j,k=0

M−1
s,z (t)ck(s, z)bj(s, z)|W k

t −W k
s |(W j

t −W j
s )‖2d]

∣∣∣
z=Z(s)

)1/2

≤ KE
2

√
V (Z(s)) (t− s) +

+(m+1)
( m∑

j,k=0

IE [‖M−1
s,z (t)ck(s, z)bj(s, z)‖2d(W k

t −W k
s )2(W j

t −W j
s )2]

∣∣∣
z=Z(s)

)1/2

≤ KE
2

√
V (Z(s)) (t− s) +

+(m+1)KM

( m∑

j,k=0

‖ck(s, z)bj(s, z)‖2dIE [(W k
t −W k

s )2(W j
t −W j

s )2]
∣∣∣
z=Z(s)

)1/2

≤

KE

2

√
V (Z(s))+(m+1)KM

(
3

m∑

j,k=0

‖ck(s, Z(s))bj(s, Z(s))‖2d
)1/2


(t− s)

≤
(
KE

2 + (m + 1)
√

3KMKC

)√
V (Z(s)) (t− s)

thanks to Minkowski and Hölder inequalities, and the orthogonality of the Wiener
process components with 4th moments bounded by 3(t − s)2 on intervals [s, t] ⊆
[0, T ]. Consequently, the BIMs (2) are mean square consistent with worst case rate
r2 ≥ 1.0 along V , hence the proof is complete. ¤

Remark. There is also a proof of mean square consistency rate r2 = 1.0 possible
without using the knowledge on the mean square consistency rate rE

2 ≥ 1.0 of the
related Euler method. For details, see a forthcoming paper of the author.

3. Stability of Balanced Implicit Methods

This section deals with the problem of numerical almost sure stability for certain
test equations and weak V -stability along Lyapunov-type functions.

3.1. Numerical weak V -stability. Introduce the following new definition.
A numerical method Y with one-step representation Ys,y(t) is said to be weakly

V -stable with real constant KS = KS(T ) on [0, T ] if V : IRd → IR1
+ is Borel-

measurable and ∃ real constant δ0 > 0 such that ∀(Fs,B(IRd))-measurable random
variables Z(s) and ∀s, t : 0 ≤ t− s ≤ δ0 ≤ 1

IE [V (Ys,Z(s)(t))|Fs] ≤ exp(KS(t− s))V (Z(s)).(16)
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Theorem 3.1. Assume that the numerical method Y started at a (F0,B(IRd))-
measurable Y0 and constructed along any (Ft)-adapted time-discretization of [0, T ]
with maximum step size ∆max ≤ δ0 is weakly V -stable with δ0 and stability constant
KS on [0, T ] Then

IE V (Y0,Y0(t)) ≤ exp(KST )IE V (Y0),(17)
sup

0≤t≤T
IE V (Y0,Y0(t)) ≤ exp([KS ]+T )IE V (Y0)(18)

where [.]+ denotes the positive part of the inscribed expression.

Proof. Suppose that tk ≤ t ≤ tk+1 with ∆k ≤ δ0. If IE V (Y0) = +∞ then nothing
is to prove. Now, suppose that IE V (Y0) < +∞. Using elementary properties of
conditional expectations, we estimate

IE V (Y0,Y0(t)) = IE IE [V (Ytk,Yk
(t)]|Fs]

≤ exp(KS(t− tk)) · IE V (Yk) = exp(KS(t− tk)) · IE V (Ytk−1,Yk−1(tk)) ≤ ...

≤ exp(KSt) · IE V (Y0) ≤ exp([KS ]+t) · IE V (Y0) ≤ exp([KS ]+T ) · IE V (Y0)

by induction. Hence, taking the supremum confirms the claim of Theorem 3.1. ¤

Remark. Usually V plays the role of a Lyapunov functional for controlling the
stability of the numerical method Y .

Theorem 3.2. Assume that (A1) and (A3) with V (x) = ρ2 + ||x||2d (ρ ∈ IR1 some
real constant) hold. Then the BIMs (2) with ∆max ≤ δ0 ≤ min(1, T ) are weakly
V -stable with stability constant

KS ≤ KM ·KB · (2 + KM ·KB)(19)

and they satisfy global weak V -stability estimates (17) and (18).

Proof. Suppose that (A1) and (A3) hold with V (x) = ρ2 + ||x||2. Recall that
0 ≤ t − s ≤ δ0 ≤ 1. Let Z(s) be any (Fs,B(IRd))-measurable random variable.
Then

IE [ρ2+||Ys,Z(s)||2d|Fs] = IE [ρ2+||Z(s)+M−1
s,Z(s)(t)

m∑

j=0

bj(s, Z(s))(W j
t −W j

s )||2d|Fs]

= IE [ρ2 + ||Z(s) + M−1
s,Z(s)(t)a(s, Z(s))(t− s) +

+M−1
s,Z(s)(t)

m∑

j=1

bj(s, Z(s))(W j
t −W j

s )||2d|Fs]

= ρ2 +
1
2
IE [||z + M−1

s,z (t)a(s, z)(t−s) + M−1
s,z (t)

m∑

j=1

bj(s, z)(W j
t −W j

s )||2d]
∣∣∣
z=Z(s)

+
1
2
IE [||z + M−1

s,z (t)a(s, z)(t− s)−M−1
s,z (t)

m∑

j=1

bj(s, z)(W j
t −W j

s )||2d]
∣∣∣
z=Z(s)
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= ρ2 + IE [||z + M−1
s,z (t)a(s, z)(t− s)||2d]

∣∣
z=Z(s)

+

+IE [||M−1
s,z (t)

m∑

j=1

bj(s, z)(W j
t −W j

s )||2d]
∣∣∣
z=Z(s)

= ρ2 + ||Z(s)||2d + 2 [IE < z, M−1
s,z (t)a(s, z) >d]

∣∣
z=Z(s)

(t− s) +

+IE[||M−1
s,z (t)a(s, z)||2d]

∣∣
z=Z(s)

(t−s)2 +

+
m∑

j=1

IE[||M−1
s,z (t)bj(s, z)||2d(W j

t −W j
s )2]

∣∣∣
z=Z(s)

≤ (1 + [2KMKB + K2
MK2

B ](t− s)) · (ρ2 + ||Z(s)||2d)
≤ exp([2KMKB + K2

MK2
B ](t− s)) · (ρ2 + ||Z(s)||2d),

hence the BIMs (2) are weakly V -stable with V (x) = ρ2 + ||x||2d. It obviously
remains to apply Theorem 3.1 in order to complete the proof. ¤
Remark. Interestingly, by setting ρ = 0, we gain also a result on numerical mean
square stability. However, for results on asymptotic mean square stability of BIMs,
see [12].

3.2. Exponential p-th mean stability. BIMs (2) offer a way to control the
numerical p-th mean stability behavior. This can be seen as follows. Let p 6= 0 be
a real number.

A numerical method Y with one-step representation Ys,y(t) is said to be (globally)
exponentially p-th mean stable with real constant Kp = Kp(T ) if ∃ real constant
δ0 > 0 such that ∀(Fs,B(IRd))-measurable random variables Z(s) and ∀s, t : 0 ≤
t− s ≤ δ0 ≤ 1

IE [‖Ys,Z(s)(t)‖p|Fs] ≤ exp(Kp(t− s)) ‖Z(s)‖p.(20)

Theorem 3.3. Assume that the numerical method Y started at a (F0,B(IRd))-
measurable Y0 and constructed along any (Ft)-adapted time-discretization of [0, T ]
with maximum step size ∆max ≤ δ0 is exponentially p-th mean stable with δ0 and
stability constant Kp on [0, T ]. Then

IE ‖Y0,Y0(t)‖p
d ≤ exp(KpT )IE ‖Y0‖p

d,(21)
sup

0≤t≤T
IE ‖Y0,Y0(t)‖p

d ≤ exp([Kp]+T )IE ‖Y0‖p
d(22)

where [.]+ denotes the positive part of the inscribed expression.

Proof. Suppose that tk ≤ t ≤ tk+1 with ∆k ≤ δ0. If IE ‖Y0‖p
d = +∞ then nothing

is to prove. Now, suppose that IE ‖Y0‖p
d < +∞. Using elementary properties of

conditional expectations, we estimate

IE ‖Y0,Y0(t)‖p
d = IE IE [‖Ytk,Yk

(t)‖p
d|Fs]

≤ exp(Kp(t− tk)) · IE ‖Yk‖p
d = exp(Kp(t− tk)) · IE ‖Ytk−1,Yk−1(tk)‖p

d ≤ ...

≤ exp(Kpt) · IE ‖Y0‖p
d ≤ exp([Kp]+t) · IE ‖Y0‖p

d ≤ exp([Kp]+T ) · IE ‖Y0‖p
d

by induction. Hence, taking the supremum confirms the claim of Theorem 3.3. ¤
Theorem 3.4. Assume that (A1) and (A3) with V (x) = ||x||2d, δ0 ≤ min(1, T ),
bj(t, x) = Aj(t, x)x hold and that X = (Xt)0≤t≤T satisfies (a.s.) the Itô SDE

dXt = A0(t, Xt)Xtdt +
m∑

j=1

Aj(t,Xt)Xt dW j
t ,(23)
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with nonrandom IRd×d-valued matrix coefficients Aj of Caratheodory-type and there
are real constants KS

M and Kj
B satisfying ∀t, s ∈ [0, T ] : 0 ≤ t− s ≤ δ0 ∀x ∈ IRd

‖Aj(t, x)‖d×d ≤ Kj
B , ‖(Id −A0(t, x)(t− s))−1‖d×d ≤ exp(KS

M (t− s))(24)

Then the BIMs (2) applied to SDE (23) with weights c0(t, x) = −A0(t, x) and
cj(t, x) = O (j = 1, 2, ...,m), and step sizes

∆k ≤ ∆max ≤ δ0 ≤ min
{

1, T,
1

mp(p− 1)(Kj
B)2

: j = 1, 2, ..., m
}

(25)

are exponentially p-th mean stable with p ≥ 2 and stability constant

Kp ≤ p ·

m

p− 1
2

m∑

j=1

(Kj
B)2

1−mp(p− 1)(Kj
B)2∆max

+ KS
M


(26)

and they satisfy global p-th mean stability estimates (21) and (22) for p ≥ 2.

Proof. Suppose that (A1) and (A3) with V (x) = ‖x‖2d and δ0 ≤ min(1, T ) hold.
Recall that 0 ≤ t − s ≤ δ0 ≤ min(1, T ). Let Z(s) be any (Fs,B(IRd))-measurable
random variable. Define Ms,x(t) = Id −A0(t, x)(t− s) and γ =

√
1/(p− 1). Then

IE [‖Ys,Z(s)(t)‖p
d|Fs] = IE [‖Z(s)+M−1

s,Z(s)(t)
m∑

j=0

bj(s, Z(s))(W j
t −W j

s )‖p
d|Fs]

= IE [‖M−1
s,Z(s)(t)

(
Id +

m∑

j=1

Aj(s, Z(s))(W j
t −W j

s )
)
Z(s)‖p

d|Fs]

≤ exp(pKS
M (t− s))‖Z(s)‖p

dIE [‖Id +
m∑

j=1

Aj(s, Z(s))(W j
t −W j

s )‖p
d×d|Fs]

= exp(pKS
M (t− s))‖Z(s)‖p

dIE [‖Id +
m∑

j=1

Aj(s, z)(W j
t −W j

s )‖p
d×d]

∣∣∣
z=Z(s)

.

Now, the expectation part at the right hand side is treated as follows. By using
an elementary inequality originating from Clarkson [4] and Beckner [3] applied to
the Banach space of random matrices with uniformly Lp-integrable coefficients (cf.
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Section 4) one finds

IE [‖Id +
m∑

j=1

Aj(s, z)(W j
t −W j

s )‖p
d×d]

∣∣∣
z=Z(s)

=
1
2
IE [‖Id + γ

1
γ

m∑

j=1

Aj(s, z)(W j
t −W j

s )‖p
d×d]

∣∣∣
z=Z(s)

+

+
1
2
IE [‖Id − γ

1
γ

m∑

j=1

Aj(s, z)(W j
t −W j

s )‖p
d×d]

∣∣∣
z=Z(s)

≤ IE
(
1 + m

1
γ2

m∑

j=1

‖Aj(s, Z(s))‖2d×d(W
j
t −W j

s )2
)p/2

≤ IE
(
1 + m(p− 1)

m∑

j=1

(Kj
B)2(W j

t −W j
s )2

)p/2

≤
m∏

j=1

IE exp
(1

2
mp(p− 1)(Kj

B)2(W j
t −W j

s )2
)

≤ exp
(
m

p(p− 1)
2

m∑

j=1

(Kj
B)2

1−mp(p− 1)(Kj
B)2∆max

(t− s)
)

for 0 ≤ t − s ≤ ∆max ≤ δ0 ≤ min(1, T, 1/[mp(p − 1)(Kj
B)2]). Exploiting this fact

after returning to the original estimation yields

IE[‖Ys,Z(s)(t)‖p
d|Fs]≤exp

(
p[m

p−1
2

m∑

j=1

(Kj
B)2

1−mp(p−1)(Kj
B)2∆max

+KS
M ](t−s)

)
·‖Z(s)‖p

d.

Therefore, the BIMs (2) are exponentially p-th mean stable for p ≥ 2. It obviously
remains to apply Theorem 3.3 in order to complete the proof with Kp as in (26).

¤

Remark. Interestingly, we also gain asymptotic p-th mean stability of BIMs pro-
vided that KS

M < −p−1
2

∑m
j=1(K

j
B)2 (compare with the simple onedimensional case

dXt = αXtdt + σXtdWt when α + (p − 1)σ2/2 < 0). Conditions (24) can be
guaranteed for negative semidefinite matrices A0 and uniformly bounded Aj for
j = 1, 2, ..., m. For practical implementation, one may also take the stabilizing,
negative semidefinite part of A0 as weight matrix c0 instead of the entire structure
of A0.

3.3. Numerical almost sure stability. In the following we discuss the almost
sure stability behavior of BIMs with both constant and variable step sizes with
respect to the trivial equilibrium 0 ∈ IRd. For this purpose, consider the following
definition.

A sequence Y = (Yn)n∈IN with Yn : (Ω,Fn, IP ) → IRd is called (globally)
asymptotically stable with probability one (or (globally) asymptotically a.s. stable)
if

lim
n→+∞

‖Yn‖d = 0 (a.s.)

for all Y0 = y0 ∈ IRd \ {0}, where y0 ∈ IRd is nonrandom, otherwise asymptotically
a.s. unstable.
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Lemma 3.1. Let V = (V (n))n∈IN be a sequence of nonnegative random variables
V (n) : (Ω,Fn, IP ) → IR1

+ with V (0) > 0 satisfying the recursive scheme

(27) V (n + 1) = V (n)G(n)

where G(n) : (Ω,Fn, IP ) → IR1
+ are i.i.d. random variables with IE | ln[G(n)]| <

+∞. Then
V (globally) asymptotically a.s. stable iff IE ln[G(n)] < 0 .

Proof. The main idea is to use the strong law of large numbers (SLLN) in conjunc-
tion with the law of iterated logarithm (LIL). Note that V possesses the explicit
representation

V (n + 1) =

(
n∏

k=0

G(k)

)
V (0)(28)

for all n ∈ IN. Now, define

µ := IE [ln(G(n))], Sn :=
n−1∑

k=0

ln G(k),

hence V (n + 1) = exp(Sn+1)V (0) and IE [Sn] = nµ for n ∈ IN. By SLLN we may
conclude that

lim
n→+∞

Sn

n
= µ (a.s.)

thanks to the IP -integrability of G(k). This fact implies that if µ < 0 then Sn →
−∞, i.e. V (n) → 0 as n tends to +∞ and if µ > 0 then Sn → +∞, i.e. V (n) → +∞
as n tends to +∞. Moreover, in the case µ = 0, we may use LIL (at first, under
σ2 = V ar(ln G(k)) < +∞, later we may drop σ2 < +∞ by localization procedures)
to get

lim inf
n→+∞

Sn√
2n ln ln n

= −|σ|, lim sup
n→+∞

Sn√
2n ln ln n

= |σ|,
hence limn→+∞ Sn does not exist, and therefore

lim
n→+∞

V (n) = lim
n→+∞

exp(Sn)V (0)

does not exist either (a.s.). Thus, limn→+∞ V (n) 6= 0 and the proof is complete.
¤

Now, consider the onedimensional test class of pure diffusion equations

dXt = σXt dWt(29)

as suggested by Milstein, Platen and Schurz [11]. Then, the following result provides
a mathematical evidence that their numerical experiments for BIMs (2) led to the
correct observation of numerical stability due to its asymptotic a.s. stability.

Theorem 3.5. The BIMs (2) with scalar weights c0 = 0 and c1 = |σ| applied to
martingale test equations (29) for any parameter σ ∈ IR1 \{0} with any equidistant
step size ∆ provide (globally) asymptotically a.s. stable sequences Y = (Yn)n∈IN.

Proof. Suppose |σ| > 0. Then, the proof is an application of Lemma 3.1. For
this purpose, consider the sequence V = (V (n))n∈IN = (|Yn|)n∈IN. Note that
V (n + 1) = G(n)V (n), IE | ln G(n)| < +∞ and IE [ln G(n)] < 0 since

IE [| ln G(n)|] ≤ (IE [lnG(n)]2)1/2 ≤ ln(2) + |σ|
√

∆ and
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IE [ln G(n)] = IE
[
ln

∣∣∣1 + |σ∆Wn|+ σ∆Wn

1 + |σ∆Wn|
∣∣∣
]

= IE
[
ln

∣∣∣1 +
σ∆Wn

1 + |σ∆Wn|
∣∣∣
]

=
1
2
IE

[
ln

∣∣∣1 +
σ∆Wn

1 + |σ∆Wn|
∣∣∣
]

+
1
2
IE

[
ln

∣∣∣1− σ∆Wn

1 + |σ∆Wn|
∣∣∣
]

=
1
2
IE

[
ln

∣∣∣1−
(

σ∆Wn

1 + |σ∆Wn|
)2 ∣∣∣

]
< −1

2
IE

[( |σ∆Wn|
1 + |σ∆Wn|

)2
]

< 0

with independently identically Gaussian distributed increments ∆Wn ∈ N (0, ∆)
(In fact, note that, for all σ 6= 0 and Gaussian ∆Wn, we have

0 < 1−
(

σ∆Wn

1 + |σ∆Wn|
)2

< 1

with probability one, hence, that ∆Wn has a nondegenerate probability distribution
with nontrivial support is essential here!). Therefore, the assumptions of Lemma
3.1 are satisfied and an application of Lemma 3.1 yields the claim of Theorem 3.5.
Thus, the proof is complete. ¤

Remark. The increments ∆Wn ∈ N (0, ∆n) can also be replaced by multi-point
discrete probability distributions such as

IP {∆Wn = ±
√

∆n} =
1
2

or IP {∆Wn = 0} =
2
3
, IP {∆Wn = ±

√
3∆n} =

1
6

as commonly met in weak approximations. In this case, the almost sure stability of
the BIMs as chosen by Theorem 3.5 is still guaranteed, as seen by our proof above
(due to the inherent symmetry of ∆Wn with respect to 0).

For variable step sizes, we can also formulate and prove a general assertion with
respect to asymptotic a.s. stability. Let V ar(Z) denote the variance of the inscribed
random variable Z.

Lemma 3.2. Let V = (V (n))n∈IN be a sequence of nonnegative random variables
V (n) : (Ω,Fn, IP ) → IR1

+ with V (0) > 0 satisfying the recursive scheme

(30) V (n + 1) = V (n)G(n),

where G(n) : (Ω,Fn, IP ) → IR1
+ are independent random variables such that ∃

nonrandom sequence b = (bn)n∈IN with bn → +∞ as n → +∞
+∞∑

k=0

V ar(ln(G(k)))
b2
k

< +∞, ∃ lim
n→+∞

∑n−1
k=0 IE ln(G(k))

bn
< 0.(31)

Then V = (V (n))n→+∞ is (globally) asymptotically a.s. stable sequence, i.e. we
have limn→+∞ V (n) = 0 (a.s.).
Moreover, if

+∞∑

k=0

V ar(ln(G(k)))
b2
k

< +∞, ∃ lim
n→+∞

∑n−1
k=0 IE ln(G(k))

bn
> 0(32)

then V = (V (n))n→+∞ is (globally) asymptotically a.s. unstable sequence, i.e. we
have limn→+∞ V (n) = +∞ (a.s.) for all nonrandom y0 6= 0.
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Proof. The main idea is to apply Kolmogorov’s SLLN, see Shiryaev [17], p. 389.
Recall that V possesses the explicit representation (28). Now, define

Sn :=
n−1∑

k=0

ln G(k),

hence V (n + 1) = exp(Sn+1)V (0) for n ∈ IN. By Kolmogorov’s SLLN we may
conclude that

lim
n→+∞

Sn

bn
= lim

n→+∞
IE Sn

bn
= lim

n→+∞

∑n−1
k=0 IE ln(G(k))

bn
< 0 (a.s.)

thanks to the assumptions (31) of IP -integrability of G(k). This fact together with
bn → +∞ implies that Sn → −∞ (a.s.), i.e. V (n) → 0 as n tends to +∞. The
reverse direction under (32) is proved analogously to previous proof-steps. Thus,
the proof is complete. ¤

Now, let us apply this result to BIMs (2) applied to test equation (29). For
k = 0, 1, ..., nT , define

G(k) :=
∣∣∣1 + |σ∆Wk|+ σ∆Wk

1 + |σ∆Wk|
∣∣∣.(33)

Theorem 3.6. Assume that ∃ nonrandom sequence b = (bn)n∈IN with bn → +∞
as n → +∞ for a fixed choice of step sizes ∆n > 0 such that

+∞∑

k=0

V ar(ln(G(k)))
b2
k

< +∞, ∃ lim
n→+∞

∑n−1
k=0 IE ln(G(k))

bn
< 0.

Then the BIMs (2) with scalar weights c0 = 0 and c1 = |σ| applied to martingale
test equations (29) with parameter σ ∈ IR1 \ {0} with the fixed sequence of variable
step sizes ∆n provide (globally) asymptotically a.s. stable sequences Y = (Yn)n∈IN.

Proof. We may apply Lemma 3.2 since the assumptions are satisfied for the BIMs
(2) with scalar weights c0 = 0 and c1 = |σ| applied to martingale test equations
(29). Hence, the proof is complete. ¤

Theorem 3.7. The BIMs (2) with scalar weights c0 = 0 and c1 = |σ| applied to
martingale test equations (29) with parameter σ ∈ IR1 \ {0} with any variable step
sizes ∆k satisfying 0 < ∆min ≤ ∆k ≤ ∆max provide (globally) asymptotically a.s.
stable sequences Y = (Yn)n∈IN.

Proof. We may again apply Lemma 3.2. For this purpose, we check the assump-
tions. Define bn := n. Note that the variance V ar(ln(G(k))) is uniformly bounded
since ∆Wn ∈ N (0, ∆n) and 0 < ∆min ≤ ∆k ≤ ∆max. More precisely, we have

V ar(ln(G(k))) ≤ IE [ln(G(k))]2

= IE [I{∆Wn>0} ln(G(k))]2 + IE [I{∆Wn<0} ln(G(k))]2

< pn[ln(2)]2 + IE [ln(1 + |σ∆Wn|)]2 ≤ pn[ln(2)]2 + IE [ln(exp(|σ∆Wn|))]2
≤ pn[ln(2)]2 + IE [σ∆Wn]2 = pn[ln(2)]2 + σ2∆n ≤ pn[ln(2)]2 + σ2∆max

for G(k) as defined in (33), where I{Q} denotes the indicator function of the in-
scribed set Q and pn =

√
IP {∆Wn > 0}. Note that 0 < pn =

√
2/2 < 1 if
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∆Wn is Gaussian distributed. Therefore, there is a finite real constant KG
2 <

(ln(2))2 + σ2∆max such that

+∞∑

k=0

V ar(ln(G(k)))
k2

≤
+∞∑

k=0

KG
2

k2
= KG

2

π2

6
< +∞.

It remains to check whether

lim
n→+∞

∑n−1
k=0 IE ln(G(k))

n
< 0.

For this purpose, we only note that IE ln(G(k)) is decreasing for increasing
√

∆k

for all k ∈ IN (see the proof of Theorem 3.5). Therefore, we can estimate this
expression by

IE ln(G(k)) ≤ 1
2
IE

[
ln

∣∣∣1−
(

σ
√

∆minξ

1 + |σ√∆minξ|

)2 ∣∣∣
]

:= KG
1 < 0

where ξ ∈ N (0, 1) is a standard Gaussian distributed random variable and KG
1 the

negative real constant as defined above. Thus,

lim
n→+∞

∑n−1
k=0 IE ln(G(k))

n
≤ KG

1 < 0.

Hence, thanks to Lemma 3.2 (or 3.6), the proof is completed. ¤

4. Boundedness of p-th Moments of Balanced Implicit Methods

It is neccessary to verify the uniform boundedness of p-th moments of the out-
comes of BIMs (2) in order to prove the maximum possible rate rw = 1.0 of global
weak convergence.

4.1. Three auxiliary lemmas. We begin with a random version of Clarkson-
Beckner inequality.

Lemma 4.1. Let X, Y be two elements of a Hilbert space (H, < ., . >H) equipped
with its scalar product < ., . >H , IR1 as its set of scalars and naturally induced
norm ‖Z‖H = (< Z,Z >H)1/2. Assume that

IE [‖X‖p
H + ‖Y ‖p

H ] < +∞
for a p ≥ 2. Then, we have

IE ‖X + Y ‖p
H + IE ‖X − Y ‖p

H

2
≤ IE

(
‖X‖2H + (p− 1)‖Y ‖2H

)p/2

.(34)

Proof. Define B := {X ∈ (H, < ., . >H) : ‖X‖p
B = IE (‖X‖p

H) < +∞}. Then
(B, ‖.‖B) forms a Banach space as a closed subset of H. Suppose that X,Y ∈ B.
Set γ = 1/

√
p− 1, z1 = X +

√
p− 1Y , z2 = X−√p− 1Y , u1 = (‖z1‖H +‖z2‖H)/2

and u2 = |‖z1‖−‖z2‖|/2. Then, Clarkson-Beckner inequality (see [4] and [3]) which
says that

(|1 + u|q + |1− u|q
2

)1/q

≤
(|1 +

√
(q − 1)/(p− 1)u|p + |1−

√
(q − 1)/(p− 1)u|p

2

)1/p
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for all numbers u ≥ 0, 1 < p ≤ q and parallelogram identity on Hilbert spaces imply
that
(‖X + Y ‖p

H + ‖X − Y ‖p
H

2

)1/p

=
(‖X + γ 1

γ Y ‖p
H + ‖X − γ 1

γ Y ‖p
H

2

)1/p

≤
(((1+γ)‖z1‖H/2+(1−γ)‖z2‖H/2)p+((1−γ)‖z1‖H/2+(1+γ)‖z2‖H/2)p

2

)1/p

=
( |u1 + γu2|p + |u1 − γu2|p

2

)1/p

≤
( |u1 + u2|2 + |u1 − u2|2

2

)1/2

=
(‖z1‖2H + ‖z2‖2H

2

)1/2

=
(
‖X‖2H + (p− 1)‖Y ‖2H

)1/2

.

Now, it remains to take the p-th power and expectation in order to arrive at (34).
Thus, the proof is complete. ¤

Observe the following property of moments of Gaussian exponentials.

Lemma 4.2. Assume that X ∈ N (0, ∆). Then

∀σ ∈ (− 1√
2∆

,
1√
2∆

) IE exp(σ2X2) ≤ 1√
1− 2σ2∆

≤ exp(
σ2∆

1− 2σ2∆
).(35)

Proof. Define ξ = X/
√

∆. Note that ξ ∈ N (0, 1). Calculate

IE exp(σ2X2) = IE exp(σ2∆ ξ2) =
1√
2π

∫ +∞

−∞
exp

(
σ2∆x2 − x2

2

)
dx

=
1√
2π

∫ +∞

−∞
exp

(
− (1− 2σ2∆)

x2

2

)
dx =

1√
1− 2σ2∆

≤ exp
( σ2∆

1− 2σ2∆

)

using the elementary inequality 1/(1−z) ≤ exp(z/(1−z)) for z = 2σ2∆ < 1. Thus,
the proof is complete. ¤

Linear-polynomial boundedness of Lipschitz continuous functions can be estab-
lished too. Let C0

b(κ)([0, T ] × IRd, IRl) denote the set of all continuous functions
f : [0, T ]× IRd → IRl which are uniformly polynomially bounded such that

‖f(t, x)‖l ≤ Kf · (1 + ‖x‖κ
l )

for all x ∈ IRd, where Kf ≥ 0 and κ ≥ 0 are appropriate real constants.

Lemma 4.3. Assume that f ∈ C0
b(κ)([0, T ]× IRd, IRl) with constants κ ≥ 0 and Kf

is uniformly Lipschitz continuous with constant KL, i.e.

∀t ∈ [0, T ], ∀x, y ∈ IRd ‖f(t, x)− f(t, y)‖l ≤ KL ‖x− y‖l.(36)

Then, there exist constants Kb(p) = Kb(p)(p, T, Kf , KL) such that ∀t ∈ [0, T ] ∀x ∈
IRd

‖f(t, x)‖l ≤ 2−(p−1)/pKb(p) · (1 + ‖x‖l) ≤ Kb(p) · (1 + ‖x‖p
l )

1/p(37)

for all p ≥ 1, where the real constants Kb(p) can be estimated by

0 ≤ Kb(p) ≤ 2(p−1)/p ·max{Kf ,KL}.(38)

Proof. Estimate

0 ≤ ‖f(t, x)‖l ≤ ‖f(t, 0)‖l + ‖f(t, x)− f(t, 0)‖l ≤ Kf + KL‖x‖l

≤ max{Kf ,KL}(1 + ‖x‖l) ≤ 2(p−1)/2 max{Kf ,KL}(1 + ‖x‖p
l )

1/p.

Therefore, constant Kb(p) can be chosen as in (38). Thus, the proof is complete.
¤
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Remark. In fact, it suffices that sup0≤t≤T ‖f(t, x∗)‖l < +∞ for some x∗ ∈ IRd

and f is Lipschitz continuous in x ∈ IRd with constant KL(t) which is uniformly
bounded with respect to t ∈ [0, T ]. However, Kb(p) may depend on κ too.

4.2. Uniform boundedness of p-th moments. Consider BIMs (2) with both
variable or constant step sizes ∆k ≤ ∆max where ∆max sufficiently small. Let
ent[p] be the maximum integer which is smaller than or equal to the inscribed real
number p (i.e. such that ent[p] + 1 > p ≥ ent[p], ent[p] ∈ IN for all p ∈ IR+). Then,
uniform boundedness of p-th moments can be established as follows.

Theorem 4.1. Assume that BIMs (2) with step sizes ∆k ≤ ∆max ≤ 1 and

ent[
p

2
](2ent[

p

2
]− 1)mK2

M (Kj
b(2))

2∆max < 1(39)

satisfy (A3), IE ‖Y0‖p
d < +∞ for a p ≥ 2κ ≥ 2, and

∀t ∈ [0, T ], ∀x ∈ IRd ‖bj(t, x)‖2d ≤ (Kj
b(2))

2(1 + ‖x‖2d).(40)

Then, all 2ent[p/2]-moments of BIMs (2) are uniformly bounded and, more pre-
cisely, for all k = 0, 1, ..., nT and all κ ∈ IN with 2κ ≤ ent[p], we have

IE ‖Yk‖2κ
d ≤ IE [1 + ‖Yk‖2d]κ ≤ exp(K2κtk)IE [1 + ‖Y0‖2d]κ(41)

≤ exp(K2κT )IE [1 + ‖Y0‖2d]κ

with appropriate real constant

K2κ ≤ κKM

[
2K0

b(2)+(2κ−1)mKM

m∑

j=1

(Kj
b(2))

2

1−2κ(2κ−1)mK2
M (Kj

b(2))
2∆k

]
.(42)

Proof. Define v0(k) := IE [‖Yk‖p
d] for all k = 0, 1, ..., nT . First, note that

v0(k + 1) = IE [‖Yk + M−1
tk,Yk

(tk+1)
m∑

j=0

bj(tk, Yk)∆W j
k‖p

d]

=
1
2
IE [‖Yk + M−1

tk,Yk
(tk+1)a(tk, Yk)∆k +

m∑

j=1

M−1
tk,Yk

(tk+1)bj(tk, Yk)∆W j
k‖p

d] +

+
1
2
IE [‖Yk + M−1

tk,Yk
(tk+1)a(tk, Yk)∆k −

m∑

j=1

M−1
tk,Yk

(tk+1)bj(tk, Yk)∆W j
k‖p

d].

Second, apply the random version of Clarkson-Beckner inequality as stated by (34)
in Lemma 4.1 and obtain

v0(k + 1) ≤

IE
(
‖Yk+M−1

tk,Yk
(tk+1)a(tk, Yk)∆k‖2d+(p−1)‖

m∑

j=1

M−1
tk,Yk

(tk+1)bj(tk,Yk)∆W j
k‖2d

)p/2

.
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Under (A3) this implies

v0(k) = IE [‖Yk‖2d]p/2

≤ IE
(
‖Yk‖2d + 2KM‖Yk‖d‖a(tk, Yk)‖d∆k + K2

M‖a(tk, Yk)‖2d∆2
k +(43)

+(p− 1)mK2
M

m∑

j=1

‖bj(tk, Yk)‖2d(∆W j
k )2

)p/2

≤ IE
(
‖Yk‖2d + (1 + ‖Yk‖2d)

[
2KMK0

b(2)∆k + K2
M (K0

b(2))
2∆2

k +(44)

+(p− 1)mK2
M

m∑

j=1

(Kj
b(2))

2(∆W j
k )2

])p/2

.

Third, repeat the previous estimation for all exponents 2κ with 0 < 2κ ≤ ent[p]
instead of p. This leads to inequalities (44) for 2κ ≤ ent[p] instead of p. Define
vp(k) := IE [1 + ‖Yk‖2]p/2

d for all k = 0, 1, ..., nT . In particular, we are interested
in v2κ(k) = IE [1 + ‖Yk‖2]κd for all k = 0, 1, ..., nT and all κ ∈ [0, ent[p/2]]. For
simplicity, suppose that κ ∈ IN. Apply the binomial theorem in order to estimate

v2κ(k) = IE [1 + ‖Yk‖2d]κ =
κ∑

n=0

(
ent[p/2]

n

)
IE [‖Yk‖2d]n

for all κ ∈ [0, ent[p/2]]∩ IN. Set ζj
k = (Kj

b(2))
2(∆W j

k )2. Adding the inequalities (44)
for all 2n ≤ 2κ ≤ ent[p] instead of p, multiplied by the related binomial coefficients,
leads to

v2κ(k + 1)

≤ IE
(
(1+‖Yk‖2d)

[
1+2KMK0

b(2)∆k+K2
M (K0

b(2))
2∆2

k+(2κ−1)mK2
M

m∑

j=1

ζj
k

])κ

≤ IE
(
(1+‖Yk‖2d) exp

(
2KMK0

b(2)∆k+(2κ−1)mK2
M

m∑

j=1

ζj
k

))κ

≤ IE
(
(1+‖Yk‖2d)κexp

(
2κKMK0

b(2)∆k

) m∏

j=1

IE
[
exp

(
κ(2κ−1)mK2

Mζj
k

)∣∣∣Fk

])

≤ IE
(
1+‖Yk‖2d

)κ

exp
(
2κKMK0

b(2)∆k

) m∏

j=1

IE
[
exp

(
κ(2κ−1)mK2

M (Kj
b(2))

2∆k(ξj
k)2

)]

with i.i.d. ξj
k ∈ N (0, 1), thanks to monotonicity of expectations, tower property of

conditional expectations and independence of increments ∆W j
k =

√
∆k ξj

k. Fourth,
suppose that the constants σ2 := κ(2κ−1)mK2

M (Kj
b(2))

2 satisfy 2σ2∆k < 1. Apply
Lemma 4.2 with σ2 to treat the latter estimate. This implies that

0 ≤ IE ‖Yk‖2κ
d < v2κ(k + 1) ≤ v2κ(k) exp

(
cH(k)

)
(45)

where the coefficients cH are given by

cH(k) = κKM

(
2K0

b(2)+(2κ− 1)mKM

m∑

j=1

(Kj
b(2))

2

1− 2κ(2κ− 1)mK2
M (Kj

b(2))
2∆k

)
∆k.

Therefore, (vk)k=0,1,...,nT
is governed by a linear homogeneous inequality (45) whose

maximum solution can be estimated by the discrete variation-of-constants formula



214 H. SCHURZ

(i.e. discrete Gronwall-Bellman Lemma) as proven in [12] and applied in [14, 15, 16].
Thus, we arrive at

0 ≤ IE ‖Yk‖2κ
d < v2κ(k + 1) ≤ v2κ(k) exp

(
K2κ∆k

)
≤ v2κ(0) exp

(
K2κtk+1

)
.

This gives the estimates (41) with constants K2κ estimated as in (42). Note that
K2κ is increasing for increasing κ, hence K2κ ≤ Kp and the uniform boundedness
of all 2κ-moments of BIMs (2) is obtained for all κ ∈ [0, ent[p/2]] provided that
IE ‖Y0‖ent[p]

d < +∞. Thus, the proof is complete. ¤

5. Convergence of Balanced Implicit Methods

This section presents results on the convergence of BIMs (2) applied to SDEs
(1) with variable step sizes on fixed time-intervals [0, T ].

5.1. L2-convergence of balanced implicit methods. Define the pointwise L2-
error for the numerical method Y approximating the stochastic process X by

ε2(t) :=
(
IE ‖X0,x0(t)− Y0,y0(t)‖2d

)1/2

(46)

for all t ∈ [0, T ], and the uniform (weak) L2-error by

u2(t) :=
(

sup
0≤s≤t

IE ‖X0,x0(s)− Y0,y0(s)‖2d
)1/2

(47)

for all t ∈ [0, T ]. Let [K]+ be the positive part of inscribed expression K and [K]−
the negative part of K such that K = [K]+ − [K]−.

Theorem 5.1. Assume that (A1) - (A3) with control function V , constants KE
0 ,

KE
2 , KM , KC , KB and δ0 ≤ min(1, T ) hold, the coefficients bj(j = 1, 2, ..., m) are

uniform Lipschitz-continuous with Lipschitz constant KSM such that

∀t ∈ [0, T ], ∀x, y ∈ IRd
m∑

j=1

‖bj(t, x)− bj(t, y)‖2d ≤ K2
SM‖x− y‖2d.(48)

Furthermore, let X be conditionally mean square contractive, i.e. ∃ real constant
KX

C such that, for all 0 ≤ t − s ≤ δ0 ≤ min(1, T ) and all (Fs,B(IRd))-measurable
random variables Y (s), Z(s) with Y, Z ∈M2([0, s]), we have

(
IE [‖Xs,Y (s)(t)−Xs,Z(s)(t)‖2d|Fs]

)1/2

≤ exp(KX
C (t− s))‖Y (s)− Z(s)‖d.(49)

Then the BIMs (2) applied to SDEs (1) with (nonrandom) variable step sizes ∆n ≤
δ0 are globally mean square converging with worst case rate r2 = 0.5 on time-
intervals [0, T ]. Moreover, their pointwise L2-error ε2 and uniform (weak) L2-error
u2 satisfy the universal estimates

ε2(t) ≤





exp((KX
C + ρ2)t)ε2(0)+

+Kg exp(KSt)

√
exp(2(KX

C + ρ2 −KS)t)− 1
2(KX

C + ρ2 −KS)
√

∆max

,(50)

u2(t) ≤





exp([KX
C + ρ2]+t)u2(0)+

+Kg exp([KS ]+t)

√
exp(2(KX

C + ρ2 −KS)t)− 1
2(KX

C + ρ2 −KS)
√

∆max

(51)
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on [0, T ], where ρ > 0 is any real constant and

Kg =
1
ρ

√
K2

0 + K2
2 (ρ2 + K2

SM ) ·
√

IE V (y0) · exp(([KX
C ]− + [KS ]−)∆max),

KS = KM ·KB · (2 + KM ·KB),

K0 = KE
0 +

√
m + 1 ·KM ·KC ,

K2 = KE
2 +

√
3 · (m + 1) ·KM ·KC .

Proof. It only remains to apply the axiomatic approach as presented and proven
in [14, 15, 16]. We know about V -stability with constant KS from Theorem 3.2
(or Theorem 4.1 with V (x) = (1 + ‖x‖2d)κ, KS ≤ K2κ for κ ≥ 1, mean consistency
with constant K0 and worst case rate r0 = 1.5 from Theorem 2.1 and mean square
consistency with constant K2 and worst case rate r2 = 1.0 from Theorem 2.2.
Furthermore, the diffusion part of SDEs (1) is mean square Hölder-continuous with
Hölder exponent rsm = 0.5 due to assumption (A1). Therefore, all conditions of
the stochastic Kantorovich-Lax-Richtmeyer principle proven by Schurz [14, 15, 16]
are met. Hence, the global mean square rate rg = r0+rsm−1.0 = 0.5 is established
together with the universal estimates (50) and (51). For example, see Theorem 3.1
in [15] or Theorem 2.1 in [14]. Thus, the proof is complete. ¤

Remark. In Milstein, Platen and Schurz [11] one finds a proof for L2-convergence
of BIMs (2) with equidistant step sizes ∆k = T/N and control functions V (x) = 1+
‖x‖2d. In contrast to that paper, here we allow variable step sizes ∆k ≤ ∆max ≤ δ0

and other functions V (x) (different from 1+‖x‖2d) by our proof. Moreover, we show
the dependence of the error estimates on all constants K and functions V as well
as on the length of the integration interval [0, T ].

5.2. How to choose the weight matrices cj. Suppose one is only interested
in weak convergence, i.e. the convergence of BIMs with respect to appropriate test
functions F : IRd → IRl or path-dependent functionals F : C0([0, T ], IRd) → IR1.
Then, of course the weights cj (j = 1, 2, ..., m) should be set to be the zero matrix
O in order to not destroy the global rate of weak convergence rw = 1.0 compared to
the forward or backward Euler methods. In general, it is an open problem whether
it is possible to construct higher order weakly converging methods (2) which exploit
nonzero random weights cj with j ≥ 1 and still guarantee rw = 1.0. It is rather
obvious that we have a crude estimate rw ≥ 0.5 due to our previous L2-analysis (e.g.
apply Lyapunov-inequality) under the commonly met assumptions for BIMs (2).
For general path-dependent functionals F , the weights cj need to be chosen more
carefully. A detailed discussion requires further research. Anyway, it is advicable
that the weights should be chosen such that numerical stability (i.e. in almost sure,
weak or p-th moment sense) is achieved. Suppose that bj ∈ C0([0, T ]× IRd → IRd)
and

c2
1(t)(1 + ||x||2d) ≤ ||(∇bj(t, x))bk(t, x)||2d ≤ c2

2(t)(1 + ||x||2d)
with c1, c2 ∈ L2([0, T ],B([0, T ]), µ), where ∇bj represents the Jacobian matrix of bj

with respect to the variable x ∈ IRd. If ||∇bj(t, x)bk(t, x)||d ∈ C0([0, T ]× IRd, IR1
+)

and [∇bj(t, x)]+ is a positive semidefinite matrix part and [∇bj(t, x)]− a negative
semidefinite matrix part of the Jacobian ∇bj(t, x) for all 0 ≤ t ≤ T and all x ∈ IRd

then a recommendable choice of cj(t, x) is given by

c0(t, x) = 0.5∇a(t, x), cj(t, x) = [∇bj(t, x)]+ + [∇bj(t, x)]− (j = 1, 2, ..., m)



216 H. SCHURZ

due to the stability and boundedness assertions from previous sections while main-
taining the convergence in L2-sense. However, moment-stable approximations can
already be obtained by BIMs (2) with vanishing weights cj = O (j = 1, 2, ...,m).

5.3. Weak convergence of balanced implicit methods for C2
b(κ)(IR

d, IR1).
For approximations in the weak sense, one should rather take the weights cj ≡ O for
j = 1, 2, ...,m to guarantee the maximum rate of weak convergence. More degree of
freedom is in the choice of c0. A preferrable choice is c0(t, x) = 0.5∇a(t, x) due to a
reasonable replication of the p-th moment stability behavior of such BIMs compared
to the underlying SDEs. This choice would also coincide with linearly drift-implicit
midpoint and trapezoidal methods for bilinear SDEs. Let Cl

b(κ)(IR
d, IR1) denote

the set of all l-times (l ∈ IN) continuously differentiable functions f : IRd → IR1

with uniformly bounded derivatives up to l-th order such that

max{|f(x)|, ||∇f(x)||d, ‖∇2f(x)‖d×d, ...} ≤ Kf · (1 + ‖x‖κ
d)

for all x ∈ IRd, where Kf and κ are appropriate real constants.

Theorem 5.2. Assume that (A1) and (A3) with V (x) ∈ C2
b(κ)(IR

d, IR1
+) hold,

IE ‖Y0‖4κ < +∞ for an integer κ ≥ 1, all coefficients a, bj ∈ C2
b(κ)([0, T ]× IRd, IRd)

of SDE (1) are Lipschitz-continuous with Lipschitz constants Kj
L with respect to

both variables t, x and

∀t ∈ [0, T ] ∀x ∈ IRd
m∑

j=0

‖C0(t, x)bj(t, x)‖4d ≤ (KC)4(1 + ‖x‖4κ
d ).(52)

Then the subclass of BIMs (2) with weights cj(t, x) ≡ O for j = 1, 2, ...,m (i.e.
BIMs with nonrandom weights) is weakly converging with rate rw = 1.0 with respect
to the test class f ∈ C2

b(κ)(IR
d, IR1). More precisely, for all test functions f ∈

C2
b(κ)(IR

d, IR1) for which the standard Euler method weakly converges with rate rE
w =

1.0, there is a real constant Kw = Kw(T,Kf , bj) such that

|IE f(XT )− IE f(YnT
)| ≤ Kw ·

(
max

k=0,1,...,nT

IE (1 + ‖Yk‖4κ
d )

)
·∆max(53)

where the maximum step size ∆max satisfies the condition

2κ(4κ− 1)mK2
M (Kj

b(2))
2∆max < 1(54)

with constants Kj
b(2) chosen as in (38) for all j = 1, 2, ..., m (i.e. for bj instead of

f).

Proof. Recall that the forward Euler methods weakly converge with worst case
global rate rE

w = 1.0 and error-constants KE
w = KE

w (T ) ≥ 0 under the given as-
sumptions (see Milstein [10] and Talay [18]). Let f ∈ C2

b(κ)(IR
d, IR1) have uniformly

bounded derivatives satisfying

max
(
|f(x)|, ‖∇f(x)‖d, ‖∇2f(x)‖d×d

)
≤ Kf (1 + ‖x‖4κ)1/4 ≤ Kf (1 + ‖x‖κ)

with constant Kf . Moreover, for such functions f , one can find an appropriate real
constant KE

w = KE
w (T, f, bj) such that it satisfies the conditional estimates of the

local weak error∣∣∣IE [f(Xs,x(t))− f(Y E
s,x(t))]

∣∣∣ ≤ KE
w · (1 + ‖x‖4κ

d ) · (t− s)2
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for sufficiently small 0 ≤ t− s ≤ ∆max ≤ δ0 and x ∈ IRd, and the global weak error∣∣∣IE [f(X0,x(T ))− f(Y E
0,x(T ))]

∣∣∣ ≤ KE
w · (1 + ‖x‖4κ

d ) · T ·∆max,

for sufficiently small ∆max ≤ δ0 ≤ min(1, T ). Now, define the auxiliary functions
u : [0, T ]× IRd → IR1 by

u(s, x) = IE f(Xs,x(tk+1))

for 0 ≤ s ≤ tk+1. Suppose that 0 ≤ ∆k ≤ δ0 ≤ min(1, T ). For simplicity, assume
that X and Y are constructed on one and the same complete probability space
(which does not exhibit a real restriction due to Kolmogorov’s extension theorem).
Then, by following similar ideas as in Milstein [10] extended to the variable step
size case, we arrive at

ε0(tk+1) :=
∣∣∣IE [f(X0,x0(t))− f(Y0,y0(t))]

∣∣∣

=
∣∣∣

k−1∑

i=0

(
IE [u(ti+1, Xti,Yi

(ti+1))]− IE [u(ti+1, Yti,Yi
(ti+1))]

)
+

+IE [f(Xtk,Yk
(tk+1))]− IE [f(Ytk,Yk

(tk+1))]
∣∣∣

≤
k−1∑

i=0

IE
∣∣∣IE [u(ti+1, Xti,Yi(ti+1))− u(ti+1, Yti,Yi(ti+1))|Fti ]

∣∣∣ +

+IE
∣∣∣IE [f(Xtk,Yk

(tk+1))− f(Ytk,Yk
(tk+1))|Ftk

]
∣∣∣

≤
k−1∑

i=0

IE
∣∣∣IE [u(ti+1, Xti,Yi(ti+1))− u(ti+1, Y

E
ti,Yi

(ti+1))|Fti ]
∣∣∣ +

+
k−1∑

i=0

IE
∣∣∣IE [u(ti+1, Y

E
ti,Yi

(ti+1))− u(ti+1, Yti,Yi(ti+1))|Fti ]
∣∣∣ +

+IE
∣∣∣IE [f(Xtk,Yk

(tk+1))− f(Y E
tk,Yk

(tk+1))|Ftk
]
∣∣∣ +

+IE
∣∣∣IE [f(Y E

tk,Yk
(tk+1))− f(Ytk,Yk

(tk+1))|Ftk
]
∣∣∣

≤ KE
w · max

i=0,1,...,k+1
(1 + IE ‖Yi‖4κ

d ) ·
k∑

i=0

∆2
i +

+
k−1∑

i=0

IE
∣∣∣IE [u(ti+1, Y

E
ti,Yi

(ti+1))− u(ti+1, Yti,Yi(ti+1))|Fti ]
∣∣∣ +

+IE
∣∣∣IE [f(Y E

tk,Yk
(tk+1))− f(Ytk,Yk

(tk+1))|Ftk
]
∣∣∣

= KE
w · max

i=0,1,...,k+1
(1 + IE ‖Yi‖4κ

d ) · tk+1 ·∆max + m1(k) + m2(k).

where m1(k) =
k−1∑

i=0

IE
∣∣∣IE [u(ti+1, Y

E
ti,Yi

(ti+1))− u(ti+1, Yti,Yi(ti+1))|Fti ]
∣∣∣,

m2(k) = IE
∣∣∣IE [f(Y E

tk,Yk
(tk+1))− f(Ytk,Yk

(tk+1))|Ftk
]
∣∣∣.

Next, we analyze the remaining terms m1 and m2. For this purpose, suppose that
g ∈ C2

b(κ)(IR
d, IR1). Then, the expressions m1 and m2 have only terms of the form
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IE |IE [g(Y E
tk,Yk

(tk+1))−g(Ytk,Yk
(tk+1))|Ftk

]|. Thus, it remains to estimate them by
Kk∆2

k with constants Kk. Note also that Ms,x(t) = Id−c0(s, x)(t−s) is nonrandom,
Ytk,Yk

(tk+1) = Yk+1 by definition, and

ds,x(t) := Y E
s,x(t)− Ys,x(t) = M−1

s,x(t)
m∑

j=0

c0(s, x)bj(s, x)(W j
t −W j

s )(t− s).

Now, we obtain

m(k) := IE
∣∣∣IE [g(Y E

tk,Yk
(tk+1))− g(Ytk,Yk

(tk+1))|Ftk
]
∣∣∣

= IE
∣∣∣IE [< ∇g(Yk), Y E

tk,Yk
(tk+1)− Ytk,Yk

(tk+1) >d |Ftk
] +

IE [< ∇g(η1(tk+1))−∇g(Yk)), Y E
tk,Yk

(tk+1)− Ytk,Yk
(tk+1) >d |Ftk

]
∣∣∣

= IE
∣∣∣ < ∇g(Yk), IE [dtk,Yk

(tk+1)|Ftk
] >d +

+IE [< ∇2g(η2(tk+1))(η1(tk+1)− Yk), dtk,Yk
(tk+1) >d |Ftk

]
∣∣∣

= IE
∣∣∣ < ∇g(Yk), IE [dtk,Yk

(tk+1)|Ftk
] >d +

+IE [θ1
k < ∇2g(η2(tk+1))dtk,Yk

(tk+1), dtk,Yk
(tk+1) >d |Ftk

]
∣∣∣

= IE
∣∣∣ < ∇g(Yk),M−1

tk,Yk
(tk+1)c0(tk, Yk)a(tk, Yk) >d ∆2

k +

+IE [θ1
k < ∇2g(η2(tk+1))dtk,Yk

(tk+1), dtk,Yk
(tk+1) >d |Ftk

]
∣∣∣

≤ KM

(
IE [‖∇g(Yk)‖2d×d]

)1/2(
IE [‖c0(tk, Yk)a(tk, Yk)‖2d

)1/2

∆2
k +

+
(
IE [‖∇2g(η2(tk+1))‖2d×d]

)1/2(
IE [‖dtk,Yk

(tk+1)‖4d]
)1/2

≤ KM

(
IE [‖∇g(Yk)‖4d×d]

)1/4(
IE [‖c0(tk, Yk)a(tk, Yk)‖4d

)1/4

∆2
k +

+
(
IE [‖∇2g(η2(tk+1))‖4d×d]

)1/4(
IE [‖dtk,Yk

(tk+1)‖4d]
)1/2

≤ 23/2KgKMKC

(
IE [1 + ‖Yk‖4κ

d ]
)1/2

∆2
k +

+
√

3 23/2(m + 1)3/2KgK
2
MK2

C

(
IE [1 + ‖Yk‖4κ

d ]
)3/4

∆3
k

≤ 23/2KgKMKC(1 +
√

3 (m + 1)3/2KMKC) ·
(

max
i=0,1,...,k

IE [1 + ‖Yi+1‖4κ
d ]

)
·∆2

k

where η(t) is an intermediate value between Y E
tk,Yk

(t) and Ytk,Yk
(t), i.e. η(t) =

Yk + θk(Y E
tk,Yk

(t) − Ytk,Yk
(t)) with scalar θk ∈ [0, 1]. Therefore, we may conclude

that

m1(k)

≤ 23/2KfKMKC(1 +
√

3 (m + 1)3/2KMKC)( max
i=0,1,...,k

IE [1 + ‖Yi+1‖4κ
d ])

k−1∑

i=0

∆2
i

≤ 23/2KfKMKC(1 +
√

3 (m + 1)3/2KMKC)( max
i=0,1,...,k

IE [1 + ‖Yi+1‖4κ
d ])tk∆max,
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and

m2(k)

≤ 23/2KfKMKC(1+
√

3 (m+1)3/2KMKC)( max
i=0,1,...,k

IE [1+‖Yi+1‖4κ
d ])∆k∆max.

Consequently, for all k = 0, 1, ..., nT − 1, the weak error ε0 of BIMs (2) with
nonrandom weights c0 must satisfy

ε0(tk+1) ≤ Kw(tk+1) · max
i=0,1,...,k

IE [1 + ‖Yi+1‖4κ
d ] ·∆max

≤ Kw(T ) · max
i=0,1,...,nT−1

IE [1 + ‖Yi+1‖4κ
d ] ·∆max.

where Kw(t) ≤ (KE
w + 23/2KfKMKC(1+

√
3 (m+1)3/2KMKC))t. The p = 4κ-

moments of the BIMs (2) with vanishing weights cj (j = 1, 2, ..., m) and sufficiently
small step sizes ∆k ≤ ∆max are uniformly bounded, as seen by Theorem 4.1. Thus,
weak convergence with worst case rate rw ≥ 1.0 can be established under the given
assumptions of Theorem 5.2, hence the proof is complete. ¤

Remark. Theorem 5.2 says that the BIMs with nonrandom weights have the
same rate of weak convergence as the forward Euler methods have. For further
details and more general classes of functionals F , see Talay [18]. One can also find
estimates of Kw which are monotonically increasing in Kf , thanks to Theorem 5.2.
Therefore, we obtain uniform weak convergence with respect to all test functions
f ∈ C2

b(κ)(IR
d, IR1) which have boundedness constants bounded by Kf ≤ c < +∞.

BIMs are implementable very easily while gaining numerical stability compared
to explicit methods (as that of Euler-Maruyama) and maintaining the same con-
vergence rates as their explicit counterparts. Thus, we can justify them as a useful
and remarkable alternative to the most used numerical methods for SDEs.

Acknowledgments

The author thanks the editors of this journal for inviting to contribute to their
journal. Special thanks go to Edward J. Allen for his continuous encouragement
on our work.

References

[1] M. I. Abukhaled and E. J. Allen, Expectation stability of second order weak numerical meth-
ods for stochastic differential equations, Stoch. Anal. Applic. 20 (2002), 693-707.

[2] S. S. Artemiev and T. A. Averina, Numerical Analysis of Systems of Ordinary and Stochastic
Differential Equations, VSP, Utrecht, 1997.

[3] W. Beckner, Inequalities in Fourier analysis, Ann. of Math. 102 (1975), 159-182.
[4] J. A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), 396-414.
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