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A PRIORI AND A POSTERIORI ERROR ESTIMATES FOR
BOUSSINESQ EQUATIONS

KARAM ALLALI

Abstract. This paper deals with an incompressible viscous flow problem,

where the Navier-Stokes equations are coupled with a nonlinear heat equation.

Existence and uniqueness results are established. Next, a finite element ap-

proximation of the problem is presented and analyzed. Error estimates are

obtained and a posteriori error estimate is given.
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1. Introduction

In this paper, we are interested in an incompressible viscous fluid governed by
Navier-Stokes equations, when they are coupled with a nonlinear heat equation
by the intermediary of the reaction source term. The considered model is the
system formed by the equations describing the flow, under the approximation of
Boussinesq. Within the framework of this approximation, we do not take account
of the variation of density. Therefore the density is regarded as constant in the
equation of mass conservation. The Boussinesq approximation was justified and
used to study some chemical phenomena as in [10, 11]. Numerical analysis and
finite element approximation of this model, in non stationary form, is studied in
[1, 9]. In this work, we are interested in a similar model, but in a stationary form.

Let Ω an open bounded convex domain of IRd (d=2,3), with Lipschitz continuous
boundary Γ . In Ω, we consider the following stationary model:

(P )





−∆T + u.∇T + f(T ) = 0, in Ω,

−µ∆u + (u.∇)u +∇p = F (T ), in Ω,

div u = 0,

u = 0 and T = 0, on Γ,

where the unknown factors are speed u, the pressure p and the temperature T ;
the coefficient µ (the viscosity of the fluid) is assumed to be positive. The data
are a regular function F of IR to IRd (typically, the function F is a gravity force
proportional to the variations of density, therefore dependents on the temperature)
and an other regular function f of IR to IR∗+ (typically, the function f is the source
term of the reaction depending on the temperature and also on energy; usually this
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function is obtained by the Arrhenius law). On datas, we assume that the first
and the second derivatives are bounded.

This model has been studied by using topological degree theory to prove the
existence results in [2] and by using mixed-dual variational formulation in two
dimensions in [6, 7], the authors of these last works introduced the gradient of
velocity and the gradient of temperature as unknowns, on which, they give some a
priori error estimates.

In the next section, we prove a result of existence and uniqueness of the continu-
ous problem. In the third section, Some usual finite element spaces are introduced,
for speed, for the pressure and for the temperature. A discrete problem is given, we
prove some error estimates on the speed, on the pressure and on the temperature.
Finally in the last section, a posteriori error estimate is given.

2. Existence and uniqueness

The variational form of the problem (P ) can be written as following:

(P0)





Find (u, p, T ) ∈ (H1
0 (Ω))d × L2

0(Ω)×H1
0 (Ω) such that

∀v ∈ (H1
0 (Ω))d, µ

∫

Ω

∇u.∇vdx +
∫

Ω

[(u.∇)u]vdx−
∫

Ω

pdiv vdx

=
∫
Ω

F (T )vdx,

∀q ∈ L2
0(Ω),

∫

Ω

qdiv udx = 0,

∀s ∈ H1
0 (Ω),

∫

Ω

(∇s∇T + u.∇T )dx +
∫

Ω

f(T )sdx = 0.

First of all, we will rewrite the problem in an equivalent form, allowing us to prove
the existence of the weak solution. For that, we introduce the spaces:

V = {v ∈ (H1
0 (Ω))d, div = 0} and Y = V ×H1

0 (Ω).

Let A(., .) the map defined by:

∀((u, T ), (v, s)) ∈ Y 2,

A((u, T ), (v, s)) =
∫

Ω

(µ∇u∇v + (u.∇)uv)dx−
∫

Ω

F (T )vdx

+
∫

Ω

∇T.∇sdx +
∫

Ω

(u.∇T )sdx +
∫

Ω

f(T )sdx.

We consider the problem

(P1)





Find(u, T ) ∈ V ×H1
0 (Ω), such that

∀(v, s) ∈ V ×H1
0 (Ω), A((u, T ), (v, s)) = 0.

It is easy to see that, if the triplet (u, p, T ) ∈ (H1
0 (Ω))d × L2

0(Ω) × H1
0 (Ω)) is

solution of (P0), then (u, T ) is solution of (P1). Reciprocally, for any solution
(u, T ) ∈ V ×H1

0 (Ω) of (P1), there exist a unique element p of L2
0(Ω) such that the

triplet (u, p, T ) is solution of (P0). To prove the existence of the solution for the
problem (P1), we need the following theorem:
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Theorem 2.1. Let X a separable Hilbert space, and A(., .) a map defined from
X ×X onto IR such that v −→ A(u, v) is a linear continuous mapping. Under the
following assumptions:

(1) There exist (γ, β) ∈ IR∗+ × IR such that

(2.1) ∀v ∈ X, A(v, v) ≥ γ‖v‖2X − β‖v‖X .

(2) For any set (vn) of X converge weakly toward v, we have

(2.2) ∀w ∈ X; lim
n−→∞

A(vn, w) = A(v, w),

the following problem:

(2.3)
{

Find u ∈ Xsuch that
∀v ∈ X, A(u, v) = 0

has at least a solution.

Proof. Let us mention that without the term β‖v‖X in the inequality (2.1), this
theorem is the same as ([8] Th 1.2, page 280). For completeness, we give only
the main idea of the proof. Let a sequence (wm)m≥1 a ”basis” of X and Xm the
subspace of X spanned by (wi)1≤i≤m. We set Φm a mapping defined from Xm onto
Xm by (Φm(u), wi) = a(u,wi), 1 ≤ i ≤ m .

For any u ∈ Hm, we have

(Φ(u), u) ≥ (γ‖u‖X − β) ‖u‖X .

If we set ‖u‖X = ν; it is sufficient to assume that γν−β ≥ 0 to have (Φm(u), u) ≥ 0,
and then to be able to apply Brouwer’s Theorem , i.e.

∃um ∈ Hm such that Φm(um) = 0 and ‖um‖X ≤ ν.

Therefore ∃u? ∈ H, such that ump (a subsequence of um) weakly converge to u?.
It is enough to use (2.2) and the fact that the finite linear combinations of wi are
dense in X, to prove the existence of the solution for the problem (2.3). ¤

Let the following assumptions:
(1) There exist (a, b) ∈ (IR+)2 such that

∀(T, s) ∈ (H1
0 (Ω))2; |

∫

Ω

f(T )sdx| ≤ a|T |1,Ω|s|1,Ω + b|s|1,Ω.

(2) There exist c ∈ IR+ such that

∀(T, v) ∈ H1
0 (Ω)× (H1

0 (Ω))d; |
∫

Ω

F (T )vdx| ≤ c|v|1,Ω + d|v|1,Ω|T |1,Ω.

Theorem 2.2. Assume that a ∈ [0, 1[ and 4µ(1− a) > d2, then the problem (P1)
admits a solution (u, T ) in V ×H1

0 (Ω).

Proof. We will apply the Theorem 2.1. For that, we set X = V ×H1
0 (Ω). By using

the compact embedding from H1
0 (Ω) onto L4(Ω), we prove that the mapping A(., .)

is continuous on X and it verifies the second assumption of Theorem 2.1 (same
arguments as [8], page 286). To prove the existence of the solution, it is enough to
prove that there exist two reals γ ∈ IR∗+ and β ∈ IR, such that

∀(u, T ) ∈ X; A((u, T ), (u, T )) ≥ γ(|T |21,Ω + |u|21,Ω)− β(|T |21,Ω + |u|21,Ω)1/2.

Since u ∈ V , we have

∀v ∈ V, ∀T ∈ H1
0 (Ω),

∫

Ω

(u.∇)u.vdx =
∫

Ω

(u.∇T )Tdx = 0.
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Then

∀(u, T ) ∈ V ×H1
0 (Ω),

A((u, T ), (u, T )) ≥ µ|u|21,Ω − c|u|1,Ω + (1− a)|T |21,Ω − b|T |1,Ω − d|u|1,Ω|T |1,Ω

≥ min(µ, 1− a)(|T |21,Ω + |u|21,Ω)− 2
1
2 max(c, b)(|T |21,Ω + |u|21,Ω)

1
2

−d|u|1,Ω|T |1,Ω.

From the inequality 4µ(1 − a) > d2, we deduce that there exist a strictly positive
constant γ, such that

∀(u, T ) ∈ V ×H1
0 (Ω)A((u, T ), (u, T )) ≥ γ(|T |21,Ω + |u|21,Ω)

−2
1
2 max(c, b)(|T |21,Ω + |u|21,Ω)

1
2 .

By using the Theorem 2.1, we deduce that the problem (P1) admits at least one
solution in X = V ×H1

0 (Ω). ¤

We set

N1 := sup
u∈(H1

0 (Ω))d,(T,s)∈(H1
0 (Ω))2

∫

Ω

(u.∇T )sdx

|u|1,Ω|T |1,Ω|s|1,Ω
,

N2 := sup
(u,v,w)∈((H1

0 (Ω))d)3

∫

Ω

(u.∇)v.wdx

|u|1,Ω|v|1,Ω|w|1,Ω
,

β :=





0, if f is an increasing function

sup
(T,s)∈(H1

0 (Ω))2

∫

Ω

(f(T )− f(s))(T − s)dx

|T − s|21,Ω

otherwise

and

γ := sup
(T,s)∈(H1

0 (Ω))2,v∈(H1
0 (Ω))d

∫

Ω

(F (T )− F (s))vdx

|T − s|1,Ω|v|1,Ω
.

Thanks to the compact embedding of H1
0 (Ω) onto L4(Ω), we prove easily that

N1, N2, β and γ are positive reals. Concerning the existence and the uniqueness,
we have the following Theorem:

Theorem 2.3. Under the following assumptions:

a ∈ [0, 1[, 4µ(1− a) > d2 β ∈ [0, 1[ and N2
c

µ
+ γ

N1

1− β

b

1− a
< µ,

the problem (P1) has a unique solution (u, T ) ∈ V ×H1
0 (Ω).

Proof. Recall that for a ∈ [0, 1[ and 4µ(1 − a) > d2, the problem has a solution.
We will prove then the uniqueness.
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Let (u1, T1) and (u2, T2) two solutions of the problem (P1).
we have

|T1 − T2|21,Ω

= − ∫
Ω
(u1.∇T1 − u2.∇T2).∇(T1 − T2)dx− ∫

Ω
(f(T1)− f(T2))(T1 − T2)dx

= −
∫

Ω

(u1.∇(T1 − T2))(T1 − T2)dx−
∫

Ω

((u1 − u2).∇T2)(T1 − T2)dx

−
∫

Ω

(f(T1)− f(T2))(T1 − T2)dx

≤ N1|u1 − u2|1,Ω|T2|1,Ω|T1 − T2|1,Ω + β|T1 − T2|21,Ω.

Then

(2.4) |T1 − T2|1,Ω ≤ N1

1− β
|T2|1,Ω|u1 − u2|1,Ω.

We have also
µ|u1 − u2|21,Ω +

∫
Ω
[(u1.∇)u1 − (u2.∇)u2](u1 − u2)dx

=
∫
Ω
(F (T1)− F (T2)).(u1 − u2)dx.

By noticing that ∫

Ω

(u1.∇)(u1 − u2)(u1 − u2)dx = 0,

we obtain

(2.5) µ|u1 − u2|21,Ω ≤ N2|u2|1,Ω|u1 − u2|21,Ω + γ|T1 − T2|1,Ω|u1 − u2|1,Ω.

However (u2, T2) is solution of the problem (P1); we have the following estimates:

|u2|1,Ω ≤ c

µ
and |T2|1,Ω ≤ b

1− a
.

By using (2.4)-(2.5), we deduce

µ|u1 − u2|21,Ω ≤ N2
c

µ
|u1 − u2|21,Ω + γ

N1

1− β

b

1− a
|u1 − u2|21,Ω.

Then, with the assumption

N2
c

µ
+ γ

N1

1− β

b

1− a
< µ,

we obtain: u1 = u2, and by the inequality (2.4), we get: T1 = T2. ¤

3. Presentation of the discrete problem

Let S an operator defined by:

S : (H−1(Ω))d −→ (H1
0 (Ω))d,

g −→ w,

where the couple (w, q) is the solution in (H1
0 (Ω))d × L2

0(Ω) of Stokes problem



−µ∆w +∇q = g in Ω,
divw = 0 in Ω,
w = 0 on Γ.
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Let Sg the function q in the couple (w, q). Let L an operator defined by:

L : (H−1(Ω)) −→ H1
0 (Ω),

h −→ Q,

where Q is the solution in H1
0 (Ω) of the problem

{ −∆Q = h in Ω,
Q = 0 on Γ.

Finally, we introduce the operator H defined by:

H : Y = (H1
0 (Ω))d ×H1

0 (Ω) −→ Y = (H1
0 (Ω))d ×H1

0 (Ω),

V = (v, s) −→ H(V ) = V − (S( F (s)− (v.∇)v),−L(f(s) + v.∇s)).

The continuity and the differentiability of this operator are easy to be verified
thanks to the Sobolev embeddings. It is easy to verify that if the triplet (u, p, T ) of
(H1

0 (Ω))d × L2
0(Ω)×H1

0 (Ω) is a weak solution of the problem (P ) then H(U) = 0
with U = (u, T ). Reciprocally, for any solution U = (u, T ) of equation H(U) = 0,
there exist a unique p ∈ L2

0(Ω) such that the triplet (u, p, T ) is a weak solution of
the problem (P ).
We assume that the couple U = (u, T ) is a nonsingular solution of the equation
H(U) = 0, in such way that DH(U) ∈ Isom(Y, Y ).
By writing the operator DH(U) explicitly, for all V = (v, s) ∈ Y,

DH(U).V = V − (S[ F ′(T )s− (u.∇)v − (v.∇)u],−L[f ′(T )s + u.∇s + v.∇T ]),

and by using the compactness of the nonlinear terms, we verify that the assumption
of non-singularity is equivalent to say that the only solution (w, q, s) ∈ Y of the
following problem:





∀v ∈ (H1
0 (Ω))d, µ

∫

Ω

∇w.∇vdx +
∫

Ω

[(u.∇)w + (w.∇)u]vdx

− ∫
Ωqdiv vdx =

∫

Ω

F ′(T )svdx,

∀r ∈ L2
0(Ω),

∫

Ω

rdivwdx = 0,

∀z ∈ H1
0 (Ω),

∫

Ω

(∇s∇z + [w.∇T + u.∇s]z)dx +
∫

Ω

f ′(T )zsdx = 0,

is the solution zero. By the local inversion Theorem, the non-singularity assump-
tion implies a local uniqueness of the solution U .

For all values of the real parameter h > 0, we consider three spaces Xh, Mh and
Wh such that

Xh ⊂ (H1
0 (Ω))d , Mh ⊂ L2

0(Ω) and Wh ⊂ H1
0 (Ω),

we set
Vh := {vh, ∀qh ∈ Mh, b(qh, vh) = 0},

and we assume that it satisfies the following assumptions:
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(1) For all 0 < σ ≤ 1, there exist a linear continuous operator Ph from Hσ(Ω)∩
L2

0(Ω) onto Mh such that

∀q ∈ Hσ(Ω) ∩ L2
0(Ω), ‖q − Phq‖0,Ω . hσ|q|σ,Ω),

(2) For all
d

2
< σ ≤ 1, there exist a linear continuous operator Ih from

(H1+σ(Ω))d ∩ (H1
0 (Ω))d onto Xh such that

∀u ∈ (H1+σ(Ω))d ∩ (H1
0 (Ω))d, ‖u− Ihu‖1,Ω . hσ|u|1+σ,Ω.

(3) There exist a constant β independent of h, such that

∀qh ∈ Mh, ∃vh ∈ Xh, such that (div vh, qh)0,Ω ≥ β‖qh‖0,Ω‖vh‖1,Ω.

(4) For all
d

2
< σ ≤ 1, there exist a linear continuous operator ih from

H1+σ(Ω) ∩H1
0 (Ω) onto Wh such that

∀T ∈ H1+σ(Ω) ∩H1
0 (Ω), ‖T − ihT‖1,Ω . hσ|T |1+σ,Ω.

We introduce now three spaces Xh, Mh and Wh such that the previous assump-
tions are satisfied. For that, we assume that the open ω is polyhedric and we assume
a regular triangulations family Th of ω (see [[5] Chapter 3, Parag. 3]), where for all
h the triangulation Th is d-simplexes set of diameters bounded above by h. For all
K of Th, we define by Pk(K) the polynomial space of total degree ≤ k on T , where
k is a strictly positive real.

Let the space Wh defined as following:

Wh = {Th ∈ C0(Ω) ∩H1
0 (Ω), ∀K ∈ Th, Th|K ∈ P1(K)}.

This space verifies the assumption (4) as in [5]. We denote by Ih the operator
defined as following:

Ih : (C0(Ω))d −→ (Wh)d

F = (f1, .., fd) −→ IhF = (ihf1, .., ihfd).

where ih is the classic Lagrange interpolation operator.

Example 1 In dimension d=2, we set

Xh = {vh ∈ (C0(Ω))2 ∩ (H1
0 (Ω))2, ∀K ∈ Th, vh|K ∈ (P2(K))2},

Mh = {qh ∈ L2
0(Ω), ∀K ∈ Th, qh|K ∈ P0(K)}.

Example 2 In dimension d=2, we set

Xh = {vh ∈ (C0(Ω))2 ∩ (H1
0 (Ω))2, ∀K ∈ Th, vh|K ∈ (P2(K))2},

Mh = {qh ∈ L2
0(Ω) ∪ C0(Ω), ∀K ∈ Th, qh|K ∈ P1(K)}.

Example 3 For all T of Th of vertices ai, 1 ≤ i ≤ d + 1, we note by λi the
barycentric coordinate associated to the vertices ai and by ni the normal vector
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on the face not containing ai. We set PT the space engendered by the polynoms of
(P1(T ))d and by the functions

pi = {
d+1∏

j=1,j 6=i

λjni, 1 ≤ i ≤ d + 1}.

We set then

Xh = {vh ∈ (C0(Ω))d ∩ (H1
0 (Ω))d, ∀K ∈ Th, vh|K ∈ PK},

Mh = {qh ∈ L2
0(Ω) ∪ C0(Ω), ∀K ∈ Th, qh|K ∈ P1(K)}.

In the three examples above, the assumptions (1)-(3) are satisfied and the constant
β is independent of h ([3],[8]).

We will specify the approximation of the nonlinear terms F and f . A continuous
function T being known on the nodes of the interpolation operators Ih and ih, we
can calculate the quantities F (T ) and f(T ) in the nodes, and then to construct the
interpolates of F (T ) and of f(T ). More precisely, we define Fh and fh by:

Fh : (C0(Ω))d −→ Xh

s −→ Fh(s) = Ih(F (s)) = Ih(F (ihs))

and
fh : C0(Ω) −→ Wh

s −→ fh(s) = ih(f(s)) = ih(f(ihs)).
It is easy to verify that for all continuous functions s and q on Ω, the differentials
DFh(s)q and Dfh(s)q are written as following:

DFh(s)q = Ih[F ′(s)q] = Ih[F ′(ihs)ihq],

Dfh(s)q = ih[F ′(s)q] = ih[F ′(ihs)ihq].

Moreover, if F (s) ∈ (Hσ(Ω))d and f(s) ∈ Hσ(Ω) , with
d

2
< σ ≤ 2, we have

‖F (s)− Fh(s)‖0,Ω ≤ Chσ‖F (s)‖σ,Ω and ‖f(s)− fh(s)‖0,Ω ≤ Chσ‖f(s)‖σ,Ω.

We can write the discrete problem in the following variational form:

(Ph)





Find a triplet (uh, ph, Th) ∈ Xh ×Mh ×Wh such that

∀vh ∈ Xh, µ

∫

Ω

∇uh.∇vhdx +
∫

Ω

(uh.∇)uh.vhdx

−
∫

Ω

ph div vh dx =
∫

Ω

Fh(Th)vhdx,

∀qh ∈ Mh,

∫

Ω

qh div uhdx = 0,

∀sh ∈ Wh,

∫

Ω

(∇Th∇sh + uh.∇Thsh)dx +
∫

Ω

fh(Th)shdx = 0.

To study this system, we will rewrite it in same manner as the continuous problem
form. For this goal, we introduce the operators Sh and Lh, the discrete analogues
of the operators S and L. More precisely:

Sh : (H−1(Ω))d −→ Xh,
g −→ wh,
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where the couple (wh, qh) is the solution in Xh ×Mh of Stokes problem:




∀vh ∈ Xh, µ

∫

Ω

∇wh.∇vhdx−
∫

Ω

qh div vh dx =< g, vh >,

∀rh ∈ Mh,

∫

Ω

rh div whdx = 0.

The operator Lh is defined by:

Lh : (H−1(Ω)) −→ Wh,
h −→ Qh,

where Qh is the solution in Wh of the following problem:

∀sh ∈ Wh,

∫

Ω

∇Qh.∇shdx =< h, sh > .

We have

∀(g, s) ∈ (H−1(Ω))d ×H−1(Ω); ‖Shg‖1,Ω ≤ C‖g‖(H−1(Ω))d

and ‖Lhs‖1,Ω ≤ C‖s‖H−1(Ω).

Moreover, if S(g) ∈ (Hσ(Ω))d and L(s) ∈ Hσ(Ω), with
d

2
< σ ≤ 2, we have

‖(S − Sh)g‖1,Ω ≤ Chσ−1(‖Sg‖σ,Ω + (‖Sg‖σ−1,Ω)

and
‖(L− Lh)s‖1,Ω ≤ Chσ−1‖Ls‖σ,Ω.

Finally, we introduce the operator Hh defined from the space Y onto Y by:

Hh : Y := (H1
0 (Ω))d ×H1

0 (Ω) −→ Y := (H1
0 (Ω))d ×H1

0 (Ω),

V = (v, s) −→ Hh(V ) = V − (Sh( F (s)− (v.∇)v),−Lh(f(s) + v.∇s)).

It should be noted that this mapping is continuous differentiable from Xh ×Wh

onto Xh × Wh. In addition, the system (Ph) is written now in equivalent form
Hh(Uh) = 0, where Uh = (uh, Th). The assumption of compatibility allows to cal-
culate the pressure ph in Mh, in a unique manner.
the formulation above makes it possible to study the problem (Ph) by using the
discrete implicit function Theorem according to [8]:

Theorem 3.1. We assume that there exist a couple Uh ∈ Xh × Wh such that
DHh(Uh) ∈ Isom(Xh ×Wh, Xh ×Wh). We assume

εh = ‖H(Uh)‖((H1
0 (Ω))d×H1

0 (Ω),

γh = ‖(DHh(Uh))−1‖L(Xh×Wh,Xh×Wh),

Λh(ν) = sup
Vh∈B(Uh,ν)

‖DHh(Uh)−DHh(Vh)‖L(Xh×Wh,Xh×Wh),

where
B(Uh, ν) = {Vh ∈ Xh ×Wh; ‖Uh − Vh‖Y ≤ ν}.

If we have
2γhΛh(2γhεh) < 1,

for all ν ≥ 2γhεh such that γhΛh(ν) < 1, there exists a unique solution Uh of the
equation Hh(Uh) = 0, verifying:

‖Uh − Uh‖Y ≤ ν.
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Moreover, we have the estimate:

‖Uh − Uh‖Y ≤ γh

1− γhΛh(ν)
‖Hh(Uh)‖Y .

In the next, we assume that the triplet (u, p, T ) solution of the continuous prob-
lem has the following regularity:

u ∈ (Hσ(Ω))d, p ∈ Hσ−1(Ω) and T ∈ Hσ(Ω),

where
d

2
< σ ≤ 2.

3.1. Existence, uniqueness and a priori error estimate. First of all, we have
the following technical proposition whose the proof is similar to Bernardi et al ([2],
lemma 3.12, page 917).

Proposition 3.1. We have

(3.1) lim
h−→0

sup
qh∈Wh

‖F ′(T )qh − Ih(F ′(T ))qh‖0,Ω

‖qh‖1,Ω
= 0

and

(3.2) lim
h−→0

sup
qh∈Wh

‖f ′(T )qh − ih(f ′(T ))qh‖0,Ω

‖qh‖1,Ω
= 0.

Moreover, for all (rh, qh) ∈ W 2
h . We have

(3.3) ‖Ih(F ′(rh)− F ′(ihT ))qh‖0,Ω ≤ C‖rh − ihT‖1,Ω‖qh‖1,Ω,

(3.4) ‖ih(f ′(rh)− f ′(ihT ))qh‖0,Ω ≤ C‖rh − ihT‖1,Ω‖qh‖1,Ω

and

(3.5) ‖Ih(F (rh)− F (sh))‖0,Ω ≤ C‖rh − sh‖0,Ω.

In the next, let Uh the element of Xh ×Wh defined by

Uh = (Ihu, ihT ) ∈ Xh ×Wh.

Lemma 3.1. There exist a constant h0 such that, for all h ≤ h0, we have

DHh(Uh) ∈ Isom(Xh ×Wh, Xh ×Wh).

Moreover, γh is bounded above by a constant γ independent of h.

Proof. An immediate consequence of the not-singularity of the continuous solution
is that there is a positive constant C such that, for all Wh = (wh, sh) ∈ Xh ×Wh,

‖DH(U).Wh‖Y ≥ C‖Wh‖Y .

the lemma will be proved, if we prove:

(3.6) lim
h−→0

sup
Wh∈Xh×Wh,‖Wh‖≤1

‖DH(U).Wh −DHh(Uh).Wh‖Y = 0.

Remark that for all couples V = (v, r) and W = (w, q) of Y, we have

DHh(V ).W = (w−Sh[ Ih[F ′(r)q]−(v.∇)w−(w.∇)v], q−Lh[ih[f ′(r)q)]+v.∇q+w.∇r]).
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For Uh = (Ihu, ihT ) and Wh = (wh, qh) ∈ Xh ×Wh, we have




DHh(Uh).Wh = DHh(U).Wh+

((S − Sh)[ F ′(T )qh − (u.∇)wh − (wh.∇)u], (Lh − L)[f ′(T )qh + u.∇qh + wh.∇T )])

+(ShΦ, Lhψ),

where

Φ = F ′(T )qh − Ih( F ′(T )qh)− ((u− Ihu).∇).wh − (wh.∇)(u− Ihu)

and
ψ = f ′(T )qh − ih(f ′(T )qh)− (u− Ihu).∇qh − wh.∇(T − ihT ).

The lemma will be proved, if we prove the convergence toward 0 of the two terms
appearing in the last formula.
1) Let us recall that if Co1 and Co2 are respectively compacts of (H−1(Ω))d and
of H−1(Ω), we have

lim
h−→0

sup
g∈Co1

‖(S − Sh)g‖1,Ω = 0

and
lim

h−→0
sup

g∈Co2

‖(L− Lh)g‖1,Ω = 0.

However, the unit ball image of Y = (H1
0 (Ω))d ×H1

0 (Ω) by the mapping

(w, s) −→ F ′(T )s− (u.∇)w − (w.∇)u

is a compact of (H−1(Ω))d, and its image by the mapping

(w, s) −→ f ′(T )s + u.∇s + w.∇T

is a compact of H−1(Ω). We deduce that

lim
h−→0

sup
Wh=(wh,sh),‖Wh‖Y ≤1

‖(S − Sh)( F ′(T )sh − (u.∇)wh − (wh.∇)u)‖1,Ω = 0

and

lim
h−→0

sup
Wh=(wh,sh),‖Wh‖Y ≤1

‖(L− Lh)(f ′(T )sh + u.∇sh + wh.∇T )‖1,Ω = 0.

2) By using (3.1)-(3.2), and

lim
h−→0

‖T − ihT‖1,Ω = lim
h−→0

‖u− Ihu‖1,Ω = 0,

we obtain
lim

h−→0
‖ShΦ‖1,Ω = lim

h−→0
‖Lhψ‖1,Ω = 0.

¤

Finally, by using the two results, we obtain the lemma.

Lemma 3.2. There exist h1 > 0 and a constant C such that

∀h ≤ h1, ∀ν > 0; Λh(ν) ≤ Cν.

Proof. Remark that, for all Vh = (vh, rh) and Wh = (wh, qh) in Xh ×Wh, we have

DHh(Uh).Wh −DHh(Vh).Wh = (Shη, Lhζ),

where

η = Ih[(F ′(rh)− F ′(ih))qh]− ((vh − (Ihu).∇).wh − (wh.∇)((vh − (Ihu)
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and
ζ = −ih[(f ′(rh)− f ′(ih))qh]− (vh − Ihu).∇qh − wh.∇(rh − ihT ).

If we assume that
‖Ihu− u‖1,Ω + ‖T − ihT‖1,Ω ≤ 2ν,

by using the stability of the operators Sh and Lh and (3.3)-(3.4), we deduce easily,
that there exist h1 > 0 and a constant C, such that

∀h ≤ h1, ∀ν > 0, Λh(ν) ≤ Cν.

¤
Lemma 3.3. There exist a constant depending only on (u, p, T ), such that

εh := ‖H(Uh)‖((H1
0 (Ω))d×H1

0 (Ω) ≤ Chσ−1.

Proof. From the equation H(U) = 0, we deduce that

Hh(Uh) = Uh − U − ((Sh − S)( F (T )− (u.∇)u), (L− Lh)(f(T ) + u.∇T ))

−(Shv, Lhs),

where
v = F (T )− Ih(F (T ))− (u.∇)u + (Ihu.∇).Ihu

and
s = f(T )− fh(T ) + u.∇T − Ihu.∇ihT,

then
εh ≤ C{‖T − ihT‖1,Ω + ‖u− Ihu‖1,Ω + ‖(S − Sh)( F (T )− (u.∇)u)‖(H1

0 (Ω))d

+‖(L− Lh)(f(T ) + u.∇T )‖H1
0 (Ω) + ‖Sh‖L((H−1(Ω))d,(H1

0 (Ω))d‖v‖(H−1(Ω))d

+‖Lh‖L(H−1(Ω),H1
0 (Ω))‖s‖H−1(Ω).

By using the regularity of (u, T ), we have

‖T − iT ‖1,Ω ≤ Chσ−1‖T‖σ,Ω and ‖u− Ihu‖1,Ω ≤ Chσ−1‖u‖σ,Ω.

Since
T = −L(f(T ) + u.∇T ) and u = S( F (T )− (u.∇)u),

we have

‖(L− Lh)(f(T ) + u.∇T )‖H1
0 (Ω) ≤ Chσ−1‖L(f(T ) + u.∇T )‖σ,Ω := Chσ−1‖T‖σ,Ω

and

‖(S − Sh)(F (T )− (u.∇)u)‖(H1
0 (Ω))d ≤ Chσ−1(‖u‖σ,Ω + ‖p‖σ−1,Ω).

Finally, by using the stability of the operators Sh and Lh, the regularity of the
(u, T ), the following equalities:

(u.∇)u−(Ihu.∇).(Ihu = ((u−Ihu).∇).u+(u.∇).(u−Ihu)−((u−Ihu).∇).(u−Ihu)

and

u.∇T − Ihu.∇ihT = (u− Ihu).∇T + u.∇(T − ihT )− (u− Ihu).∇(T − ihT ),

we obtain

‖Lh‖L(H−1(Ω),H1
0 (Ω))‖s‖H−1(Ω) ≤ Chσ−1(‖T‖σ,Ω + ‖u‖σ,Ω)

and
‖Sh‖L((H−1(Ω))d,(H1

0 (Ω))d‖v‖(H−1(Ω))d ≤ Chσ−1(‖T‖σ,Ω + ‖u‖σ,Ω).
By using the estimates above, we prove the lemma. ¤
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Theorem 3.2. Let (u, p, T ) the solution of the problem (P ) verifying the assump-
tions of regularity. there exist a real H such that for all h ≤ H, the discrete problem
admits a solution Uh = (uh, Th) ∈ Xh × Wh. However, this solution verifies the
following estimate:

‖u− uh‖1,Ω + ‖p− ph‖0,Ω + ‖T − Th‖1,Ω ≤ Chσ−1.

Proof. We will apply the discrete implicit function Theorem. First of all, for h
rather small, we have

DHh(Uh) ∈ Isom(Xh ×Wh, Xh ×Wh).

By using the lemmas (2.2) and (2.3), we deduce that there exist a H such that

∀h ≤ H; 2γhΛh(2γhεh) < 1,

in a manner that the discrete problem admits a solution (uh, Th). Finally, by using
the compatibility assumption of spaces (Xh,Mh), we deduce that there exist a
unique element ph of Mh such that (uh, ph, Th) will be solution of the problem
(Ph). However

‖u− uh‖1,Ω + ‖T − Th‖1,Ω ≤ Cεh.

Then by using the lemma (2.3), we obtain

‖u− uh‖1,Ω + ‖T − Th‖1,Ω ≤ Chσ−1.

The estimates over the pressure is obtained by using the compatibility of spaces
(Xh,Mh) and (3.5) ( [2], Prop 3.8, page 907). ¤

4. A posteriori error estimate .

Let F an operator defined as following:

F : Y := (H1
0 (Ω))d × L2

0(Ω)×H1
0 (Ω) −→ Y ∗ := (H−1(Ω)d × L2

0(Ω)×H−1(Ω)),

such that
∀(v, q, s) ∈ (H1

0 (Ω))d × L2
0(Ω)×H1

0 (Ω),

< F (u, p, T ), (v, q, s) >= µ

∫

Ω

∇u.∇vdx +
∫

Ω

(u.∇)u.vdx−
∫

Ω

F (T ).vdx

−
∫

Ω

pdiv vdx +
∫

Ω

qdiv udx

+
∫

Ω

∇T.∇sdx +
∫

Ω

(u.∇T )sdx +
∫

Ω

f(T )sdx.

It is obvious that the triplet (u, p, T ) ∈ (H1
0 (Ω))d × L2

0(Ω) × H1
0 (Ω) is solution of

the problem P if and only if F (u, p, T ) = 0.
Assume that the triplet (u, p, T ) ∈ (H1

0 (Ω))d×L2
0(Ω)×H1

0 (Ω) is a regular solution
in the sense that

DF (u, p, T ) ∈ Isom((H1
0 (Ω))d × L2

0(Ω)×H1
0 (Ω), (H−1(Ω)d × L2

0(Ω)×H−1(Ω))

and
DF is Lipschitz-continuous in (u, p, T ).

Let (uh, ph, Th) ∈ Xh ×Mh ×Wh a triplet, not necessary solution of the discrete
problem. Assume that

lim
h−→0

‖(u, p, T )− (uh, ph, Th)‖Y = 0.
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By using the proposition 2.1 of Verfurth [13]. We have, for h rather small:

(4.1) ‖(u, p, T )− (uh, ph, Th)‖Y ≤ 2‖(DF (u, p, T ))−1‖L(Y,Y ∗)‖F (uh, ph, Th)‖Y ∗ .

For all K ∈ Th, we note by ∂K a set of internal edges (faces), by ne the exterior
normal vector on e, by [v]e the jump function v on the edge (face) e and by ∆(K)
the triangles union (tetrahedrons) having a common vertex with K. Let Xh(K) a
set of vh ∈ Xh having support in ∆(K). We define by the same manner the sets
Mh(K) and Wh(K). We assume that

(1) There exist an operator Ph of L2
0(Ω) onto Mh such that

∀q ∈ L2
0(Ω); ‖Phq‖0,Ω ≤ C‖q‖0,Ω.

(2) There exist an operator ih of H1
0 (Ω) onto Wh such that

∀s ∈ H1
0 (Ω), ∀K ∈ Th; |ihs|1,Ω ≤ C|s|1,Ω and ‖s− ihs‖0,K ≤ ChK‖s‖1,∆(K).

(3) There exist an operator Ih de (H1
0 (Ω))d onto (Wh)d such that

∀v ∈ (H1
0 (Ω))d, ∀K ∈ Th; |Ihv|1,Ω ≤ C|v|1,Ω and ‖v−Ihv‖0,K ≤ ChK‖v‖1,∆(K).

The finite element spaces used before verify the assumptions (1)-(3) ([4],[12]).
We set

e1,K : = h2
K‖ − µ∆uh + (uh.∇)uh.uh +∇ph − F (Th)‖20,K + ‖div uh‖20,K

+
∑

e⊂∂K

he‖[−µ
∂uh

∂ne
]e + [ph]ene‖20,e,

e2,K := h2
K‖ −∆Th + uh.∇Th + f(Th)‖20,K +

∑

e⊂∂K

he‖[∂Th

∂ne
]e‖20,e,

ε1,K := sup
vh∈Xh(K)

µ

∫

Ω

∇uh.∇vh +
∫

Ω

(uh.∇)uh.vh −
∫

Ω

phdiv vh −
∫

Ω

F (Th)vh

|vh|1,∆(K)
,

ε2,K := sup
qh∈Mh(K)

∫

Ω

qhdiv uh

|qh|0,∆(K)

and

ε3,k := sup
sh∈Wh(K)

∫

Ω

∇Th.∇shdx +
∫

Ω

(uh.∇Th)shdx +
∫

Ω

f(Th)shdx

|sh|1,∆(K)
.

Theorem 4.1. There exist h0, such that, for all h ≤ h0, we have

‖(uh, ph, Th)− (u, p, T )‖Y ≤ C((
2∑

i=1

∑

K∈Th

e2
i,K)

1
2 + (

3∑

i=1

∑

K∈Th

ε2i,K)
1
2 ).

Moreover, we have

e1,K ≤ C(|u− uh|1,∆(K) + |p− ph|0,∆(K) + |T − Th|1,∆(K)+

(
∑

K∈∆(K) h2
K‖F (Th)− Fh(Th)‖20,K)

1
2 ,

e2,K ≤ C(|u− uh|1,∆(K) + |p− ph|0,∆(K) + |T − Th|1,∆(K)+

(
∑

K∈∆(K) h2
K‖f(Th)− fh(Th)‖20,K)

1
2
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and

∀i = 1, .., 3, εi,K ≤ C(|u− uh|1,∆(K) + |p− ph|0,∆(K) + |T − Th|1,∆(K).

Proof. Remark that, for all (v, q, s) ∈ Y , we have

< F (uh, ph, Th), (v, q, s) >=< F (uh, ph, Th), (v − Ihv, q − Phq, s− ihs) >

+ < F (uh, ph, Th), (Ihv, Phq, ihs) > .

By using the stability of the operators Ih, Ph and ih, we have

sup
(v,q,s)∈Y

< F (uh, ph, Th), (Ihv, Phq, ihs) >

‖(v, q, s)‖Y
≤ (

3∑

i=1

∑

K∈Th

ε2i,K)
1
2 .

By using Green formula, we have

< F (uh, ph, Th), (v − Ihv, q − Phq, s− ihs) >

=
∑

K∈Th

{
∫

K

(−ν∆uh + (uh.∇)uh.uh +∇ph − F (Th))(v − Ihv)dx

+
∫

K

qhdiv uhdx +
∑

e⊂∂K

∫

e

([−µ
∂uh

∂ne
]e + [ph]ene)(v − Ihv)dx}

+
∑

K∈Th

{
∫

K

(−∆Th + uh.∇Th +∇ph + f(Th))(s− ihs)dx

+
∑

e⊂∂K

∫

e

([
∂Th

∂ne
]e)(s− ihs)dx}.

From the following inequalities:

‖v − Ihv‖0,K ≤ hk‖v‖1,∆(K), ‖v − Ihv‖0,e ≤ h
1
2
e ‖v‖1,∆(K)

and
‖s− ihs‖0,K ≤ hk‖s‖1,∆(K), ‖s− ihs‖0,e ≤ h

1
2
e ‖s‖1,∆(K).

We deduce

sup
(v,q,s)∈Y

< F (uh, ph, Th), (v − Ihv, q − Phq, s− ihs) >

‖(v, q, s)‖Y
≤ C(

2∑

i=1

∑

K∈Th

e2
i,K)

1
2 .

Finally, by using the relation (4.1). We have

‖(uh, ph, Th)− (u, p, T )‖Y ≤ C((
2∑

i=1

∑

K∈Th

e2
i,K)

1
2 + (

3∑

i=1

∑

K∈Th

ε2i,K)
1
2 ).

Now we will prove the opposite inequalities. First of all, by using the continuity
and the equality F (u, p, T ) = 0, we have

∀i = 1, .., 3, εi,K ≤ C(|u− uh|1,∆(K) + |p− ph|0,∆(K) + |T − Th|1,∆(K)).

Let bK the bubble function on K such that maxKbK = 1 [13]. We set

vK = −∆Th + uh.∇Th + fh(Th)

and
wK = bK(−∆Th + uh.∇Th + fh(Th)) ∈ H1

0 (Ω).
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By using the norms equivalence ‖.‖0,K and ‖bK .‖0,K over functions space with finite
dimension, we have

e2
2,K ≤ C

∫

K

vKwKdx + ‖f(Th)− fh(Th)‖0,K .

However ∫

K

vKwKdx =
∫

K

∇Th.∇wKdx +
∫

K

(uh.∇Th + fh(Th))wKdx

and ∫

K

∇T.∇wKdx +
∫

K

(u.∇T + f(T ))wKdx = 0.

Then∫

K

vKwKdx =
∫

K

∇(Th − T ).∇wKdx +
∫

K

((uh − u).∇(Th − T ) + u.∇(Th − T )

+(uh − u).∇T )wkdx +
∫

K

(fh(Th)− f(Th))dx +
∫

K

(f(Th)− f(T ))wKdx.

We obtain∫

K

vKwKdx ≤ C{|u− uh|K + |T − Th|1,K}‖wK‖1,K + ‖f(Th)− fh(Th)‖0,K .

Finally:
|wK |1,K ≤ Ch−1

K ‖wK‖0,K ≤ Ch−1
K ‖vK‖0,K .

So
hK‖ −∆Th + uh.∇Th + f(Th)‖0,K

≤ C{|u− uh|K + |T − Th|1,K}+ hK‖f(Th)− fh(Th)‖0,K .

Let e an internal face (edge) of K and be the bubble function of K zero over
∂K/e. By using the extension operator Pe : C0(e) −→ C0(K+ ∪K−) [13], we have

‖[∂Th

∂ne
]e‖20,e ≤

∫

e

∂Th

∂ne
Pe(s)dσ =

∫

e

∂Th

∂ne
Pe(s)dσ

=
∫

K+∪K−
(∇Th.∇Pe(s) + ∆uhPe(s))dx,

where s = [
∂Th

∂ne
]e.

By using the same arguments as before, we obtain
∫

K+∪K−
(∇Th.∇Pe(s) + ∆uhPe(s))dx

=
∫

K+∪K−
(∇Th.∇Pe(s) + (uh.∇Th + f(Th))Pe(s)dx

−
∫

K+∪K−
(−∆Th + uh.∇Th + f(Th))Pe(s)dx

≤ C{‖u− uh‖1,∆(K) + ‖T − Th‖1,Ω}‖Pe(s)‖1,Ω

+‖ −∆Th + uh.∇Th + f(Th)‖0,Ω‖Pe(s)‖0,Ω.
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However
‖Pe(s)‖1,K+∪K− ≤ h−1

e ‖Pe(s)‖0,K+∪K− ≤ Ch
− 1

2
e ‖s‖0,e.

So

h
1
2
e ‖[∂Th

∂ne
]e‖0,e ≤ C(|T − Th|1,∆(K) + |u− uh|1,∆(K)),

therefore

e2,K ≤ C(|u− uh|1,∆(K) + |p− ph|0,∆(K) + |T − Th|1,∆(K))

+(
∑

K∈∆(K)

h2
K‖f(Th)− fh(Th)‖20,K)

1
2 .

Finally, by the same arguments, we have the following inequality:

e1,K ≤ C(|u− uh|1,∆(K) + |p− ph|0,∆(K) + |T − Th|1,∆(K))

+(
∑

K∈∆(K)

h2
K‖F (Th)− Fh(Th)‖20,K)

1
2 .

¤
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