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Abstract. In this paper we demonstrate the performance of a slope limiting

procedure combined with a discontinuous Galerkin (DG) finite element solver

for 2D compressible Euler equations. The slope limiter can be categorized into

van Albada type and is differentiable. This slope limiter is modified from a

similar limiter used in finite volume solvers to suit the needs of the DG solver.

The gradient in an element is limited using the weighted average of the face gra-

dients. The face gradients are obtained from the area-weighted average of the

gradient on both sides of the faces. The slope limiting process is very suitable

for meshes discretized by triangle elements. The HLLC (Harten, Lax and van

Leer) or the local Lax-Friedrich (LLF) flux functions is used to compute the

interface fluxes in the DG formulation. The second order TVD Runge-Kutta

scheme is employed for the time integration. The numerical examples including

transonic, supersonic and hypersonic flows show that the current slope limiting

process together with the DG solver is able to remove overshoots and under-

shoots around high gradient regions while preserving the high accuracy of the

DG method. The convergence histories of all examples demonstrate that the

limiting process does not stall convergence to steady state as many other slope

limiters do.

Key Words. Discontinuous Galerkin (DG), slope limiting and 2D inviscid

compressible flows.

1. Introduction

Discontinuous Galerkin (DG) method has been gaining popularity in computa-
tional fluid dynamics (CFD) in recent years [8, 9, 27]. Indeed, the DG method
can be considered as a mixture of classic finite element method (FEM) and finite
volume method (FVM). In the DG method, the advantageous features of the FEM
and FVM are combined resulting in a robust and accurate numerical scheme for
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solution of problems involving shocks and other discontinuities. The variational
form for each element is obtained by multiplying the governing equations with a
test function and integrating conservative fluxes by parts. This results in boundary
fluxes normal to the element interfaces. The inviscid flux is upwinded using an
approximate Riemann solver.

Compared to the stabilized FEM, such as the streamline-upwinding/Petrov-
Galerkin (SUPG) [1, 2, 3], the DG method is capable of sharper representation
of the discontinuities in the solutions. In the DG method, the solution across each
element can be discontinuous, therefore the DG method is naturally a better solu-
tion strategy for problems involving shocks and discontinuities. The DG method
also eliminates the need for SUPG stabilization in advection dominant flows. In
the DG method, the upwind fluxes provide the necessary stabilization. In addi-
tion, the hp refinement can easily be implemented in this method [9, 20] because
hanging nodes are allowed in the DG method. The DG method is more compact
than the FVM. In the finite volume method, the reconstruction within a cell re-
lies on a cluster of neighboring cells using the path integral method or the least
square method. If higher spatial accuracy order is desired in FVM, the number
of supporting cells has to be increased. In contrast, in the DG method, linear or
higher order interpolation functions can be employed to obtain the solutions at any
points inside the element. The supporting elements are the same regardless of the
spatial accuracy. This compactness makes the DG method more stable and easier
to implement than the finite volume method. However, compared to the stabilized
Galerkin finite element formulations, the DG methods require the solutions of sys-
tems of equations with more unknowns. However, if high order elements are used
in the DG method, a very coarse mesh can be used to attain sufficient solution
resolution [6]. Therefore the disadvantage of the DG method can be outweighed by
its outstanding advantages.

It is well known that the nonphysical oscillations around high gradient discon-
tinuities exist for linear stabilization techniques [1]. The oscillations are some-
times severe enough to cause stability problem. A discontinuity capturing [1] or
an appropriate limiter is a common cure for this problem. Aliabadi and Tu [4]
use discontinuity capturing method commonly used in SUPG/GLS finite element
solvers as an alternative to slope limiters in their DG solver for 2D transient Euler
equations. Sun and Takayama [22] employ a smoothing step in addition to the ad-
vection step to smooth the solution around high gradient regions. Their method is
suitable for quadrilateral grids. The main defect of the methods mentioned above
is that they usually require some user-defined parameters making them problem
dependent. Many slope limiters used in the finite volume methods can be modified
to meet the needs of the DG method. Slope limiters are usually parameter free.
In [8], a limiter using maxmod functions is presented. Their limiter has the ad-
vantage over usual minmod based limiters [21], since it would not flatten smooth
extrema. Hoteit et al. [17] introduce an extension of van Leer’s slope limiter for
two-dimensional DG method using unstructured quadrangular or triangular meshes.
Unfortunately, there are two drawbacks with the use of slope limiters. One is the
possible accuracy degradation in smooth regions; the other is that the convergence
may be severely hampered. The main reason is that the limiters presented above
are non-differentiable. It could be active in near uniform region. To overcome these
drawbacks, some techniques have been adopted in practice. Venkatakrishnan [28]
devised a new limiter that may accelerate the convergence rate. But it is not mono-
tone. In addition, the constant in Venkatakrishnan’s limiter is case independent.
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De Zeeuw [30] freezes the limiter after some iterations. Instead of doing this, De-
lanaye [11] suggest using the so-called historic modification of the limiter to improve
the convergence. The limiter presented in [9] takes into account the improvement
at smooth regions, however we are unaware of its performance in steady-state sim-
ulations. Jawahar and Kamath [19] present a van Albada-typed limiting procedure
for their finite volume solver. The van Albada-typed limiter is differentiable. Their
numerical results show excellent performance in removing oscillations while not
stalling convergence and not clipping the smooth extremum. In the present paper,
the authors will slightly modify the limiter of Jawahar and Kamath to suit the
needs of current DG solver for compressible flows. The whole limiting procedure
contains five steps. Also, one step in the original limiter of Jawahar and Kamath is
found unnecessary at least in current DG solver. The numerical examples presented
in this paper will demonstrate this limiting process is very robust for 2D inviscid
Euler flows ranging from subsonic to hypersonic.

The next section will briefly describe our DG method formulation where the focus
will be put on the spatial integration scheme. Following that section is the brief
description of the HLLC (Harten, Lax and van Leer) and local Lax-Friedrich (LLF)
flux functions. The Runge-Kutta time integration schemes, time step determination
and residual computation will be given in a new section. And then the detailed
explanation of present limiting procedure will be given. Finally, a few numerical
examples will be presented to verify the present limiting process incorporated into
current DG solver. These examples include steady-state transonic, supersonic and
hypersonic flows.

2. Formulation of discontinuous Galerkin method

The unsteady, compressible Euler equations can be written in the following con-
servative form as:

(1)
∂U(x, t)

∂t
+

∂Fj(U(x, t))
∂xj

= 0, (x, t) ∈ Ω× (0,T )

where the repeated indices represent summation convention. Here x ∈ Ω is the
triangulated spatial domain with boundary ∂Ω and t ∈ (0,T ) is the time domain.
U represents the conservative state vector and Fj the inviscid flux vectors. They
can be expressed as:

(2) U =




ρ
ρui

ρE


 ,Fj =




ρuj

ρuiuj + δijp
(ρE + p)uj


 .

An initial condition, U0(x) = U(x, t = 0), and appropriate boundary conditions
on ∂Ω must also be given. All quantities appearing in Equations (1) and (2) have
been nondimensionalized using a set of appropriate reference values. In the present
DG implementation, the same iso-parametric shape functions as in continuous finite
element method are used. The degrees of freedom are the unknown conservative
variables U placed on the vertices of each element (see Figure 1). Since arbitrary
number of elements can share a single vertex, the solution on each vertex can thus
have multiple solutions. In this sense, the DG solution is allowed to be discontinuous
across element interfaces. As will be explained in the section on limiting procedure,
common nodes shared by neighboring triangles (the filled circle in Figure 1) and
triangle centroids (the empty circle in Figure 1) stores primitive variables V =
(ρ, ui , e) which can be derived from the conservative state vector.
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Figure 1. Storing locations in the present DG implementation.

The DG finite element formulation is written for each element Ωe. Equation
(1) is first multiplied with test functions Wh , and the flux integrals are further
integrated in parts. The whole process yields

(3)
∫

Ωe

Wh · ∂Uh

∂t
dΩ−

∫

Ωe

∂Wh

∂xj
· Fh

j dΩ +
∫

∂Ωe

Wh · F̂h
ndΓ = 0

where F̂n is the upwind boundary flux across the element interface and n is the
outward unit normal of the element boundary surface.

In this paper, linear triangular elements are used to discretize the 2D spatial
domain. Hence, the solution at any point in each element can be represented in
terms of the vertex solutions and the shape functions at each vertex:

(4) Uh(x, t)|Ωe =
3∑

m=1

Uh
m(t)wm(x)|Ωe

where the subscript m is the index for each vertex of the element. By replacing
Wh with interpolation functions at each vertex n, wn(x) (n = 1, 2, 3) and Uh with
Equation (4), we can obtain the following formulation for each component of Uh

on the vertices of the element:

(5)
dUh

m

dt

∫

Ωe

wnwmdΩ =
∫

Ωe

∂wn

∂xj
Fh

j dΩ−
∫

∂Ωe

wnF̂h
ndΓ

where m,n = 1, 2, 3. U and F now become the component of vectors U and F. The
integral on the left hand side of Equation (5) constitutes the components of the
3× 3 mass matrix M. Obviously, M is symmetric. The right hand side is noted as
R. Therefore, for straight-sided triangular elements, Equation (5) can be rewritten
as:

(6)
d

dt




Uh
1

Uh
2

Uh
3


 = M−1




R1

R2

R3


 .

If we transformed the physical triangles of arbitrary shape into the local reg-
ular right triangle, the mass matrix has the unique analytic form scaled by the
determinant of the transformation Jacobian. The inverse of the mass matrix can
be computed by hand in advance and stored. The present explicit formulation is
efficient in this sense.
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3. Flux functions

The boundary flux F̂n in Equation (3) can be evaluated using any kind of up-
wind numerical flux functions. Since F̂n is normal to the element interface and
discontinuities are allowed across the interface, a local Riemann problem can be
solved for the fluxes, given the left and the right states Ul and Ur. Therefore,
various approximate Riemann solvers can be used to compute F̂n. This is exactly
the same as in a finite volume solver.

3.1. HLLC flux. In this paper, two flux functions have been implemented. One
is the HLLC Riemann solver by Toro [23] which is an improved two-state version of
the original single-state HLL Riemann solver by Harten, Lax and van Leer [16]. The
original HLL numerical flux automatically satisfies entropy inequality [10] resolves
isolated shocks [16] and preserves positivity [13]. Batten et al. [7] have shown
that the HLLC flux not only preserves the advantageous features of the HLL flux,
but also resolves isolated contact discontinuities exactly. This explains ’C’ in HLLC
stands for contact discontinuity. Besides, the implementation of the HLLC Riemann
solver is relatively easier and the computational cost is lower compared with many
other available Riemann solvers. In addition to the original authors, many other
authors [25, 26, 29] successfully applied this Riemann solver to their problems.

According to References. [7, 23], the HLLC flux can be expressed as:

(7) FHLLC =





Fl SL < 0
F∗l SL ≤ 0 < SM

F∗r SM ≤ 0 ≤ SR

Fr SR < 0

where the wave speeds are estimated as:

SL = min[ql − al, q̃ − ã],(8a)
SR = max[qr + ar, q̃ + ã],(8b)

SM =
ρrqr(SR − qr)− ρlql(SL − ql) + pl − pr

ρr(SR − qr)− ρl(SL − ql)
.(8c)

and q and a are the speed normal to the element interface and speed of sound,
respectively. The tilded values are evaluated using Roe-averaged quantities as in the
Roe’s approximate Riemann solver. Here F∗l and F∗r in Equation (7) are computed
according to:

F∗l = Fl + SL(U∗
l −Ul)(9a)

F∗r = Fr + SR(U∗
r −Ur)(9b)

where Fl = F(Ul) and Fr = F(Ur). Substituting F∗l = F(U∗
l ) and F∗r = F(U∗

r)
into Equations (9a) and (9b) to first compute U∗

l and U∗
r , respectively, before F∗l

and F∗r can be computed. For more details, refer to [7].

3.2. Local Lax-Friedrich (LLF) flux. Another numerical flux function em-
ployed in the present paper is the simple local Lax-Friedrich (LLF) flux [24] also
known as Rusanov flux. The LLF flux is more dissipative than the HLLC flux
but is more robust, especially for problems involving low velocities regions such as
the region near the stagnation point of supersonic/hypersonic flows around blunted
bodies. The convergence can be improved using the LLF flux. The LLF flux can
be expressed as

(10) FLLF =
1
2
[Fl + Fr − (|q∗|+ a∗)(Ur −Ul)]
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where q∗ is the velocity normal to the interface and a∗ the speed of sound at the
interface. q∗ and a∗ are determined from the arithmetic average of the left and the
right states (Ul +Ur)/2. |q∗|+a∗ represents the largest wave speed in the direction
normal to the interface.

4. Time integration

The second order accurate two-stage TVD Runge-Kutta schemes of Cockburn
and Shu [9] is employed in this work. According to [9], the optimal two-stage,
second order accurate TVD Runge-Kutta scheme is expressed as:

U(1) = Un + ∆tR(Un)(11a)

Un+1 =
1
2
Un +

1
2
U(1) +

1
2
∆tR(U(1))(11b)

where R(U) is composed of the right hand side of Equation (6).
The time step for a two dimensional element j is determined according to [11],

namely,

(12) ∆tj ≤ CFL
Ωj∑

k

lk |min(u · n− a, 0)|

where u is the velocity vector. Here u and a are evaluated at the centroid of the
element for simplicity, k is the index of the faces surrounding the element, lk is
the length of the face and Ωj is the area of the element. Numerical experience
demonstrates that the time step determined by Equation (12) is stable for all cases
considered in this paper. In practice, the CFL number is initially taken to be a
relatively small value, say 0.25. If no stability problem is encountered in consecutive
100 time steps, it will be divided by 0.9 to obtain a larger value. CFL number can
be increased continually until the user-defined maximum CFL number is reached.
This technique can stabilize the initial time steps and accelerate the convergence
when the solution is close to steady-state. To accelerate the convergence toward
steady solutions, local time stepping [5] is also used.

Since the present paper is focused on the convergence performance of the pro-
posed limiting procedure in a DG finite element solver, the computation of the
numerical residual must be given. The residual is computed according to

(13) Residual =

√√√√√√
ndf∑
i=1

nen∑
j=1

ne∑
k=1

(
Un+1

ijk −Un
ijk

∆t

)2

ndf × nen× ne

where U is the component of the conservative state vector U, ndf is the number
of components in U (=4 for 2D Euler equations), nen is the number of vertices in
an element (=3 for triangles) and ne is the total number of elements. When the
residual drops to 10−6, the steady-state solution is assumed to have been reached.

5. Slope limiting procedure

Before we proceed to explain the limiting process in present DG solver, the
following must be stressed first:

• The limiting process is based on primitive variables V = (ρ, u, v , e) where
ρ, u, v, and e are density, x-component velocity, y-component velocity and
specific internal energy, respectively.
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Figure 2. Stencil for slope limiting procedure.

• The limiting process is conservative. The average solution for each element
is kept unmodified after the limiting process. We denote each component of
U by U and the average of the finite element solution U h over an element
Ωe by Ūe, that is,

Ūe =
1
|Ωe|

∫

Ωe

UhdΩ

For example, considering the linear triangular element ∆abc with centroid
0 and vertices a, b and c shown in Figure 2, we have

(14) Ū0 =
1
3

3∑

i=1

Ui,0

where Ui,0 is the conservative solution at local ith vertex of element 0. The
limiting process may change Ui,0 but must not change Ū0.

• The limiting process is modified from the limiter of Jawahar and Kamath
[19]. The original limiter of Jawahar and Kamath was designed for the
unstructured finite volume solver. In this paper, the limiter is modified
slightly to suit the needs of the DG solver. Also, the authors of present
paper found that a step in the original limiting procedure of Jawahar and
Kamath is unnecessary for present DG method.

Our goal is to limit the solutions at vertices of each element. Since three non-
collinear points determine a gradient plane uniquely, we can first limit the solution
gradients in the element and reconstruct the vertex solutions using the limited
element gradients. The limiting procedure contains the following five steps.

Step 1: Compute the solution at shared common nodes and element centroids.

In cell-centered finite volume solvers, since the degree of freedoms are placed
at centroids of elements, an inverse-distance or a pseudo-Laplacian procedure [19]
is usually employed to obtain vertex values from the corresponding cell-centered
values. In current DG solver, however, the degrees of freedom are put on the vertices
of each element, the solution on shared nodes can be easily obtained by taking the
arithmetic average of those vertex values belonging to neighboring elements sharing
the node. The solution at the element centroid can be obtained using Equation (14)
for linear triangular elements. Since the limiting process is performed on primitive
variables V, the node solution and the centroid solution obtained in this step must
be transformed to primitive variables.
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Step 2: Compute the gradient across each element interface.

Consider the computation of the gradient across the element interface ab in
Figure 2. The gradient across ab can be obtained in an averaging way by solving
the following linear system:

(15)
[

x3 − x0 y3 − y0

xa − xb ya − yb

] [
(Vx)ab

(Vy)ab

]
=

[
V3 − V0

Va − Vb

]
.

This method was also used by Frink [14] to evaluate the viscous flux. We can
prove that this averaging is equivalent to the area-weighted averaging explained in
[19]. Both averaging methods lead to the same expressions for the face gradients,
namely,

(Vx)ab =
1

2Aa3b0
[(V3 − V0)(yb − ya) + (Va − Vb)(y3 − y0)](16a)

(Vy)ab = − 1
2Aa3b0

[(V3 − V0)(xb − xa) + (Va − Vb)(x3 − x0)](16b)

where Aa3b0 = Aa3b + Ab0a. The gradients across bc and ca are computed in the
same way. For faces located on physical boundaries, the solution at ghost elements
is used to provide the same stencil to compute the face gradients.

Step 3: Compute the unlimited gradient in each element.

The unlimited gradients in element 0 is constructed using the area-weighted
average of the corresponding face gradients as:

(17) (∇V )0 =
Aa3b0(∇V )ab + Ab1c0(∇V )bc + Ac2a0(∇V )ca

Aa3b0 + Ab1c0 + Ac2a0

where ∇V = (Vx, Vy).

Step 4: Compute the limited gradient in each element.

After the unlimited gradients in all elements have been computed, the limited
gradients in an element can be computed by taking the weighted average of the
unlimited gradients in elements surrounding the element considered. For example,
the limited gradients in element 0 in Figure 2 can be computed according to

(18) (∇V )l
0 = w1(∇V )1 + w2(∇V )2 + w3(∇V )3

where the weights are

w1 =
g2g3 + ε

g2
1 + g2

2 + g2
3 + 3ε

(19a)

w2 =
g1g3 + ε

g2
1 + g2

2 + g2
3 + 3ε

(19b)

w3 =
g1g2 + ε

g2
1 + g2

2 + g2
3 + 3ε

(19c)

and g1, g2 and g3 are chosen as the square of the L2 norm of the unlimited ele-
ment gradients, i.e., g1 = ‖(∇V )1‖2, g2 = ‖(∇V )2‖2 and g3 = ‖(∇V )3‖2. ε is a
small number introduced to prevent indeterminacy and set to be 10−10 throughout
current work.

The weights in Equation (19) will become 1/3 when the three element gradients
are equal. This limiting process formulated above is similar to the 1D van Albada
limiter. The limiter is differentiable, which is a desirable property for limiters for
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convergence purpose. In the original limiting process by Jawahar and Kamath [19],
an additional step is required to compute the unlimited gradients in an element, i.e.,
the unlimited gradients of element 0 are taken to be the area-weighted average of the
gradients corresponding to its three neighboring elements which are computed from
Equation (17). The authors of the present paper do not think this step is necessary
at least for the current DG solver. Care must be taken when computing the limited
gradient in boundary elements where a face gradient must be substituted for an
element gradient in Equation (18).

Step 5: Compute the limited conservative variable at vertices of each element.

After the gradients in an element have been limited according to Equation (18),
the local vertex solution can be reconstructed to satisfy each component of the lim-
ited gradient vector and the unchanged element centroid value. Since in the present
DG solver, the local vertices of an element store conservative variables, the limited
gradients of primitive variables, (∇V )l

0, must be transformed to gradients of con-
servative variables, (∇U)l

0, using the solution at the centroid. The reconstruction
is unique for linear triangular elements. For example, for element 0 in Figure 2, we
have

(20)





3∑
i=1

Ûi,0(wi,0)x = (Ux)l
0

3∑
i=1

Ûi,0(wi,0)y = (Uy)l
0

3∑
i=1

Ûi,0 = 3Ū0

where Ûi,k represents the reconstructed solution at the ith vertex of the kth element
and (wi,k)x and (wi,k)y are the derivatives of shape functions.

6. Numerical results

In this section, a few 2D Euler numerical examples are presented to demonstrate
the effectiveness of the limiting procedure combined with current DG finite element
solver for compressible flows. The following numerical examples will show that the
present limiting process is able to remove the overshoots and undershoots across
high gradient regions. Also will be shown is the limiting process together with
current DG solver do not hamper the convergence to steady state as many other
limiters do.

6.1. Supersonic inviscid flow passing a ramp. This case is about the super-
sonic flow with Mach number 2 around a ramp with 10◦ slope. The steady-state
solution contains an oblique shock. Exact solution exists for this simple case un-
der the inviscid assumptions. The HLLC flux is used in this example. We use
an unstructured mesh consisting of 1615 triangles. Figure 3 shows the mesh (left
picture) and the pressure contours at the steady state (right picture). The oblique
shock has been captured with no numerical oscillations. The left picture in Figure
4 shows the pressure distributions at the bottom wall compared with the analytic
solution. Excellent agreement can be observed. No overshoots and undershoots
appear around regions of high gradients. The convergence history of the proposed
limiting process is shown in the right picture in Figure 4. The residual is computed
according to Equation (13).
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Figure 3. Supersonic flow (M = 2) passing a 10◦ ramp. Left:
mesh; right: pressure contours.
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Figure 4. Supersonic flow (M = 2) passing a 10◦ ramp. Left:
pressure distribution; right: convergence history.

6.2. Transonic flow around NACA0012 airfoil. This case is about a subsonic
flow at Mach number 0.85 around the NACA0012 airfoil with 1◦ angle of attack.
Due to the acceleration of the subsonic flow on curved airfoil surface, the flow will
reach supersonic on part of the surface. Hence, supersonic regions will be pocketed
in a subsonic region, making the overall flow transonic. This case was tested by
Jawahar and Kamath in [19] to verify the performance of their slope limiters in a
finite volume solver.

The computational domain shown in Figure 5 is about 25 chord lengths away
from the airfoil. The unstructured mesh consists of 7171 triangles. There are 128
points put on the airfoil surface. Figure 6 shows the pressure and Mach number
contours near the airfoil surface. As can be clearly seen, two shocks appear on the
surface. The shock at the upper surface is stronger and located at a more down-
stream place than the shock on the lower surface due to the angle of attack. The
pressure coefficient shown on Figure 7 (left) compares the current solution with
that in [19]. Good agreement can be seen in terms of the location and strength of
shocks. The convergence history in Figure 7 (right) demonstrates a steady drop of
the residual below 10−3. The initial oscillation is typical of transonic flow simula-
tions in which the shocks oscillate about their steady-state location before settling
down. The convergence performance is similar to that in [19].

6.3. Supersonic inlet flow. Supersonic inlet flows are typical of scramjet engines.
The configuration shown in the top picture in Figure 8 is taken from [18]. A
supersonic inflow at Mach number 3 enters the engine inlet from the left hand
side. Due to the special configuration inside the inlet, complex flow features are
expected to appear. The unstructured mesh consists of 8358 triangles. The HLLC
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Figure 5. Mesh around NACA0012 airfoil. Left: whole; right:
close-up near the airfoil.

  

Figure 6. Transonic flow (M = 0.85, angle of attack α = 1◦)
around NACA0012 airfoil. Left: pressure contours; right: Mach
number contours.
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Figure 7. Transonic flow (M = 0.85, angle of attack =1◦) around
NACA0012 airfoil. Left: pressure coefficient distribution; right:
convergence history.
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Figure 8. Supersonic inlet flow (M = 3). Top: geometry; middle:
mesh; bottom: Mach number contours.
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Figure 9. Convergence history of supersonic inlet flow (M = 3).

Riemann solver is used to calculate the interface flux. The Mach number contours
shown in Figure 8 shows the captured complex flow structure. The flow features
are qualitatively similar to those in [18]. Figure 9 shows the convergence history
where a steep drop can be seen after the residual drops below 10−2.

6.4. Hypersonic flow around a blunted body. Blunted body is essential in
hypersonic flow conditions to reduce the heat transfer. Current case is a hypersonic
flow around a 2D sphere-cone with the flight conditions M = 15, P∞ = 170 N/m2,
ρ∞ = 0.002 kg/m3 at zero angle of attack. The flight conditions correspond with
atmospheric conditions at an altitude of 45 km. This case has been tested for both
perfect gas and equilibrium situations in Referencs [12, 15, 25]. In this case, the
local Lax-Friedrich (LLF) flux is used to compute the interface flux due to the
existence of the low velocity stagnation region. The LLF flux is very robust for
these cases with the price of being more dissipative than the HLLC flux. Due to
symmetry, only half of the domain is simulated. Figure 10 shows the unstructured
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Figure 10. Hypersonic flow (M = 15) around a 2D sphere-cone
body. Left: mesh; middle: pressure contours; right: temperature
contours.

triangular grid, pressure and temperature contours. The detached shock has been
captured very nicely and no wiggles are seen on contour plots. Figure 11 shows the
solutions along the stagnation streamline and on the surface. The shock intersecting
with the stagnation streamline can be considered as a normal shock. Theoretical
jumps across the normal shock are also plotted on the corresponding figures. As
can be seen, the current DG solver combined with the proposed limiting process
is able to predict the jumps accurately without overshoots and undershoots. For
comparison purpose, the solutions in [15] are also plotted on the same figures.
The present solution shows good agreement with the solution from reference. The
convergence history shown in Figure 12 shows a steady drop of residual almost from
the beginning.

7. Conclusion

In this paper, a limiting process is incorporated into a discontinuous Galerkin
(DG) finite element solver for compressible flows. The DG solver is described
in detail in the first section. The HLLC (Harten, Lax and van Leer) and local
Lax-Friedrich (LLF) flux functions are implemented in the current solver. The
second order two-stage TVD Runge-Kutta time integration schemes are employed.
A detailed explanation about the limiting process is given. The limiting process
contains five steps and aimed to remove the possible oscillations across high gradient
regions in solutions obtained from the DG solver. The gradient in an element
is limited using the weighted average of face gradients. The face gradients are
obtained from the area-weighted average of the gradient on both sides of faces.
The limiter can be categorized into van Albada type. The limiting process is very
suitable for comforming triangle meshes for 2D cases. Finally, a few numerical
examples are presented to demonstrate the excellent performance of the present
limiting process. These examples cover flows ranging from subsonic to hypersonic.
As can be concluded from these examples, the present limiting process is able to
suppress overshoots and undershoots around high gradient regions. In addition,
the limiting process does not stall the convergence as many other slope limiters do.
Combined with the present limiting process, current DG solver is very robust with
high accuracy for inviscid compressible flows.
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(a) Density distribution.
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(b) Pressure distribution.
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(c) Temperature distribution.

Figure 11. Hypersonic flow (M = 15) around a 2D sphere-cone
body. Left column: solutions along the stagnation line; right col-
umn: solutions on the surface.
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Figure 12. Convergence history of hypersonic flow (M = 15)
around a 2D sphere-cone body.
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Since the beauty of the DG method resides in its easy implementation of arbitrary
spatial order of accuracy, it is desirable to extend the present limiting process to
high order elements. Take the quadratic elements as an example, we might be able
to limit the Hessian matrix which contains the constant second-order derivatives
of the solutions in quadratic elements in a similar way to limiting the constant
gradient vector in linear elements. As for non-comforming meshes encountered in
h-typed mesh adaptation, we might need to perform the limiting on the elements
of the same refinement level. All the extensions mentioned above are our ongoing
work. Also, the extension to 3D tetrahedra meshes is of great interest too. We
have gained some success in the extension of present limiting process to tetrahedra
meshes and will report it in another paper.
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