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A VARIABLE PRECONDITIONING USING THE SOR METHOD
FOR GCR-LIKE METHODS

KUNIYOSHI ABE AND SHAO-LIANG ZHANG

Abstract. We propose a variant of variable preconditioning for Generalized

Conjugate Residual (GCR)-like methods. The preconditioning is carried out

by roughly solving Az = v by an iterative method to a certain degree of accu-

racy instead of computing Kz = v in a conventional preconditioned algorithm.

In our proposal, the number of iterations required for computing Az = v is

changed at each iteration by establishing a stopping criterion. This enables

the use of a stationary iterative method when applying different precondition-

ers. The proposed procedure is incorporated into GCR, and the mathematical

convergence is proved. In numerical experiments, we employ the Successive

Over-Relaxation (SOR) method for computing Az = v, and we demonstrate

that GCR with the variable preconditioning using SOR is faster and more ro-

bust than GCR with an incomplete LU preconditioning, and the FGMRES

and GMRESR methods with the variable preconditioning using the General-

ized Minimal Residual (GMRES) method. Moreover, we confirm that different

preconditioners are applied at each iteration.

Key Words. Linear systems, generalized conjugate residual method, general-

ized minimal residual method, variable preconditioning, inner-loop and outer-

loop.

1. Introduction

Let us consider a preconditioning for the Krylov subspace (KS) method for solv-
ing a large sparse system

Ax = b,(1)

where A is a nonsingular n × n matrix, and the right-hand side vector b is an
n-vector.

A preconditioning strategy is a means to enhance the convergence by transform-
ing the original system (1). The preconditioning is performed as follows: First, we
construct a preconditioner K that approximates the coefficient matrix A under the
assumption that K−1v can be solved more easily and faster than computing A−1v,
where the computation of K−1v is involved in a conventional preconditioned KS
algorithm. An incomplete LU (ILU) factorization ([4, 12]) is frequently used for
constructing the preconditioner K. Next, the linear system Kz = v is computed
for z by a direct method at each iteration of the preconditioned algorithm.
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The FGMRES ([14, 15]) and GMRESR ([18]) methods have recently been pro-
posed as variants of the Generalized Minimal Residual (GMRES) method ([13]).
The characteristics for these methods are that different preconditioners can be
applied at each iteration. So the preconditioning is referred to as variable precon-

ditioning. This is a new framework of preconditioning. The preconditioning in
FGMRES and GMRESR is performed by obtaining an approximation to A−1v,
i.e., roughly solving Az = v. A KS method based on a minimum residual ap-
proach like GMRES is then employed for computing Az = v, and the number of
iterations required for calculating Az = v is determined so that the number is
same at each iteration. Moreover, several authors ([2, 9, 16]) have worked on the
idea of applying different preconditioners at each iteration and proposed variants of
the Conjugate Gradient (CG) ([10]), Generalized Conjugate Gradient (GCG) ([1])
and Quasi-Minimal Residual (QMR) ([7]) methods. [21] also demonstrates that
GMRESR is effective for practical applications.

In contrast, we propose a variant of the preconditioning in which different pre-
conditioners can be applied at each iteration. The basic idea is to obtain an ap-
proximation to A−1v instead of computing K−1v. That is to say, the expression
Az = v is roughly solved by an iterative method to a certain degree of accuracy.
In our proposal, the iteration for computing Az = v is stopped according to the
accuracy of approximation and the maximum number of iterations. As a result,
the number of iterations can be changed at each iteration. This enables the use of
a stationary iterative (SI) method, such as the Successive Over-Relaxation (SOR)
method ([8, 19]), when applying different preconditioners. On the other hand, a KS
method must be used to enable different preconditioners to be applied in FGMRES
and GMRESR since the stopping criterion to change the number of iterations is
not provided. Consequently, the convergence behavior of the Generalized Conju-
gate Residual (GCR)-like ([5]) methods with our procedure is different from that
of FGMRES and GMRESR.

This paper is organized as follows. In §2, the basic idea of the proposed pre-
conditioning is described. The GCR algorithm with the variable preconditioning
is presented, and the convergence rate for the algorithm is also given. Moreover,
a suitable method and stopping criterion for computing Az = v are discussed on
the basis of the theorem. Finally, the differences between GCR with our proposed
procedure, FGMRES and GMRESR with the original variable preconditioning are
summarized. In section 3, through numerical experiments we demonstrate that
GCR with the variable preconditioning using SOR is faster and more robust than
GCR with the ILU(0) preconditioning (abbreviated as ILU(0)-GCR), ILU(1)-GCR,
and FGMRES and GMRESR using GMRES with the ILU(0) preconditioning (ab-
breviated as ILU(0)-GMRES). Moreover, we confirm that different preconditioners
are applied at each iteration. Conclusions are given in §4.

2. A variant of variable preconditioning

2.1. Variable preconditioning. This subsection describes the basic idea of our
proposed variable preconditioning and explains how the preconditioning is incor-
porated into GCR.
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2.1.1. Basic idea. The expression K−1v is calculated at each iteration of a con-
ventional preconditioned KS algorithm. The fundamental concept of a precondi-
tioning strategy is that the preconditioned coefficient matrix approximates the unit
matrix, namely, the property K ≈ A is satisfied. Thus the following property that
K−1v approximates A−1v can be easily verified.

K−1v ≈ A−1v.

Hence, we think of obtaining an approximation to A−1v instead of computing
K−1v. That is, the equation (2) is roughly solved by an iterative method to a
certain degree of accuracy that is not sufficient.

Az = v.(2)

Here, an approximation for the expression (2) does not need to be the same at
each iteration. We have therefore established a stopping criterion that enables
the number of iterations required for convergence to be changed at each iteration.
Different preconditioners can then be applied at each iteration even when an SI
method is used.

2.1.2. Implementation. Our proposed procedure can be applied not only to
GCR and GMRES but also to other methods such as the Bi-Conjugate Gradi-
ent (Bi-CG) ([6]) and Bi-Conjugate Gradient Stabilized (Bi-CGSTAB) methods
([17]) in theory. However, their methods, such as Bi-CG and Bi-CGSTAB, that are
not based on the minimum residual approach may not converge in numerical com-
putations when different preconditioners are applied at each iteration. Moreover,
the theoretical convergence for Bi-CG and Bi-CGSTAB with the variable precon-
ditioning can not be guaranteed. Therefore, we quote GCR for solving the linear
system (1) and explain how our procedure is applied to it.

A process for computing K−1rk+1 is involved in the conventional preconditioned
GCR algorithm for the right preconditioning. So, we replace the process for com-

puting K−1rk+1 by a process for solving an approximation to A−1rk+1. Then
we can derive the GCR algorithm with the variable preconditioning. The below
algorithm will be referred to as the variable preconditioned GCR algorithm and
abbreviated as VPGCR.
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Variable preconditioned GCR algorithm (VPGCR):

Let x0 be an initial guess.

set r0 = b−Ax0

roughly solve Ap = r0 by using an iterative method to obtain p0

set q0 = Ap0

for k = 0, 1, . . .

αk =
(rk, qk)
(qk, qk)

xk+1 = xk + αkpk

rk+1 = rk − αkqk

if ‖ rk+1 ‖2≤ εTOL· ‖ r0 ‖2 then exit

roughly solve Az = rk+1 by using an iterative method to obtain zk+1

βk,i = − (Azk+1, qi)
(qi, qi)

, i ≤ k

pk+1 = zk+1 +
k∑

i=0

βk,ipi(3)

qk+1 = Azk+1 +
k∑

i=0

βk,iqi

end for

We call the iterative loops for solving Ax = b and Az = rk+1 the outer-loop

and inner-loop, respectively.
The restarted and truncated VPGCR algorithms could also be derived when

replacing the process for K−1rk+1 in the conventional preconditioned GCR(m)
and Orthomin(m) ([20]) algorithms by a process for solving an approximation to
A−1rk+1.

2.2. Convergence for VPGCR. In this subsection, we discuss the convergence
rate for VPGCR.

The vectors rk and pk updated by the GCR algorithm satisfy the properties (4)
and (5), from which the relation (6) is derived for the iterates rk and zk generated
by VPGCR.

Property 1.

(Apk+1, Api) = 0 (i 6= k),(4)

(rk+1, Api) = 0 (i ≤ k),(5)

(rk, Azk) = (rk, Apk).(6)

Next, we prove the following lemma in order to show the convergence rate for
VPGCR.

Lemma 1. Suppose that A is nonsingular and the condition rk 6= 0 holds for
non-negative integer k. Then we have

‖rk+1‖2 ≤ ‖rk −Azk‖2 .
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Proof. The difference between the square on the right-hand side and that on the
left-hand side is expanded as

‖rk −Azk‖22 − ‖rk+1‖22 = ‖rk −Azk‖22 − ‖rk − αkApk‖22
= (rk, rk)− 2(rk, Azk) + (Azk, Azk)

− {(rk, rk)− 2αk(rk, Apk) + α2
k(Apk, Apk)}.

The relations (6) and (rk, Apk) = αk(Apk, Apk) reduce the calculation to

‖rk −Azk‖22 − ‖rk+1‖22 = α2
k(Apk, Apk)− 2αk(Apk, Apk) + (Azk, Azk).

Also, by using (3) and (4), the inner product (Azk, Azk) can be rewritten as

(Azk, Azk) = (Apk −
k−1∑

i=0

βk−1,iApi, Apk −
k−1∑

i=0

βk−1,iApi)

= (Apk, Apk) +
k−1∑

i=0

β2
k−1,i(Api, Api).

Therefore, we can show the following inequality:

‖rk −Azk‖22 − ‖rk+1‖22 = (αk − 1)2(Apk, Apk) +
k−1∑

i=0

β2
k−1,i(Api, Api) ≥ 0.

This completes the proof. ¤

The inequality ‖rk+1‖2 ≤ θk ‖rk‖2 can be showed by Lemma 1 and the assump-
tion (7). Hence, we can lead Theorem 1 for VPGCR.

Theorem 1. Suppose that A is nonsingular and the condition rk 6= 0 holds for
non-negative integer k. If the vector zk exists for a constant 0 < θk < 1 such that

‖rk −Azk‖2 ≤ θk ‖rk‖2 ,(7)

then we have the inequality ‖rk+1‖2 ≤ θk ‖rk‖2 .

From Theorem 1, we can describe the following:
• Any iterative method can be applied to the inner-loop under the assumption

that a vector zk can be found such that the inequality (7) holds.
• The value of θk can be different at each outer-loop. This intends that the

number of iterations of the inner-loop can be changed at each outer-loop.

2.3. Solver and stopping criterion for inner-loop. In this subsection, a stop-
ping criterion for the inner-loop is established, and a solver applied to the inner-loop
is discussed.

It should be noted that, theoretically, the residual norm of the outer-loop defi-
nitely converges when an approximation zk exists for a constant 0 < θk < 1 such
that the inequality (7) holds at each outer-loop. We therefore adopt the inequality
(7), i.e., condition 1(A), as the stopping criterion based on the accuracy of approx-
imation, where condition 1(B) is used if an SI method is applied to the inner-loop.
Since the computational costs may become expensive if a very large number of it-
erations are required to satisfy condition 1, we also give the maximum number of
iterations, i.e., condition 2. The inner-loop is stopped when either of the conditions
is satisfied.

Stopping criterion for inner-loop:
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The inner-loop is stopped when either condition 1 or 2 is satisfied:

1. (A) ‖rk+1 −Az
(l)
k+1‖/‖rk+1‖ ≤ δ

(B) ‖z(l)
k+1 − z

(l−1)
k+1 ‖∞/‖z(l)

k+1‖∞ ≤ δ

2. (The maximum number of iterations of the inner-loop l) = Nmax

Here, z
(l)
k denotes the l-th approximation when computing Az = rk+1 at the k-th

steps of the outer-loop.

We can choose any iterative method, e.g., a KS method (Bi-CG, Bi-CGSTAB,
GMRES, GCR, etc.) or an SI method (Gauss-Seidel, SOR, etc.), as the inner
solver. On the other hand, the following aspects should be noted. The eigenvector
components of the residual vector vanished by a KS method are different from
those of an SI method, and also our procedure enables an SI method to be used
to the inner-loop. Furthermore, it is preferable that the computational costs of the
method are low per iteration because a large total number of iterations may be
required for the inner-loop. Consequently, we suggest to use an SI method as the
inner solver, and SOR is adopted in subsequent experiments.

2.4. Differences between VPGCR, FGMRES and GMRESR. This subsec-
tion describes the differences between GCR with our proposed procedure, FGMRES
and GMRESR.

VPGCR looks similar to FGMRES or GMRESR in the sense that an approxima-
tion to A−1rk+1 is obtained in GCR. However, VPGCR is different from FGMRES
and GMRESR in the following aspects. The inequality (7) of Theorem 1 is just
utilized as the stopping criterion. Thus the iteration for computing Az = rk+1 is
stopped according to the accuracy of approximation and the maximum number of
iterations. Since the number of iterations of the inner-loop can then be changed
at each outer-loop, different preconditioners can be applied at each outer-loop even
when an SI method is used. That is, an SI method can be hybridized with a KS
method. On the other hand, in FGMRES and GMRESR, since the number of itera-
tions of the inner-loop is determined so that the number is same at each outer-loop,
a KS method must be used to enable different preconditioners to be applied.

Table 1 shows differences between VPGCR, FGMRES and GMRESR, namely,
the outer solver, whether the convergence theorem is utilized as the stopping crite-
rion of the inner-loop, how the inner-loop is stopped, and the inner solver to enable
different preconditioners to be applied.

Table 1. Differences between VPGCR, FGMRES and GMRESR.

Methods VPGCR FGMRES GMRESR

Outer solver GCR GMRES ([13]) GMRES ([18])

Utilization of
Yes No No

convergence theorem

Stopping criterion Accuracy of approximation Fixing the number of Fixing the number of

of inner-loop and maximum number iterations in advance iterations in advance

Inner solver

for applying KS and SI methods KS method KS method

different preconditioners
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3. Numerical experiments

In this section, we will handle coefficient matrices derived from partial differen-
tial equations. The linear systems with the matrices are solved by ILU(0)-GCR(m),
ILU(1)-GCR(m), VPGCR(m), FGMRES(m) and GMRESR(m). All of the numer-
ical calculations are carried out in double-precision floating-point arithmetic on a
PC with a Pentium III 800MHz processor equipped with a Fujitsu Fortran com-
piler. In all cases the iteration of the inner-loop and outer-loop was started with 0,
and the stopping criterion of the outer-loop was εTOL = 10−12.

3.1. Example 1. We solve a system with a non-Hermitian coefficient matrix de-
rived from 5-point central differences of the two-dimensional Helmholtz equation

∂2u

∂x2
+

∂2u

∂y2
+ σ2u = 0 (0 < x, y < π)

over the square Ω = (0, π)× (0, π) with the following boundary conditions:

ux|x=0 = i

√
σ2 − 1

4
cos

y

2
, (Neumann condition)

ux − i

√
σ2 − 1

4
u|x=π = 0, (radiation condition)

uy|y=0 = 0, (Neumann condition)

u|y=π = 0, (Dirichlet condition)

where the identity i2 = −1 holds ([3]). The right-hand side vector is determined
so that the exact solution is given by u(x, y) = ei

√
σ2− 1

4 x cos
y

2
. The mesh size is

chosen as 1/101 in both directions of Ω, so that the resulting system has an n× n

coefficient matrix (where n = 100× 101). The numerical computation was carried
out for σ = 1.5 and 3.5.

GCR(m), VPGCR(m) and GMRESR(m) are restarted every 9 and 20 iterations
(m = 9 and 20) for σ = 1.5 and 3.5, respectively. FGMRES(m) is restarted every 10
and 21 iterations (m = 10 and 21) so that the memory required for their methods
would be the same. In VPGCR the relaxation parameter of SOR is set at 1.5, 1.7
and 1.9. Table 2 shows the stopping criterion for the inner-loop of VPGCR. When
computing Az = v in FGMRES(m) and GMRESR(m), ILU(0)-GMRES(m) that
is restarted every 10 and 21 iterations (m = 10 and 21) for σ = 1.5 and 3.5 is used,
and the number of iterations is fixed at 30, 40, 50 and 60.

Table 2. Example 1: Stopping criterion for the inner-loop of VPGCR.

σ = 1.5 σ = 3.5
Relative error δ = 10−1.6 δ = 10−1.3

Maximum iterations Nmax = 40 Nmax = 30

Table 3 shows the number of iterations and the computation time required to ob-
tain the successful convergence for ILU(0)-GCR(m), ILU(1)-GCR(m), VPGCR(m)
using SOR (ω = 1.5, 1.7 and 1.9), and FGMRES(m) and GMRESR(m) using
ILU(0)-GMRES(m) (where the number of iterations is set at 30, 40, 50 and 60).
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Table 3. Example 1: Number of iterations and computation time.

Method σ = 1.5 σ = 3.5

(Preconditioning) Iterations Time Iterations Time

GCR
16979 652.4 sec 13394 1083.2 sec

(ILU(0))

GCR
7273 294.5 sec 6821 568.4 sec

(ILU(1))

VPGCR
30 15.0 sec 63 26.9 sec

(SOR(ω = 1.9))

VPGCR
156 76.3 sec 846 285.2 sec

(SOR(ω = 1.7))

VPGCR
390 191.7 sec 1375 446.7 sec

(SOR(ω = 1.5))

FGMRES
34 28.5 sec 63 66.8 sec

(ILU(0)-GMRES(Inner iter.=30))

FGMRES
30 33.7 sec 39 58.6 sec

(ILU(0)-GMRES(Inner iter.=40))

FGMRES
28 38.9 sec 29 52.6 sec

(ILU(0)-GMRES(Inner iter.=50))

FGMRES
26 46.9 sec 21 46.6 sec

(ILU(0)-GMRES(Inner iter.=60))

GMRESR
47 44.9 sec 62 76.0 sec

(ILU(0)-GMRES(Inner iter.=30))

GMRESR
30 38.4 sec 40 71.3 sec

(ILU(0)-GMRES(Inner iter.=40))

GMRESR
28 44.7 sec 26 54.7 sec

(ILU(0)-GMRES(Inner iter.=50))

GMRESR
25 47.6 sec 20 52.2 sec

(ILU(0)-GMRES(Inner iter.=60))

We display the numerical results for σ = 1.5 and 3.5 in Figs. 1–2, respectively.
The convergence plots show the number of iterations (on the horizontal axis) versus
the relative residual 2-norms (log10 (‖ rk ‖2/‖ r0 ‖2)). In these figures, the symbols
, × and ¤ stand for the convergence behavior of VPGCR(m) using SOR (ω =

1.9), and FGMRES(m) and GMRESR(m) using ILU(0)-GMRES(m), respectively.
Here the results obtained by FGMRES(m) with the inner iterations of 30 and
GMRESR(m) with the inner iterations of 40 are plotted in Fig. 1, and also those
of FGMRES(m) and GMRESR(m) with the inner iterations of 60 are displayed in
Fig. 2. Moreover, the solid and dotted lines in Figs. 1–2 stand for the convergence
behavior of ILU(0)-GCR(m) and ILU(1)-GCR(m), respectively.

From Table 3 we can observe the following: In the case of σ = 1.5 VPGCR(9)
using SOR (ω = 1.9) requires 30 iterations and 15.0 seconds. The computation
time for FGMRES(10) using ILU(0)-GMRES(10) is 28.5 second when the number
of iterations of the inner-loop was fixed at 30 iterations. The computation time
for GMRESR(9) using ILU(0)-GMRES(10) is 38.4 seconds when the number of
iterations of the inner-loop was fixed at 40 iterations. ILU(0)-GCR(9) and ILU(1)-
GCR(9) require 652.4 seconds and 294.5 seconds, respectively. Furthermore, in
the case of σ = 3.5 VPGCR(20) using the SOR (ω = 1.9) requires 63 iterations
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Figure 1. Example 1: Convergence history of ILU(0)-GCR(9),
ILU(1)-GCR(9), VPGCR(9), FGMRES(10) and GMRESR(9) for
σ = 1.5.
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Figure 2. Example 1: Convergence history of ILU(0)-GCR(20),
ILU(1)-GCR(20), VPGCR(20), FGMRES(21) and GMRESR(20)
for σ = 3.5.

and 26.9 seconds. When the number of iterations of the inner-loop was fixed at 60
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iterations, the computation time for FGMRES(21) and GMRESR(20) using ILU(0)-
GMRES(21) is 46.6 seconds and 52.2 seconds, respectively. ILU(0)-GCR(20) and
ILU(1)-GCR(20) require 1083.2 seconds and 568.4 seconds, respectively.

From their results we can conclude the following: ILU(0)-GCR(m) and ILU(1)-
GCR(m) are not effective. In the case of σ = 1.5 the computation time for
VPGCR(9) using SOR (ω = 1.9) is less 47.4% than that for FGMRES(10) us-
ing ILU(0)- GMRES(10) (where the number of iterations is set at 30) and less
61.0% than that for GMRESR(9) using ILU(0)-GMRES(10) (where the number of
iterations is set at 40). In the case of σ = 3.5 the computation time for VPGCR(20)
using SOR (ω = 1.9) is less 42.3% than that for FGMRES(21) using ILU(0)-
GMRES(21) (where the number of iterations is set at 60) and less 48.5% than
that for GMRESR(20) using ILU(0)-GMRES(21) (where the number of iterations
is set at 60). Consequently, VPGCR(m) using SOR is faster and more effective than
ILU(0)-GCR(m), and FGMRES(m) and GMRESR(m) using ILU(0)-GMRES(m).

3.2. Example 2. We solve a system with a nonsymmetric coefficient matrix de-
rived from 5-point central differences of the two-dimensional convex-diffusion equa-
tion

−∂2u

∂x2
− ∂2u

∂y2
+ D

{
(y − 1

2
)
∂u

∂x
+ (x− 1

3
)(x− 2

3
)
∂u

∂y

}
− 30π2u = f (0 < x, y < 1)

over the unit square Ω = (0, 1)× (0, 1) with the zero Dirichlet boundary conditions
([11]). The right-hand side vector is determined so that the exact solution is given
by

u(x, y) = 1 + xy.

The mesh size is chosen as h = 1/129 in both directions of Ω, so that the re-
sulting system has an n × n coefficient matrix (where n = 1282). The numerical
computation was carried out for Dh = 2−2 and 2−1.

GCR(m), VPGCR(m) and GMRESR(m) are restarted every 40 iterations (m =
40). FGMRES (m) is restarted every 41 iterations (m = 41) so that the memory
required for their methods would be the same. In VPGCR the relaxation parameter
of SOR is set at 1.5, 1.7 and 1.9. Table 4 shows the stopping criterion for the inner-
loop of VPGCR. When computing Az = v in FGMRES(m) and GMRESR(m),
ILU(0)-GMRES(m) is used, and the number of iterations is fixed at 40, 50, 60 and
70. Again ILU(0)-GMRES(m) is restarted every 41 iterations.

Table 4. Example 2: Stopping criterion for the inner-loop of VPGCR.

ω = 1.5 ω = 1.7 ω = 1.9
Relative error δ = 10−1.8 δ = 10−1.5 δ = 10−1.0

Maximum iterations Nmax = 110 Nmax = 90 Nmax = 70

Table 5 shows the number of iterations and the computation time required to ob-
tain the successful convergence for ILU(0)-GCR(m), ILU(1)-GCR(m), VPGCR(m)
using SOR (ω = 1.5, 1.7 and 1.9), and FGMRES(m) and GMRESR(m) using
ILU(0)-GMRES(m) (where the number of iterations is set at 40, 50, 60 and 70).

We display the numerical results for Dh = 2−2 and 2−1 in Figs. 3–4, respectively.
The convergence plots show the number of iterations (on the horizontal axis) versus
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Table 5. Example 2: Number of iterations and computation time.

Method Dh = 2−2 Dh = 2−1

(Preconditioning) Iterations Time Iterations Time

GCR
Stagnation — Stagnation —

(ILU(0))

GCR
Stagnation — Stagnation —

(ILU(1))

VPGCR
80 34.8 sec 76 38.6 sec

(SOR(ω = 1.9))

VPGCR
80 44.1 sec 70 44.4 sec

(SOR(ω = 1.7))

VPGCR
119 87.0 sec 74 56.3 sec

(SOR(ω = 1.5))

FGMRES
407 316.5 sec Stagnation —

(ILU(0)-GMRES(Inner iter.=40))

FGMRES
278 260.0 sec Stagnation —

(ILU(0)-GMRES(Inner iter.=50))

FGMRES
198 218.3 sec Stagnation —

(ILU(0)-GMRES(Inner iter.=60))

FGMRES
286 379.3 sec Stagnation —

(ILU(0)-GMRES(Inner iter.=70))

GMRESR
Stagnation — Stagnation —

(ILU(0)-GMRES(Inner iter.=40))

GMRESR
Stagnation — Stagnation —

(ILU(0)-GMRES(Inner iter.=50))

GMRESR
Stagnation — Stagnation —

(ILU(0)-GMRES(Inner iter.=60))

GMRESR
Stagnation — Stagnation —

(ILU(0)-GMRES(Inner iter.=70))

the relative residual 2-norms (log10 (‖ rk ‖2/‖ r0 ‖2)). Again the same symbols
are employed as in Figs. 1–2. Here the results obtained by FGMRES(m) and
GMRESR(m) with the inner iterations of 60 only are plotted in Figs. 3–4.

From Table 5 we can observe the following: ILU(0)-GCR(40) and ILU(1)-GCR(40)
stagnate in both cases even though the iteration was continued until 20000 iter-
ations. In the case of Dh = 2−2 VPGCR(40) using SOR (ω = 1.9) requires 80
iterations and 34.8 seconds. The computation time for FGMRES(41) using ILU(0)-
GMRES(41) is 218.3 seconds when the number of iterations of the inner-loop was
fixed at 60. GMRESR(40) stagnates even though 2000 iterations were repeated. In
the case of Dh = 2−1 VPGCR(40) using SOR (ω = 1.9) requires 76 iterations and
38.6 seconds. On the other hand, FGMRES(41) and GMRESR(40) stagnate even
though 2000 iterations were continued.

We can conclude the following: ILU(0)-GCR(40) and ILU(1)-GCR(40) are not
effective at all. In the case of Dh = 2−2 the computation time for VPGCR(40)
using SOR (ω = 1.9) is less 86.6% than that for FGMRES(41) using ILU(0)-
GMRES(41) (where the number of iterations is set at 60). In the case of Dh = 2−1

VPGCR(40) using SOR converges only. Consequently, VPGCR(m) using SOR is



158 K. ABE AND S.-L. ZHANG

-12

-10

-8

-6

-4

-2

0

2

0 50 100 150 200

R
el

at
iv

e 
re

si
du

al
 n

or
m

Iteration number

’SOR(1.9)’
’FGMRES’
’GMRESR’

Figure 3. Example 2: Convergence history of VPGCR(40),
FGMRES(41) and GMRESR(40) for Dh = 2−2.
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Figure 4. Example 2: Convergence history of VPGCR(40),
FGMRES(41) and GMRESR(40) for Dh = 2−1.
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faster and more robust than ILU-GCR(m), and FGMRES(m) and GMRESR(m)
using ILU(0)-GMRES(m).

3.3. Variableness for inner-loop. In this subsection, we confirm that different
preconditioners are applied at each outer-loop of VPGCR. The results discussed
here are only the case of using SOR with the relaxation parameter set at 1.9.

Fig. 5 displays the iteration step of the outer-loop (on the horizontal axis) versus
the number of iterations of SOR for σ = 1.5 and 3.5 in the example 1. In the figure,
the symbols ◦ and stand for the results for σ = 1.5 and 3.5, respectively. Again
Figs. 6–7 show for Dh = 2−2 and 2−1 in the example 2, respectively.
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Figure 5. Example 1: Number of iterations of SOR at each outer-
loop for σ = 1.5 and 3.5.

From Figs. 5–7 we can observe the following: The number of iterations of SOR is
changed at each outer-loop when the proposed stopping criterion is used. Therefore,
we can conclude that different preconditioners are applied at each iteration. Also,
the iteration of the inner-loop is stopped by using both the relative error and the
maximum number of iterations.

We also confirm that different preconditioners are applied at each iteration in
the case of the relaxation parameter set at 1.5 and 1.7.

4. Concluding remarks

We have proposed a variant of variable preconditioning for GCR-like methods.
The preconditioning is carried out by roughly solving Az = v by an iterative
method to a certain degree of accuracy. In our proposal, since the iteration for
computing Az = v is stopped according as the required accuracy of approximation
and the maximum number of iterations, the number of iterations of the inner-loop
is then changed at each outer-loop. As a result, our proposed procedure can bring
the following merits:
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Figure 6. Example 2: Number of iterations of SOR at each outer-
loop for Dh = 2−2.
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Figure 7. Example 2: Number of iterations of SOR at each outer-
loop for Dh = 2−1.

(1) The variable preconditioning can be performed even when an SI method is
used for the inner-loop. This intends that an SI method can be hybridized
with a KS method when applying different preconditioners.

(2) The convergence behavior of GCR with our procedure is different from that
of FGMRES and GMRESR with the original variable preconditioning.
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Finally, the numerical experiments show that VPGCR(m) using SOR is faster
and more robust than ILU(0)-GCR(m), ILU(1)-GCR(m), and FGMRES(m) and
GMRESR(m) using ILU(0)-GMRES(m). Moreover, we also confirm that different
preconditioners can be applied at each outer-loop.

References

[1] O. Axelsson, A Generalized Conjugate Gradient, Least Square Method, Numer. Math., 51

(1987) 209-227.

[2] O. Axelsson and P. S. Vassilevski, A Black Box Generalized Conjugate Gradient Solver with

Inner Iterations and Variable-step Preconditioning, SIAM J. Numer. Anal., 12 (1991) 625-644.

[3] A. Bayliss, C. Goldstein and E. Turkel, An Iterative Method for the Helmholtz Equations, J.

Compu. Phys., 49 (1983) 443-457.

[4] A. M. Bruaset, A Survey of Preconditioned Iterative Methods, Frontiers in Applied Mathe-

matics 17, Longman Scientific and Technical, London, 1995.

[5] S. C. Eisenstat, H. C. Elman and M. H. Schultz, Variational Iterative Methods for Nonsym-

metric Systems of Linear Equations, SIAM J. Numer. Anal., 20 (1983) 345-357.

[6] R. Fletcher, Conjugate Gradient Methods for Indefinite Systems, in: Proc. Dundee Bien-

nial Conf. on Num. Anal., ed. by G. Watson, Lecture Notes in Mathematics, 506, p.73-89,

Springer-Verlag, 1975.

[7] R. W. Freund and N. M. Nachtigal, QMR: A Quasi-Minimal Residual Method for Non-

Hermitian Linear Systems, Numer. Math., 60 (1991) 315-339.

[8] H. G. Golub and F. C. van Loan, Matrix Computations, Third ed., The Johns Hopkins

University Press, Baltimore and London, 1996.

[9] H. G. Golub and Q. Ye, Inexact Preconditioned Conjugate Gradient Method with Inner-Outer

Iteration, SIAM J. Sci. Comput., 21 (1999) 1305-1320.

[10] M. R. Hestenes and E. Stiefel, Methods of Conjugate Gradients for Solving Linear Systems,

J. Res. Nat. Bur. Standards, 49 (1952) 409-435.

[11] W. D. Joubert, Lanczos Methods for the Solution of Nonsymmetric Systems of Linear Equa-

tions, SIAM J. Matrix Anal. Appl., 13 (1992) 926-943.

[12] J. A. Meijerink and H. A. van der Vorst, An Iterative Solution Method for Linear Systems

of which the Coefficient Matrix is a Symmetric M-matrix, Math. Comp., 31 (1977) 148-162.

[13] Y. Saad and M. H. Schultz, GMRES: A Generalized Minimal Residual Algorithm for Solving

Nonsymmetric Linear Systems, SIAM J. Sci. Stat. Comput., 7 (1986) 856-869.

[14] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS, Boston, 1996.

[15] Y. Saad, A Flexible Inner-outer Preconditioned GMRES Algorithm, SIAM J. Sci. Stat. Com-

put., 14 (1993) 461-469.

[16] D. B. Szyld and J. A. Yogel, FQMR: A Flexible Quasi-Minimal Residual Method with Inexact

Preconditioning, SIAM J. Sci. Stat. Comput., 23 (2001) 363-380.

[17] H. A. van der Vorst, Bi-CGSTAB:A Fast and Smoothly Converging Variant of Bi-CG for the

Solution of Nonsymmetric Linear Systems, SIAM J. Sci. Stat. Comput., 13 (1992) 631-644.

[18] H. A. van der Vorst and C. Vuik, GMRESR: A family of Nested GMRES Methods, Numer.

Linear Algebra Appl., 1 (1994) 369-386.

[19] R. Varga, Matrix Iterative Analysis, 2nd rev. and expanded ed., Springer-Verlag, Berlin,

Heidelberg, New York, 2000.

[20] P. K. W. Vinsom, Orthomin, An Iterative Method for Solving Sparse Sets of Simultaneous

Linear Equations, in: Proc. Fourth Symposium on Reservoir Simulation, p.149-159, Society

of Petroleum Engineers of AIME, 1976.

[21] C. Vuik, Solution of the Discretized Incompressible Navier-Stokes Equations with the GMRES

Method, Int. J. for Num. Meth. in Fluids, 16 (1993) 507-523.

Faculty of Economics and Information, Gifu Shotoku University, Gifu, 500-8288 Japan

E-mail : abe@gifu.shotoku.ac.jp

Graduate School of Engineering, University of Tokyo, Tokyo, 113-8656 Japan

E-mail : zhang@zzz.t.u-tokyo.ac.jp


