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Abstract. In this paper, we consider a two-dimensional parabolic equation

with two small parameters. These small parameters make the underlying prob-

lem containing multiple scales over the whole problem domain. By using the

maximum principle with carefully chosen barrier functions, we obtain the point-

wise derivative estimates of arbitrary order, from which an anisotropic mesh

is constructed. This mesh uses very finer mesh inside the small scale regions

(where the boundary layers are located) than elsewhere (large scale regions). A

fully discrete backward difference Galerkin scheme based on this mesh with ar-

bitrary k-th (k ≥ 1) order conforming rectangular elements is discussed. Note

that the standard finite element analysis technique can not be used directly

for such highly nonuniform anisotropic meshes because of the violation of the

quasi-uniformity assumption. Then we use the integral identity superconver-

gence technique to prove the optimal uniform convergence O(N−(k+1) +M−1)

in the discrete L2-norm, where N and M are the number of partitions in the

spatial (same in both the x- and y-directions) and time directions, respectively.

Key Words. Singular perturbation, anisotropic mesh and uniform conver-

gence.

1. Introduction

Singular perturbation problems (SPPs) appear in many areas, such as in chemical
kinetics, heterogeneous flow in porous media, periodic structures, and plate and
shell problems, etc. Actually, ”Such a situation is relatively common in applications,
and this is one of the reasons that perturbation methods are a cornerstone of applied
mathematics” [16, Preface]. Those small parameters make the underlying problems
contain multiple scales spanning over the whole domain. It is well known that the
solutions of singular perturbation problems usually undergo rapid changes within
very thin layers near the boundary (boundary layers) or inside the problem domain
(interior layers), where the small scales are located.

However, direct numerical simulation by using the standard finite element method
to resolve such multiscale problems is very impractical due to the requirement of
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huge computer memory and CPU time. For example, by using a linear finite ele-
ment on a quasi-uniform mesh to solve the simple model

−ε2 4 u + u = f(x, y) in Ω ⊆ R2, u|∂Ω = 0,

where 0 < ε ¿ 1 is a perturbation parameter, we can obtain the following global
error estimate:

||u− uh||ε ≤ C(ε + h)h||u||H2(Ω),

where ||u||ε = (ε2||∇u||2L2(Ω) + ||u||2L2(Ω))
1/2. Noticing the fact that [31, Lemma

2.1]:

(1) ||u||H2(Ω) ≤ Cε−2||f ||L2(Ω),

we see that, to ensure good approximation, the mesh size h must be in the order
of o(ε). Suppose that ε = 10−6 (which is very common), then h = o(10−6). Hence
we will end up with 1012 unknowns, which is well out of the power of most today’s
computer resources.

In summary, solving SPPs is a very challenging task because of the fact that ε

can be very small leads to notorious computational difficulties [25, pp.310]. Such
difficulties have also been emphasized by many researchers [30, 11]. The challenging
SPPs serve frequently as test models for new algorithms, e.g., in multigrid methods
[14, Ch.10], domain decomposition methods [12], collocation methods [4, Ch.10],
and adaptive methods [1, 32].

Recently, the standard finite element methods based on anisotropically refined
meshes, which use different scales of mesh size in different subdomains, were proved
to give uniform convergence, which is independent of the small perturbation param-
eters. However, most work was restricted to linear finite element and problems with
one perturbation parameter [3, 19, 22, 29, 37]. More details about the unsolved
problems in this area can be found in the most recent survey by Roos [28].

In this paper, we will consider the analysis of applying arbitrary order tensor-
product finite elements on such highly nonuniform anisotropic mesh to a two-
dimensional parabolic equation with two small parameters. The pointwise deriv-
ative estimates are essential in the construction of such an anisotropic mesh with
optimal uniform convergence. Here we use the maximum principle [26] as our pow-
erful tool to obtain those derivative estimates by carefully choosing all kinds of
barrier functions. Then we use the integral identity superconvergence technique
[23, 7, 37, 9] originally developed for superconvergence analysis on tensor-product
finite elements. We like to remark that uniform convergence can not be obtained di-
rectly by the standard finite element analysis for such highly nonuniform anisotropic
meshes because of the violation of the quasi-uniformity assumption [8, 5]. Special
interpolation estimates have to be obtained on such anisotropic meshes [2]. Also
asymptotical expansion or pointwise derivative estimates for the analytical solution
has to be investigated in order to obtain such uniform convergence [21, 22].

For simplicity, here we focus on the following parabolic equation

Lεµu ≡ ε
∂u

∂t
− µ2a4 u + bu = f(x, y, t, ε, µ) in D ≡ Ω× (0, T ],(2)

u|∂Ω×(0,T ] = 0, u|t=0 = 0,(3)

where Ω = (0, 1)2, and the coefficients a(x, y, t), b(x, y, t) and f are sufficiently
smooth functions. Here 0 < ε ¿ 1, 0 < µ ¿ 1 are small parameters. Furthermore
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we assume

b > aβ2
2 > 0, b > β1 > 0,

where β1 and β2 are positive constants.
The asymptotic expansion for (2)-(3) was investigated in [6], which showed where

all the boundary layers are located. By the maximum principle, we also find all the
boundary layers’ exact locations, out of which our anisotropic mesh is built for the
standard arbitrary k-th (k ≥ 1) order conforming tensor-product elements. Our
anisotropic mesh separates the boundary layers (small scale regions) totally from
other parts of the problem domain (large scale regions). We use very fine mesh
inside the boundary layers, and much coarse mesh elsewhere. The mesh ratio can
be as high as 1 : ε| ln ε|. Use of such a mesh [34, 12, 17, 3, 22, 19] is more intuitive
than the widely discussed Shishkin type mesh [2, 11, 24, 30, 36, 37]. The fully
discrete backward difference [35, pp.748] Galerkin approximation is discussed and
optimal uniform convergence rates of O(N−(k+1) + M−1) in the discrete L2-norm
are proved for the k-th order conforming tensor-product elements, where N and
M are the number of discretization intervals in the spatial and time directions,
respectively. Here for simplicity, we use the same number of partitions in both the
x- and y-directions.

The rest of the paper is organized as follows. The derivative estimates of arbi-
trary order for the analytic solution of (2)-(3) are presented in section 2. Our mesh
and the Galerkin scheme are constructed in section 3. Section 4 are devoted to the
introduction of a special interpolation operator and its interpolation estimates. In
the last section, the optimal uniform convergence analysis in the discrete L2-norm
is given.

Throughout the paper, C (or Ci) will denote a generic positive constant, which
may be of different value at each occurrence and independent of the mesh size and
the perturbation parameter ε. We use the notation ||·||k,p,τ for the standard Sobolev
W k,p(τ) norm defined on the set τ, and vξk for the k-th order derivative of v with
respect to the variable ξ. For simplicity, we use || · ||k,τ when p = 2.

2. The derivative estimates

Here we use the maximum principle [26] as our powerful tool to obtain derivative
estimates for the analytical solution of (2)-(3). Such technique has been proven to
be very useful for SPPs [27, 29, 19], the difficult is how to carefully choose all kinds
of barrier functions.

Because of the technical difficulty of applying the maximum principle, from now
on we assume that a is a positive constant. Such difficulty has been encountered
by other researchers ([29, pp.720], [27, pp.50]). Furthermore, we assume that f

satisfies the following conditions:

|fxitk(x, y, t, ε, µ)| ≤ Cε−k(1 + µ−ie−β2x/µ + µ−ie−β2(1−x)/µ) on D,(4)

|fyitk(x, y, t, ε, µ)| ≤ Cε−k(1 + µ−ie−β2y/µ + µ−ie−β2(1−y)/µ) on D,(5)

|fti(x, y, t, ε, µ)| ≤ C(1 + ε−ie−β1t/ε) on D,(6)

where D = [0, 1]2 × [0, T ], i ≥ 0, k = 0, 1.
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Theorem 2.1. Suppose the solution u of (2)-(3) is sufficiently smooth on D. Then
under the assumptions (4)-(6), we have

(i) |uxk(x, y, t)| ≤ C(1 + µ−ke−β2x/µ + µ−ke−β2(1−x)/µ) on D, ∀ k ≥ 1,

(ii) |uyk(x, y, t)| ≤ C(1 + µ−ke−β2y/µ + µ−ke−β2(1−y)/µ) on D, ∀ k ≥ 1.

Proof. We only present the proofs of (i) for k = 1, 2, 3, 4 in the following Lemmas
2.2-2.7. From the proofs given below, it is not difficult to see that other higher
order derivatives can be obtained by the inductive method. (ii) can be proved by
symmetry.

Let ∂D = ∂Ω × (0, T ]
⋃

Ω × {t = 0}. Here we will make repeated use of the
following weak maximum principle [26]:

Lemma 2.1. For any functions w(x, y, t) ∈ C2(D) ∩ C0(D), if w ≥ 0 on ∂D and
Lεµw ≥ 0 on D, then w ≥ 0 on D.

Lemma 2.2.

ux|y=0,1 = ux|t=0 = 0,(7)

|ux|x=0,1 ≤ Cµ−1,(8)

|u| ≤ C(1− e−β2x/µ) ≤ C, (x, y, t) ∈ D.(9)

Proof. By the boundary condition (3), i.e.,

u|y=0,1 = u|t=0 = 0,

the proof of (7) follows directly.
Consider the barrier function φ = C(1− e−β2x/µ), we have

Lεµ(φ± u) = aCβ2
2e−β2x/µ + bC(1− e−β2x/µ)± f

= aCβ2
2 + C(1− e−β2x/µ)(b− aβ2

2)± f

≥ 0, for sufficiently large C,

which along with Lemma 2.1 and the fact that (φ± u)|∂D ≥ 0 gives us

|u| ≤ φ = C(1− e−β2x/µ), on D,

which completes the proof of (9).
From (9) and the fact that u|x=0 = 0, we have

|ux(0, y, t)| = | lim
x→0+

u(x, y, t)− u(0, y, t)
x

|≤ lim
x→0+

| u(x, y, t)− u(0, y, t)
x

|

≤ lim
x→0+

C(1− e−β2x/µ)
x

= C
β2

µ
≤ Cµ−1.(10)

By the same technique, it is easy to prove that

|u| ≤ C(1− e−β2(1−x)/µ), on D,

from which and u|x=1 = 0, we obtain

|ux(1, y, t)| = | lim
x→1−

u(x, y, t)− u(1, y, t)
x− 1

|≤ lim
x→1−

| u(x, y, t)− u(1, y, t)
x

|

≤ lim
x→1−

C(1− e−β2(1−x)/µ)
1− x

= C
β2

µ
≤ Cµ−1,

which together with (10) completes the proof of (8).
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Lemma 2.3.

|ux| ≤ C(1 + µ−1e−β2x/µ + µ−1e−β2(1−x)/µ), (x, y, t) ∈ D.

Proof. Consider the barrier function φ = C(1 + µ−1e−β2x/µ + µ−1e−β2(1−x)/µ),
we have

Lεµ(φ± ux) = −aCµ−1β2
2(e−β2x/µ + e−β2(1−x)/µ)

+bC(1 + µ−1e−β2x/µ + µ−1e−β2(1−x)/µ)± (fx − bxu)

= bC + (b− aβ2
2)Cµ−1(e−β2x/µ + e−β2(1−x)/µ)± (fx − bxu)

≥ 0, for sufficiently large C,(11)

where in the last step we used the assumption (4) and the estimate (9).
From Lemma 2.2, we have

(φ± ux)|∂D ≥ 0, for sufficiently large C,

which along with (11) and Lemma 2.1 completes the proof.

Lemma 2.4.

|ux2 | ≤ C(1 + µ−2e−β2x/µ + µ−2e−β2(1−x)/µ), (x, y, t) ∈ D.

Proof. From (2)-(3), we have

ux2 |x=0,1 = −µ−2a−1f |x=0,1,(12)

ux2 |y=0,1 = ux2 |t=0 = 0,(13)

from which we obtain

(14) | ux2 |∂D≤ Cµ−2.

Consider the barrier function φ = C(1+µ−2e−β2x/µ +µ−2e−β2(1−x)/µ), we have

Lεµ(φ± ux2)

= bC + (b− aβ2
2)Cµ−2(e−β2x/µ + e−β2(1−x)/µ)± (fx2 − bx2u− 2bxux)

≥ 0, for sufficiently large C,(15)

where in the last step we used the assumption (4) and the obtained estimates for
u and ux.

The proof follows from Lemma 2.1, (14) and (15).
Denote

g(x, y, t, ε, µ) = a−1µ−2[
1− e−β2(1−x)/µ

1− e−β2/µ
f(0, y, t, ε, µ) +

1− e−β2x/µ

1− e−β2/µ
f(1, y, t, ε, µ)],

and

(16) u = ux2 + g(x, y, t, ε, µ).

Differentiating (2) twice with respect to x, it is not difficult to see that u satisfies

Lεµu ≡ ε
∂u

∂t
− µ2a4 u + bu = f(x, y, t, ε, µ) in D,(17)

u = 0 on ∂D,(18)
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where f = fx2 − 2bxux − bx2u + Lεµg. To obtain (18), we used the following com-
patibility conditions:

f(0, 0, t, ε, µ) = f(0, 1, t, ε, µ) = f(1, 0, t, ε, µ) = f(1, 1, t, ε, µ) = 0,(19)

f(0, y, 0, ε, µ) = f(1, y, 0, ε, µ) = 0,(20)

f(x, 0, 0, ε, µ) = f(x, 1, 0, ε, µ) = 0,(21)

Similar compatibility conditions of (19) were obtained for a steady problem in
Section 3 of [15]. Let us show how (20) can be obtained. By letting t = 0 in (2)
and using the boundary condition (3), we have

(22) ε
∂u

∂t
|t=0 = f(x, y, 0, ε, µ).

On the other hand, from the boundary conditions u|x=0,1 = 0, we have

(23) ut|x=0,1 = 0.

Substituting (23) into (22) with x = 0, 1 gives us (20). (19) and (21) can be obtained
similarly.

Lemma 2.5.

ux|y=0,1 = ux|t=0 = 0,(24)

|ux|x=0,1 ≤ Cµ−3.(25)

Proof. The proof of (24) follows directly from the boundary conditions (18).
The proof of (25) can be obtained by the same technique used in Lemma 2.2.
Consider the barrier function φ = Cµ−2(1− e−β2x/µ), we have

Lεµ(φ± u) = aCβ2
2µ−2 + Cµ−2(1− e−β2x/µ)(b− aβ2

2)± f

≥ 0, for sufficiently large C,

which along with Lemma 2.1 and the fact that (φ± u)|∂D ≥ 0 gives us

(26) |u| ≤ φ = Cµ−2(1− e−β2x/µ), on D.

From (26) and (18), we have

|ux(0, y, t)| ≤ lim
x→0+

| u(x, y, t)− u(0, y, t)
x

|

≤ lim
x→0+

Cµ−2(1− e−β2x/µ)
x

= Cµ−2 β2

µ
≤ Cµ−3.(27)

Similarly, it is not difficult to obtain

|ux(1, y, t)| ≤ Cµ−3,

which along with (27) finishes the proof of (25).

Lemma 2.6.

|ux3 | ≤ C(1 + µ−3e−β2x/µ + µ−3e−β2(1−x)/µ), (x, y, t) ∈ D.

Proof. Similar to Lemma 2.3, by considering the barrier function φ = C(1 +
µ−3e−β2x/µ + µ−3e−β2(1−x)/µ), we have

Lεµ(φ± ux) = bC + (b− aβ2
2)Cµ−3(e−β2x/µ + e−β2(1−x)/µ)± (fx − bxu)

≥ 0, for sufficiently large C,(28)
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where in the last step we used the assumption (4) and the obtained estimates for
uxk , k = 0, 1, 2.

From Lemma 2.5, we have

(φ± ux)|∂D ≥ 0, for sufficiently large C,

which along with (28) and Lemma 2.1 gives us

|ux| ≤ C(1 + µ−3e−β2x/µ + µ−3e−β2(1−x)/µ),

which together with the definition u of (16) gives us

|ux3 | ≤ |ux − gx| ≤ |ux|+ |gx| ≤ C(1 + µ−3e−β2x/µ + µ−3e−β2(1−x)/µ),

which completes the proof.

Lemma 2.7.

|ux4 | ≤ C(1 + µ−4e−β2x/µ + µ−4e−β2(1−x)/µ), (x, y, t) ∈ D.

Proof. The proof is very similar to the one given for Lemma 2.4.
From (17)-(18), we have

ux2 |x=0,1 = −µ−2a−1f |x=0,1,(29)

ux2 |y=0,1 = ux2 |t=0 = 0, ,(30)

from which and the estimate of f we obtain

(31) | ux2 |∂D≤ Cµ−4.

Consider the barrier function φ = C(1+µ−4e−β2x/µ+µ−4e−β2(1−x)/µ). By simple
calculations, we obtain

Lεµ(φ± ux2)

= bC + (b− aβ2
2)Cµ−4(e−β2x/µ + e−β2(1−x)/µ)± (fx2 − bx2u− 2bxux)

≥ 0, for sufficiently large C,(32)

where in the last step we used the assumption (4), the definitions of u and f, and
the obtained estimates for uxk , 0 ≤ k ≤ 3.

Lemma 2.1, (31) and (32) complete the proof.
It is not difficult to see that the above proofs for Lemmas 2.5-2.7 can be carried

out repeatedly to obtain higher order derivative estimates of uxk (k > 4).

Lemma 2.8.
|ut| ≤ C(1 + ε−1e−β1t/ε), (x, y, t) ∈ D.

Proof. Consider the barrier function φ = C(1 + ε−1e−β1t/ε). By simple calcula-
tions, we obtain

Lεµ(φ± ut) = −Cβ1ε
−1e−β1t/ε + bC(1 + ε−1e−β1t/ε)± (ft − btu)

= bC + Cε−1e−β1t/ε(b− β1)± (ft − btu)

≥ 0, for sufficiently large C,(33)

where we used the assumption (6) and the estimate (9).
On the other hand, letting t = 0 in (2), we have

(34) ut(x, y, 0) = ε−1f(x, y, 0, ε, µ) ≤ Cε−1.
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From the boundary conditions (3), we have

(35) ut|x=0,1 = ut|y=0,1 = 0,

which along with (34) give us

(φ± ut)|∂D ≥ 0,

which together with (33) and Lemma 2.1 finishes the proof.
Denote

g̃(x, y, t, ε, µ) = ε−1f(x, y, 0, ε, µ)e−β1t/ε,(36)

ũ = ut(x, y, t)− g̃(x, y, t, ε, µ),(37)

Differentiating (2) once with respect to t, it is not difficult to see that ũ satisfies

Lεµũ ≡ ε
∂ũ

∂t
− µ2a4 ũ + bũ = f̃(x, y, t, ε, µ) in D,(38)

ũ = 0 on ∂D,(39)

where f̃ = ft − btu − Lεµg̃. Note that the compability conditions (20)-(21), (34),
and (35) were used to obtain (39).

Lemma 2.9.

|utk | ≤ C(1 + ε−ke−β1t/ε), (x, y, t) ∈ D, k ≥ 2.

Proof. The proof is similar to the one given for Lemma 2.8. Consider the barrier
function φ = C(1 + ε−2e−β1t/ε). By simple calculations, we obtain

Lεµ(φ± ũt) = bC + Cε−2e−β1t/ε(b− β1)± (f̃t − btũ)

≥ 0, for sufficiently large C,(40)

where we used the assumption (6), and the definitions of f̃ and ũ.

On the other hand, letting t = 0 in (38), we have

(41) ũt(x, y, 0) = ε−1f̃(x, y, 0, ε, µ) ≤ Cε−2.

From the boundary conditions (39), we have

(42) ũt|x=0,1 = ũt|y=0,1 = 0,

which along with (41) give us

(φ± ũt)|∂D ≥ 0,

which together with (40) and Lemma 2.1 gives us

(43) |ũt| ≤ C(1 + ε−2e−β1t/ε).

By the definition of ũ and the fact (43), we have

|utt ≤ |ũt + g̃t| ≤ |ũt|+ |g̃t| ≤ C(1 + ε−2e−β1t/ε),

which concludes the proof for k = 2.

It is not difficult to see that the above procedures can be used repeatedly for
higher order estimates of utk for k ≥ 3.

Lemma 2.10. Suppose the solution u of (2)-(3) is sufficiently smooth on D. Then
under the assumptions (4)-(6), we have

(i) |uxkt(x, y)| ≤ Cε−1(1 + µ−ke−β2x/µ + µ−ke−β2(1−x)/µ) on D, ∀ k ≥ 1,

(ii) |uykt(x, y)| ≤ Cε−1(1 + µ−ke−β2y/µ + µ−ke−β2(1−y)/µ) on D, ∀ k ≥ 1.
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Proof. Note that (38)-(39) are in the same form as our original problem (2)-(3),
except that the right hand side f̃ satisfies

|f̃xi(x, y, t, ε, µ)| ≤ Cε−1(1 + µ−ie−β2x/µ + µ−ie−β2(1−x)/µ) on Ω, ∀ i ≥ 0,

|f̃yi(x, y, t, ε, µ)| ≤ Cε−1(1 + µ−ie−β2y/µ + µ−ie−β2(1−y)/µ) on Ω, ∀ i ≥ 0,

|f̃ti(x, y, t, ε, µ)| ≤ Cε−1(1 + ε−ie−β1t/ε) on Ω, ∀ i ≥ 0,

which differ from (4)-(6) only in a constant ε−1.

Hence by carrying out the same procedures used in Lemmas 2.2-2.7, it is easy
to obtain that

|ũxk(x, y, t)| ≤ Cε−1(1 + µ−ke−β2x/µ + µ−ke−β2(1−x)/µ) on D, ∀ k ≥ 1,

from which and the definitions of ũ, we have

|uxkt| ≤ |ũxk(x, y, t) + g̃xk | ≤ Cε−1(1 + µ−ke−β2x/µ + µ−ke−β2(1−x)/µ),

where in the last step we used the definition of g̃ and the assumption (4).
By symmetry, (ii) can be proved directly.

3. The mesh and the scheme

From Theorem 2.1 and Lemma 2.9, we see that the solution u of (2)-(3) has sharp
boundary layers at faces x = 0, 1, y = 0, 1, and t = 0. Hence we need finer mesh
inside the boundary layers than elsewhere. First we divide Ω into nine subdomains
Ωi, 1 ≤ i ≤ 9, i.e., Ω = ∪9

i=1Ωi, where

Ω1 ≡ (0, σx)× (0, σy), Ω2 ≡ (σx, 1− σx)× (0, σy), Ω3 ≡ (1− σx, 1)× (0, σy),

Ω4 ≡ (0, σx)× (σy, 1− σy), Ω5 ≡ (σx, 1− σx)× (σy, 1− σy),

Ω6 ≡ (1− σx, 1)× (σy, 1− σy), Ω7 ≡ (0, σx)× (1− σy, 1),

Ω8 ≡ (σx, 1− σx)× (1− σy, 1), Ω9 ≡ (1− σx, 1)× (1− σy, 1).

Here σx = σy = (k + 1)β−1
2 µ| ln µ| for the standard k-th order conforming tensor-

product finite elements. Then each subdomain Ωi is divided quasi-uniformly in both
the x- and y-directions. We assume that the meshes are matching globally, hence
we obtain an a prior anisotropically refined mesh (see Figure 1), which is refined
only in the directions of the boundary layers. To simplify the notation, we assume
equal total number of partitions, denoted as N, in both the x- and y-directions.
The number of divisions in each subdomain is some fraction of N.

Similarly in the time space, we use smaller time step inside the boundary layer
than elsewhere. We divide [0, T ] into two subdomains, i.e.,

[0, T ] = [0, σt]
⋃

[σt, T ],

where σt = β−1
1 ε| ln ε|. Then each subdomain is partitioned uniformly into M/2

intervals. Note that to build our mesh, the conditions of σx < 1/2 and σt < T/2
are implied to be true. Otherwise, the underlying problem is not considered to be
singularly perturbed.

The weak formulation of (2)-(3) is given by finding u : (0, T ] → H1
0 (Ω) such that

(44) ε(
∂u

∂t
, v) + µ2(a∇u,∇v) + (bu, v) = (f, v), v ∈ H1

0 (Ω).

Here and throughout the paper, (·, ·) denotes the inner product in L2(Ω).
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Ω1 Ω2 Ω3

Ω4 Ω5 Ω6

Ω7 Ω8 Ω9

Figure 1. An exemplary anisotropic mesh

Consider the following fully discrete time Galerkin method for approximating
the solution of (2)-(3): find un+1

h,k ∈ Sk
h such that

(45) ε(
un+1

h,k − un
h,k

δtn
, vh) + µ2(a∇un+1

h,k ,∇vh) + (bun+1
h,k , vh) = (f, vh), vh ∈ Sk

h,

where Sk
h ⊆ H1

0 (Ω) is the k-th order conforming tensor-product finite elements on
the above special rectangular partition of Ω. Here and below we denote

δtn = tn+1 − tn, n = 0, · · · ,M − 1,

where t0 = 0, tM/2 = σt, tM = T. Note that (45) is the so-called backward scheme
[35, pp.748]. More sophisticated discrete time schemes [10, 33] can be discussed
similarly.
Remark. The scheme (45) is unconditionally stable, hence there is no restriction
on the time step. This can be seen by taking vh = un+1

h,k in (45) and using the
Hölder inequality, we obtain

ε

δtn
||un+1

h,k ||20,Ω + µ2C||∇un+1
h,k ||20,Ω + C||un+1

h,k ||20,Ω

≤ ||f ||0,Ω||un+1
h,k ||0,Ω +

ε

δtn
||un

h,k||0,Ω||un+1
h,k ||0,Ω,(46)

where C = min(x,y,t)∈Ω×[0,T ](a(x, y, t), b(x, y, t)). Using

||f ||0,Ω||un+1
h,k ||0,Ω ≤ C

2
||un+1

h,k ||20,Ω +
1

2C
||f ||20,Ω,

and
||un

h,k||0,Ω||un+1
h,k ||0,Ω ≤ 1

2
||un

h,k||20,Ω +
1
2
||un+1

h,k ||20,Ω,

we can rewrite (46) as
ε

2δtn
||un+1

h,k ||20,Ω + µ2C||∇un+1
h,k ||20,Ω +

C

2
||un+1

h,k ||20,Ω

≤ 1
2C

||f ||20,Ω +
ε

2δtn
||un

h,k||20,Ω,(47)

from which we have

(48) ||un+1
h,k ||20,Ω ≤

δtn
εC

||f ||20,Ω + ||un
h,k||20,Ω.

Summing up (48) from n = 0 to M−1 and using the fact
∑M−1

n=0 δtn = T, we obtain

||uM
h,k||20,Ω ≤

T

εC
||f ||20,Ω + ||u0

h,k||20,Ω,

which shows that the scheme is unconditionally stable.
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4. The special interpolation operator and its interpolation estimates

Consider a special interpolation operator Πk
hw : w ∈ C0(Ω̄) → Qk defined on

each rectangular element τ of Ω by the following conditions [13, pp.108]:

Πk
hw(ai) = w(ai), i = 1, 2, 3, 4,(49) ∫

lj

(Πk
hw − w)v = 0, ∀v|lj ∈ Pk−2(lj), j = 1, 2, 3, 4,

∫

τ

(Πk
hw − w)v = 0, ∀v|τ ∈ Qk−2(τ).

for k ≥ 2, where ai and lj denote the vertices and edges of τ, which are illustrated
in Figure 1 of [18]. Here Pk is the k-th order polynomial in one dimension, and

Qk(τ) = span{xiyj : 0 ≤ i, j ≤ k, (x, y) ∈ τ}.
Note that when k = 1, Πk

h is defined by (49) only, i.e., Π1
h is the standard bilinear

interpolation.
By [13, pp.108], Πk

h is well defined. Furthermore, using standard scaling tech-
nique [8, 5], we can easily prove the following interpolation estimates [20, Lemma
3.1]:

Lemma 4.1. Let integer k ≥ 1, and real p with 1 ≤ p ≤ ∞. Then for all v ∈
W k+1,p(τ), we have

||v −Πk
hv||0,p,τ ≤ C(hk+1

x,τ ||vxk+1 ||0,p,τ + hk+1
y,τ ||vyk+1 ||0,p,τ ),

where τ is an arbitrary rectangular element with width hx,τ and length hy,τ .

Using the integral identity technique [23], we have [18, Lemmas 1-2]:

Lemma 4.2. For ∀v ∈ Qk(τ), k ≥ 1 and ∀w ∈ Hk+2(τ), we have

(i)
∫

τ

(Πk
hw − w)xvx =

(−2)k

(2k)!

∫

τ

F k(y)wxyk+1(x, y)vxyk−1(x, yτ )

+
(−2)k

(2k + 2)!

∫

τ

(F k+1(y))ywxyk+1(x, y)vxyk(x, yτ )

= O(hk+1
y,τ )||wxyk+1 ||0,τ ||vx||0,τ

(ii)
∫

τ

(Πk
hw − w)yvy =

(−2)k

(2k)!

∫

τ

Ek(x)wyxk+1(x, y)vyxk−1(xτ , y)

+
(−2)k

(2k + 2)!

∫

τ

(Ek+1(x))xwxk+1y(x, y)vxky(xτ , y)

= O(hk+1
x,τ )||wxk+1y||0,τ ||vy||0,τ

Here τ = [xc−hx,τ , xc+hx,τ ]×[yc−hy,τ , yc+hy,τ ] is a rectangular element centered
at (xc, yc), with width 2hx,τ and length 2hy,τ , and

E(x) =
1
2
[(x− xc)2 − h2

x,τ ], F (y) =
1
2
[(y − yc)2 − h2

y,τ ].

Also we denote F k(y) = (F (y))k, and Ek(x) = (E(x))k.

In the following, we need to obtain some mixed order derivatives (which are
impossible to get by the maximum principle directly) by the technique we developed
in [22, 19].
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For clarity, we introduce the following short notation:

Ωx
1 = Ω1 ∪ Ω2 ∪ Ω3, Ωx

2 = Ω4 ∪ Ω5 ∪ Ω6, Ωx
3 = Ω7 ∪ Ω8 ∪ Ω9,

Ωy
1 = Ω1 ∪ Ω4 ∪ Ω7, Ωy

2 = Ω2 ∪ Ω5 ∪ Ω8, Ωy
3 = Ω3 ∪ Ω6 ∪ Ω9.

Lemma 4.3. For the solution u of (2)-(3) and any k ≥ 1, we have

(i) µ||uxyk ||0,Ωx
1
≤ Cµ−k · (µ| ln µ|)1/2,

µ||uxyk ||0,Ωx
2
≤ C,

µ||uxyk ||0,Ωx
3
≤ Cµ−k · (µ| ln µ|)1/2,

(ii) µ||uxky||0,Ωy
1
≤ Cµ−k · (µ| ln µ|)1/2,

µ||uxky||0,Ωy
2
≤ C,

µ||uxky||0,Ωy
3
≤ Cµ−k · (µ| ln µ|)1/2.

Proof. (i) Differentiating (2) k times with respect to y gives us

(50) −µ2aux2yk = fyk − (bu)yk + µ2auyk+2 − εuykt.

Integrating by parts and using the boundary condition u|∂Ω×(0,T ] = 0 (hence
uyk |x=0,1 = 0), Theorem 2.1, Lemma 2.10, and (50), we have

µ2

∫

Ωx
1

auxyk · uxykdxdy = µ2

∫ σy

0

(uyk · auxyk)|1x=0dy − µ2

∫

Ωx
1

uyk · aux2ykdxdy

= −
∫

Ωx
1

uyk · µ2aux2ykdxdy

=
∫

Ωx
1

uyk · (fyk − (bu)yk + µ2auyk+2 − εuykt)

≤ Cµ−k · µ−k ·meas(Ωx
1),

from which and the fact that meas(Ωx
1) = O(µ| ln µ|), we obtain

µ||uxyk ||0,Ωx
1
≤ Cµ−k · (µ| ln µ|)1/2.

Similarly, we have

µ2

∫

Ωx
2

auxyk · uxykdxdy =
∫

Ωx
2

uyk · (fyk − (bu)yk + µ2auyk+2 − εuykt),

which along with the fact that

µ−ke−β2y/µ + µ−ke−β2(1−y)/µ ≤ 2µ−ke−β2σy/µ ≤ 2, for σy ≤ y ≤ 1− σy,

gives us

µ||uxyk ||0,Ωx
2
≤ C.

In the same way, it is easy to see that

µ||uxyk ||0,Ωx
3
≤ Cµ−k · (µ| ln µ|)1/2.

(ii) Differentiating (2) k times with respect to x gives us

(51) −µ2auxky2 = fxk − (bu)xk + µ2auxk+2 − εuxkt.
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Integrating by parts and using the boundary condition u|∂Ω×(0,T ] = 0 (hence
uxk |y=0,1 = 0), Theorem 2.3, Lemma 2.10, and (51), we have

µ2

∫

Ωy
1

auxky · uxkydxdy = µ2

∫ σx

0

(uxk · auxky)|1y=0dx− µ2

∫

Ωy
1

uxk · auxky2dxdy

=
∫

Ωy
1

uxk · (fxk − (bu)xk + µ2auxk+2 − εuxkt)

≤ Cµ−k · µ−k ·meas(Ωy
1),

from which we obtain

µ||uxky||0,Ωy
1
≤ Cµ−k · (µ| ln µ|)1/2.

The other inequalities can be proved easily by the same technique.

Lemma 4.4. Let u be the solution of (2)-(3), and Πk
hu be the special interpolant

of u defined in section 4. Then for any k ≥ 1, we have

(i) |µ2((Πk
hu− u)x, χx)| ≤ CCµN−(k+1) · µ||χx||0,Ω, ∀ χ ∈ Sk

h,

(ii) |µ2((Πk
hu− u)y, χy)| ≤ CCµN−(k+1) · µ||χy||0,Ω, ∀ χ ∈ Sk

h,

(iii) ||Πk
hu− u||0,Ω ≤ CCµN−(k+1),

(iv) ε||Πk
hut − ut||0,Ω ≤ CCµN−(k+1),

where Cµ = 1 + µ1/2| lnk+3/2 µ|.
Proof. (i) Let hx,τ and hy,τ be the width and length of element τ, and

hx,Ωy
i

= max
τ∈Ωy

i

hx,τ , hy,Ωx
i

= max
τ∈Ωx

i

hy,τ .

Denote
Ti = µ2

∫

Ωx
i

(Πk
hu− u)xχx, i = 1, 2, 3.

By the construction of our mesh, we have

hx,Ωy
1
≈ hx,Ωy

3
≈ hy,Ωx

1
≈ hy,Ωx

3
= O(

µ| ln µ|
N

),(52)

hx,Ωy
2
≈ hy,Ωx

2
= O(

1
N

),(53)

By using Lemmas 4.2 and 4.3, and (52)-(53), we have

|T1| ≤ Chk+1
y,Ωx

1
· µ||uxyk+1 ||0,Ωx

1
· µ||χx||0,Ωx

1

≤ C(
µ| ln µ|

N
)k+1 · µ−(k+1) · (µ| ln µ|)1/2 · µ||χx||0,Ωx

1

= CN−(k+1) · µ1/2| lnk+3/2 µ| · µ||χx||0,Ωx
1
.(54)

By symmetry, we have

(55) |T3| ≤ CN−(k+1) · µ1/2| lnk+3/2 µ| · µ||χx||0,Ωx
3
.

Similarly, we obtain

|T2| ≤ Chk+1
y,Ωx

1
· µ||uxyk+1 ||0,Ωx

2
· µ||χx||0,Ωx

2

≤ C(
1
N

)k+1 · C · µ||χx||0,Ωx
2

= CN−(k+1) · µ||χx||0,Ωx
2
,(56)
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which along with (54) and (55) gives

|µ2((Πk
hu− u)x, χx)| = |T1 + T2 + T3|

≤ CN−(k+1)(µ1/2| lnk+3/2 µ|+ 1) · µ||χx||0,Ω,(57)

(ii) By the same technique, it is not difficult to see that

|µ2((Πk
hu− u)y, χy)| = |

3∑

i=1

µ2

∫

Ωy
i

(Πk
hu− u)yχy|

≤ C

3∑

i=1

hk+1
x,Ωy

i
· µ||uxk+1y||0,Ωy

i
· µ||χy||0,Ωy

i

≤ CN−(k+1)(µ1/2| lnk+3/2 µ|+ 1) · µ||χy||0,Ω,(58)

(iii) By using Theorem 2.1 and the construction of our mesh, we observe that

||uxk+1 ||∞,Ωy
2
≤ C, ||uxk+1 ||∞,Ωy

i
≤ Cµ−(k+1), i = 1, 3,(59)

||uyk+1 ||∞,Ωx
2
≤ C, ||uyk+1 ||∞,Ωx

i
≤ Cµ−(k+1), i = 1, 3,(60)

then by Lemma 4.1, (52)-(53), and (59)-(60), we have

||Πk
hu− u||0,Ω ≤

9∑

i=1

||Πk
hu− u||∞,Ωi ·meas1/2(Ωi)

≤ C
3∑

i=1

hk+1
x,Ωy

i
||uxk+1 ||∞,Ωy

i
·meas1/2(Ωy

i )

+C

3∑

i=1

hk+1
y,Ωx

i
||uyk+1 ||∞,Ωx

i
·meas1/2(Ωx

i )

≤ C · (µ| ln µ|
N

)k+1 · µ−(k+1) · (µ| ln µ|)1/2 + CN−(k+1)

= CN−(k+1) · (µ1/2| lnk+3/2 µ|+ 1),

which completes the proof of (iii).
(iv) By using Lemma 2.10 and the construction of our mesh in section 3, we

observe that

||uxk+1t||∞,Ωy
2
≤ Cε−1(1 + 2µ−(k+1)e−β2σx/µ) = 3Cε−1,(61)

||uyk+1t||∞,Ωx
2
≤ Cε−1(1 + 2µ−(k+1)e−β2σy/µ) = 3Cε−1,(62)

||uxk+1t||∞,Ωy
i
≤ Cε−1µ−(k+1), ||uyk+1t||∞,Ωx

i
≤ Cε−1µ−(k+1), i = 1, 3,(63)
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then by Lemma 4.1, (52)-(53), and (61)-(63), we have

ε||Πk
hut − ut||0,Ω ≤ ε

9∑

i=1

||Πk
hut − ut||∞,Ωi ·meas1/2(Ωi)

≤ Cε

3∑

i=1

hk+1
x,Ωy

i
||uxk+1t||∞,Ωy

i
·meas1/2(Ωy

i )

+Cε

3∑

i=1

hk+1
y,Ωx

i
||uyk+1t||∞,Ωx

i
·meas1/2(Ωx

i )

≤ Cε · (µ| ln µ|
N

)k+1 · ε−1µ−(k+1) · (µ| ln µ|)1/2

+Cε ·N−(k+1) · ε−1

= CN−(k+1) · (µ1/2| lnk+3/2 µ|+ 1),

which completes the proof of (iv).

5. The error estimate

By letting v = vh and t = tn+1 in (44), and subtracting (45) from (44), we obtain
the error equation

ε(
∂un+1

∂t
− un+1

h,k − un
h,k

δtn
, vh) + µ2(a(∇un+1 −∇un+1

h,k ),∇vh)

+ (b(un+1 − un+1
h,k ), vh) = 0, vh ∈ Sk

h.(64)

Theorem 5.1. Let u and un+1
h,k be the solutions of (2)-(3) and (45), respectively.

Then we have

(
M−1∑
n=0

δtn||un+1 − un+1
h,k ||20,Ω)1/2 ≤ C(N−(k+1) + M−1),

where C is independent of the small parameters ε and µ.

We remark that this estimate is optimal in the discrete L2-norm [10, pp.151]
with respect to the order of N and M. Estimates for more sophisticated discrete
time schemes [35, 10, 33] can be pursued accordingly.

Proof. By the Taylor expansion, we have

(65)
∂un+1

∂t
=

un+1 − un

δtn
+

1
2
δtnûn+1

t2 ,

where ûn+1
t2 = ∂2u

∂t2 (x, y, t̂), for some t̂ between tn and tn+1.

Substituting (65) into (64) gives us

ε(
(un+1 − un+1

h,k )− (un − un
h,k)

δtn
, vh) + µ2(a(∇un+1 −∇un+1

h,k ),∇vh)

+(b(un+1 − un+1
h,k ), vh) = −ε

1
2
δtn(ûn+1

t2 , vh), vh ∈ Sk
h.(66)

Denote

χn+1
h,k = Πk

hun+1 − un+1
h,k , ηn+1

k = Πk
hun+1 − un+1.
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By letting vh = χn+1
h,k in (66) and reorganizing it, we have

ε

δtn
(χn+1

h,k , χn+1
h,k ) + µ2(a∇χn+1

h,k ,∇χn+1
h,k ) + (bχn+1

h,k , χn+1
h,k )

=
ε

δtn
(χn

h,k, χn+1
h,k ) +

ε

δtn
(ηn+1

k − ηn
k , χn+1

h,k )

+µ2(a∇ηn+1
k ,∇χn+1

h,k ) + (bηn+1
k , χn+1

h,k )− ε · 1
2
δtn(ûn+1

t2 , χn+1
h,k ),

from which we obtain

(67) ε||χn+1
h,k ||20,Ω + δtn · µ2||∇χn+1

h,k ||20,Ω + δtn||χn+1
h,k ||20,Ω ≤

5∑

i=1

Ei,

where we used the properties of a and b, and the notations

E1 = C|ε(χn
h,k, χn+1

h,k )|,
E2 = C|ε(ηn+1

k − ηn
k , χn+1

h,k )|,
E3 = C|δtn · µ2(a∇ηn+1

k ,∇χn+1
h,k )|,

E4 = C|δtn(bηn+1
k , χn+1

h,k )|,
E5 = C|ε · (δtn)2(ûn+1

t2 , χn+1
h,k )|.

By the Cauchy-Schwarz inequality, we have

(68) E1 ≤ εC2

2
||χn

h,k||20,Ω +
ε

2
||χn+1

h,k ||20,Ω.

By the Taylor expansion, we have

ηn+1
k − ηn

k = δtn · ∂ηk

∂t
(x, y, t̃), for some t̃ between tn and tn+1

= δtn · (Πk
hut − ut)(x, y, t̃),

which along with Lemma 4.4 (iv) gives us

E2 ≤ Cδtn · ε||(Πk
hut − ut)(x, y, t̃)||0,Ω||χn+1

h,k ||0,Ω

≤ δtn · CCµN−(k+1) · ||χn+1
h,k ||0,Ω

≤ δtn[
1
4
||χn+1

h,k ||20,Ω + C2C2
µN−2(k+1)].(69)

By Lemma 4.4 (i)-(iii), we have

E3 ≤ δtn · CCµN−(k+1) · µ||∇χn+1
h,k ||0,Ω

≤ δtn[
1
2
µ2||∇χn+1

h,k ||20,Ω +
1
2
C2C2

µN−2(k+1)].(70)

By Lemma 4.4 (iii), we have

E4 ≤ δtn · CCµN−(k+1) · ||χn+1
h,k ||0,Ω

≤ δtn[
1
4
||χn+1

h,k ||20,Ω + C2C2
µN−2(k+1)).(71)

Also by Lemma 2.9, we have

E5 ≤ Cε · (δtn)2||ûn+1
t2 ||∞,Ω||χn+1

h,k ||0,Ω

≤ C · δtn · εδtn(1 + ε−2e−β1 t̂/ε)||χn+1
h,k ||0,Ω

≤ δtn[
1
4
||χn+1

h,k ||20,Ω + C2 · (εδtn)2 · (1 + ε−2e−β1 t̂/ε)2].(72)
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Combining (67) with (68)-(72), we obtain

ε

2
(||χn+1

h,k ||20,Ω − ||χn
h,k||20,Ω) +

1
2
δtn · µ2||∇χn+1

h,k ||20,Ω +
1
4
δtn||χn+1

h,k ||20,Ω

≤ δtn[
5
2
C2C2

µN−2(k+1) + C2 · (εδtn)2 · (1 + ε−2e−β1 t̂/ε)2].(73)

Summing up the above inequality from n = 0 to M − 1, we have
ε

2
(||χM

h,k||20,Ω − ||χ0
h,k||20,Ω)

+
1
2

M−1∑
n=0

δtn · µ2||∇χn+1
h,k ||20,Ω +

1
4

M−1∑
n=0

δtn||χn+1
h,k ||20,Ω

≤ 5
2
C2C2

µN−2(k+1)T + E6,(74)

where we used the fact that
∑M−1

n=0 δtn = T, and

E6 =
M−1∑
n=0

δtn[C2 · (εδtn)2 · (1 + ε−2e−β1 t̂/ε)2].

Using the facts that

δtn =
εβ−1

1 | ln ε|
M/2

, for n = 0, · · · ,
M

2
− 1,

δtn =
T − εβ−1

1 | ln ε|
M/2

≤ T

M/2
, for n =

M

2
, · · · ,M − 1,

and

ε−1e−β1 t̂/ε ≤ ε−1, for n = 0, · · · ,
M

2
− 1,

ε−1e−β1 t̂/ε ≤ ε−1e−β1σt/ε = 1, for n =
M

2
, · · · ,M − 1.

Hence

E6 ≤ ε−2

M/2−1∑
n=0

(δtn)3 +
M−1∑

n=M/2

(δtn)3

≤ ε−2

M/2−1∑
n=0

(
εβ−1

1 | ln ε|
M/2

)3 +
M−1∑

n=M/2

(
T

M/2
)3

≤ CM−2(1 + ε| ln3 ε|),
which along with (74) and the fact that χ0

h,k = 0 gives us

ε

2
||χM

h,k||20,Ω +
1
2

M−1∑
n=0

δtn · µ2||∇χn+1
h,k ||20,Ω +

1
4

M−1∑
n=0

δtn||χn+1
h,k ||20,Ω

≤ 5
2
C2C2

µN−2(k+1)T + CM−2(1 + ε| ln3 ε|),
from which we obtain

(
M−1∑
n=0

δtn||χn+1
h,k ||20,Ω)1/2 ≤ CCµN−(k+1)T 1/2 + CM−1(1 + ε1/2| ln3/2 ε|).(75)
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By Lemma 4.4 (iii), we have
M−1∑
n=0

δtn||ηn+1
h,k ||20,Ω ≤

M−1∑
n=0

δtn · (CCµN−(k+1))2

= C2C2
µN−2(k+1)T,

which along with (75) and the triangle inequality gives us

(
M−1∑
n=0

δtn||un+1 − un+1
h,k ||20,Ω)1/2

≤ CCµN−(k+1)T 1/2 + CM−1(1 + ε1/2| ln3/2 ε|).(76)

It is easy to see that µ1/2| lnk+3/2 µ| is actually uniformly (independent of µ)
bounded for all µ ∈ (0, 1], for example

µ1/2| ln3/2 µ| < 1.5, µ1/2| ln5/2 µ| < 4.6, µ1/2| ln7/2 µ| < 28, for all µ ∈ (0, 1],

from which we see that (76) can be bounded independent of ε and µ. That completes
the proof.

6. Conclusions

Optimal uniform convergence is proved for a two-dimensional parabolic equation
with two small parameters. First we used the maximum principle with carefully
chosen barrier functions to obtain the pointwise arbitrary order derivative esti-
mates, from which an anisotropic mesh is constructed. The mesh is much finer
inside the boundary layer regions than elsewhere. Note that the standard finite
element analysis technique can not be used directly for such highly nonuniform
anisotropic meshes because of the violation of the quasi-uniformity assumption [8].
The optimal uniform convergence is obtained by using the integral identity tech-
nique [23]. Generalization of our results to other singular perturbation problems
with two or more small parameters can be pursued similarly.
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