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Abstract. Convergence and superconvergence of the interpolated coefficient

finite element method (ICFEM) are discussed as the ICFEM reduces the com-

putation cost greatly. Further, the ICFEM is implemented to compute the

multiple solutions of some semilinear elliptic problems.
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1. Introduction

As semilinear partial differential equations arise in physics, biology, energy, and
engineering, their study has attracted the attention of many pure and applied math-
ematicians and physicists. It is well known that the standard finite element method
plays a very important role in solving these problems. Unfortunately, the compu-
tation cost for implementing the finite element method is usually very expensive.

To overcome this difficulty, a simple and graceful idea called the interpolated co-
efficient finite element method (ICFEM), which was originally inspired by solving
semilinear parabolic problems, was proposed by M. Zlámal [12] et al. Further, he
obtained the error estimate ‖(uh − u)(t)‖ = O(h2) for the linear element solution
uh(t) with an unproven assumption that ||uh(t)||∞ is bounded. Later, Larsson,
Thomée, and Zhang [9] studied the linear triangular finite element solution uh(t)
and obtained the error estimate ‖(uh − u)(t)‖ = O(h). In [3], implementing some
superconvergence techniques, Chen, Larsson, and Zhang derived an almost opti-
mal convergence order ‖(uh − u)(t)‖ = O(h2 ln h) on piecewise uniform triangular
meshes.

In this paper, we show that the interpolated coefficient finite element method
for solving the semilinear elliptic equations has the same convergence order or even
superconvergence properties as those of the standard finite element method. More-
over, combined with the Improved Search-extension Method [4, 11], the ICFEM is
used to compute the multiple solutions of some typical semilinear elliptic problems.

Received by the editors July 17, 2004 and, in revised form, October 6, 2004.
2000 Mathematics Subject Classification. 65N30.
This research is supported by Mathematical Tianyuan Youth Foundation of National Natural

Science Foundation of China No. 10226016, the Special Funds of State Major Basic Research
Projects No. G1999032804 and National Natural Science Foundation of China No. 19331021.

97



98 Z. XIE AND C. CHEN

2. Convergence and superconvergence of the ICFEM

For completeness, below the interpolated coefficient finite element method for
solving semilinear elliptic problems is introduced first.

Consider a semilinear elliptic problem with zero Dirichlet boundary condition,
i.e.,

(1) −Di(aijDju) + au + f(u) = 0 in Ω, u = 0 on ∂Ω,

with its weak form

(2) Q(u, v) = A(u, v) + (f(u), v) = 0, ∀v ∈ S0,

where Ω is a 2-dimensional bounded domain with Lipschitz boundary ∂Ω,
S0 = {u ∈ H1(Ω), u = 0 on ∂Ω}, and the bilinear form

A(u, v) =
∫

Ω

(aij(x)DiuDjv + a(x)uv)dx

is assumed to be bounded and S0-coercive.
We assume that the domain Ω is subdivided into a finite number of elements τ

with the subdivision Jh and let Zh = {xj}M
1 be the set of all interior nodes. Denote

by Sh ⊂ S0 the n-degree finite element subspace and {Nj(x)}M
1 the bases of Sh.

It is well known that the standard finite element solution uh ∈ Sh of (1) can be

expressed as uh(x) =
M∑

j=1

UjNj(x) ∈ Sh, Uj = uh(xj), and satisfies

(3) A(uh, v) + (f(uh), v) = 0, ∀v ∈ Sh.

By taking v = Ni, i = 1, 2, ...,M , (3) leads to a nonlinear system of equations

(4)
M∑

j=1

A(Nj , Ni)Uj − (f(
M∑

j=1

Nj(x)Uj), Ni) = 0, i = 1, 2, ...M,

which is often solved by the Newton method. It is known that the Jacobi ma-
trix is the main concern in the implementation of the Newton method. A direct
computation shows that the Jacobi matrix of (4) is

(5) J = {A(Nj , Ni)− (f ′(
M∑

k=1

NkUk)Nj , Ni)}M×M ,

which has to be updated repeatedly as the iterations proceed. Obviously, the
integrations for the second term in (5) are quite large and will result in the very
time-consuming and expensive computation of the Newton method.

Now we introduce the interpolated coefficient finite element method for solving

(1). Substitute the interpolation Ihf(uh) =
M∑

j=1

Nj(x)f(Uj) with Uj = uh(xj)

rather than f(uh) into (3) and still denote the interpolated coefficient finite element

solution uh =
N∑

j=1

UjNj(x). Then we obtain a new finite element equation

(6) A(uh, v) + (Ihf(uh), v) = 0, ∀v ∈ Sh.

As a result, we obtain a nonlinear algebraic system of equations

(7)
M∑

j=1

(kijUj + mijf(Uj)) = 0, i = 1, 2, ..., M,
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where the elements of the stiffness matrix kij = A(Nj , Ni) and the elements of the
mass matrix mij = (Nj , Ni) can be computed once. The Jacobi matrix of (7) is

(8) J = {kij + mijf
′(Uj)}M×M .

As kij and mij are given, the Jacobi matrix can be obtained simply by multiplying
mij by f ′(Uj). Therefore, the computation is reduced greatly compared with that
for solving (4).

For simplicity, we assume that Ω is a planar convex polygonal domain. It is
well known that the solution u ∈ S0 of problem A(u, v) = (h, v), v ∈ S0, satisfies
u ∈ H2(Ω) and ||u||2 ≤ C||h|| if h ∈ L2(Ω) is independent of u. We assume that
f(u) is suitably smooth, |f(u)| ≤ C(1 + |u|)p. Moreover, f ′(u) ≤ 0 somewhere is
admissible. Further, the following basic assumption is essential.
Assumption A. Assume that u ∈ Hn+1(Ω)

⋂
S0 is a solitary solution of (1), i.e.,

Q(u, v) = 0

and there is a small neighborhood Nε(u) = {w ∈ S0, ||w − u||1 < ε} such that
no solution of (1) exists in Nε(u). More precisely, for arbitrary w satisfying w ∈
S0, w 6= 0, ||w||1 ≤ ε, there exists a c = c(u) > 0, independent of w, such that

|Q(u + w, v)| ≥ c||w||1||v||1, v ∈ S0.

First, we introduce an auxiliary elliptic operator

B(u;w, v) = A(w, v) + (f ′(u)w, v).

Then we have the following theorem to guarantee the uniqueness of the solution of
the auxiliary elliptic problem

B(u;w, v) = A(w, v) + (f ′(u)w, v) = (g, v), ∀v ∈ S0.

Theorem 2.1. Under the assumption (A), the problem

(9) B(u; w, v) = A(w, v) + (f ′(u)w, v) = 0, ∀v ∈ S0,

has a unique solution w = 0.
Proof: We shall prove the conclusion by contradiction. Suppose that w 6= 0 and
w ∈ S0 ∩H2(Ω) is a solution of (9). For t sufficiently small, the Taylor expansion
implies

Q(u+tw, v) = Q(u, v)+t[A(w, v)+(f ′(u)w, v)]+t2(φ(u,w)w2, v) = t2(φ(u, w)w2, v),

where φ(u,w) =
∫ 1

0
f ′′(u + tsw)(1 − s)ds. For any p, p′ À 1 large enough, by the

Hölder inequality, we have

|Q(u + tw, v)| ≤ C||tw||20,2p||v||0,p′ ≤ C||tw||21||v||1, v ∈ S0.

This contradicts the assumption (A).
Theorem 2.2.Under the assumption (A), suppose that the solution u ∈ Hn+1(Ω)
and the subdivision Jh is quasi-uniform [1]. Then, for h > 0 sufficiently small, the
n−degree interpolated coefficient finite element solution uh has an optimal order
convergence estimate

‖uh − u‖ ≤ C(u)hn+1,

where the constant C(u) depends on the norm ‖u‖n+1,Ω.
Proof: Set e = u− uh. According to (2) and (6), e satisfies

(10) A(e, v) + (f(u)− Ihf(uh), v) = 0, v ∈ Sh.

Then we introduce an auxiliary elliptic projection Rhu ∈ Sh such that

(11) B(u;u−Rhu, v) = 0, v ∈ Sh.
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It is known that
||u−Rhu|| ≤ C(u)hn+1.

The auxiliary elliptic projection Rhu will serve as a comparing function in the
discussion later. Further, e can be rewritten as e = u − uh = u − Rhu + θ with
θ = Rhu− uh. The combination of (10) and (11) implies

(12) B(u; θ, v) + (rh, v) = 0, v ∈ Sh,

where

(13) rh = (f(u)− Ihf(u)) + Ih(f(u)− f(uh))− f ′(u)(u− uh) = r1 + r2 + r3.

Denote by {φj(x)}k
1 the shape functions on the element τ . Then the interpolation

of u on τ can be expressed as Ihu =
∑k

j=1 ujφj(x) which satisfies

(14) ||u− Ihu||0,p,τ ≤ Chn+1||u||n+1,p,τ , 1 ≤ p ≤ ∞.

Moreover, a similar estimate for r1 also holds. On the other hand, implementing
the Taylor expansion, we have

f(u(xj))− f(uh(xj)) = {f ′(u) + (f ′(u(xj))− f ′(u(x)))}(u(xj)− uh(xj))

− 1
2
f ′′(ξj)(u(xj)− uh(xj))2.

Thus, on the element τ ,

(r2 + r3)|τ = f ′(u)(Ihu− u) +
k∑

j=1

{(f ′(u(xj))− f ′(u(x)))(u(xj)− uh(xj))

− 1
2
f ′′(ξj)(u(xj)− uh(xj))2}φj(x).

Therefore,

rh|τ = F +
k∑

j=1

{(f ′(u(xj))− f ′(u(x)))(u(xj)− uh(xj))(15)

−1
2
f ′′(ξj)(u(xj)− uh(xj))2}φj(x)

with F = (f(u)− Ihf(u))− f ′(u)(u− Ihu).
By the Sobolev embedding theorem, d = 2, p = 2 is a limit case,

Hn+1(Ω) ↪→ Cβ(Ω̄), β = n + 1− d/p− ε = n− ε, ε > 0,

we have

(16) max
x,y∈τ

|f ′(u(x))− f ′(u(y))| ≤ C max
x,y∈τ

|u(x)− u(y)| ≤ Chα, α = min(1, β).

Thus,

(17) |rh|τ | ≤ |F |+ Chα max
τ
|Ihu− uh|+ C2 max

τ
|Ihu− uh|2.

Combining (17) and the inverse inequalities

||Ihu− uh||0,∞,τ ≤ Ch−1||Ihu− uh||0,2,τ ,

||Ihu− uh||0,∞,τ ≤ Ch−1/2||Ihu− uh||0,4,τ ,

we obtain

|rh|τ | ≤ |F |+ Chα−1||Ihu− uh||0,2,τ + Ch−1||Ihu− uh||20,4,τ .

Consequently,

||rh||20,2,τ ≤ C||F ||20,2,τ + Ch2α||Ihu− uh||0,2,τ + C||Ihu− uh||40,4,τ ,
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as the area of τ is O(h2). Hence

||rh||0,2 ≤ C||F ||0,2 + Chα||Ihu− uh||0,2 + C||Ihu− uh||20,4,

in which all the norms are defined on Ω. Combined with the inverse inequality on
Ω, ||Ihu− uh||0,4 ≤ Ch−1/2||Ihu− uh||0,2 and (14), the inequality above implies

(18) ||rh|| ≤ Chn+1 + Chα||e||+ Ch−1||e||2.
To employ the duality argument, we construct an auxiliary function wh ∈ Sh

satisfying

(19) B(u; v, wh) = (θ, v), v ∈ Sh.

Note that, no matter whether the bilinear form B(u; v, w) for fixed u is coercive or
not (under assumption (A)), a priori estimate ||wh||1 ≤ C||θ|| always holds. By
(19) and (12)

||θ||2 = B(u; θ, wh) = (−rh, wh) ≤ ||rh||||wh|| ≤ C||rh||||θ||.
Then we get ||θ|| ≤ C||rh|| and thereby,

(20) ||e|| ≤ C1h
n+1 + C2h

−1||e||2,
in which the error estimate ||u−Rhu|| ≤ C(u)hn+1 is used.

We shall adopt a simplified homotopy argument [7] to prove the conclusion from
(20). Let h0 > 0 be such that

(21) ||e|| < 2C1h
n+1

holds for any h < h0. Substituting (21) into the right term of (20), we get

||e|| ≤ C1(1 + 4C1C2h
n)hn+1.

Taking h1 small such that 4C1C2h
n
1 < 1, we still have estimate (21) for all h <

min{h0, h1}. Consequently, (21) is valid.
Actually, the most exciting fact about the ICFEM is that it has the same su-

perconvergent property as that of the standard finite element method. In Theorem
2.3, we shall concentrate on the discussion for the superconvergence of the ICFEM.

Below we assume that the rectangular or triangular subdivision of domain is
uniform, and denote Th a set of symmetric points, i.e., angular nodes and midpoints
on sides (and the center for the rectangular elements also). Introducing the discrete
norm

||g||Th
= (

∑

z∈Th

|g(z)|2h2)1/2,

we know that for linear elliptic problem the quadratic finite element solution Rhu
and interpolation Ihu have the superconvergence estimate

(22) ||u− Ihu||Th
+ ||u−Rhu||Th

= O(h4)||u||4.
Now we shall prove the same conclusion for the semilinear elliptic problem (1).
Theorem 2.3. Suppose assumption (A) holds and the solution u ∈ H4(Ω). Let
uh be the quadratic rectangular or triangular interpolated coefficient finite element
solution of (1) on uniform meshes. Then uh superconverges on Th, i.e.,

||u− uh||Th
= O(h4).

Proof: The elliptic projection Rhu satisfying (11) will still serve as a comparing
function. According to (12), θ = uh −Rhu satisfies

B(u; θ, v) = −(rh, v), v ∈ Sh.
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Noting that α = min(1, β) = min(1, 2 − ε) = 1 in (16) and using the approximate
orthogonality of interpolation

(23) |(u− Ihu, v)| ≤ Ch4||u||4||v||1, ∀v ∈ Sh,

by (15), we obtain

|(rh, v)| ≤ C(u)(h4 + h||e||+ h−1||e||2)||v||1 ≤ C(u)h4||v||1,
where the results in Theorem 2.2 are used. Due to properties of the auxiliary
function wh defined in (19), we get

||θ||2 = B(u; θ, wh) = −(rh, wh) ≤ C(u)h4||wh||1 ≤ C(u)h4||θ||,
and the superconvergence estimate

(24) ||θ||Th
≤ C||θ|| ≤ C(u)h4.

Finally, combining (22) and using the equality

e = u− uh = (u−Rhu) + (Rhu− uh) = u−Rhu + θ,

the conclusion directly follows.
Remark 1. From the proof above, the coerciveness of B(u;w, v) is not required for
both the optimal and superconvergent estimates. This means that the condition
f ′(u) ≥ 0 is not necessary. Consequently, the ICFEM can be used conveniently
in the computation of the multiple solutions of the semilinear elliptic equations in
which f ′(u) ≤ 0 or f ′(u) is sign-changing, as will be seen later.
Remark 2. In 2-dimensional polygonal domains, solutions of the problem A(u, v) =
(f, v), v ∈ S0, in general, have only a lower regularity [2, 8]. But if f = 0 on ∂Ω,
then the regularity of the solution is higher. For example, the higher regularity of
the solution on a rectangular domain can be seen in [2]. Actually, [10] defined a
space Ḣs(Ω) and its norm. Especially, when s is an integer,

Ḣs = {u : u ∈ Hs, ∆ju = 0 on Γ, j < s/2},
whose norm is equivalent to Sobolev norm. As a result, the higher regularity of the
solution depends on whether u = 0,∆u = 0, ∆2u = 0, .... For nonlinear problem
(25) with f(u) expressed in (28) and (29) below, a direct computation shows that
we have u = 0, ∆u = 0, ∆2u = 0. For example,

∆u = −f(u) = −f(0) = 0, ∆2u = −∆f(u),

∆u3 = (u3)xx + (u3)yy = (3u2ux)x + (3u2uy)y = 3u2∆u + 6u(uxux + uyuy) = 0.

Therefore the Ḣ4(Ω)-regularity can be guaranteed in these examples.

3. The application of the ICFEM

It is well known that the following problem

(25) ∆u + f(u) = 0 in Ω, u = 0 on ∂Ω,

has multiple and possibly even infinitely many solutions (in the case that f is an odd
function in the variable u) under some growth conditions. In this section, we shall
show how the ICFEM can be implemented to compute the multiple solutions of
semilinear elliptic problems combined with the so-called improved search-extension
method(ISEM)[4, 11].

For completeness, we shall list the improved search-extension method below.
Details can be seen in [11].
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Improved Search-extension Algorithm
Step 1. Compute the eigenpairs {λj , φj} of the eigenvalue problem:

−∆u = λu in Ω, u = 0 on ∂Ω.

Step 2. Search for the initial values in some subspace SN ⊂ S.
Assume that 0 < λ1 ≤ λ2 ≤ .. ≤ λN and {φj}N

1 form a normalized orthogonal
system. Then the solution of (25) can be approximated by the following series

u(x) =
N∑

j=1

ajφj(x) ∈ SN ,

where the coefficients a = a(N) = [a1, a2, ..., aN ]T can be determined by solving

∂J(u)
∂ai

= Fi(a) = λiai − gi(a) = 0,(26)

gi(a) = (f(
N∑

j=1

ajφj), φi), i = 1, 2, 3, ..., N,

where J(u) is the corresponding functional of (25). Suppose λl is a k-fold eigenvalue
and its eigenfunctions span the subspace S∗k ⊂ SN with N appropriately large. The
solutions of (26) can be searched out and will serve as the initial guesses of the
solutions ul of (25). Actually, we can take SN = S∗k in many simple cases.
Step 3. Discretize (25) by the interpolated coefficient finite element
method.

By the interpolated coefficient finite element method, the discrete form of (25)
is

(27) F (U) = K1U −K2F1(U) = 0,

where K1 and K2 are M×M matrices defined by K1(i, j) = (∇Ni,∇Nj), K2(i, j) =
(Ni, Nj), i, j = 1, 2, ...M , with Ni, i = 1, 2, ...M, the bases of the FEM at the
interior nodes, and F1(U) = [f(U1), f(U2), ...f(UM )]T .
Step 4. Solve (27) by the numerical extension method based on the
Newton approach.

Define a homotopy mapping

H(U, t) = tF (U) + (1− t)G(U), 0 ≤ t ≤ 1,

where G(U) = DF (U0)(U − U0)T with U0 = u0
l (i), i = 1, 2, ...,M where u0

l is
the initial guess obtained in step 2. Then follow the standard numerical extension
method to solve (27).

Now the ISEM described above is used to compute the solutions of semilinear
Dirichlet problem (25) with

(28) f(u) = f1(u) = u3

or

(29) f(u) = f2(u) =
{

u3, if u ≥ 0,
u5, if u ≤ 0,

where Ω = ΩL = [−1, 1]× [0, 1]∪ [−1, 0]× [−1, 0], is a non-convex L-shaped domain.

For these two cases, Ding Z.H., et al. [6] could only get at most four solutions
numerically in general domains. Actually f1(u) in (28) is a typical example of odd
nonlinearity. It is known that there exist an infinite number of solutions. Indeed,
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Figure 1. A
solution of (25)
with f1(u) w.r.t
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Figure 2. A
solution of (25)
with f1(u) w.r.t

λ4.
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Figure 3. The
1st solution of
(25) with f1(u)
w.r.t λ8 = λ9.

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−15

−10

−5

0

5

10

15

Figure 4. The
2nd solution of
(25) with f1(u)
w.r.t λ8 = λ9.
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Figure 5. A
positive moun-
tain pass solution
of (25) with f2(u)
w.r.t. λ1.
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with f2(u) w.r.t.
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Figure 7. A
solution of (25)
with f2(u) w.r.t.

λ3.
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Figure 8. A
solution of (25)
with f2(u) w.r.t.
λ8 = λ9.

the ISEM can obtain solutions of (25) as many as one wants when f(u) is odd, no
matter whether the considered domains are symmetric. For the non-odd case with
f2(u) in (29), three solutions have been verified to exist theoretically. However, the
ISEM can also compute more than 20 solutions in ΩL. Actually, the ISEM has
been used to compute the solutions of other problems of type (25) with non-odd
nonlinearity and obtained much more than three solutions. Based on the numerical
experiments, we have a conjecture as follows:

Conjecture: If f(x, u) satisfies some growth conditions (see [4, 5, 11]) and

lim
|u|→∞

f(x, u)
u

= +∞,

then (25) has an infinite number of solutions.
For simplicity, we only show 4 solutions of (25) with odd nonlinearity f1(u) in

Figures 1-4 and 4 solutions of (25) with non-odd nonlinearity f2(u) in Figures 5-8,
in which λ8 = λ9 are double eigenvalues.

Remark 3. As the ISEM applies the numerical extension method based on the
Newton approach in which a lot of iterations are needed, the ICFEM reduces the
computation cost dramatically.
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