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Abstract. We consider the discretization in time of a parabolic equation,

using a representation of the solution as an integral along a smooth curve in

the complex left half plane. The integral is then evaluated to high accuracy by

a quadrature rule. This reduces the problem to a finite set of elliptic equations,

which may be solved in parallel. The procedure is combined with finite element

discretization in the spatial variables. The method is also applied to some

parabolic type evolution equations with memory.

Key Words. Parabolic type, Laplace transform, parallel method and high

order quadrature.

1. Introduction

In this paper we present a survey of recent work on an approach to time disce-
tization of some equations of parabolic type based on Laplace transformation and
quadrature. Following work by Sheen, Sloan, and Thomée [7], [8], we first intro-
duce our method for an abstract parabolic equation, and then apply the method to
the heat equation and its spatial discretization by finite elements, which produces
a fully discrete scheme. We then describe work in McLean and Thomée [3] con-
cerning application of the method to an evolution equation with a memory term of
fractional integral type, and finally preview ongoing work by McLean, Sloan, and
Thomée [5], where the method is used for a parabolic integro-differential equation
with a memory term of convolution type. Our presentation here will be sketchy,
and we refer to the original papers for details.

We consider the approximate solution of a parabolic problem of the form

(1.1) ut + Au = f(t), for t > 0, with u(0) = u0,

where u0 and f(t) are given. Having in mind the case that A is a second order
elliptic differential operator with Dirichlet boundary conditions in a spatial domain
Ω, we consider the problem in the framework of a Banach space B. We assume that
A is a closed operator in B such that −A generates a bounded analytic semigroup
E(t) = e−At. More precisely, we assume that the spectrum σ(A) of A is contained
in a sector of the right half plane, and that that the resolvent (z I + A)−1 of −A
satisfies

(1.2) ‖(z I + A)−1‖ ≤ M(1 + |z|)−1, for z ∈ Σδ = {z : | arg z| < δ},
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with δ ∈ (π/2, π) and M independent of z. When A is symmetric and positive
definite in a Hilbert space, δ can be chosen as an arbitrary number in (π/2, π),
and M = O((π − δ)−1). Here we shall consider δ and M fixed. For the elliptic
differential operator case and B = C0(Ω̄), (1.2) was shown in Stewart [9].

The first step in our approach is to represent the solution u(t) as a contour
integral of the form

(1.3) u(t) =
1

2πi

∫

Γ

eztw(z) dz,

where w(z) is the Laplace transform of u,

(1.4) w(z) = û(z) =
∫ ∞

0

e−ztu(t) dt, for Re z ≥ x0,

with x0 ∈ R, and where initially Γ is an appropriately chosen line Γ0 in the complex
plane parallel to the imaginary axis. In (1.3), u(t) is then just the inverse Laplace
transform of w(z). For our purposes, however, assuming that w(z) may be con-
tinued analytically in an appropriate way, we shall want to take for Γ a deformed
contour in the set Σδ in (1.2), which behaves asymptotically as a pair of straight
lines in the left half plane, with slopes ±σ 6= 0, say, so that the factor ezt decays
exponentially as |z| → ∞ on Γ.

For concreteness, we take

(1.5) Γ = {z : z = ϕ(y) + iσy, y ∈ R} ⊂ Σδ, ϕ(y) = γ −
√

y2 + ν2,

for suitable positive parameters γ, ν, and σ . The curve Γ is then the left-hand
branch of a hyperbola, which crosses the real axis at α = ϕ(0) = γ − ν. Some of
the constants below will depend on the parameters of Γ.

Taking Laplace transforms in (1.1), we obtain the transformed equation

(1.6) (z I + A)w(z) = u0 + f̂(z),

and thus w(z) may be written formally as

(1.7) w(z) = (z I + A)−1(u0 + f̂(z)), for z ∈ Γ.

We assume that the Laplace transform f̂(z) has an analytic continuation from
Γ0 to our deformed contour Γ, so that all singularities of f̂(z) lie to the left of Γ.
The same property will then apply to w(z) in (1.7).

Using our assumptions on A,Γ, and f̂(z), one may use this representation of u(t)
to show the following stability and smoothness estimate.

Theorem 1.1. We have for the solution u(t) of (1.1), for j, k ≥ 0,

‖Aju(k)(t)‖ ≤ Ct−keαt(‖u0‖+ ‖f̂‖Γ), for t > 0, where ‖f̂‖Γ = sup
z∈Γ

|f̂(z)|.

In terms of the analytic semigroup E(t) we have for the solution of (1.1)

u(t) = E(t)u0 +
∫ t

0

E(t− s)f(s) ds, for t ≥ 0.

Since ‖E(t)‖ ≤ C0 for t ≥ 0 and for some C0 ≥ 1, one has the stability property

(1.8) ‖u(t)‖ ≤ C0

(‖u0‖+
∫ t

0

‖f(s)‖ ds
)
, for t ≥ 0.
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With the deformed contour represented as in (1.5), the integral (1.3) can be
written as an infinite integral with respect to the real variable y,

(1.9) u(t) =
∫ ∞

−∞
v(t, y) dy, with v(t, y) =

1
2πi

ez(y)tw(z(y))z′(y),

where z(y) = ϕ(y)+ i σy. Because of the assumed behavior of Re z(y) = ϕ(y), the
integrand in this integral decays exponentially for large |y| when t > 0.

Our approximate solution will now be defined by approximating the integral by
means of a quadrature scheme,

(1.10) UN (t) =
N−1∑

j=−N+1

ωjv(t, yj) =
N−1∑

j=−N+1

ω̃je
zjtw(zj),

where zj = z(yj), ω̃j = z′(yj)ωj/(2πi), with certain quadrature points yj ∈ R and
nonnegative weights ωj . In Section 2 we shall consider in more detail one particular
scheme, obtained by mapping the infinite integral to (−1, 1), and then applying the
trapezoidal rule to the resulting finite integral.

By (1.6), the values of the Laplace transform w(z) needed in (1.10) satisfy

(1.11) (zjI + A)w(zj) = u0 + f̂(zj), j = −N + 1, · · · , N − 1.

A central feature of our method is that the 2N − 1 values w(zj) ∈ B in (1.10) can
be computed in parallel, since (1.11) can be solved independently for each value of
j. We remark that in the special case that w(z̄) = w(z), such as, e.g., when B is
a Hilbert space and A positive definite, and if we choose the function ϕ(y) to be
even, then µ̃−j = µ̃j and z−j = z̄j , so that (1.10) may be written as

UN (t) =
1

Nτ
ω̃0w(z0) + 2Re

( 1
Nτ

N−1∑

j=0

ω̃je
zjtw(zj)

)
,

The number of elliptic problems in (1.11) is then approximately halved.
We emphasize that f̂(zj) denotes the value at zj of the Laplace transform ob-

tained by analytic continuation from the one defined in (1.4). For the scalar case ex-
amples of functions f(t) for which f̂(z) may be determined analytically on suitable
contours Γ are linear combinations of functions of the form P (t)e−λt where Re λ ≥ 0
and P (t) is a polynomial. In fact, for f(t) = tle−λt, we have f̂(z) = l!(λ + z)−l−1

for z 6= −λ, thus with a pole in the left half plane. In applications to partial differ-
ential equations, where f may depend also on a spatial variable x one may consider
functions of the form P (x, t)e−λ(x)t where P (x, t) is a polynomial in t, and linear
combinations of such functions.

To solve (1.1) approximately to a given tolerance, it suffices in view of the sta-
bility result (1.8) to solve the problem approximately for a sufficiently close ap-
proximation of f(t). We remark that in the case that the solution of a parabolic
problem is needed only for a restricted time interval [0, T ], we may then replace
the inhomogeneous term f(t) by a function F (t) of the above form which is a good
approximation of f(t) on [0, T ].

2. Time discretization by quadrature

In this section we first develop a quadrature formula for an integral over the
real axis R with values in B, by making a transformation to the finite interval
(−1, 1) and then applying the trapezoidal rule. Under appropriate conditions this
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quadrature formula has a high order of accuracy. We then apply this formula to
our representation (1.9) of the solution of the parabolic problem.

To define our quadrature formula we thus set y = y(η), where y(η) is a smooth
increasing function mapping (−1, 1) onto R, to obtain, for v ∈ C(R;B),

(2.1) J(v) =
∫ ∞

−∞
v(y) dy =

∫ 1

−1

V (η) dη, where V (η) = v(y(η))y′(η).

Specifically, with τ a positive parameter, we choose y(η) to be the function

(2.2) y(η) = τ−1χ(η), where χ(η) = log((1 + η)/(1− η)).

In our application τ will be a scaling parameter in t, in that our approximate solu-
tion will be accurate of order essentially t/τ . Applying the composite trapezoidal
rule with spacing 1/N to the integral over (−1, 1), and assuming V (±1) = 0, we
now define

QN,τ (v) =
1
N

N−1∑

j=−N+1

V (ηj) =
1

Nτ

N−1∑

j=−N+1

µjv(yj),

where ηj = j/N, yj = y(ηj) = τ−1χ(ηj), µj = χ′(ηj) = 2/(1− η2
j ). This formula is

of arbitrarily high order of accuracy, as expressed in the following lemma.

Lemma 2.1. For any r ≥ 1 we have, assuming that the v(j)(y) have the appropriate
assymptotic behavior, that

‖QN,τ (v)− J(v)‖ ≤ Cr

(Nτ)r

∫ ∞

−∞
erτ |y|

r∑

j=0

‖v(j)(y)‖ dy.

The proof uses the following easy consequence of the Euler-Maclaurin summation
formula: Assume that the function V ∈ W r

1 ((−1, 1);B) is such that V (±1) =
V (2k−1)(±1) = 0 for 2k − 1 ≤ r − 2. Then

∥∥∥ 1
N

N−1∑

j=−N+1

V (ηj)−
∫ 1

−1

V (η) dη
∥∥∥ ≤ Cr

Nr

∫ 1

−1

‖V (r)(η)‖ dη.

This is then applied to V (η) = v(y(η))y′(η).
We are now in a position to apply our quadrature scheme to our representation

(1.9) of the solution of (1.1), and define the approximation to u(t) by

(2.3) UN,τ (t) = QN,τ (v(t, ·)) =
1

Nτ

N−1∑

j=−N+1

µ̃je
zjtw(zj), µ̃j =

1
2πi

z′(yj)µj ,

where w(z) is defined by (1.7) and zj = z(yj) = ϕ(yj) + iσyj . Note that
max

|j|≤N−1
|zj | = O(log N).

We first note the following stability estimate. Here and below we write

(2.4) L(t) = 1 + log+(1/t).

Theorem 2.2. We have, for UN,τ (t) defined by (2.3),

‖UN,τ (t)‖ ≤ C eγt ((Nτ)−1 + L(t)) (‖u0‖+ ‖f̂‖Γ), for t > 0.
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For the proof one uses that, by (1.2) and (1.7),

‖w(zj)‖ ≤ C(1 + |yj |)−1(‖u0‖+ ‖f̂‖Γ),

and that, since Re zj = ϕ(yj) ≤ γ − |yj |,

‖UN,τ (t)‖ ≤ Ceγt 1
Nτ

N−1∑

j=−N+1

µje
−|yj |t(1 + |yj |)−1(‖u0‖+ ‖f̂‖Γ).

The term with j = 0 in the sum equals 2 and the contribution from (Nτ)−1 times
the remaining terms is bounded by

C

∫ ∞

0

e−ty(1 + y)−1dy ≤ CL(t).

We have the following error estimate.

Theorem 2.3. For any r ≥ 1 and µ > γ we have

‖UN,τ (t)− u(t)‖ ≤ Cr

(Nτ)r
eµtL(t− rτ)

(‖u0‖+ max
k≤r

‖f̂ (k)‖Γ
)
, for t > rτ.

In the proof one recalls from (1.9) and (2.3) that

UN,τ (t)− u(t) = QN,τ (v(t, ·))− J(v(t, ·)).
To apply Lemma 2.1, one uses (1.2) and the Leibniz rule applied to (1.7) to show
that

‖w(j)(z)‖ ≤ C(1 + |z|)−1
(‖u0‖+ max

k≤j
‖f̂ (k)(z)‖), forz ∈ Γ,

and hence, from the definition of v(t, ·) in (1.9),

‖v(j)(t, y)‖ ≤ C(1 + tr)etϕ(y)(1 + |y|)−1
(‖u0‖+ max

k≤r
‖f̂ (k)‖Γ

)
, forj ≤ r, y ∈ R.

Since (1 + tr)etϕ(y) ≤ Cet(µ−|y|), the assumptions of Lemma 2.1 are then seen to
be satisfied if t > rτ , and hence

‖UN,τ (t)− u(t)‖ ≤ C

(Nτ)r
eµt

∫ ∞

−∞

e−|y|(t−rτ)

1 + |y| dy
(‖u0‖+ max

k≤r
‖f̂ (k)‖Γ

)
.

Bounding the integral appropriately shows the theorem.

3. Application to the finite element method for the heat equation

We now apply our above results to the discretization in both space and time of
an initial-boundary value problem for the heat equation,

ut −∆u = f(t) in Ω, with u(·, t) = 0 on ∂Ω for t > 0,

u(·, 0) = u0 in Ω,(3.1)

where Ω is a bounded convex domain in R2 with smooth boundary ∂Ω and ∆
denotes the Laplacian. Since our present work is developed in a Banach space
context, we consider (3.1) in the Banach space C0(Ω̄), and illustrate our theory by
deriving error estimates in the maximum-norm ‖v‖ = supx∈Ω |v(x)|.

Let Vh denote standard piecewise linear finite element spaces defined on a family
of quasi-uniform triangulations of Ω and vanishing on ∂Ω. A spatially semidiscrete
problem corresponding to (3.1) is to find uh(t) ∈ Vh such that, with (·, ·) the inner
product in L2(Ω),

(uh,t, χ) + (∇uh,∇χ) = (f, χ), for allχ ∈ Vh, t > 0, with uh(0) = Phu0,
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where Ph : L2(Ω) → Vh is the orthogonal projection with respect to (·, ·). With
∆h : Vh → Vh the discrete Laplacian defined by

(∆hψ, χ) = −(∇ψ,∇χ), for allψ, χ ∈ Vh,

this problem may also be written as

uh,t −∆huh = Phf, for t > 0, with uh(0) = Phu0.

This problem is of the form (1.1) when Vh, equipped with the maximum-norm, is
considered as a Banach space. Recall that Ph is bounded in maximum-norm.

It was shown in Bakaev, Thomée, and Wahlbin [1] that a maximum-norm re-
solvent estimate for ∆h of the form (1.2) holds, uniformly in h, or that for any
δ ∈ (π/2, π) there is a M ≥ 1 such that

‖(z I −∆h)−1‖ ≤ M(1 + |z|)−1, for z ∈ Σδ.

The fully discrete solution obtained by application of our method to (3.1) is thus
defined from (2.3) by
(3.2)

UN,h,τ (t) =
1

Nτ

N−1∑

j=−N+1

µ̃je
zjtwh(zj), wh(z) = (z I −∆h)−1Ph(u0 + f̂(z)).

To find UN,h,τ (t) it is thus required to solve the 2N − 1 discrete elliptic problems

(∇wh(zj),∇χ) + zj(wh(zj), χ) = (u0 + f̂(zj), χ), for allχ ∈ Vh, |j| ≤ N − 1.

To estimate the error in UN,h,τ (t) we note that by Theorem 2.3 we obtain, uniformly
in h, with C depending on r, τ, and t,

(3.3) ‖UN,h,τ (t)− uh(t)‖ ≤ CN−r
(‖u0‖+ max

k≤r
‖f̂ (k)‖Γ

)
, for t > rτ.

The remaining part of the error is bounded by the following maximum-norm error
estimate for the semidiscrete problem.

Lemma 3.1. We have for small h,

‖uh(t)− u(t)‖ ≤ Ch2 log2(1/h) t−1eγt(‖u0‖+ ‖f̂‖Γ), for t > 0.

This result is a nonsmooth data error estimate in that it requires no regularity
of data with respect to the spatial variable x, at the expense of the factor t−1 on
the right. For solutions which are smoother in x, this factor and one of the factors
log(1/h) can be removed. When the Banach space is the Hilbert space L2(Ω) the
factors log(1/h) are superfluous.

Together (3.3) and Lemma 3.1 show the following error bound for the fully
discrete solution.

Theorem 3.2. Let u(t) be the solution of (3.1), and let UN,h,τ (t) be the approxi-
mation defined by (3.2). Then, with C independent of N and h, but depending on
t and τ , we have, for t > τr,

‖UN,h,τ (t)− u(t)‖ ≤ C

Nr

(
‖u0‖+ max

k≤r
‖f̂ (k)‖Γ

)
+ C h2 log2 1

h

(
‖u0‖+ ‖f̂‖Γ

)
.
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4. An evolution equation with a memory term of fractional integral type

In this section we apply our method to an initial value problems of the form

(4.1) ut +
∫ t

0

β(t− s)Au(s) ds = f(t), for t > 0, with u(0) = u0,

where A is as above and the kernel in the memory term is the weakly singular
function

β(t) =
tα−1

Γ (α)
, with 0 < α < 1.

This time we find for the Laplace transform w(z) = û(z) of the solution u(t)
(
zI + β̂(z)A

)
w(z) = u0 + f̂(z),

so that, since β̂(z) = z−α,

(4.2) w(z) = Ê(z)
(
u0 + f̂(z)

)
, where Ê(z) = zα

(
z1+αI + A

)−1
.

Our assumptions on A now imply that
(
z1+αI + A

)−1 is analytic for z ∈ Σθ with
θ = δ/(1 + α) where we suppose θ > π/2.

We assume that the initial data u0 belongs to B and that the inhomogeneous
term f : [0,∞) → B is such that its Laplace transform f̂(z) may be continued
analytically to Σθ. It follows then from (4.2) that w(z) is analytic there and

‖w(z)‖ = ‖Ê(z)(u0 + f̂(z))‖ ≤ C(1 + |z|)−1
(‖u0‖+ ‖f̂(z)‖), for z ∈ Σθ,

and that, with Γ as in (1.7), with Γ ⊂ Σθ,

(4.3) u(t) =
1

2πi

∫

Γ

etzw(z) dz, for t > 0.

This time we have the following stability and regularity result.

Theorem 4.1. Let u(t) be the solution of (4.1). Then, for j = 0, 1, k ≥ 0, we
have, with Γθ = ∂Σθ,

‖Aju(k)(t)‖ ≤ Ckt−k−j(α+1)(‖u0‖+ ‖f̂‖Γθ
), for t > 0.

In [3] we considered in addition to the quadrature scheme described in Section
2 also a truncated trapezoidal rule applied to R without first transforming it to a
finite interval. For this we extend the function ϕ(y) used in (1.5) to define Γ as an
analytic function in an open strip Sr = {ζ = y + ip; |p| < r} around the real axix.
With τ a positive parameter. the scheme is then defined by

(4.4) QN,τ (v) = k

N−1∑

j=−N+1

v(jk) ≈ J(v) =
∫ ∞

−∞
v(y) dy, where k =

√
2πr

τN
.

We have the following lemma.

Lemma 4.2. Assume that v(ζ) is analytic in Sr, and that

‖v(ζ)‖ ≤ Ke−t|y|/(1 + |y|), for ζ ∈ Sr.

where K is a positive constant and t a positive parameter. Then

‖QN,τ (v)− J(v)‖ ≤ CK L(t)e−
√

2πτrN min(1,t/τ), for t > 0.
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To show this one introduces Q∞(v) = k
∑∞

j=−∞ v(jk) for k > 0 and observes as
in McNamee, Stenger and Whitney [6, Section 5.5] that the meromorphic function
cot(πy/k) has simple poles at y = jk for integer j, with residue k/π, and thus

Q∞(v) =
1

2πi

∫

∂Sr

v(ζ)π cot
(

πζ

k

)
dζ,

and that this implies, with L(t) as in (2.4),

‖Q∞(v)− J(v)‖ ≤ eπr/k

2 sinh(πr/k)
‖v‖L1(∂Sr;B) ≤ CKL(t)e−2πr/k.

One then notes that

‖QN,τ (v)−Q∞(v)‖ ≤ k
∑

|j|≥N+1

‖v(jk)‖ ≤ CK e−tNk, for t ≥ τ.

Choosing k as in (4.4) yields the desired result.
As in the case of a parabolic equation, for the discretization in time we write

(4.3) as an integral with respect to the real parameter y,

(4.5) u(t) =
∫ ∞

−∞
v(t, y) dy, where v(t, y) =

1
2πi

ez(y)tw
(
z(y)

)
z′(y).

Applying (4.4), our approximate solution to (4.1) is

UN,τ (t) = QN,τ (v(t, ·)) = k

N∑

j=−N

µ̃je
zjtw(zj), µ̃j =

z′(jk)
2πi

, zj = z(jk),

where the w(zj) are the solutions of the 2N + 1 elliptic problems
(
z1+α
j I + A

)
w(zj) = zα

j

(
u0 + f̂(zj)

)
, for |j| ≤ N.

Here max|j|≤N |zj | = O(
√

N).
To apply Lemma 4.2 one now shows that the function v(t, ·) in (4.5), extended

to the strip Sr, satisfies

‖v(t, ζ)‖ ≤ C eµt(‖u0‖+ ‖f̂‖Nr ) e−t|y|/(1 + |y|), for ζ = y + ip ∈ Sr,

where Nr = {z(ζ) = ϕ(ζ) + iσζ : ζ ∈ Sr} ⊂ Σθ. This leads to the following:

Theorem 4.3. There exist positive constants r, µ, and C, such that

‖UN,τ (t)− u(t)‖ ≤ CeµtL(t)e−
√

2πrτN min(1,t/τ)(‖u0‖+ ‖f̂‖Nr ), for t > 0.

As for the parabolic equation studied earlier, the time discretization method may
be combined with spatial discretization by finite elements. Now the maximum-norm
error in the spatially semidiscrete solution uh(t) is bounded by

‖uh(t)− u(t)‖ ≤ Ch2 log2(1/h) eµt(1 + t−1−α)
(‖u0‖+ ‖f̂‖Γ

)
, for t > 0,

and for the corresponding fully discrete method we find, for fixed positive t,

‖UN,τ,h(t)− u(t)‖ ≤ C(t, u0, f)(e−
√

2πrτN + h2 log2(1/h)).
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5. A parabolic integro-differential equation

In this section we apply our technique to the initial-value problem

(5.1) ut + Au +
∫ t

0

β(t− s)Au(s) ds = f(t), for t > 0, with u(0) = u0.

As before A is assumed to be as in (1.2), and β(t) is now an integrable function
satisfying some technical assumptions given below.

Taking Laplace transforms in (5.1), we now formally obtain

(5.2)
(
zI + (1 + β̂(z))A

)
w(z) = u0 + f̂(z).

We shall assume that f̂(z), β̂(z), and (1 + β̂(z))−1 are bounded analytic on and to
the right of Γ. On Γ we have, in particular,
(
zI + (1 + β̂(z))A

)−1 = (1 + β̂(z))−1(z̃(z) I + A)−1, where z̃(z) = z/(1 + β̂(z)),

provided −z̃(z) 6∈ σ(A). The solution of (5.2) for z ∈ Γ may then be written

w(z) = Ê(z)(u0 + f̂(z)), with Ê(z) = (1 + β̂(z))−1(z̃(z)I + A)−1.

Setting Γ̃ = {z̃(z), z ∈ Γ}, we note that if Γ̃ ⊂ Σδ, which we assume in the sequel,
then

‖Ê(z)‖ ≤ 1

|1 + β̂(z)|
M

1 + |z̃(z)| =
M

|1 + β̂(z)|+ |z|
≤ C

1 + |z| , for z ∈ Γ.

As for the parabolic equation we may represent the solution of (5.1) as

(5.3) u(t) =
1

2πi

∫

Γ

eztw(z) dz =
1

2πi

∫

Γ

eztÊ(z)
(
u0 + f̂(z)

)
dz, for t > 0.

We illustrate the assumption that Γ̃ ⊂ Σδ by considering the special case β(t) =
κe−ηt, with κ real and η ≥ 0, in which case

β̂(z) =
κ

z + η
,

1

1 + β̂(z)
=

z + η

z + η + κ
, and z̃(z) =

z(z + η)
z + η + κ

.

We note first that if η + κ < 0, then the requirement that (1 + β̂(z))−1 be analytic
on and to the right of Γ means that Γ must pass to the right of −η−κ. If η +κ ≥ 0
then this is satisfied automatically, since we always require Γ to pass to the right of
0. To consider the constraints needed to ensure that Γ̃ ⊂ Σδ, we restrict ourselves to
the case when (1.2) holds for arbitrary δ ∈ ( 1

2π, π), which is the case, for example,
if A is positive definite and B a Hilbert space. We are then led to the question of
determining for which z ∈ C \R− we can have z̃(z) ∈ R−, where R− is the negative
real axis. One may show that Γ can be chosen as any curve of the form (1.5) which
avoides the circle (x + η + κ)2 + y2 = κ(η + κ).

Using (5.3) one shows easily stability and smoothness of the solution.

Theorem 5.1. For the solution u(t) of (5.1) we have, for j = 0, 1 and k ≥ 0,

‖Aju(k)(t)‖ ≤ C0e
αtt−k−j(‖u0‖+ ‖f̂‖Γ), for t > 0, where α = ϕ(0).

This time, following López-Fernandes and Palencia [2], before we apply quadra-
ture to the integral representation of the solution, we make a change of variables
y → ν sinh y in (1.5) and write

Γ = {z : z = Z(y) = γ − ν cosh y + iσν sinh y, y ∈ R}.
With α = arcsin(1/

√
1 + σ2), λ = ν

√
1 + σ2 we have

z = Z(y) = γ − λ(sinα cosh y − i cos α sinh y) = γ − λ sin(α + iy).
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The solution is thus represented as

u(t) =
∫ ∞

−∞
v(t, y) dy, where v(t, y) =

1
2πi

eZ(y)tw
(
Z(y)

)
Z ′(y).

We now apply the quadrature rule

(5.4) QN (v) = k

N∑

j=−N

v(jk) ≈ J(v) =
∫ ∞

−∞
v(y) dy, with k = log N/N,

Lemma 5.2. Assume v(ζ) analytic, with

‖v(ζ)‖ ≤ Ke−κ cosh y, for ζ ∈ Sr = {ζ = y + ip, |p| < r}.
We then have, with L(κ) as defined by (2.4),

‖QN (v)− J(v)‖ ≤ CKL(κ)(e−2πrN/ log N + e−κN/2).

In the same way as earlier we define our approximate solution to (5.1) as

(5.5) UN (t) = QN (v(t, ·)) = k

N∑

j=−N

µ̃je
Zjtw(Zj), µ̃j =

Z ′(jk)
2πi

,

where Zj = Z(jk) and w(Zj) are defined by

(Z̃jI + A)w(Zj) = (1 + β̂(Zj))−1(u0 + f̂(Zj)), Z̃j = z̃(Zj), for |j| ≤ N,

We note that max|j|≤N |Zj | = O(N) and max|j|≤N |Z̃j | = O(N). Setting Nr =
{Z(ζ) = γ − λ sin(α − p + iy) : ζ = y + ip ⊂ Sr} one may show that for µ and r
appropriate

‖v(t, ζ)‖ ≤ Ceµt(‖u0‖+ ‖f̂‖Nr ) e−t sin(α−r) cosh h.

With Ñr = {z̃(z) : z ∈ Nr}, Lemma 5.2 will show the following error estimate.

Theorem 5.3. Let u(t) be the solution of (5.1) and let UN (t) be its approxima-
tion defined by (5.5). Assume that Nr ∪ Ñr ⊂ Σδ. Then, under the appropriate
assumptions on f̂(z), we have, with c > 0,

‖UN (t)− u(t)‖ ≤ CeµtL(t)(e−2πrN/ log N + e−ctN )(‖u0‖+ ‖f̂‖Nr ), for t > 0.

For any fixed positive t this error bound is of order O(e−2πrN/ log N ).
As earlier our time discretization method may be applied in the case that A =

−∆ to a spatially semidiscrete problem to yield a fully discrete scheme, this time
with an error bound of order O(e−2πrN/ log N + h2 log2(1/h)) for fixed positive t.

6. Numerical example

In this section we give a numerical example for a parabolic equation, employing
our method. In order to be able to illustrate the behavior of the time discretization
methods unpolluted by a spatial discretization, we consider just the scalar problem
(B = R)

(6.1) ut + u = 1 + t + e−2t, for t > 0, with u(0) = 1,

which has the exact solution

u(t) = 1 + t + e−t − e−2t.

Even though the three different quadrature formulas were used above for different
equations, they can all be applied to a parabolic equation, and we illustrate this
below in Tables 1, 2, and 3 for (6.1). We use

Γ = {z = 2−
√

y2 + 1 + 2iy}, τ = .5.
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In Table 4 we include also, for comparison, the standard Crank-Nicolson method.
The calculations were made by Bill McLean, whose help is gratefully acknowledged.

t N = 10 N = 20 N = 40 N = 80
0.4 2.50E-2 1.84E-2 (0.44) 2.11E-3 (3.13) 5.12E-4 (2.04)
0.8 4.24E-3 1.16E-3 (1.87) 7.77E-5 (3.90) 2.68E-5 (1.53)
1.2 6.98E-4 2.69E-4 (1.38) 2.42E-5 (3.47) 7.47E-10 (14.98)
1.6 5.49E-4 1.29E-4 (2.09) 3.25E-6 (5.31) 2.14E-8 (7.25)
2.0 6.14E-5 1.76E-5 (1.80) 3.25E-7 (5.76) 2.42E-10 (10.39)
2.4 4.80E-4 4.57E-6 (6.72) 3.38E-8 (7.08) 2.29E-11 (10.53)
2.8 1.69E-4 6.42E-6 (4.72) 1.44E-8 (8.81) 2.66E-12 (12.40)
3.2 4.61E-4 4.65E-6 (6.63) 1.44E-8 (8.34) 3.17E-12 (12.15)
3.6 8.27E-4 5.55E-6 (7.22) 1.48E-8 (8.55) 3.22E-12 (12.16)
4.0 2.99E-3 7.12E-6 (8.71) 1.50E-8 (8.89) 3.25E-12 (12.18)

Table 1. Errors in the first quadrature rule.

t N = 10 N = 20 N = 40 N = 80
0.4 4.89E-3 3.45E-3 (0.50) 3.41E-4 (3.34) 7.36E-4 (-1.11)
0.8 3.12E-4 1.40E-4 (1.15) 1.01E-4 (0.48) 2.07E-5 (2.28)
1.2 4.57E-4 1.57E-6 (8.19) 1.09E-6 (0.52) 4.09E-7 (1.42)
1.6 6.54E-4 9.06E-7 (9.50) 1.46E-6 (-0.69) 9.36E-8 (3.96)
2.0 5.75E-4 1.44E-6 (8.64) 2.42E-7 (2.58) 1.28E-8 (4.24)
2.4 4.56E-4 1.46E-6 (8.29) 3.44E-8 (5.41) 6.46E-10 (5.73)
2.8 5.89E-4 6.20E-7 (9.89) 6.60E-9 (6.55) 1.31E-10 (5.65)
3.2 8.87E-4 1.04E-7 (13.06) 1.99E-9 ( 5.71) 2.58E-11 (6.27)
3.6 1.98E-3 2.65E-7 (12.86) 7.43E-10 ( 8.48) 2.39E-12 (8.28)
4.0 7.58E-3 5.95E-8 (16.96) 2.65E-10 ( 7.81) 4.44E-15 (15.87)

Table 2. Errors in the second quadrature rule.

t N = 10 N = 20 N = 40 N = 80
0.4 1.06E-2 2.67E-4 (5.31) 7.32E-6 (5.19) 6.53E-10 (13.45)
0.8 1.24E-3 4.67E-6 (8.05) 1.35E-9 (11.76) 1.78E-15 (19.53)
1.2 2.75E-4 2.45E-7 (10.13) 9.29E-13 (18.01) 0.00E+0 (∞)
1.6 7.58E-5 4.88E-9 (13.92) 2.66E-15 (20.80) 8.88E-16 (1.58)
2.0 1.06E-5 2.38E-8 (8.80) 5.55E-14 (18.71) 4.44E-16 (6.97)
2.4 5.26E-5 2.67E-8 (10.95) 1.57E-13 (17.38) 0.00E+0 (∞)
2.8 1.38E-5 4.58E-8 (8.24) 1.44E-13 (18.28) 8.88E-16 (7.34)
3.2 1.56E-4 2.53E-7 (9.27) 9.50E-14 (21.34) 1.78E-15 (5.74)
3.6 3.35E-4 3.57E-7 (9.88) 2.54E-12 (17.10) 8.88E-16 (11.48)
4.0 1.25E-4 1.39E-6 (6.49) 3.62E-12 (18.55) 1.78E-15 (10.99)

Table 3. Errors in the third quadrature rule.
t N = 10 N = 20 N = 40 N = 80

0.40 2.06E-02 5.03E-03 (2.03) 1.25E-03 (2.01) 3.13E-04 (2.00)
0.80 2.21E-02 5.43E-03 (2.03) 1.35E-03 (2.01) 3.38E-04 (2.00)
1.20 1.80E-02 4.43E-03 (2.02) 1.10E-03 (2.01) 2.76E-04 (2.00)
2.00 8.98E-03 2.23E-03 (2.01) 5.55E-04 (2.00) 1.39E-04 (2.00)
2.40 5.94E-03 1.48E-03 (2.01) 3.69E-04 (2.00) 9.21E-05 (2.00)
2.80 3.83E-03 9.56E-04 (2.00) 2.39E-04 (2.00) 5.97E-05 (2.00)
3.20 2.42E-03 6.07E-04 (1.99) 1.52E-04 (2.00) 3.80E-05 (2.00)
3.60 1.50E-03 3.80E-04 (1.99) 9.51E-05 (2.00) 2.38E-05 (2.00)
4.00 9.21E-04 2.34E-04 (1.98) 5.87E-05 (1.99) 1.47E-05 (2.00)
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Table 4. Errors for the Crank-Nicolson time stepping method.
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