
INTERNATIONAL JOURNAL OF c© 2005 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 2, Number 1, Pages 43–56

SUPERCONVERGENCE PHENOMENA ON
THREE-DIMENSIONAL MESHES

MICHAL KŘÍŽEK
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Abstract. We give an overview of superconvergence phenomena in the finite

element method for solving three-dimensional problems, in particular, for el-

liptic boundary value problems of second order over uniform meshes. Some

difficulties with superconvergence on tetrahedral meshes are presented as well.

For a given positive integer m we prove that there is no tetrahedralization of

R3 whose all edges are m-valent.
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1. Introduction

In 1966 Babuška, Práger, and Vitásek (see [2, Sect. 4.3]) developed a special
finite difference method for the equation

−(pu′)′ + qu = f in (0, 1)

with mixed boundary conditions. Using the Marchuk identities and sophisticated
numerical quadrature rules, they obtained a numerical scheme yielding the accuracy
O(h6) at nodal points. The associated system of linear algebraic equations has only
a tridiagonal matrix (like for linear finite elements). In 1972 Douglas and Dupont
(see [16]) called (for the first time) a similar high order accuracy phenomenon
in the finite element method superconvergence. Some very early finite element
superconvergence results from the period 1966–1969 are mentioned in [64, p. vi].
Surveys on other superconvergence phenomena can be found, e.g., in [10], [12], [13],
[14], [27], [30], [31], [32], [42], [64], [71], [72]. Superconvergence is a useful tool in a
posteriori error estimations, mesh refinement and adaptivity. At present, the total
number of papers on superconvergence is about 1000.

A key assumption in proving many superconvergence phenomena is a high reg-
ularity of the exact solution and also some regular structure of the partitions used
(uniform, piecewise uniform, locally quasiuniform, locally periodic, locally point-
symmetric, self-similar etc.). Throughout this paper we shall use standard face-to-
face partitions into elements in Rd, d ∈ {1, 2, 3, . . . }. Also we shall only consider
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regular families of partitions F = {Th}h→0, i.e., there exists a constant C > 0 such
that for all elements T ∈ Th and all partitions Th ∈ F we have

measdT ≥ Chd
T ,

where hT is the diameter of T and measd stands for the d-dimensional Lebesgue
measure.

In the next section we deal with superconvergence of linear elements on tetrahe-
dral meshes for solving the Poisson equation with Dirichlet boundary conditions.
The main idea is based on the fact that the gradient of the Ritz-Galerkin solution
is superclose to the gradient of the Lagrange interpolation when uniform meshes
are employed.

In the third section we recall some superconvergence phenomena for standard
quadratic tetrahedral elements, which are frequently used in applications. These
phenomena are based on some special properties of an important subclass of basis
functions, namely piecewise quadratic bubble functions.

In the fourth section we give an overview of some other superconvergence phe-
nomena for the finite element method in three-dimensional space. In particular, we
present superconvergence results obtained for the solution and its gradient of sec-
ond order boundary value problems of elliptic type when using rectangular trilinear
and triquadratic elements, Serendipity elements, etc.

Finally, in the last section we present an unusual difficulty with superconvergence
on three-dimensional meshes, which does not arise in solving two-dimensional prob-
lems. Namely, one can prove O(h4)-superconvergence at nodal points when solving
the Poisson equation by linear elements over triangulations consisting solely of equi-
lateral triangles. Such a result cannot be generalized to three-dimensional space,
since the regular tetrahedron is not a space-filler.

2. Superconvergence of linear elements on tetrahedral meshes

Let Ω ⊂ Rd be a bounded polytopic (polyhedral for d = 3) domain with Lip-
schitz boundary. We shall use the standard Sobolev space notation of norms and
seminorms. For simplicity, let us consider only the Poisson equation

−∆u = f in Ω(1)

with homogeneous Dirichlet boundary conditions.
By a tetrahedralization (finite or infinite) we shall mean any face-to-face partition

of a polyhedron or R3 into closed tetrahedra. In this and the next section, we shall
only consider so-called uniform tetrahedralizations of Ω, i.e., for each internal edge
` 6⊂ ∂Ω the patch of tetrahedra sharing ` is a point-symmetric set with respect to
the midpoint M of ` (see Figure 1).

We shall look for uh ∈ Vh such that (∇uh,∇vh)0 = (f, vh)0 for all vh ∈ Vh,
where Vh ⊂ H1

0 (Ω) is the space of continuous piecewise linear functions over a given
tetrahedralization Th. In 1969 Oganesjan and Ruhovec (see [49]) proved for linear
triangular elements over uniform partitions (i.e., when any two adjacent triangles
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form a parallelogram) a remarkable approximation theoretical phenomenon, namely
that

|uh − Lhu|1 ≤ Ch2|u|3,(2)

where Lh is the standard linear Lagrange interpolation operator. Later, this phe-
nomenon was called supercloseness (cf. [64]), since

|u− Lhu|1 ≤ Ch|u|2, |u− uh|1 ≤ Ch|u|2
are the optimal error estimates, which cannot be improved, in general. Note that
the seminorm | · |1 is equivalent with the norm ‖ · ‖1 due to the Friedrichs’ inequal-
ity. Estimate (2) is at the basis of many superconvergence phenomena due to the
following triangle inequality

|∇u−Kh∇uh|0 ≤ |∇u−Kh∇Lhu|0 + |Kh∇(Lhu− uh)|0,(3)

where Kh is a suitable postprocessing operator that makes both terms on the right-
hand side of order O(h2).

The first superconvergence result for linear tetrahedral elements was introduced
by Chen [11] (see also [12, p. 90]). His averaging of gradients of linear tetrahedral
elements at midpoints M of those edges (see the left part of Figure 1), which are
surrounded by 6 tetrahedra T1, . . . , T6, gives

1
6

6∑

i=1

∇Lhu|Ti = ∇u(M) +O(h2).

The same formula holds when Lhu is replaced by uh (see [14, p. 278]).
Later, a similar result was derived independently by Kantchev and Lazarov [23]

who proved that the tangential component of ∇uh along edges is a superconvergent
approximation to the tangential component of ∇u at midpoints of edges when
solving (1) on a parallelepiped. Moreover, they compute the average of all constant
vectors ∇uh|T , where T ∈ Th are tetrahedra incident with a given nodal point N .
Note that each interior nodal point in a uniform tetrahedralization is surrounded
by 24 tetrahedra. Setting

Kh∇uh(N) =
1
24

∑

N∩T 6=∅
∇uh|T(4)

for every interior nodal point N , Kantchev and Lazarov proved that the averaged
gradient Kh∇uh of the finite element solution at nodal points has second order
accuracy in the discrete L2-norm (generalizing the result of [28] for d = 2 to d = 3).
Using (4), we can for sufficiently small h uniquely define a continuous piecewise
linear vector field Kh∇uh over a fixed domain Ω0 ⊂⊂ Ω. Then we have

|∇u−Kh∇uh|0,Ω0 ≤ Ch2|u|3,Ω.(5)

This estimate was generalized by Goodsell [19] to the L∞-norm and variable coef-
ficients.

By the Sobolev imbedding theorem, if s > d/2 then u ∈ Hs(Ω) has a represen-
tation as a continuous function, and hence the nodal linear Lagrange interpolation
Lhu of u is well defined. According to [8, p. 503], for s = 3 if d ≤ 5 and s > d/2 if
d ≥ 6 we get

|uh − Lhu|1 ≤ Ch2|u|3(6)
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for uniform simplectic partitions (for their definition in the case d ≥ 4 see also
[8]). Using (3) and (6), estimate (5) was generalized to arbitrary dimension d ∈
{1, 2, 3, . . . }, i.e., we have (see [8])

|∇u−Kh∇uh|0 ≤ Ch2|u|3.
We meet the case d ≥ 4 in problems of financial mathematics, particle and statistical
physics, general relativity, etc.

Kantchev [22] generalized the above techniques for the gradient of the solution
of a quasilinear boundary value problem over a three-dimensional bounded domain
that can be partitioned into cubes. Each cube is then decomposed into 6 tetrahedra
that share one spatial diagonal of the cube (cf. also [52]). Lazarov in [34] investigates
superconvergence of the derivatives when solving a linear elasticity problem by
linear tetrahedral elements. A survey of averaging schemes for the gradient recovery
of linear tetrahedral elements is given by Goodsell and Whiteman [68].

Results from [55], [64] for locally point-symmetric meshes cover the above super-
convergence phenomena for the gradient of linear tetrahedral elements (since any
uniform tetrahedralization is locally point-symmetric with respect to midpoints of
interior edges). For nonlinear problems see [64, Chapt. 9].

In [26] a weighted averaged gradient of linear simplicial elements was proposed
in Rd. Its interpolation order in the Lq-norm is O(h2) for d < 2q and for general
irregular simplicial partitions (see [21]). However, to get superconvergence of finite
element solutions, quasiuniform triangulations are required [20].

Next we discuss a smoothing technique suggested by Vladimir A. Steklov. Let
v ∈ L1(Ω), let Ω be a rectangular bounded domain in Rd, and let Ω0 ⊂⊂ Ω. The
d-dimensional Steklov smoothing integral operator is given by the formula

(Shv)(x) =
1

(2h)d

∫

Dh

v(x + y) dy,

where Dh = (−h, h) × (−h, h) × · · · × (−h, h) (d-times). For linear triangular
elements Oganesjan and Ruhovec [50, p. 94 and 189] proved that

‖u− Shuh‖1,Ω0 ≤ Ch3/2‖u‖3,Ω,

where Shuh can be easily evaluated analytically, since uh is a piecewise linear
function over Th consisting of right isosceles triangles. However, numerical tests
showed that this estimate was not optimal and recently Kolman [25] derived that

‖u− Shuh‖1,Ω0 ≤ Ch2‖u‖3,Ω

for any dimension d ∈ {1, 2, 3, . . . }. For the numerical integration the 11 and 24
point formulae from [24] were employed.

3. Superconvergence of quadratic elements on tetrahedral meshes

In engineering society quadratic elements are even more popular than linear
elements. Throughout this section uh denotes the standard finite element solution
using quadratic elements.

By Schatz [54, p. 246] at each vertex N of a given uniform tetrahedralization we
have (see also [55] for locally point-symmetric meshes)

|(u− uh)(N)| ≤ C(u)h4.(7)

By [55] superconvergence of the same order holds also at midpoints of edges, since
the uniform tetrahedralization is locally point symmetric with respect to the mid-
points of edges (for d = 2 see [29, p. 97]).
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In 1981 Zhu [70] (see also [72, p. 191]) proved supeconvergence of the gradient
of quadratic triangular elements at the two Gaussian points of each edge. Later
his result was extended into tetrahedral elements using estimate (7) and special
properties of quadratic bubble functions. In particular, the following supercloseness
result for derivatives holds (see [9])

|uh −Qhu|1 ≤ C(u)h3,(8)

where Qh is the standard Lagrange quadratic interpolation operator. This theoret-
ical bound has been numerically confirmed in [9], too, and extended for a second
order elliptic equation with smooth variable coefficients. We also introduced a
suitable postprocessing operator Kh which yields the following superconvergence

|∇u−Kh∇uh|0 ≤ C(u)h3.

In particular, sampling at the two Gaussian points of each edge leads to the super-
convergence of the tangential component of the gradient along edges. A short note
[51] reflects also the quadratic case, but unfortunately without any (reference to a)
proof.

4. Other superconvergence results in the three-dimensional space

Superconvergence results mentioned in this section require some regular structure
of the meshes used (like in Sections 2 and 3). This is specified in the references
cited in the text.

The first superconvergence result for d = 3 goes back to 1978 when Zlámal in
[73] proved higher order convergence of the gradient at Gaussian points of a three-
dimensional isoparametric quadratic element of the Serendipity family having 20
degrees of freedom defined on incomplete quartic polynomials. The degrees of
freedom correspond to vertices and midpoints of edges. Superconvergence at the
Gaussian points of isoparametric block elements was numerically observed already
in 1975 by Xie [69] for a linear elasticity problem. Similar results for problem (1)
solved by trilinear, triquadratic, tricubic,. . . elements were later derived by Chen in
[12] (see also Chen and Huang [14, p. 278]) by means of the orthogonal expansion
method. In particular, sampling at centroids for trilinear elements leads to O(h2)-
superconvergence of the gradient.

For superconvergence of uh to u at the Lobatto points of block elements we
refer to [14, p. 278]. This result is based on Bakker’s classical result [4] for d = 1.
Superconvergence of finite element solution at Lobatto points for d-dimensional
rectangular Qk-type elements for any k ≥ 1 and any d ≥ 1 was proved by Bo
Li in [35]. Supercloseness when solving a nonlinear second order elliptic problem
of nonmonotone type by rectangular elements was demonstrated by Liu et al. in
[46]. This result can be directly extended to block elements. Superconvergence for
triangular prismatic elements is mentioned in [12, p. 97] and [14, p. 278].

The Galerkin solution can be post-processed by a special convolution with a
kernel proposed by Bramble and Schatz [6]. This technique yields interior O(h2k)-
superconvergence of function values. It was extended into several directions, namely
to superconvergence of derivatives, to negative norm estimates and to parabolic
problems (see [56], [59], [60], [62]).

According to [55] and [64], locally point-symmetric meshes yield superconver-
gence at nodal points for even degree polynomials and superconvergence of the
gradient for odd degree polynomials (see also [63], [65]). Zlotnik in [75] examines
superconvergence of the gradient when the right-hand side of (1) is discontinuous
(see also [74]).
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Lin and Yan in [42, p. 251] approximate problem (1) by rectangular block ele-
ments (possibly smoothly deformed). Using special integral identities, they prove
supercloseness which gives superconvergence by means of an appropriate postpro-
cessing. For an open problem concerning superconvergence of Raviart-Thomas
mixed finite elements for a second order diffusion equation in three-dimensional
space we refer to [17]. Schmid in [57] proves superconvergence of mixed and non-
conforming hexahedral finite elements. Lin, Tobiska, and Zhou in [40] examine
superconvergence of nonconforming low order finite elements applied to the Pois-
son equation (1).

Li and Chang in [36] derived superconvergence estimates for computation blend-
ing surfaces in three dimensions (see also [37], [38]). Lin and Yan in [43] deal with
global superconvergence of mixed rectangular finite elements for Maxwell’s equa-
tions in R3 (see also [42]). For the superconvergence analysis a special technique
based on an integral identity is developed (cf. also [39], [41]).

Superconvergence of a finite element method for three-dimensional stationary
Stokes and Navier-Stokes problems is studied in [48]. Some superconvergence phe-
nomena for the boundary element method applied to the three-dimensional station-
ary Stokes problem are mentioned in [66].

Thomée and Westergren [61] show in Rd that if a finite difference solution con-
verges to u at certain rate as the mesh-size h tends to zero, then an appropriate
difference quotient of the finite difference solution converges to the corresponding
derivative of u at the same rate. See also [67] for some interior superconvergence-
type estimates in Rd for the finite difference method and [62] for the finite element
method.

5. Unusual difficulties with superconvergence for tetrahedral elements

In the previous sections we saw that many superconvergence phenomena which
were proved in R2 can be extended to R3 or even to Rd for integers d ≥ 4. Still,
there may appear various difficulties. First of all note that Bo Li in [35] for simplicial
Pk-type elements with k > d > 1 proved that the standard Lagrange interpolant
and the finite element solution are not superclose in either the H1- or the L2-norm
(cf. (6) and (8)). Other difficulty is the loss of orthogonality for d = 3, which is
described in detail in [7].

The study of superconvergence by a computer-based approach developed by
Babuška et al. [3] requires to examine harmonic polynomials in the plane. Note
that dimension of harmonic polynomials of degree k ∈ {1, 2, . . . } in two variables is
only 2, whereas the dimension of harmonic polynomials in three variables is 2k +1.
This makes superconvergence analysis for d = 3 much more difficult (see [45]) than
for d = 2. The likelihood of 2k + 1 polynomial graphs passing through a common
point is therefore, much smaller than the probability of two intersecting polynomial
graphs.

Now we concentrate on a superconvergence phenomenon that holds in R2, but
cannot be generalized to R3. Consider triangulations of a polygonal domain in R2

consisting only of equilateral triangles. Then each interior node is surrounded by
6 congruent triangles. Linear triangular elements on such highly regular triangula-
tions exhibit superconvergence (ultraconvergence) of order h4 at nodal points when
solving the Poisson equation (see [5], [44]).

Unfortunately, this strong and really beautiful result cannot be generalized into
three-dimensional space, since R3 cannot be decomposed into regular tetrahedra.
Aristotle in his book On the Heaven (350 BC, Vol. 3, Chapt. 8) asserted that this
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is possible (cf. [1]) and that each edge is surrounded by 5 regular tetrahedra (which
would require that the dihedral angle between two faces of the regular tetrahedron
is 72◦). Since Aristotle was such a respectable personage, this mistake remained
unnoticed until the 16th century, when it was found that this angle is arccos1

3 ,
which is about 71◦.

In this section we shall examine general structure of tetrahedralizations in detail.
In Proposition 5.7 below we prove a surprising statement, namely, that there is no
tetrahedralization of R3 such that each edge is surrounded by exactly 5 tetrahedra
(each of a different shape, in general). In Theorem 5.1 we state a more general
result by means of combinatorial topology. Its proof will follow from Propositions
5.2, 5.5, 5.6, 5.7, and the fact that no edge can be surrounded by less than three
tetrahedra.
Theorem 5.1. Let m be an arbitrary fixed positive integer. Then there is no
tetrahedralization of R3 such that each edge is surrounded by m tetrahedra (i.e., all
edges are m-valent).

Using purely combinatorial arguments, we first prove a more simple statement:
Proposition 5.2. There is no tetrahedralization of R3 such that each edge is
surrounded by at least 6 tetrahedra.
Proof. Suppose, to the contrary, that such a tetrahedralization T exists and take
an arbitrary nodal point N . Consider the polyhedron

P =
⋃

N∩T 6=∅
T∈T

T,(9)

which is composed of all tetrahedra from T that share the vertex N . Triangular
faces opposite to N form a triangulation of the surface ∂P of P . For this triangu-
lation the well-known Euler formula holds:

v + t = e + 2,(10)

where t is the number of triangles, e is the number of edges, and v is the number
of vertices on ∂P . Since the surface is covered only by triangles, we have

2e = 3t(11)

(which implies that the number of triangles on ∂P is always even). By (11) the
Euler formula (10) reduces to the form

t = 2v − 4.(12)

Let vi ≥ 0 be the number of vertices that are shared by exactly i triangles on
the surface ∂P . Hence,

v = v6 + v7 + v8 + · · ·+ vn,(13)

where n is the maximum number of triangles around one vertex. Moreover, since
each triangle on ∂P has three vertices, we have

3t = 6v6 + 7v7 + · · ·+ nvn.

From this, (12) and (13), we get

6(v6 + v7 + · · ·+ vn)− 12 = 6v6 + 7v7 + · · ·+ nvn,(14)

which is a contradiction, since the expression on left-hand side is smaller than the
one on the right-hand side. ¤

Below, we shall investigate tetrahedralizations, where all edges are surrounded
by 3, or 4, or 5 tetrahedra. Then polyhedron (9) will be a tetrahedron, octahedron,
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Fig. 2

or icosahedron, respectively (cf. Figure 2). In what follows, we keep the same
notation vi for the number of vertices that are shared by i ∈ {3, 4, . . . , n} triangles,
as in the proof of Proposition 5.2.

Lemma 5.3. Let P be a simply connected polyhedron (i.e., with no handles),
whose surface ∂P is connected (i.e., with no cavities in the interior of P ). If ∂P
is triangulated, then

3v3 + 2v4 + v5 = v7 + 2v8 + 3v9 + · · ·+ (n− 6)vn + 12.(15)

Proof. Under the assumptions on P the Euler formula still holds, since the genus
of ∂P is 0. Therefore, analogously to (14) we have

6(v3 + v4 + v5 + · · ·+ vn)− 12 = 3v3 + 4v4 + 5v5 + · · ·+ nvn,

and thus (15) follows. ¤
Corollary 5.4. If vi = 0 for all i 6∈ {5, 6} then v5 = 12.

The proof follows directly from (15). A special case of Corollary 5.4 is illustrated
on the right part of Figure 2.

Proposition 5.5. There is no tetrahedralization of R3 such that each edge is
surrounded by 3 tetrahedra (i.e., with all edges 3-valent).

Proof. Suppose, to the contrary, that such a tetrahedralization T exists and consider
again the polyhedron P defined by (9). Then vi = 0 for all integers i > 3 and by
(15) we find that v3 = 4. By (12), P is a tetrahedron subdivided into 4 tetrahedra
from T that share the common vertex N . The interior node (which was chosen
arbitrarily) is, therefore, 4-valent. However, the other vertices on the surface are 4-
valent as well (each vertex of P shares three edges lying on the surface and one edge
coming to N). Consequently, the tetrahedralization T is finite (with five 4-valent
vertices only and ten edges, see the left part of Figure 3). Note the associated graph
corresponds to a simplex in R4 (the so-called 4-simplex). Thus, tetrahedra from T
do not fill the whole space R3, which is a contradiction. ¤
Proposition 5.6. There is no tetrahedralization of R3 such that each edge is
surrounded by 4 tetrahedra (i.e., with all edges 4-valent).
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Proof. Suppose, to the contrary, that such a tetrahedralization T exists and consider
again the polyhedron P defined by (9). Then vi = 0 for all integers i 6= 4 and by
(15) we obtain v4 = 6. By (12) we find that P is an octahedron (see the left part of
Figure 2). It is subdivided into 8 tetrahedra from T that share the common vertex
N . The interior node N is, therefore, 6-valent and the valence of all the other nodes
has to be the same, since N was chosen arbitrarily.

Now take an arbitrary tetrahedron T ′ from the tetrahedralization T and consider
another polyhedron (see the right part of Figure 3).

P ′ =
⋃

T ′∩T 6=∅
T∈T

T.(16)

It is composed of all tetrahedra from T that have a point in common with T ′

(4 tetrahedra have just a common face with T ′, 6 tetrahedra have only a common
edge with T ′, and 4 tetrahedra have only a common vertex with T ′). Hence, this
tetrahedralization is finite (with eight 6-valent vertices and 24 edges, see the right
part of Figure 3). Note the associated graph corresponds to a 4-orthoplex (see [58]).
The tetrahedralization T is again finite and thus, it does not fill the whole space
R3, which is a contradiction. ¤

Fig. 3

The graphs of Figure 3 correspond to the regular 4-simplex and the regular 4-
orthoplex (natural generalizations of the classical Platonic bodies into R4). These
are two of the three regular polytopes in R4 whose three-dimensional faces (cells)
are regular tetrahedra. The third body will be used in the next proposition.

Proposition 5.7. There is no tetrahedralization of R3 such that each edge is
surrounded by 5 tetrahedra (i.e., with all edges 5-valent).

Proof. Suppose, to the contrary, that such a tetrahedralization T exists and consider
again the polyhedron P defined by (9). From Corollary 5.4 we deduce that P has
exactly v5 = 12 vertices, since v6 = 0. Consequently, the valence of each node in
the tetrahedralization is 12. Moreover, P has 20 triangular faces by (12) and thus,
P is an icosahedron consisting of 20 tetrahedra that share a common point N .

According to [15], [58], there exists a special regular polytope in R4, namely,
the regular 600-cell. Before we establish the number of its edges, we first recall
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the general Euler-Poincaré formula (see, e.g., [47], [53]) for the three-dimensional
surface of a convex polytope in R4,

V + F = E + S,(17)

where V , E, F , and S is the number of vertices, edges, faces, and polyhedra,
respectively. In the case of the regular 600-cell, all its two-dimensional faces are
equilateral triangles. All cells (polyhedra) from its three-dimensional surface are
regular tetrahedra (i.e., regular 3-simplexes) and we denote this set by C. The
regular 600-cell has V = 120 vertices (as its dual is regular 120-cell, see [15] or [58]
for associated graphs). Clearly,

2F = 4S(18)

and thus, we have F = 1200. Now by (17) and (18) we get E = V +S = 120+600 =
720. This and the fact that any edge contains two vertices imply that each of the 120
vertices has valence 12 (like each node in the given tetrahedralization T ). Moreover,
we see that 5E = 6S, which means that each edge is shared by 5 tetrahedra from
C (like in T again).

Now we shall recursively construct a continuous piece-wise linear mapping f from
the compact three-dimensional surface of the regular 600-cell into R3. Let C ′ be an
arbitrary tetrahedron from the surface of the 600-cell and let T ′ ∈ T be arbitrary.
Then there exists a linear affine one-to-one mapping f |C′ that maps C ′ onto T ′

(vertices on vertices and edges on edges). For each neighbour C of C ′ contained in
the set

Q′ =
⋃

C′∩C 6=∅
C∈C

C(19)

we can again define a linear affine one-to-one mapping f |C that maps C onto a
tetrahedron T which is the corresponding neighbour of T ′ ⊂ P ′ (where P ′ is defined
similarly as in (16)), so that f remains continuous on interelement boundaries.
The 20 regular tetrahedra that surround a given vertex of C ′ are thus continuously
mapped on 20 tetrahedra that form the icosahedron P .

Further let
Q′′ =

⋃

Q′∩C 6=∅
C∈C

C,

which is composed of all tetrahedra from C that have a common point with Q′.
Similarly, we appropriately define f on neighbours of Q′ and define Q′′′ consisting
of all tetrahedra from C that have a common point with Q′′, etc.

After a finite number of steps we obtain a continuous and piecewise linear func-
tion f that maps 600 cells from C onto 600 tetrahedra from T . The “last” cell in
this procedure is mapped on a large tetrahedron, which contains 599 tetrahedra
from T (like in Figure 3, where left tetrahedron is composed from 4 tetrahedra and
the right tetrahedron from 15 tetrahedra). Therefore, the associated graphs are
isomorphic and thus finite, which is a contradiction. ¤
Remark 5.8. Consider a uniform tetrahedralization (cf. Figure 1). Then all edges
are 4-valent or 6-valent with ratio 3:4. The valence cannot be an odd number, since
the associated patch of tetrahedra would not be point-symmetric. It is easy to see
that the valence of each node is 14.
Remark 5.9. Recall that (see [33]) a tetrahedron is said to be acute if all six of its
dihedral angles are acute (i.e., less than 90◦). By [33, p. 162] all faces of an acute
tetrahedron are acute triangles. A tetrahedralization is said to be acute if it contains
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only acute tetrahedra. It is obvious that no edge in an acute tetrahedralization
can have the valence 3 or 4 and, moreover, by [33] each interior node has to be
surrounded by at least 20 tetrahedra. In 2004 Eppstein, Sullivan, and Üngör found
that there exist acute tetrahedralizations of R3, such that every edge has valence 5
or 6, and no triangle has two 6-valent edges. In [18] they present several algorithms
to accomplish this. An algorithm for an acute tetrahedralization of a slab is given
as well. The valence of each node is at least 12. Due to Proposition 5.7, we have:
Corollary 5.10. In any acute tetrahedralization of R3 there exists a dihedral angle
not greater than 60◦.
Remark 5.11. By Proposition 5.2, in any tetrahedralization of R3 there exists a
dihedral angle not less than 72◦. The acuteness assumption in Corollary 5.10 can
be removed under the following hypothesis.
Conjecture 5.12. There is no tetrahedralization of R3 such that each edge is
surrounded by at most 5 tetrahedra.
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[7] J. Brandts and M. Kř́ıžek, History and future of superconvergence in three-dimensional finite
element methods, Proc. Conf. Finite Element Methods: Three-dimensional Problems, Univ.
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[31] M. Kř́ıžek and P. Neittaanmäki, Bibliography on superconvergence, Proc. Conf. Finite
Element Methods: Superconvergence, Postprocessing and A Posteriori Estimates, Marcel
Dekker, New York, 1998, 315–348.
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[68] J. R. Whiteman and G. Goodsell, A survey of gradient superconvergence for finite element
approximations to second order elliptic problems on triangular and tetrahedral meshes, The



56 M. KŘÍŽEK
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