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Abstract. A technique of orthogonality correction in an element is introduced

and applied to superconvergence analysis in finite element method. Ultracon-

vergence results for rectangular elements of odd degree n ≥ 3 are derived in

the case of variable coefficients.
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1. Introduction

Consider a second order elliptic problem with Dirichlet condition (BV1)

(1) Au ≡ −Dj(aijDiu) + a0u = f in Ω, u = 0 on Γ,

where Ω is a planar polygonal domain with the boundary Γ. Denote by W k,p(Ω)
Sobolev space with norm

||u||k,p,Ω = (
∫

Ω

∑

|α|≤k

|Dαu(x)|pdx)1/p.

If p = 2, the subscript p is often omitted and we simply use Hk(Ω) and ||u||k,Ω.
Assume that the domain Ω is subdivided into a finite number of elements τ (with
h the largest diameter of all τ) and its mesh Jh is quasiuniform.

Introduce the following subspace

V = {u : u ∈ H1(Ω), u = 0 on Γ}
and the n-degree finite element subspace by

Sh = {v : v ∈ C(Ω), v|τj ∈ Pn, τj ∈ Jh, v|Γ = 0}.
Define the bilinear form and inner product

A(u, v) =
∫

Ω

(aijDiuDjv + a0uv)dx, f(v) = (f, v)

and assume that A(u, u) is V -coercive. We know that the true solution u ∈ V and
its finite element approximation uh ∈ Sh satisfy the following orthogonal relation

(2) A(u− uh, v) = 0, v ∈ Sh.

It is well known that under some conditions there are some basic error estimates

(3) ‖u− uh‖j,Ω ≤ chn+1−j‖u‖n+1,Ω, j = 0, 1; n ≥ 1.
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and negative norm estimates (if n ≥ 2, 2 ≤ s ≤ n + 1)

(4) ‖u− uh‖−l,Ω = sup
v∈Hl(Ω)

|(u− uh, v)|
||v||l ≤ chs+l‖u‖s,Ω, 1 ≤ l ≤ n− 1,

in which ||u−uh||1−n = O(h2n) is of superconvergence of the highest order known.
(4) seems to imply two kinds of ideas to study superconvergence. First, (4)

means the approximate orthogonality of e = u− uh, because of the arbitrariness of
v, which is a local property (generally, the approximate orthogonality is invalid in
an element) and leads to various local averaging. Second, (4) also means that (e, v)
is of higher accuracy than ||e||. As a result, the error e = u − uh has to change
rapidly its sign in Ω in order that the cancellation of the positive and negative
values makes the integral less. We want to know whether the distribution of zeroes
of e has certain regular patterns, and whether it is possible to find its approximate
points independent of the coefficients of A and the concrete behavior of u. This is
the study of superconvergence points.

Up to now, there are five main methods:
1. The local averaging method. Motivated by the negative norm estimates

and interior estimates, applying the splines on a uniform mesh to construct the ker-
nel function Kα

h with small support and α-order difference quotient ∂α
h uh, Bramble

and Schatz [2] (1974-77) and Thomee [28](1977) obtained the high accurate convo-
lution

Kα
h ∗ ∂α

h uh −Dαu = O(h2n), in Ω0 ⊂⊂ Ω.

Here both function and derivatives of any order are of optimal order superconver-
gence O(h2n). This is incompatible for other methods. Later these results were
extended to parabolic equation (Thomee [29] 1980) and nonlinear problems (Chen
[6] 1983).

2. Quasi-projection and Tensor Product Method. It is adopted by Dou-
glas, Dupont and Wheeler [17](1974). This method requires the coefficient a12 = 0
and the use of tensor product polynomials. The tensor product idea is clear and
powerful. We remark that it can be applicable to the time-space full discrete prob-
lems.

3. Element Orthogonality Analysis (EOA). It was started by Zlamal
[39][40](1977-78), and independently found by Chen [3][4][5] (1978-81) at el. Many
other scholars worked in this aspect, such as Zhu[36], Lin-Xu [23],Chen and Huang
[13], Krizek- Neittaamäki [19], et al. EOA is based on orthogonal approximations
in the bilinear inner product sense and it doesn’t depend directly on the estimates
for PDEs. Therefore, this method is applicable to more general equations, and
the corresponding conclusions are often valid up to the boundary (mainly under
BV1). To solve the general equations, Chen proposed three important techniques:
cancellation technique between elements, orthogonal expansion and orthogonality
correction in an element. Chinese scholars have finished the systematical work in
this approach, see Chen [12], Chen-Huang [13] and Lin-Yan [24] and so on.

4. Computer-based research. Babuska-Strouboulis et al. in 1995 (see [1])
finished a systematical computational search for superconvergence points of deriva-
tives and drew a lot of valuable conclusions. In particular, a surprising structure of
superconvergence for triangular elements of degree 1 ∼ 7 is first exhibited. Their
research has shown a very promising future for new approaches.
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5. Locally symmetric theory. If the mesh is locally symmetric with respect to
a point x0 in some O(hβ)-neighborhood of x0, Schatz-Sloan-Wahlbin [26][31](1995)
affirmed superconvergence at x0 ⊂⊂ Ω as follows:

(1) The function u− uh = O(hn+1+α), 0 < α < 1, for even n ≥ 2;
(2) The average gradient D̄(u− uh) = O(hn+α), for odd n ≥ 1,

where the index α sometimes is close to 1. As these conclusions are valid for
any type of elements and the structure of the mesh in a neighborhood of locally
symmetric point possibly is quite general, they are called ”general principles” by
Wahlbin [32].

The works of Babuska and Wahlbin et al are so exciting that they can encourage
us to advance our method. So the orthogonality correction technique in an element
was proposed. In many cases, such as high degree triangular elements [10](1997-99),
serendipity rectangular elements[11], beam bending problem and L2-projection and
so on, a lot of superconvergence results are derived. The purpose in this paper is
to study ultraconvergence of rectangular finite elements for elliptic problems with
variable coefficients and a famous result of Douglas-Dupont-Wheeler[17] (1974) is
extended.

2. Orthogonality Correction Techniques (OCT) in EOA

The basic idea of EOA is to construct a better projection interpolant (or ap-
proximation) uI ∈ Sh of u, such that uI is super-close to the finite element solution
uh ∈ Sh. From (2), it is equivalent to require the approximate orthogonality of
R = u− uI to Sh (see [4, 5, 6]),

(5) A(uh − uI , v) = A(R, v) = O(hn+α)‖v‖1,p′,Ω, if n ≥ 1;

(6) or = O(hn+1+α)‖v‖∗2,p′,Ω, if n ≥ 2, v ∈ Sh,

where the index α > 0 and ‖v‖∗2,p′,Ω = (
∑
τ
‖v‖p′

2,p′,τ )1/p′ is the mesh norm, and

p′ = p/(p − 1). Taking v = uh − uI and p = 2 in (5), we immediately get a
superconvergence estimate in H1,

||uh − uI ||1 = O(hn+α), n ≥ 1.

Constructing a w ∈ V such that Aw = uh − uI in Ω, by the duality argument and
(6), we have

||uh − uI ||2 = A(uh − uI , w) = A(u− uI , wI) + A(uh − uI , w − wI)

= O(hn+1+α)(||wI ||∗2 + ||w||2) = O(hn+1+α)||uh − uI ||
and get

||uh − uI || = O(hn+1+α), n ≥ 2.

From these estimates, we have the expressions in L2-sense,

(7) Ds(uh − uI) = O(hn+1+α−s), s = 0, 1, n + s ≥ 2,

(8) Ds(u− uh)(x) = DsR(x) + O(hn+1+α−s), s = 0, 1, n + s ≥ 2.

Based on L1-estimate of the regularized Green function g, gh, ||g||2,1,Ω+||gh||∗2,1,Ω ≤
c| ln h|, (see Frehse and Rannacher [18]1975), and the gradient type Green function
Gh, ‖Gh‖1,1,Ω ≤ c|lnh| (see Rannacher and Scott [25] 1982), it is shown that su-
perconvergence estimates (7) and (8) hold in L∞(Ω) (with a factor lnh).
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We see that the change of DsR(x) approximately describes the behavior of
Dsρ(x) with ρ(x) = u−uh in an element. In particular, at the zero point x0 of DsR

we can obtain the useful superconvergence results Dsρ(x0) = O(hn+1+α−s), s =
0, 1.

Therefore, the EOA consists of two main ingredients. The first one is to construct
the desired superclose approximation uI ∈ Sh by the orthogonal expansion in an
element.The next one is to prove (5) or (6) by the cancellation techniques between
the elements and orthogonality correction in an element. Actually how to construct
the desired superclose interpolant uI is an important technique in FEM. And it is
known that various orthogonal expansions in an element are basic tools.

We start with one-dimensional case. Consider a quasiuniform mesh in an interval
I = (0, 1), Jh : x0 = 0 < x1 < x2 < ... < xN = 1, with the element ej = (xj−1, xj),
its midpoint x̄j = (xj−1 + xj)/2 and semi-steplenght hj = (xj − xj−1)/2. Consider
a standard element τ = (−h, h) and the transform x = ht, t ∈ E = (−1, 1). Denote
still by u(t) the u(x) = u(ht), by Du (or ux) the derivation in x and by ∂u (or ut)
the derivation in t. Obviously, ∂ju = hjDju = O(hj).

Introduce Legendre polynomials in E, i.e.,

l0 = 1, l1 = t, l2 = (3t2 − 1)/2, l3 = (5t3 − 3t)/2, ..., ln = ∂n(t2 − 1)n/(2n)!!,

Integrating it in t, we get M-type polynomials [5][6]:

(9) M0 = 1,M1 = t,M2 = (t2 − 1)/2, ..., Mn+1 = ∂n−1(t2 − 1)n/(2n)!!.

It is quasi-orthogonal in the following sense: (Mi,Mj) 6= 0, if i − j = 0 or = ±2,

else (Mi,Mj) = 0. Obviously, Mn(±1) = 0 for n ≥ 2.
First making the L-type expansion of ut

ut =
∞∑

j=0

bj+1lj(t), bj+1 = j0(ut, lj) = O(hj+1), j0 = j + 1/2,

and then integrating in t, we get M-type expansion, the partial sum and its remain-
der

(10) u(t) =
∞∑

j=0

bjMj(t), un =
n∑

j=0

bjMj(t), R = u− un =
∞∑

j=n+1

bjMj(t),

respectively, where the coefficients b0 = (u(1) + u(−1))/2, b1 = (u(1) − u(−1))/2.
Obviously R(±1) = u(±1) − un(±1) = 0. Consequently, we may construct un

in each element respectively, which automatically forms a continuous piecewise
n-degree polynomial function un ∈ Sh. Its remainder has good orthogonality prop-
erties

R(t) = bn+1Mn+1(t) + O(hn+2) ⊥ Pn−2, Rt(t) = bn+1ln(t) + O(hn+2) ⊥ Pn−1.

The roots of Mn+1(t) and ln(t) are called as n + 1-order Lobatto points tj ∈ Ln+1

and n-order Gauss points t′j ∈ Gn, respectively. At these specific points, un and
∂tun have higher accuracy, respectively.

It is easy to estimate the following integrals with smooth coefficients a(x), b(x),

(11) αij =
∫ 1

−1

ali(t)lj(t)dt = O(h|i−j|)), βij =
∫ 1

−1

bMiMjdt = O(hd(i,j)),

where the index d(i, i) = 0, d(i, i + 1) = 1 and d(i, j) = |j − i| − 2, if |i− j| ≥ 2.
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Early Douglas-Dupont [15][16](1973) proved that n-degree finite element uh has
the optimal error estimate at each node xj

(u− uh)(xj) = O(h2n)||u||n+1,Ω.

Below, as a simple example of OCT( Orthogonality Correction Technique), we shall
give another proof of this result.

To improve the superclose projection uI ∈ Sh, we want to add

u∗n =
n∑

j=2

b∗jMj(t)

into un, such that the remainder R∗ of the new projection uI = un + u∗n ∈ Sh

(12) R∗ = u− uI = (u− un)− u∗n = R− u∗n

satisfies more orthogonal conditions in an element, where u∗n and b∗j , 2 ≤ j ≤ n are
to be defined. To this end, in a standard element τ = (−h, h), taking a transform
x = th and any test function v =

∑n
i=0 βiMi(t), it is easy to calculate an element

integral

J =
∫ h

−h

(aR′v′ + bRv)dx = h−1

∫ 1

−1

(aRtvt + bh2Rv)dt.

(13) J = h−1
n∑

i=0

βi(Bi −B∗
i ),

where the coefficients are given as

B∗
i =

n∑

j=2

cijb
∗
j , Bi =

∞∑

j=n+1

cijbj ,

cij =
∫ 1

−1

(ali−1lj−1 + bh2MiMj)dt = O(h|i−j|), i ≥ 1, j ≥ 2,

c0j =
∫ 1

−1

bh2Mjdt = O(hj), j ≥ 2.

Now we require that all coefficients b∗j satisfy the conditions

(14) B∗
i = Bi = O(h2n+2−i), i = 2, 3, ..., n.

This is a linear system, whose diagonal coefficients cii = O(1), and other coefficients
O(h). Therefore its solutions can be expressed by a linear combination of bj , and

b∗i = h2n+2−i−1/p||u||n+1,p,τ , 2 ≤ i ≤ n.

With this choice of b∗i , J is deduced to

(15) J = h−1(β0(B0 −B∗
0) + β1(B1 −B∗

1)) = O(h2n−1/p)||u||n+1,p,τ (h|β0|+ |β1|).
Using the inverse estimates |β0| ≤ c

∫ 1

−1
|v|dt ≤ ch−1

∫
τ
|v|dx and |β1| ≤ c

∫ 1

−1
|vt|dt ≤

c
∫

τ
|vx|dx, we have

|J | ≤ Ch2n||u||n+1,p,τ ||v||1,p′,τ .

Summing over all elements, we get a sharp superconvergence estimate

(16) |A(uh − uI , v)| = |A(R, v)| ≤ Ch2n||u||n+1,p||v||1,p′ .
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Taking p = 2, v = uh−uI and using the embedding theorem, H1 ↪→ L∞, we get
superconvergence estimates

(17) max
x
|uh − uI |+ ||uh − uI ||1 ≤ Ch2n||u||n+1.

So Douglas-Dupont’s result is obtained.
It is seen that the OCT is an useful technique to construct the optimal approxi-

mation of the function u in bilinear sense Aτ (u−uI , v) in an element, which doesn’t
directly depend on an estimate of differential equations or a high order estimate of
a discrete Green’s function. Therefore it is possible to apply this technique to high
order equations or in multi-dimensional cases.

3. Ultraconvergence of Rectangular Elements For Odd n ≥ 3

Consider n-degree polynomials in E = {−1 < s, t < 1},
Qλ(n) =

∑

(i,j)∈In,λ

bijs
itj ,

where the index

In,λ = {(i, j) : 0 ≤ i, j ≤ n; i + j ≤ n + λ}.
If the index λ ≥ 1, Qλ(n) called regular family. The case Qn(n) called the tensor
product case. Below, we need In = In,2 and Q2(n). The structure of Q2(5) is listed
in Tab.1.

Tab.1 Rectangular family Qλ(5), λ = 2.

The main terms (xiyj) of remainder R.
1 y y2 y3 y4 y5 (y6) (y7)
x xy xy2 xy3 xy4 xy5 (xy6)
x2 x2y x2y2 x2y3 x2y4 x2y5

x3 x3y x3y2 x3y3 x3y4

x4 x4y x4y2 x4y3

x5 x5y x5y2

(x6) (x6y)
(x7)

Early, based on a quasi-projection Rhu, Douglas-Dupont-Wheeler [17](1974)
studied n-degree rectangular tensor product element uh ∈ Qn(n) for Poisson equa-
tion and obtained an ultraconvergence estimate

||uh −Rhu|| ≤ Chn+3, n ≥ 3.

At present, we are able to get point-wise ultraconvergence at angular nodes z ∈ Zh,

(u− uh)(z) = O(hn+3 ln h), n ≥ 3.

So, (u− uh)(z) = O(h2nlnh), at least, for n = 1, 2, 3.
Based on OCT, this work can be extended to the case of variable coefficients

(but a12 = 0), if odd n ≥ 3.
Theorem 1 (Odd n) Assume that Ω is a rectangle and the rectangular mesh is
uniform. All coefficients aij are suitably smooth, a12 = 0. Assume that n ≥ 3
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odd, λ ≥ 2, and under BV1, then the finite element solution uh ∈ Q2(n) has
ultraconvergence at angular nodal set Zh

max
x∈Zh

|(u− uh)(x)| = O(hn+3 ln h)||u||n+3,∞.

The result is valid up to the boundary Γ.
Remark. It is a pity that this ultraconvergence result, in general, is invalid for

even n ≥ 2. However, if using the recovery technique or high degree interpolation of
gradient in an element patch, ultraconvergence of gradient is still possibly obtained.
Also see Zhang [33, 34, 35].

Proof of Theorem 1: Denote a = a11(x) > 0, b = a22(x) > 0 (but a12 = 0)
and the polynomial family Q2(n), n ≥ 3, whose index set

In = In,2 = {(p, q) : 0 ≤ p, q ≤ n, p + q ≤ n + 2}
is divided into four groups: In = IQ + IC + IA + IB . The set IA is important,
because it is used to construct a correction polynomials. For odd n = 2m + 1 ≥ 3,
define IA = IA1 + IA2, where

IA1 = {(p, q) : p = n− 2i, q = 2j, p + q ≤ n + 2, 0 ≤ i ≤ m− 1, 0 ≤ j ≤ m}.
IA2 = {(p, q) : p = 2i, q = n− 2j, p + q ≤ n + 2, 0 ≤ i ≤ m, 0 ≤ j ≤ m− 1}.

The other three groups are

IQ = {(0, 0), (0, 1), (1, 0), (1, 1)},
IC = {(1, 2), ..., (1, n)} ∪ {(2, 1), ..., (n, 1)},

IB = In\{IA ∪ IQ ∪ IC}.
The distribution of these indexes for n = 5 is listed in Tab.2.

Tab.2 The index IA for n = 5, m = 2, dist(IQ, IA) = 2.
(i, j) 0 1 2 3 4 5

0 Q Q A2 A2
1 Q Q C C C C
2 C A2 A2
3 A1 C A1 A1
4 C A2
5 A1 C A1

An important character of the set IA is that it always includes two corner indexes
(n, 0), (0, n) and that the distance dist(IA, IQ) = 2 for odd n ≥ 3.

For the simplicity of analysis, assume u is suitably smooth and the high order
term O(hn+3) will be omitted in the proof. We also assume that there are no
lower order terms e.g., Duv, uv in A(u, v), because they have no influences on
ultraconvergence.

First denoting φpq(s, t) = Mp(s)Mq(t), expanding u(s, t) in (s, t) ∈ E and taking
the part sum,

u(s, t) =
∑

p+q≤n+2

bpqφpq(s, t) + O(hn+3), bpq = O(hp+q),

un =
∑

(p,q)∈In,λ

bpqφpq(s, t) ∈ Qλ(n),
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we have the expression of error,

(18) Rn(s, t) = u− un = g1(s, t) + g2(s, t) + Rn+2, Rn+2 = O(hn+3),

where the two terms and index sets are

g1 =
∑

(p,q)∈I1(n)

bpqφpq(s, t), I1(n) = {(n + 1, 0), (n + 2, 0), (n + 1, 1)},

g2 =
∑

(p,q)∈I2(n)

bpqφpq(s, t), I2(n) = {(0, n + 1), (0, n + 2), (1, n + 1)}.

By the symmetry between x and y, it is enough to consider Rn = g1.
Now adding a polynomial R∗ to un, we have uI = un+R∗ and the new remainder

is

(19) R = u− uI = Rn −R∗, R∗ =
∑

(p,q)∈IA

b∗pqφpq(s, t),

where the coefficients b∗A = {b∗pq : (p, q) ∈ IA} are to be defined. Taking any test
function v =

∑
(i,j)∈In

βijφij ∈ Q2(n), and calculating an element integral, we have

(20) Jτ =
∫

E

(a(x)Rsvs + b(x)Rtvt)dsdt =
∑

(i,j)∈In

βijrij ,

where rij = r̄ij − r∗ij ,

r∗ij =
∑

(p,q)∈IA

cijpqb
∗
pq, r̄ij =

∑

(p,q)∈I1(n)

cijpqbpq.

We recall the orthogonality of bases lj(s),Mi(s), and then these coefficients are of

cijpq = Aτ (φij , φpq) =
∫

E

{ali−1(s)lp−1(s)Mj(t)Mq(t)

+bMi(s)Mp(s)lj−1(t)lq−1(t)}dsdt = O(hρ),

ρ = min{|i− p|+ d(j, q), |j − q|+ d(i, p)} ≥ |i− p|+ |j − q| − 2.

Now, we require that all coefficients b∗pq, (p, q) ∈ IA satisfy

(21) r∗ij =
∑

(p,q)∈IA

cijpqb
∗
pq = r̄ij = O(hn+2), (i, j) ∈ IA.

Its diagonal elements are O(1), whereas other elements are of small quantity at most
O(h). This system has a unique solution and it leads to the following estimates

|b∗A| =
∑

(i,j)∈IA

|bij | ≤ C max
(i,j)∈IA

|r̄ij | ≤ Chn+2.

After determining b∗A, the integral Jτ is deduced to

Jτ =
∑

(i,j)∈Cn

rijβij = JB + JQ + JC , Cn = IB + IQ + IC ,

which are bounded as follows.
1) For (i, j) ∈ IB and (p, q) ∈ IA, as IB ∩ IA is empty, we have at least

cijpq = O(h), rij = O(hb∗A) = O(hn+3).

By the inverse estimate |βij | ≤ C||v||2,1,τ we have

JB = O(hn+3)||v||2,1,τ .
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2) For (i, j) ∈ IQ. As n ≥ 3 is odd, b∗ does not contain b∗20, b∗02, b∗22, and
dist(IA, IQ) = 2. So

r00 = O(hn+5), r10, r01 = O(hn+4), r11 = O(hn+3 + h2n),

and it leads to

|JQ| ≤ Chn+3(h2|β00|+ h|β10|+ h|β01|+ h2|β11|)
≤ Chn+3||v||2,1,τ .

3) When (i, j) ∈ IC , the cancellation techniques [4, 6] are needed. As an example,
we only discuss the most difficult term

B(τ) = r1,n−1 = O(hn+2).

The decomposition of the coefficient is

β1,n−1(τ) = cn

∫

E(τ)

vst(s, t)ln−2(t)dsdt = βn−1(τ+)− βn−1(τ−),

βn−1(τ±) = cn

∫ 1

−1

vt(±1, t)ln−2(t)dt,

where τ+ and τ− are right and left side in τ respectively. By inverse estimate,
βn−1(τ±) = O(1)||v||2,1,τ for n ≥ 3. Denote by Sp = τ1 + τ2 + ... + τl a long slip of
elements arranged from left to right. And then we combine the linear integrals on
the same side to obtain,

K =
l∑

j=1

β1,n−1(τj)B(τj) = βn−1(τ+
l )B(τl)

−
l−1∑

j=1

βn−1(τj)(B(τj+1)−B(τj))− βn−1(τ−1 )B(τ1),

where the difference B(τj+1) − B(τj) = O(hn+3) is of high order. As v = 0 on
τ−1 and τ+

l , then the corresponding integral βn−1 = 0. Thus high order estimates
follow:

K = O(hn+3)||v||2,1,Sp , n ≥ 3.

Summarizing the above estimates, we get, for 2 ≤ p ≤ ∞,

(22) A(R, v) = O(hn+2)||u||n+3,p||v||∗2,p′ , for odd n ≥ 3.

We should point out that the function uI = un +R∗n constructed above is discon-
tinuous on the common side between elements (continuous only at angular nodes),
because the coefficients b∗A in R∗n is determined by bR = {bn+1,0, bn+2,0, ...}, whereas
these coefficients bR is defined by the area integrals of u in τ . However, the jump
of bR in two adjacent elements is of high order O(hn+3). So, the jumps Φ(s) and
Ψ(t) of R∗n on sides t = 1 and s = 1 are of O(hn+3). Now we construct a correction

η = Φ(s)
1 + t

2
+

1 + s

2
Ψ(t) = O(hn+3),

and define a new function uI = un + R∗n − η, which is continuous in Ω such that
the second weak estimate (6) is still valid.

Finally, we consider whether BV1 is satisfied by uI . Assume that τ is a boundary
element whose side s = 1 falls on boundary Γ. Note that the index set IA is divided
into two groups independently each other(see Tab.2). For example, the coefficient
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b∗i,j , (i, j) ∈ IA2 is determined by b0,n+1, ... and independent of bn+1,0, .... From
u(1, t) = 0, we know that ut(1, t) = 0, and then

b0,n+1 = cn

∫ 1

−1

(−ut(1, t)− ut(−1, t))ln(t)dt

= cn

∫ 1

−1

(ut(1, t)− ut(−1, t))ln(t)dt

= cn

∫

E

ust(s, t)ln(t)dsdt = O(hn+2).

It leads to a high order estimate b∗(i, j) = O(hn+3), (i, j) ∈ IA2. Denote

φ(t) = R(1, t) =
∑

(0,j)∈IA1

b∗0jMj(t) = O(hn+3),

and ξ = (1 − s)φ(t)/2, and then the new function uI = un − R∗ − η − ξ ∈ Q2(n)
satisfies boundary condition uI = 0 on s = 1. At this point we can still get the
desired estimate Aτ (ξ, v) = O(hn+3)||v||2,1,τ , i.e. new remainder R = u−uI satisfies
(6). Finally, using the discrete Green function, we get the desired superconvergence
estimate

||uh − uI ||0,∞ = O(hn+3 ln h)||u||n+3,∞,

from which Theorem 1 follows.
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