
INTERNATIONAL JOURNAL OF c⃝ 2022 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 19, Number 6, Pages 887–906

EFFICIENT GENERATION OF MEMBRANE AND SOLVENT

TETRAHEDRAL MESHES FOR ION CHANNEL

FINITE ELEMENT CALCULATION

ZHEN CHAO, SHENG GUI, BENZHUO LU, DEXUAN XIE

Abstract. A finite element solution of an ion channel dielectric continuum model such as Poisson-
Boltzmann equation (PBE) and a system of Poisson-Nernst-Planck equations (PNP) requires
tetrahedral meshes for an ion channel protein region, a membrane region, and an ionic solvent re-

gion as well as an interface fitted irregular tetrahedral mesh of a simulation box domain. However,
generating these meshes is very difficult and highly technical due to the related three regions hav-
ing very complex geometrical shapes. Currently, an ion channel mesh generation software package

developed in Lu’s research group is the only one available in the public domain. To significantly
improve its mesh quality and computer performance, in this paper, new numerical schemes for
generating membrane and solvent meshes are presented and implemented in Python, resulting
in a new ion channel mesh generation software package. Numerical results are then reported to

demonstrate the efficiency of the new numerical schemes and the quality of meshes generated
by the new package for ion channel proteins with ion channel pores having different geometric
complexities.

Key words. Finite element method, Poisson-Nernst-Planck equations, ion channel, membrane

mesh generation, tetrahedral mesh.

1. Introduction

The Poisson-Boltzmann equation (PBE) [1, 2, 3, 4] and a system of Poisson-
Nernst-Planck (PNP) equations [5, 6, 7] are two commonly-used dielectric contin-
uum models for simulating an ion channel protein embedded in an membrane and
immersed in an ionic solvent. While PBE is mainly used to calculate electrostat-
ic solvation and binding free energies, PNP is an important tool for computing
membrane potentials, ionic transport fluxes, conductances, and electric currents,
etc. Both PBE and PNP have been solved approximately by typical numerical
techniques such as finite difference, finite element, and boundary element methods.
Among these techniques, finite element techniques can be more suitable to deal
with the numerical difficulties caused by the complicated interface and boundary
value conditions of PBE and PNP. Due to using unstructured tetrahedral meshes,
they allow us to well retain the geometry shapes of protein, membrane, and solvent
regions such that we can obtain a PBE/PNP numerical solution in a high degree
of accuracy.

However, generating an irregular tetrahedral mesh for PBE/PNP finite element
calculation can be very difficult and highly technical because a membrane region
can cause a solvent region to have a very complicated geometrical shape, not men-
tion that how to generate a membrane mesh remains a challenging research topic.
In fact, because of the lack of membrane molecular structural data, generating a
membrane mesh can become very difficult. To avoid this difficulty, the membrane

Received by the editors January 15, 2022 and, in revised form, April 21, 2022; accepted April
26, 2022.

2000 Mathematics Subject Classification. 65M50, 65M60, 92-08, 68N01.

887

888 Z. CHAO, S. GUI, B. LU, D. XIE

can be simply treated as a piece of rectangular slab to separate a simulation box
domain into the inner and outer solution regions. An ion channel protein region
is then embedded in the slab to let ions flow across the membrane through the
ion channel pore. Even so, the generation of a solvent mesh is still very difficult
since a solvent region can have very complex interfaces with protein and membrane
regions. To avoid this difficulty, a novel two-region approach is usually adopted to
the development of an ion channel mesh generation scheme. That is, an ion channel
simulation box is first divided into an ion channel protein region surrounded by an
expanded solvent region without involving any membrane, where a mesh of this
expanded solvent region is supposed to have been properly constructed such that
it contains both membrane and solvent meshes that are to be constructed for an
ion channel PBE/PNP finite element calculation; thus, the next work to be done
is to develop a numerical scheme for extracting these two membrane and solvent
meshes from the expanded solvent mesh. Based on this novel two-region approach,
an ion channel mesh software package was developed in Lu’s research group with
more than seven-years efforts (2011 to 2018) [8, 9, 10, 11, 12, 13]. After four years,
this package remains the unique one available in the public domain and applicable
for PBE/PNP ion channel finite element calculation. For clarity, we will refer to it
as ICMPv1 (i.e., Ion Channel Mesh Package version 1).

Clearly, the quality of membrane and solvent meshes extracting from an ex-
panded solvent region strongly depends on the construction of a mesh extraction
numerical scheme. In 2014 [9], cylinders (or spheres) were suggested to use in the
separation of the membrane and pore regions but a separation process was main-
ly done manually. The first numerical extraction scheme was reported in 2015
[10], which significantly improved the usage and performance of ICMPv1. In this
scheme, a walk-detect method was adapted to detect the inner surface of an ion
channel pore numerically, making it possible for us to generate the solvent, mem-
brane, and protein region meshes and an interface fitted mesh of a simulation box
domain without involving any manual effort. However, the mesh quality and the
performance of ICMPv1 rely on the selection of the walk step size, the number of
searching layers, and the other mesh generation parameters. A proper selection of
the values of these parameters turn out to be difficult and very time-consuming for
an ion channel protein having an ion channel pore with a complicated geometrical
shape.

Recently, ICMPv1 was adapted to the implementation of the new PBE/PNP
ion channel finite element solvers developed in Xie’s research group [6, 7, 14, 15].
During these applications, ICMPv1 was found to occasionally produce a membrane
mesh that contains the tetrahedra belonging to a solvent mesh. It is possible to
remove these false tetrahedra manually. For example, via a visualization tool (e.g.,
ParaView [16]), we may identify these false tetrahedra and then remove them by
reconstructing a new mesh. We may also adjust the related parameters repeatedly
until none of false tetrahedra occur in a membrane mesh, but doing so may be very
time-consuming and may twist a protein, membrane, or solvent mesh due to using
improper parameter values, causing the numerical accuracy of a PBE/PNP finite
element solution to be reduced significantly. These cases motivated Xie’s research
group to develop more effective and more efficient numerical schemes than those
used in ICMPv1. Eventually, the second version of ICMP, denoted by ICMPv2,
has been developed by Xie’s research group through a close collaboration with
Lu’s research group. The purpose of this paper is to present the new schemes

TETRAHEDRAL MESHES FOR FINITE ELEMENT ION CHANNEL CALCULATION 889

implemented in ICMPv2 and report numerical results to demonstrate that ICMPv2
can generate membrane and solvent meshes much more efficiently and in much
higher quality than ICMPv1, especially for an ion channel protein having an ion
channel pore with a complicated geometric shape even for an ion channel protein
with multiple ion channel pores — a case in which ICMPv1 would not work.

The rest of the paper is organized as follows. Section 2 introduces a general
framework for ion channel mesh generations. Section 3 presents a new scheme for
generating a triangle surface mesh of the box domain boundary. Section 4 presents
a new scheme for selecting mesh points to be set as the vertices of an interface
triangular mesh between the membrane and solvent meshes. Section 5 presents a
new numerical scheme for extracting the membrane and solvent tetrahedral meshes
from an expanded solvent tetrahedral mesh. Section 6 reports numerical results to
demonstrate that ICMPv2 can generate membrane and solvent meshes in higher
quality and better computer performance than ICMPv1. Conclusions are made in
Section 7.

2. A framework for ion channel mesh generations

As required to implement a continuum dielectric model such as PBE or PNP for
an ion channel system consisting of an ion channel protein, a membrane, and an
ionic solvent, a sufficiently large simulation box, Ω, is selected to satisfy the domain
partition

(1) Ω = Dp ∪Dm ∪Ds,

where Dp, Dm, and Ds denote a protein region, a membrane region, and a solvent
region, respectively. Specifically, we construct Ω by

(2) Ω = {(x, y, z)|Lx1 < x < Lx2 , Ly1 < y < Ly2 , Lz1 < z < Lz2} ,

where Lx1 , Lx2 , Ly1 , Ly2 , Lz1 , and Lz2 are real numbers. We then assume that the
center of an ion channel pore is at the origin of the rectangular coordinator system
and the location of Dm is determined by two parameters Z1 and Z2 between Lz1

and Lz2 . An illustration of our box domain construction is given in Figure 1.
However, in practice, the subdomains Dp, Dm, and Ds are approximated by

their tetrahedral meshes Dp,h, Dm,h, and Ds,h since it is too difficult to obtain
them directly due to their complex geometric shapes. As soon as Dp,h, Dm,h, and
Ds,h are obtained, an interface fitted tetrahedral mesh, Ωh, of Ω can be constructed
according to the following mesh domain partition

(3) Ωh = Dp,h ∪Dm,h ∪Ds,h.

One key step to obtain Dp,h, Dm,h, and Ds,h is to construct their triangular
surface meshes ∂Dp,h, ∂Dm,h, and ∂Ds,h since from these three triangular surface
meshes the tetrahedral volume meshes Dp,h, Dm,h, and Ds,h can be generated
routinely by using a volume mesh generation software package such as TetGen
[17, 18].

It has been known that ∂Dp,h can be generated from one of the current software
packages TMSmesh [8], NanoShaper [19], GAMer [20], MSMS [21], and MolSurf [22]
when a molecular structure of an ion channel is known. However, how to generate
∂Dm,h remains a difficult research topic. In fact, a membrane consists of a double
layer of phospholipid, cholesterol, and glycolipid molecules, making it very difficult
to derive a boundary mesh of ∂Dm,h.

890 Z. CHAO, S. GUI, B. LU, D. XIE

Figure 1. An illus-
tration of box do-
main partition (1).

Figure 2. An illus-
tration of the mesh
partitions of (4).

To avoid these difficulties, we follow the strategy used in [9, 10] to construct an

expanded solvent tetrahedral mesh, D̂s,h, satisfying

(4) Ωh = Dp,h ∪ D̂s,h, D̂s,h = Dm,h ∪Ds,h.

An illustration of the above partition is given in Figure 2, where the dotted lines
represent a set of the prior mesh vertices selected from the membrane bottom
surface at z = Z1 and top surface at z = Z2. Such a set will be selected by a
numerical scheme to be presented in Section 4.

Clearly, the boundary surface mesh ∂D̂s,h of D̂s,h can be constructed by

∂D̂s,h = ∂Dp,h ∪ ∂Ωh,

where ∂Dp,h is a given ion channel protein triangular surface mesh and ∂Ωh is a
triangular surface mesh of the boundary ∂Ω of the box domain Ω, whose construc-
tion will be done by a numerical scheme to be presented in Section 3. We then
can use current mesh software packages (e.g., TetGen) to generate the tetrahedral

meshes Dp,h and D̂s,h. As soon as D̂s,h is known, we need a numerical scheme to

extract Dm,h and Ds,h from D̂s,h. Such a scheme will be presented in Section 5.

3. Construction of a box triangular surface mesh

In this section, we present a numerical scheme for constructing a triangular
surface mesh, ∂Ωh, to ensure that the mesh domain partition (3) holds. In this
scheme, a triangular surface mesh of ∂Dp,h is supposed to be given. Thus, we can
find the smallest rectangular box [a1, b1]× [a2, b2]× [a3, b3] that holds ∂Dp,h using
the formulas:

(5)

a1 = min
1≤i≤N

xi, b1 = max
1≤i≤N

xi,

a2 = min
1≤i≤N

yi, b2 = max
1≤i≤N

yi,

a3 = min
1≤i≤N

zi, b3 = max
1≤i≤N

zi,

TETRAHEDRAL MESHES FOR FINITE ELEMENT ION CHANNEL CALCULATION 891

where (xi, yi, zi) denotes the position vector of the i-th mesh point of ∂Dp,h and N
is the total number of mesh points of ∂Dp,h. We then can construct a box domain,
Ω, of (2) in terms of three parameters, ηi for i = 1, 2, 3, according to the following
formulas:

(6)

Lx1 = a1 − η1, Lx2 = b1 + η1,

Ly1 = a2 − η2, Lyz = b2 + η2,

Lz1 = a3 − η3, Lz2 = b3 + η3.

The default values of η1, η2, and η3 are set as 20 but can be adjusted by users
as needed. In this way, a selection of a box domain satisfying the partition (1) is
greatly simplified.

We next split the six boundary surfaces of ∂Ω by

(7) ∂Ω = ΓD ∪ ΓN ,

where ΓD consists of the bottom and top surfaces and ΓN consists of the four
side surfaces of ∂Ω. We further divide a solvent mesh, Ds,h, into three portions,
Db

s,h, D
t
s,h, and Dp

s,h, by

(8) Ds,h = Db
s,h ∪Dt

s,h ∪Dp
s,h,

where Db
s,h, D

t
s,h, and Dp

s,h are defined by

Db
s,h = {r ∈ Ds,h | r = (x, y, z) with z < Z1},

Dt
s,h = {r ∈ Ds,h | r = (x, y, z) with z > Z2},

and

Dp
s,h = {r ∈ Ds,h | r = (x, y, z) with Z1 ≤ z ≤ Z2}.

An illustration of partition (8) is given in Figure 3.
Since a uniform triangular mesh of ΓD can be constructed easily, we only describe

the construction of a triangular surface mesh, ΓN,h, of ΓN . According to the solvent

mesh partition (8), we can split ΓN,h into three sub-meshes, Γs,b
N,h, Γ

m
N,h, and Γs,t

N,h,
such that

(9) ΓN,h = Γs,b
N,h ∪ Γm

N,h ∪ Γs,t
N,h,

where Γs,b
N,h, Γ

m
N,h, and Γs,t

N,h are defined by

Γs,b
N,h = ΓN ∩Db

s,h, Γ
s,t
N,h = ΓN ∩Dt

s,h, Γ
m
N,h = ΓN ∩Dm,h.

In ICMPv2, these three sub-meshes are constructed as uniform triangular mesh-
es, respectively, and are allowed to have different mesh sizes. In particular, we set

the mesh size hm of Γm
N,h as an input parameter of ICMPv2. We then set Γs,b

N,h and

Γs,t
N,h to have the same mesh size hs. By default, we set hs = 2hm. In this case,

Γs,b
N,h and Γs,t

N,h can be split as follows:

(10) Γs,b
N,h = Γs,1

N,h ∪ Γs,2
N,h, Γs,t

N,h = Γs,3
N,h ∪ Γs,4

N,h,

where Γs,2
N,h and Γs,3

N,h are defined by one mesh layer of Γs,b
N,h and Γs,t

N,h, respectively.

An illustration of surface mesh partitions (9) and (10) is given in Figure 4, where

Γs,2
N,h and Γs,3

N,h are colored in pink, Γs,1
N,h and Γs,4

N,h in grey, and Γm
N,h in green.

892 Z. CHAO, S. GUI, B. LU, D. XIE

Figure 3. An illustra-
tion of the partition (8)
of a solvent mesh Ds,h.

Figure 4. An exam-
ple of box surface mesh
partitions (9) and (10).

(A) A partition of rectangle [Lx1 , Lx2]×
[Ly1 , Ly2] into an exterior region, E , and
an interior region, I

(B) Sb consists of the mesh points out-
side the dash line plus the mesh points
on the dash line.

Figure 5. An illustration of a partition of rectangle [Lx1 , Lx2]×
[Ly1 , Ly2] by a cross section curve, denoted by Cb,

of ∂Dp,h with the plane z = Z1 and a mesh point set Sb defined in (11).

4. A numerical scheme for selecting membrane surface mesh points

In this section, we present a numerical scheme for selecting a membrane surface
mesh point set, S, as needed in the construction of an expanded solvent tetrahedron
mesh, D̂s,h, satisfying (4). In ICMPv2, the mesh D̂s,h is generated by TetGen. By
using one option, -i, of TetGen, the mesh points of S can be added to the TetGen
input node file. To this end, the mesh points of S become the additional vertices
of D̂s,h. On the other hand, they will be set as the vertices of a membrane mesh

Dm,h. Hence, they are very helpful for us to extract Dm,h from D̂s,h.
For clarity, we only describe a mesh point selection from the bottom membrane

surface Γb
m since a selection from the top membrane surface can be done similarly.

TETRAHEDRAL MESHES FOR FINITE ELEMENT ION CHANNEL CALCULATION 893

With a given mesh size, hm, of a a membrane boundary mesh ∂Dm,h, we con-
struct a uniform rectangular mesh of the rectangle [Lx1 , Lx2]× [Ly1 , Ly2] and define
a set, T , of its mesh points by

T = {(xi, yj) | xi = Lx1 + ihm, yj = Ly1 + jhm for i = 0, 1, . . . ,m, j = 0, 1, . . . , n},

where m = (Lx2 − Lx1)/hm and n = (Ly2 − Ly1)/hm. We also obtain a curve,
Cb, of the cross section of ∂Dp,h with the plane z = Z1. Clearly, this curve splits
the rectangle [Lx1 , Lx2] × [Ly1 , Ly2] into an exterior region, denoted by E , and an
interior region, denoted by I, as illustrated in Figure 5A. We then can obtain a set,
Sb, of mesh points from the bottom membrane surface by

(11) Sb = {(xi, yi, Z1) | (xi, yi) ∈ T ∩ E}

as illustrated in Figure 5B.
From Figure 5B it can also be seen that reducing the mesh size hm can improve

the approximation of the dash line to the cross section curve Cb, enabling us to
extract a higher quality membrane mesh from the expanded solvent mesh D̂s,h.
Due to this reason, we use hm = hs/2 (by default) in the selection scheme.

Similarly, we can obtain a set, St, of mesh points from the top membrane surface
at z = Z2. Consequently, the membrane surface mesh point set S is derived by

S = Sb ∪ St.

The mesh points of S will be set as the prior mesh points for the generation of D̂s,h.

5. Extraction of membrane and solvent meshes

In this section, we present a numerical scheme for extracting membrane and
solvent meshes, Dm,h and Ds,h, from an expanded solvent mesh, D̂s,h. In this

scheme, we assume that the tetrahedra of Dp,h and D̂s,h have label numbers 1 and
2, respectively, while the tetrahedra of Dp,h, Ds,h, and Dm,h have label numbers 1,
2, and 3, respectively.

For clarity, we describe our new numerical scheme in six steps as follows:

Step 1: Construct a rectangle, [a, b] × [c, d], that contains a portion, P, of
triangular surface mesh ∂Dp,h intercepted by the two planes Z = Z1 and
Z = Z2 by

a = min{xi, | (xi, yi, zi) on P} − τ,

b = max{xi, | (xi, yi, zi) on P}+ τ,

c = min{yi, | (xi, yi, zi) on P} − τ,

d = max{yi, | (xi, yi, zi) on P}+ τ,

where (xi, yi, zi) denotes the ith vertex of P and τ is a positive parameter
to ensure that the rectangle [a, b]× [c, d] is not to touch any part of P. By
default, we set τ = hm.

Step 2: Construct three submeshes, Bh, Dms,h, of D̂s,h, and Do
m,h by

(12)
Bh = D̂s,h ∩ [Lx1 , Lx2]× [Ly1 , Ly2]× [Z1, Z2],

Dms,h = D̂s,h ∩ [a, b]× [c, d]× [Z1, Z2],

and

(13) Do
m,h = Bh −Dms,h.

894 Z. CHAO, S. GUI, B. LU, D. XIE

Figure 6. A partition (13). Figure 7. A partition (14).

(A) Do
m,h (B) Dm

ms,h (C) Dp
s,h

Figure 8. Submeshes Do
m,h, D

m
ms,h, and Dp

s,h defined in the par-

titions (13) and (14) for the case of a VDAC (PDB ID: 3EMN).

In other words, we have divided Bh into two submeshes satisfying

Bh = Dms,h ∪Do
m,h

as illustrated in Figure 6. From this figure we can see that Dms,h consists
of two non-overlapped parts — one part is nothing but the solvent portion
Dp

s,h of the solvent mesh partition (8) and the other part, denoted byDm
ms,h,

belongs to the membrane region Dm. Thus, Dms,h can be expressed as

(14) Dms,h = Dm
ms,h ∪Dp

s,h.

For the purpose of illustrating the partitions (13) and (14), we obtained
the submeshes Do

m,h, D
m
ms,h, and Dp

s,h for an ion channel protein (VDAC)
and displayed them in Figure 8.

Step 3: Separate the tetrahedra of Dms,h as two non-overlapped sets, one set
leads to Dm

ms,h and the other set to Dp
s,h, such that the partition (14) holds.

In ICMPv2, this separation is done by a numerical scheme implemented in
the Python function split() from the Python library Trimesh1. To do so,
we need to obtain a boundary triangular mesh ∂Dms,h of Dms,h since it is
a required input mesh of this Python function. We obtain ∂Dms,h through
finding the boundary surface meshes of Dm

ms,h and Dp
s,h, respectively.

1https://github.com/mikedh/trimesh

TETRAHEDRAL MESHES FOR FINITE ELEMENT ION CHANNEL CALCULATION 895

gA Cx26 α-HL VDAC
(A) Side view of four ion channel proteins

gA Cx26 α-HL VDAC
(B) Top view of four ion channel proteins

Figure 9. Molecular structures of the four ion channel proteins
(gA, Cx26, α-HL, and VDAC) to be used for numerical tests in
Section 6 in cartoon backbone representation — one common way
to represent a three-dimensional protein secondary structure (e.g.,
α-helices in flat helical sheets and β-sheets in flat level sheets).

Step 4: Identify the tetrahedra of Dp
s,h by doing ray tests via the ray-triangle

intersection method (see [23] for example). To do so, we first calculate the
centroids of all the tetrahedra of Dms,h and then use ray tests to check if
they are inside the volume region enclosed by a boundary triangular surface
mesh of Dp

s,h or not. In the true case, we store the tetrahedron indices to
an index set, Ss; otherwise, the tetrahedron indices are stored to another
index set, Sm. We then change the label numbers of the tetrahedra with
indices in Sm from 2 to 3 to obtain the first part of Dm,h, which is denoted
by D1

m,h. In ICMPv2, a ray test is done by calling the Python function
contains points() from a class object,

trimesh.ray.ray pyembree.RayMeshIntersector(),
of the Python library Trimesh.

Step 5: Identify the tetrahedra of Do
m,h by using partition (13) and change

their label numbers from 2 to 3 to obtain the second part of Dm,h, which
is denoted by D2

m,h.
Step 6: Obtain the membrane and solvent meshes Dm,h and Ds,h by

Dm,h = D1
m,h ∪D2

m,h, Ds,h = D̂s,h −Dm,h.

Remark: Another way to extract Dm,h from D̂s,h is to use Bh since Bh contains
Dm,h too. The reason why we use Dms,h, instead of Bh, is to further reduce the
computational cost since Dms,h contains a much smaller number of tetrahedra than
Bh.

896 Z. CHAO, S. GUI, B. LU, D. XIE

6. Numerical results

We implemented the three new schemes of Sections 3, 4, and 5 in Python based
on our recent mesh work done in [6, 7] and using some mesh functions from the
FEniCS project2 and Trimesh. We then used them to modify ICMPv1 as ICMPv2.
Note that ICMPv2 retains the part of ICMPv1 in the generation of an ion channel
protein molecular surface mesh ∂Dp,h (i.e., doing so via the TMSmesh software
packages developed in Lu’s research group [8]). Hence, both ICMPv2 and ICMPv2
are expected to generate the same ion channel protein mesh Dp,h and expanded

solvent mesh D̂s,h when they use the same TMSmesh and TetGen parameters and
the same boundary surface mesh ∂Ω. Their differences mainly occur in a process of
extracting membrane and solvent meshes Dm,h and Ds,h from an expanded solvent

mesh of D̂s,h. Therefore, in this section, we mainly report the numerical results
related to this extraction process.

Table 1. Values of box domain dimensions and main mesh pa-
rameters used in our numerical tests. Here, d, c, and e are three
TMSmesh parameters — d is the decay rate in the Gaussian sur-
face, c is isovalue in the Gaussian surface, and e is an approxima-
tion precision between trilinear surface and Gaussian surface.

Ion channel
protein

Dimensions of box domain Ω
[Lx1 , Lx2 ; Ly1 , Ly2 ; Lz1 , Lz2]

Z1 Z2 hm d c e

gA [−31, 31;−30, 29;−33, 33] -11 11 1.1 0.5 0.9 0.9
Cx26 [−67, 67;−63, 63;−60, 62] -16 16 1.6 0.2 0.2 0.8
α-HL [−71, 71;−71, 68;−39, 104] -11 11 1.1 0.2 0.9 0.9
VDAC [−46, 53;−46, 43;−44, 40] -12 12 1.2 0.2 0.5 0.75

In particular, we did numerical tests on four ion channel proteins: (1) A gram-
icidin A (gA), (2) a Connexin 26 gap junction channel (Cx26), (3) a staphylo-
coccal α-hemolysin (α-HL), and (4) a voltage-dependent anion channel (VDAC).
Their crystallographic three-dimensional molecular structures can be downloaded
from the Protein Data Bank3 with the PDB identification numbers 1GRM, 2ZW3,
7AHL, and 3EMN, respectively. But, in this work, we downloaded them from
the Orientations of Proteins in Membranes (OPM) database4 since these molecular
structures have satisfied our assumptions made in the partition (1). That is, the
protein structure has been transformed such that the normal direction of the top
membrane surface is in the z-axis direction and the membrane location numbers
Z1 and Z2 are given. See Table 1 for their values.

Figure 9 displays these four ion channel proteins in cartoon views. The α-helix
of VDAC has been colored in red to more clearly view it in Figure 9. From these
plots we can see that the ion channel pores of these four proteins have different
geometrical complexities. Thus, these four proteins are good for numerical tests
on the efficiency of our new numerical schemes and a comparison study between
ICMPv1 and ICMPv2.

2https://fenicsproject.org
3https://www.rcsb.org
4https://opm.phar.umich.edu

TETRAHEDRAL MESHES FOR FINITE ELEMENT ION CHANNEL CALCULATION 897

Table 1 lists the values of box domain dimensions, three parameters Z1, Z2, and
hm from our new schemes, and three parameters h, d, and c from the molecular
surface software TMSmesh. In the numerical tests, we fixed the other parameter
values of our schemes as follows:

η1 = 20, η2 = 20, η3 = 20, hs = 2hm, τ = hm.

We also fixed the command line switches of TetGen as ‘-q1.2aVpiT1e-10AAYYCnQ’,
whose definitions and usages can be found in TetGen’s manual webpage5. Thus, we
did not list them in Table 1. Actually, all the box domain dimensions of Table 1
can be produced from the formulas of (6). Even so, we have listed them in Table 1
for clarity.

Table 2. A comparison of mesh data generated by ICMPv1 with
those by ICMPv2.

Channel
protein

Number of vertices

D̂s,h Dp
s,h Ωh Ds,h Dm,h Dp,h

Mesh data generated by ICMPv1
gA 17711 662 24155 9359 10653 11012
Cx26 74185 1091 156182 55869 24304 106354
α-HL 109911 1615 230657 101212 13582 160141
VDAC 32842 2323 52640 23877 12981 28863

Mesh data generated by ICMPv2
gA 27075 690 33612 15254 15488 11105
Cx26 73984 1096 158396 55255 22645 108769
α-HL 116649 1545 237535 105027 16757 160281
VDAC 35681 2426 56584 25538 13440 29968

Channel
protein

Number of tetrahedra

D̂s,h Dp
s,h Ωh Ds,h Dm,h Dp,h

Mesh data generated by ICMPv1
gA 95145 2488 149558 44092 51053 54413

Cx26 387042 4221 979905 274291 112751 592863
α-HL 563949 6471 1448649 501402 62547 884700
VDAC 176335 9788 328992 116287 60048 152657

Mesh data generated by ICMPv2
gA 143799 2579 198776 70787 73012 54977

Cx26 375132 4282 983421 270715 104417 608289
α-HL 597027 6403 1482295 519312 77715 885268
VDAC 183414 10334 343072 159658 60685 159658

We did all the numerical tests on a MacBook Pro computer with one 2.6 GHz
Intel core i7 processor and 16 GB memory. We listed the mesh data generated from
ICMPv1 and ICMPv2 in Table 2 and reported other test results in Table 3 and
Figures 10 to 13.

5https://wias-berlin.de/software/tetgen/1.5/doc/manual/manual.pdf

898 Z. CHAO, S. GUI, B. LU, D. XIE

Table 2 shows that the meshes generated by ICMPv2 have more mesh vertices
and more tetrahedra than those by ICMPv1. Since both ICMPv1 and ICMPv2
used the same triangular ion channel surface meshes and the same TetGen mesh
generation parameters, such mesh differences are caused mainly by their using
different box domain surface meshes. In ICMPv2, the box domain surface mesh
is constructed by the numerical scheme presented in Section 3. It can be denser
than that by ICMPv1, resulting in a significant improvement on the qualities of
membrane and solvent meshes Dm,n and Ds,h (see Figure 13 for examples).

gA Cx26 α-HL VDAC
(A) Side view of four ion channel protein meshes

gA Cx26 α-HL VDAC
(B) Top view of four ion channel protein meshes

Figure 10. Top views of the four ion channel protein meshes Dp,h

generated by ICMPv2 according to the four molecular structures
displayed in Figure 9.

Figure 10 displays the triangular surface meshes of the four ion channel proteins
generated from ICMPv2 through using the software package TMSmesh. Note that
VDAC has a much larger channel pore than the others.

Because α-HL has a complex molecular structure, we take it as an example to
show how an ion channel protein mesh Dp,h generated by ICMPv2 to fit a molecular
structure. From Figure 11 it can be seen that the protein mesh Dp,h can hold the
molecular structure very well. We further display the box domain mesh Ωh, solvent
mesh Ds,h, and membrane mesh Dm,h as well as a cross section view of solvent
mesh Ds,h in Figure 12. From this figure it can be seen that the unstructured
tetrahedral meshes generated from ICMPv2 can catch well the main features of
the complicated geometric shapes of the protein, membrane, and solvent regions
Dp, Dm and Ds and the complex interfaces of the box domain mesh Ωh.

Figure 13 presents a comparison of the membrane and solvent meshes Dm,h

and Ds,h generated by ICMPv1 and ICMPv2 for VDAC. From it we can see that
ICMPv2 can generate either Dm,h or Ds,h in higher quality than ICMPv1. We
should point out that we spent a lot of time on the adjustment of mesh parameters
to let ICMPv1 be able to extract Dm,h and Ds,h from the given expanded solvent

mesh D̂s,h successively in the sense that the membrane mesh Dm,h does not contain

TETRAHEDRAL MESHES FOR FINITE ELEMENT ION CHANNEL CALCULATION 899

(A) A top view (B) A side view

Figure 11. A comparison of a protein mesh Dp,h generated by
ICMPv2 with a molecular structure of α-HL (PDB ID: 7AHL).
Here the protein structure is depicted in cartoon backbone repre-
sentation and colored in red, blue, yellow, and cyan.

any tetrahedron from the solvent mesh Ds,h. Even so, the numerical schemes of
ICMPv1 for constructing a box surface mesh and for selecting a set of mesh points
from the bottom and top membrane surfaces still caused extraction problems, which
decayed mesh quality.

Table 3. A comparison of the computer performance of ICMPv1
with that of ICMPv2.

Mesh
package

CPU time (in seconds)

gA Cx26 α-HL VDAC
ICMPv1 12.3 90.4 94.5 50.1
ICMPv2 1.1 2.2 2.5 1.5

Table 3 reports the performance of ICMPv1 and ICMPv2 in computer CPU
time spent on the extraction of membrane and solvent meshes Dp,h and Ds,h from

a given expanded solvent mesh D̂s,h. From Table 3 it can be seen that our new
numerical algorithms reported in Sections 3, 4, and 5 can be much more efficient
than the corresponding algorithms in ICMPv1 — about 11 times faster for gA and
at least 30 times faster for others.

Finally, we did tests on an ion channel molecular structure with two ion channel
pores to test the robustness of ICMPv2. We created this test case through rotating
the α-helix of VDAC by 20◦ along the z axis at the hinge region (Gly-21Tyr-
22Gly-23Phe-24Gly-25). A view of the molecular structure of this modified VDAC,
denoted by mVDAC, is displayed in Figure 14. With the values of parameters
Z1, Z2, and hm and the box domain Ω used in the case of VDAC (see Table 1),
ICMPv2 produced both membrane and solvent meshes in about 4.1 seconds only,
showing the efficiency of our new schemes and the robustness of ICMPv2. A view
of the protein, membrane, and solvent meshes of mVDAC is displayed in Figure 14.

900 Z. CHAO, S. GUI, B. LU, D. XIE

(A) A view of Ωh (B) Side view of Ds,h

(C) Top view of Dm,h at z = Z2
(D) Cross section of Ds,h on the yz-
plane

Figure 12. The whole domain mesh Ωh, solvent mesh Ds,h, and
membrane mesh Dm,h generated by ICMPv2 for the ion channel
protein α-HL.

Here, the TMSmesh parameters d = 0.4 and c = e = 0.9; the numbers of vertices
are 80630, 16001, 121943, 55779, 29185, and 66988 and the numbers of tetrahedra
are 413086, 72646, 752618, 274675, 138411, and 339532, respectively, for the meshes
D̂s,h, D

p
s,h, Ωh, Ds,h, Dm,h, and Dp,h.

As comparison, we did tests on mVDAC using ICMPv1 too. However, ICM-
Pv1 was found not to work on this test case. The best meshes that we produced
from ICMPv1 (in the sense of containing a small number of false tetrahedra) were
displayed in Figure 14. From Plot (C) it can be seen that the membrane mesh

TETRAHEDRAL MESHES FOR FINITE ELEMENT ION CHANNEL CALCULATION 901

A side view of a membrane mesh Dm,h

(A) By ICMPv1 (B) By ICMPv2

A top view of a membrane mesh Dm,h

(C) By ICMPv1 . (D) By ICMPv2

A view of the bottom portion Db
s,h of a solvent mesh Ds,h

(E) By ICMPv1 (F) By ICMPv2

Figure 13. A comparison of the membrane and solvent meshes
Dm,h and Ds,h generated by ICMPv1 with those by ICMPv2 for
VDAC. Here Db

s,h is defined in (8).

Dm,h still contains many tetrahedra that belong to the solvent mesh Ds,h. Thus,
the solvent mesh Ds,h losses many tetrahedra so that its geometric shape has been
twisted. Such poor membrane and solvent meshes may affect the approximation
accuracy of a PBE/PNP finite element solution.

To illustrate it, we did numerical tests using the PNP finite element software
package reported in [6] for the mVDAC in a salt solution of 0.1 mole potassium
chloride (KCl). Since the ICMPv1 meshes reported in Figure 14 failed to work

902 Z. CHAO, S. GUI, B. LU, D. XIE

(A) Top view of molecular structure (B) Top view of Dp,h

A top view of a membrane mesh Dm,h

(C) By ICMPv1 (D) By ICMPv2

A side view of a portion Dp
s,h of Ds,h within the ion channel pore

(E) By ICMPv1 (F) By ICMPv2

Figure 14. (A,B): A molecular structure of mVDAC and a pro-
tein mesh of mVDAC generated by ICMPv2. (C) to (F): A com-
parison of the tetrahedral meshes Dm,h and Dp

s,h generated by

ICMPv2 with those by ICMPv1 for mVDAC. Here Dp
s,h is defined

in (8) and mVDAC is a modified VDAC generated by rotating the
α-helix of VDAC at the hinge region.

TETRAHEDRAL MESHES FOR FINITE ELEMENT ION CHANNEL CALCULATION 903

(A) (B)

Figure 15. (A) A color mapping of the potassium concentration

difference |c(1)1 −c
(2)
1 | on the surface of a solvent mesh, D

(2)
s,h, gener-

ated by ICMPv2. (B) A color mapping of the chloride concentra-

tion difference |c(1)2 − c
(2)
2 | on the surface of D

(2)
s,h. Here the range

of color mapping is from 0 (in blue) to 5 (in red) moles per liter.

for the PNP finite element solver, we generated a smoother ion channel molecular
triangular surface mesh through changing the TMSmesh parameter d from 0.4 to
0.2. We then obtained the ICMPv1 meshes, which are similar to the ones reported
in Figure 14 (C, E) but work for the PNP software package (in the sense that
all the involving iterative schemes are convergent). With the same ICMPv1 mesh
parameters, we generated the ICMPv2 meshes. We then derived the potassium

concentration c
(1)
1 and chloride concentration c

(1)
2 from the ICMPv1 meshes via the

PNP software package. We also similarly got the potassium concentration c
(2)
1 and

chloride concentration c
(2)
2 by using the ICMPv2 meshes. In these calculations,

we used the default parameter values of the PNP model and software package.

Since c
(1)
1 and c

(1)
2 are defined on the solvent region mesh (with 40,212 vertices)

generated by ICMPv1, which is different from the solvent region mesh D
(2)
s,h (with

40,554 vertices) generated by ICMPv2, they were interpolated to D
(2)
s,h so that the

potassium concentration difference |c(1)1 −c
(2)
1 | and chloride concentration difference

|c(1)2 − c
(2)
2 | were done on D

(2)
s,h.

Figure 15 displays the values of differences |c(1)1 − c
(2)
1 | and |c(1)2 − c

(2)
2 | in color

mapping on the surface of the solvent mesh D
(2)
s,h from the range 0 (in blue) to 5 (in

red) moles per liter (i.e. all the values greater than 5 are colored in red). From the
figure it can be seen that the ICMPv1 meshes significantly disturbed the PNP finite
element solution generated by using the ICMPv2 meshes. We further found that the

maximum values of c
(1)
1 and c

(1)
2 were about 17,001 and 12,990, respectively, which

are unreasonably larger than the maximum values 615 and 299 of c
(2)
1 and c

(2)
2 .

These test results demonstrate that meshes in low quality can significantly affect
PNP finite element solutions. Hence, updating ICMPv1 to ICMPv2 is important
and necessary.

904 Z. CHAO, S. GUI, B. LU, D. XIE

7. Conclusions

A PBE/PNP ion channel finite element solver can effectively handle the com-
plicated geometries of a protein region, a membrane region, and a solvent region
as well as an interface between two of these three regions within a simulation box
domain. This remarkable feature make it a much more powerful ion channel simu-
lation tool than the corresponding finite difference solver. However, its numerical
accuracy depends on the quality of an unstructured tetrahedral mesh to be used
in its implementation. The application of a PBE/PNP ion channel finite elemen-
t solver can be greatly enhanced and extended through developing and improving
meshing algorithms and software. Currently, the ion channel mesh software package
developed in Lu’s research group a few years ago, which is referred to as ICMPv1
in this paper, is the only one that works for PBE/PNP ion channel finite element
solvers. To further improve it, we have presented three new numerical schemes
and implemented them in Python. This work has resulted in the second version of
ICMPv1, called ICMPv2 in this paper. Numerical test results on four ion channel
proteins with different geometric complexities are reported in this paper, confirming
that ICMPv2 can significantly improve the mesh quality and computer performance
of ICMPv1 in the generation of an expanded solvent mesh and in the extraction of
membrane and solvent meshes from a given expanded solvent mesh.

We need to point out that this work purely aims to generate unstructured tetra-
hedral meshes for the classical PBE and PNP ion channel models and their variants
(such as ion size modified PBE/PNP ion channel models and a nonlocal modified
PBE model [24]) that involve a piecewise constant permittivity function (i.e. treat-
ing the protein, membrane, and solvent regions of a simulation box domain as three
different continuum dielectrics with distinct permittivity constants). These models
have been widely applied to various ion channel simulations and will remain im-
portant and valuable in the fields of computational biochemistry and mathematical
biology even though new dielectric continuum ion channel models may be developed
from other modeling methodologies (e.g. smooth interface methods and continuous
dielectric permittivity functions [25, 26]). Hence, in the future, we will do more
numerical tests on various complex ion channel proteins and further improve the
robustness and performance of ICMPv2.

Acknowledgements

This work was partially supported by the Simons Foundation, USA, through
research award 711776. Chao’s work was supported by 2021 AMS-Simons Travel
Grant, USA. Gui and Lu’s work was supported by the National Natural Science
Foundation of China (Grant numbers 11771435 and 22073110).

References

[1] B. Lu, Y. Zhou, M. Holst, J. McCammon, Recent progress in numerical methods for the

Poisson-Boltzmann equation in biophysical applications, Communications in Computational
Physics 3 (5) (2008) 973–1009.

[2] M. J. Holst, The Poisson-Boltzmann equation: analysis and multilevel numerical solution,
Online.

[3] L. Chen, M. J. Holst, J. Xu, The finite element approximation of the nonlinear Poisson-
Boltzmann equation, SIAM journal on numerical analysis 45 (6) (2007) 2298–2320.

[4] D. Xie, New solution decomposition and minimization schemes for Poisson-Boltzmann e-
quation in calculation of biomolecular electrostatics, Journal of Computational Physics 275

(2014) 294–309.

TETRAHEDRAL MESHES FOR FINITE ELEMENT ION CHANNEL CALCULATION 905

[5] T.-L. Horng, T.-C. Lin, C. Liu, B. Eisenberg, PNP equations with steric effects: a model of
ion flow through channels, The Journal of Physical Chemistry B 116 (37) (2012) 11422–11441.

[6] D. Xie, Z. Chao, A finite element iterative solver for a PNP ion channel model with Neumann
boundary condition and membrane surface charge, Journal of Computational Physics 423
(2020) 109915.

[7] Z. Chao, D. Xie, An improved Poisson-Nernst-Planck ion channel model and numerical studies

on effects of boundary conditions, membrane charges, and bulk concentrations, Journal of
Computational Chemistry 42 (27) (2021) 1929–1943.

[8] M. Chen, B. Tu, B. Lu, Triangulated manifold meshing method preserving molecular surface
topology, Journal of Molecular Graphics and Modelling 38 (2012) 411–418.

[9] B. Tu, S. Bai, M. Chen, Y. Xie, L. Zhang, B. Lu, A software platform for continuum modeling
of ion channels based on unstructured mesh, Computational Science & Discovery 7 (1) (2014)
014002.

[10] T. Liu, S. Bai, B. Tu, M. Chen, B. Lu, Membrane-channel protein system mesh construction

for finite element simulations, Computational and Mathematical Biophysics 1 (2015) 128–139.
[11] T. Liu, M. Chen, B. Lu, Efficient and qualified mesh generation for Gaussian molecular

surface using adaptive partition and piecewise polynomial approximation, SIAM Journal on
Scientific Computing 40 (2) (2018) B507–B527.

[12] M. Chen, B. Lu, TMSmesh: a robust method for molecular surface mesh generation using a
trace technique, Journal of Chemical Theory and Computation 7 (1) (2011) 203–212.

[13] T. Liu, M. Chen, Y. Song, H. Li, B. Lu, Quality improvement of surface triangular mesh

using a modified laplacian smoothing approach avoiding intersection, PLoS One 12 (9) (2017)
e0184206.

[14] D. Xie, B. Lu, An effective finite element iterative solver for a Poisson-Nernst-Planck ion
channel model with periodic boundary conditions, SIAM Journal on Scientific Computing

42 (6) (2020) B1490–B1516.
[15] D. Xie, An efficient finite element iterative method for solving a nonuniform size modified

Poisson-Boltzmann ion channel model, arXiv:2108.13616 and to be published on Journal of
Computational Physics.

[16] J. Ahrens, B. Geveci, C. Law, Paraview: An end-user tool for large data visualization, The
visualization handbook 717 (8) (2005).

[17] H. Si, K. Gärtner, Meshing piecewise linear complexes by constrained Delaunay tetrahedral-
izations, Proceedings of the 14th International Meshing Roundtable (2005) 147–163.

[18] H. Si, TetGen, a Delaunay-based quality tetrahedral mesh generator, ACM Transactions on
Mathematical Software 41 (2) (2015) 1–36.

[19] S. Decherchi, W. Rocchia, A general and robust ray-casting-based algorithm for triangulating

surfaces at the nanoscale, PloS One 8 (4) (2013) e59744.
[20] Z. Yu, M. J. Holst, J. A. McCammon, High–fidelity geometric modeling for biomedical ap-

plications, Finite Elements in Analysis and Design 44 (11) (2008) 715–723.
[21] M. F. Sanner, A. J. Olson, J. C. Spehner, Reduced surface: an efficient way to compute

molecular surfaces, Biopolymers 38 (3) (1996) 305–320.
[22] P. Sjoberg, MolSurf-A generator of chemical descriptors for QSAR, Computer-Assisted Lead

Finding and Optimization (1997) 83–92.
[23] T. Möller, B. Trumbore, Fast, minimum storage ray-triangle intersection, Journal of graphics

tools 2 (1) (1997) 21–28.
[24] D. Xie, Y. Jiang, A nonlocal modified Poisson-Boltzmann equation and finite element solver

for computing electrostatics of biomolecules, Journal of Computational Physics 322 (2016),
1–20.

[25] B. Lu, J. A. McCammon, Molecular surface-free continuum model for electrodiffusion pro-
cesses, Chemical physics letters, 451(4-6) (2008) 282–286.

[26] T. Hazra, S. A. Ullah, S. Wang, E. Alexov, S. Zhao, A super-Gaussian Poisson-Boltzmann
model for electrostatic free energy calculation: smooth dielectric distribution for protein

cavities and in both water and vacuum states, Journal of Mathematical Biology 79 (2) (2019)
631–672.

906 Z. CHAO, S. GUI, B. LU, D. XIE

Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA.

LSEC, NCMIS, Key Laboratory of Systems and Control, Institute of Systems Science, Academy
of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China. School
of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.

LSEC, NCMIS, Key Laboratory of Systems and Control, Institute of Systems Science, Academy
of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China. School
of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.

Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI
53201, USA. Corresponding author.

E-mail : dxie@uwm.edu.

	1. Introduction
	2. A framework for ion channel mesh generations
	3. Construction of a box triangular surface mesh
	4. A numerical scheme for selecting membrane surface mesh points
	5. Extraction of membrane and solvent meshes
	6. Numerical results
	7. Conclusions
	Acknowledgements
	References

