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Abstract. In this paper, we present and analyze a new ultra-weak discontinuous Galerkin
(UWDG) finite element method for two-dimensional semilinear second-order elliptic problems

on Cartesian grids. Unlike the traditional local discontinuous Galerkin (LDG) method, the pro-
posed UWDG method can be applied without introducing any auxiliary variables or rewriting the
original equation into a system of equations. The UWDG scheme is presented in details, including
the definition of the numerical fluxes, which are necessary to obtain optimal error estimates. The

proposed scheme can be made arbitrarily high-order accurate in two-dimensional space. The error
estimates of the presented scheme are analyzed. The order of convergence is proved to be p + 1
in the L2-norm, when tensor product polynomials of degree at most p and grid size h are used.
Several numerical examples are provided to confirm the theoretical results.

Key words. Ultra-weak discontinuous Galerkin method; elliptic problems; convergence; a priori
error estimation.

1. Introduction

In this paper, we develop a new ultra-weak discontinuous Galerkin (UWDG)
finite element method for the semilinear second-order elliptic problems of the form

(1a) −∆u+ f(x, u) = 0, x ∈ Ω ⊂ Rd, d = 1, 2, 3.

We shall assume that the nonlinear function f(x, u) : Ω × R → R is smooth with
respect to its arguments x and u. To be more precise, we assume that f and its
partial derivatives are continuous for x ∈ Ω and u ∈ R and satisfies the uniform
bound

(1b) |f(x, u)| ≤ M, ∀ x ∈ Ω, ∀ u ∈ R,

as well as the Lipschitz condition

(1c) |fu(x, u)− fu(y, v)| ≤ L (|x− y|+ |u− v|) , ∀ x, y ∈ Ω, ∀ u, v ∈ R.

For simplicity, we focus on two dimensions (d = 2) and write x as (x, y). In our
analysis, we consider a rectangular domain denoted by Ω = {x = (x, y) : a < x <
b, c < y < d}. We remark that our results remain true, with minor changes in the
proofs, when the region Ω is a rectangular bounded domain of R3. In this paper,
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we will consider either periodic boundary conditions

u(a, y) = u(b, y), u(x, c) = u(x, d),

ux(a, y) = ux(b, y), uy(x, c) = uy(x, d), x ∈ ∂Ω,(1d)

or mixed Dirichlet-Neumann boundary conditions

(1e) u = gD, x ∈ ∂ΩD, n · ∇u = n · gN , x ∈ ∂ΩN ,

or purely Dirichlet boundary conditions

(1f) u = gD, x ∈ ∂Ω.

Here, n is the outward unit normal to the boundary, ∂Ω, of Ω. For the mixed
boundary conditions (1e), we always assume that the boundary ∂Ω = ∂ΩD ∪ ∂ΩN

is decomposed into two disjoint sets ∂ΩD and ∂ΩN where Dirichlet and Neumann
boundary conditions are imposed, respectively. We further assume that the measure
of ∂ΩD is nonzero. In our analysis, we assume that the given functions f , gD, and
gN are smooth functions on their domains such that the problem (1) has one and
only one solution u ∈ H2(Ω). We refer the reader to [23, 25, 29] and references
therein for the existence and uniqueness of solutions to elliptic problems.
The origin of the discontinuous Galerkin (DG) finite element method (FEM) can
be traced back to [32, 34] where it has been introduced for discretizing the neutron
transport equation. Since then various types of DG schemes have been successfully
used to discretize differential equations containing higher order spatial derivatives.
DG methods for elliptic problems have been introduced in the late 90’s. They
are by now well-understood and rigorously analyzed in the context of linear elliptic
problems (cf. [5] for the Poisson problem). The most successful DG schemes include
symmetric interior penalty DG (SIPG) methods, non-symmetric interior penalty
DG (NIPG) methods, local DG (LDG) methods, direct DG (DDG) methods, and
ultra-weak DG (UWDG) methods. The class of SIPG methods (introduced in [4,
35]) and the class of NIPG methods (considered in [14]) are important methods for
higher order differential equations. Some of the general attractive features of these
methods are the local and high order of approximation, the flexibility due to local
mesh refinement and the ability to handle unstructured meshes and discontinuous
coefficients. The SIPG and NIPG methods use penalties to enforce weakly both
continuity of the solution and the boundary conditions. The LDG method was
first introduced to solve general convection-diffusion problems by Cockburn and
Shu [21]. Nowadays, the LDG method has been successfully used in solving many
linear and nonlinear problems. The key idea of the LDG method is to first rewrite
the equation with higher order derivatives into a first order system, then apply the
standard DG method on the system by properly choosing the so-called numerical
fluxes. The DDG method was first introduced by Liu and Yan [33]. It involves
the interior penalty methodology since the scheme is based on the direct weak
formulation. Unlike the LDG method, the DDG method is based on the direct
weak formulation and the construct of the suitable numerical flux on the cell edges.
This method is called DDG since it does not introduce any auxiliary variables in
contrast to the LDG.
The class of UWDG methods are proposed in [18]. These methods are based on
repeated integration by parts so that all spatial derivatives are shifted from the ex-
act solution to the test function in the weak formulation. Unlike the LDG method,
the UWDG method can be applied without introducing any auxiliary variables
or rewriting the original equation into a larger system. In [18], Cheng and Shu
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developed several UWDG methods to solve the third-order generalized KdV equa-
tion, the second-order convection-diffusion equation, the fourth-order biharmonic
equation, and some fifth-order equations. They used the UWDG method in space
and then they used the total variation diminishing (TVD) high-order Runge-Kutta
method to discretize the resulting systems of ODEs in time. For each case, they
proved the stability of the semi-discrete schemes by a careful choice of interface
numerical fluxes. Their error estimates are sub-optimal. However, their numerical
examples show that the scheme attains the optimal (p + 1)-th order of accuracy.
In the current work we design an UWDG method for the elliptic equation (1) and
we investigate its convergence properties. To the best of our knowledge, this is the
first paper to analyze an UWDG method for the elliptic equation (1).
In [2], Adjerid and Temimi proposed and analyzed a new UWDG finite element
method to solve initial-value problems (IVPs) for ordinary differential equations
(ODEs). They proved that the UWDG solution exhibits an optimal convergence
rate in the L2-norm. The order of convergence is proved to be of order p+1, when
piecewise polynomials of degree at most p are used. They further showed that the
p-degree UWDG solution of mth order ODEs and its first m − 1 derivatives are
superconvergent with order 2p+2−m at the end of each step. Also, they established
that the p-degree discontinuous solution is superconvergent with order p+2 at the
roots of (p+1−m)-degree Jacobi polynomial on each step. Finally, as an application
of the superconvergence results, they constructed asymptotically exact a posteriori
error estimates. Later, Adjerid and Temimi [3] presented a new DG method for
solving the second-order wave equation (1) using the standard continuous finite
element method in space and the UWDG method in time. They proved several
optimal a priori error estimates in space-time norms for this new method and
showed that it can be more efficient than existing methods. They also expressed
the leading term of the local discretization error in terms of Lobatto polynomials
in space and Jacobi polynomials in time which leads to superconvergence points on
each space-time cell. Finally, they constructed efficient and asymptotically exact a
posteriori estimates for space-time discretization errors.
In [13], Baccouch and Temimi studied the convergence and superconvergence prop-
erties of the UWDG method for a linear two-point boundary-value problem (BVP).
They proved that the UWDG solution and its derivative exhibit optimal O(hp+1)
and O(hp) convergence rates in the L2-norm, respectively, when p-degree piecewise
polynomials with p ≥ 1 are used. They further proved that the p-degree UWDG
solution and its derivative are O(h2p) superconvergent at the downwind and upwind
points, respectively. They observed optimal rates of convergence and superconver-
gence even in the presence of boundary layers when Shishkin meshes are used. More
recently, Chen et al. [17] developed an UWDG method to solve the one-dimensional
nonlinear Schrödinger equation. They provided stability conditions and error esti-
mates for the scheme with a general class of numerical fluxes.
In this current work, we develop and analyze a new high order UWDG for the model
(1). Convergence of the proposed scheme is rigorously analyzed. In particular, if
h denotes the mesh size, then the UWDG solution uh is shown to converge to the
true solution u at O(hp+1) rate in the L2-norm, when tensor product polynomials
of degree at most p and grid size h are used. We would like to mention that the
proposed scheme has several advantages over existing numerical methods such as
those proposed in [6, 7, 15, 24, 26, 27, 31] as it leads to a smaller fully discrete
problem for the solution while maintaining optimal convergence rates for both the
solution and its first-order derivative. Although our error analysis is presented for
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the two-dimensional Poisson’s equation, it can be readily extended to the three-
dimensional Poisson’s equation.
The rest of the paper is organized as follows. In Section 2, we present the UWDG
method for the elliptic problem (1). In Section 3, we present an a priori error
analysis for the two-dimensional elliptic problem. In Section 4, we present numerical
results for the two-dimensional elliptic problems to confirm the theoretical results.
Finally, we give concluding remarks in Section 5.

2. The UWDG method and Preliminaries

This section is devoted to the definition of the UWDG method. We also provide
some notation and projection results needed for our a priori error estimates in
Section 3.

2.1. The UWDG scheme. Here, we define the finite element spaces and proceed
to construct the UWDG scheme. Let Th be Cartesian mesh of the domain Ω =
[a, b]× [c, d]. We assume that the mesh consists of N = n×m rectangular elements
K = Ii×Jj , where Ii = [xi−1, xi], i = 1, 2, . . . , n and Jj = [yj−1, yj ], j = 1, 2, . . . ,m
where

a = x0 < x1 < · · · < xn = b, c = y0 < y1 < · · · < ym = d.

For each rectangle K ∈ Th, we denote the mesh sizes as hi = xi − xi−1 and kj =
yj − yj−1. The maximal mesh size is denoted by h = max

1≤i≤n, 1≤j≤m
(hi, kj). In this

paper, we assume the mesh Th is a shape regular triangulation of Ω, characterized by
a small parameter h, namely that there exists a constant c0 > 0 such that cK ≥ c0,
∀ K ∈ Th. Here cK is the so-called chunkiness parameter defined by cK = hK/dK ,
where hK = max

1≤i≤n, 1≤j≤m
(hi, kj) is the local mesh size defined as the length of the

longest edge of the element K and dK is the diameter of the inscribed circle.
The UWDG weak formulation is obtained by multiplying equation (1a) by suffi-
ciently smooth test function v, integrating over an arbitrary element K ∈ Th, and
using Green’s formula

(2) −
∫∫

K

u∆v dxdy+

∫
∂K

n·∇v u ds−
∫
∂K

n·∇u v ds+

∫∫
K

f(x, y, u) v dxdy = 0,

where n is the outward normal unit vector to the boundary ∂K of the element
K ∈ Th.
Let Pp(Ii) and Pp(Jj) be the spaces of polynomials of degree at most p on the
intervals Ii and Jj , respectively. We define the piecewise polynomial finite element
space V p

h as the space of tensor product of Pp(Ii) and Pp(Jj), that is

V p
h = {v ∈ L2(Ω) : Ω → R| v|K ∈ Qp(K), ∀ K ∈ Th},

where Qp(K) = Pp(Ii) ⊗ Pp(Jj). We note that V p
h will be used for both our trial

and test spaces.
The UWDG method is formulated as: find uh ∈ V p

h such that ∀ v ∈ V p
h

(3a)

−
∫∫

K

uh∆v dxdy+

∫
∂K

n·∇v ûh ds−
∫
∂K

n·∇̂uh v ds+

∫∫
K

f(x, y, uh) v dxdy = 0,

for all K ∈ Th. The ”hat” quantities ûh and ∇̂uh are the so-called numerical fluxes.
They take either the value from one side of the interface (namely inside or outside
of the element K) or some linear combination of the values from both sides of the
interface. The numerical fluxes need to be designed suitably to ensure consistency,
stability, and convergence.
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To define the numerical fluxes ûh and ∇̂uh on the boundary Γ, we introduce some
definitions and notations. For y ∈ Jj , we let v

+(xi, y) and v−(xi, y) be the values of
the function v at the point (xi, y) from the right element Ii+1×Jj and from the left
element Ii×Jj , respectively. Similarly, for x ∈ Ii, we use v

+(x, yj) and v−(x, yj) to
denote the values of v at the point (x, yj) from the top element Ii × Jj+1 and from
the bottom element Ii × Jj , respectively, i.e., for i = 0, 1, . . . , n and j = 0, 1, . . . ,m

v±(xi, y) = v(x±
i , y), y ∈ Jj , v±(x, yj) = v(x, y±j ), x ∈ Ii.

LetK+ andK− be two adjacent rectangle elements of the partition Th. Consider an
arbitrary point (x, y) of the edge Γ = K+∩K− sharing K+ and K−, and use n± to
denote the corresponding outward unit normal vectors at that point. Let (v±,w±)
be the traces of (v,w) on Γ from the interior of the element K±. The mean values
{·} and jumps J·K of a scalar-valued function v ∈ V p

h and a vector-valued function
w ∈ (V p

h )
2 at the point (x, y) ∈ Γ are defined as

{v} =
1

2
(v+ + v−), {w} =

1

2
(w+ +w−),

JvK = v+n+ + v−n−, JwK = n+ ·w+ + n− ·w−.

Now, we are in the position to introduce the numerical fluxes [11].

• Numerical fluxes associated with the periodic boundary conditions (1d):
We use the following alternating numerical fluxes

(3b) ûh = u−
h and n · ∇̂uh = n · (∇uh)

+.

We remark that this choice is not particularly restrictive. For example, the

other choice ûh = u+
h and n · ∇̂uh = n · (∇uh)

− can be used.
• Numerical fluxes associated with the mixed boundary conditions (1e): Let
v be a fixed vector that is not parallel to any normals of element interfaces.
It is used to define artificial inflow and outflow boundaries of the domain
Ω. The vector v is employed to provide a single rule for selecting the

numerical fluxes ûh and ∇̂uh. For simplicity, we choose v = [1, 1]t. Then,
we define the following artificial inflow boundary ∂Ω− and the artificial
outflow boundary ∂Ω+ as

∂Ω− = {(x, y) ∈ ∂Ω | n · v ≤ 0} = ∂Ω−
1 ∪ ∂Ω−

2 ,

∂Ω+ = {(x, y) ∈ ∂Ω | n · v > 0} = ∂Ω+
1 ∪ ∂Ω+

2 ,

where ∂Ω−
1 , ∂Ω

−
2 , ∂Ω

+
1 , and ∂Ω+

2 are, respectively, the left, bottom, right,
and top edges of the physical domain Ω. We also define the inflow boundary
Γ− and the outflow boundary Γ+ of each rectangle element K ∈ Th as

Γ− = {(x, y) ∈ Γ | n · v ≤ 0} = Γ−
1 ∪ Γ−

2 , Γ+ = {(x, y) ∈ Γ | n · v > 0} = Γ+
1 ∪ Γ+

2 ,

where Γ−
1 , Γ

−
2 , Γ

+
1 , and Γ+

2 are, respectively, the left, bottom,right, and top
edges of the rectangle K.
Now, we are ready to define the numerical fluxes associated with the mixed
Dirichlet-Neumann boundary conditions (1e): If Γ is an interior edge then
we take

(3ca) ûh = u−
h and n · ∇̂uh = n · (∇uh)

+,
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and if the edge Γ lies on ∂Ω, we take

ûh =


Π−

h gD, (x, y) ∈ ∂ΩD,
u−
h , (x, y) ∈ ∂ΩN ∩ ∂Ω+,

u+
h , (x, y) ∈ ∂ΩN ∩ ∂Ω−,

n · ∇̂uh =

 Π−
h (n · gN ), (x, y) ∈ ∂ΩN ,

n · (∇uh)
+, (x, y) ∈ ∂ΩD ∩ ∂Ω−,

n · (∇uh)
−, (x, y) ∈ ∂ΩD ∩ ∂Ω+,

(3cb)

where Π−
h is a special projection, which will be defined later.

• Numerical fluxes associated with the purely Dirichlet boundary conditions
(1f): If Γ is an interior edge then we take

(3da) ûh = u−
h and n · ∇̂uh = n · (∇uh)

+,

and if the edge Γ lies on ∂Ω, we take

ûh = Π−
h gD, (x, y) ∈ ∂Ω, n · ∇̂uh =

{
n · (∇uh)

+, (x, y) ∈ ∂Ω ∩ ∂Ω−,
n · (∇uh)

−, (x, y) ∈ ∂Ω ∩ ∂Ω+,
(3db)

where Π−
h is a special projection which will be defined later.

After we select the numerical fluxes ûh and ∇̂uh, the discrete scheme (3) is equiv-
alent to an algebraic system of nonlinear equations for the unknown coefficients
appearing in uh. The resulting system can be solved by direct or iterative methods
for nonlinear system of equations.
Throughout the paper, we use the following notation:

• Γh: the set of all element interfaces of Th,
• ΓB: the set of all boundary edges of the partition Th on ∂Ω,
• ΓI = Γh\ΓB : the set of all interior interfaces of Th,
• Γ−

B: the set of edges on the inflow boundary ∂Ω−,

• Γ+
B: the set of edges on the outflow boundary ∂Ω+,

• Γ±
D = ∂ΩD ∩ ∂Ω± andΓ±

N = ∂ΩN ∩ ∂Ω±,
• ΓD and ΓN , respectively, denote the sets of all edges in ∂ΩD and ∂ΩN .

2.2. Norms. In this subsection, we define several norms that will be used through-

out the paper. Denote ∥v∥0,K =
(∫∫

K
v2(x, y)dxdy

)1/2
to be the standard L2-norm

of v on the rectangle K ∈ Th. For any natural number ℓ and for K ∈ Th, we
consider the Hℓ-norm of the Sobolev space Hℓ(K), defined by

∥v∥ℓ,K =

 ∑
0≤α+β≤ℓ

∥∥∥∥ ∂α+βv

∂xα∂yβ

∥∥∥∥2
0,K

1/2

.

Let ΓK be the edges of the element K, and we define

∥v∥ΓK
=

(∫
∂K

v2(x(s), y(s))ds

)1/2

.

We also define the broken Sobolev norm by

∥v∥ℓ =

( ∑
K∈Th

∥v∥2ℓ,K

)1/2

.

Moreover, we define the Hℓ-norm for a real-valued function v on the whole compu-
tational domain Ω as

∥v∥Γh
=

( ∑
K∈Th

∥v∥2ΓK

)1/2

.
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For a vector-valued function w = [w1, w2]
t ∈ Hℓ(K) =

(
Hℓ(K)

)2
, we define the

Hℓ-norm on the rectangle K as

∥w∥ℓ,K =
(
∥w1∥2ℓ,K + ∥w2∥2ℓ,K

)1/2
.

The Hℓ-norm of w on the whole domain Ω is

∥w∥ℓ =

( ∑
K∈Th

∥w∥2ℓ,K

)1/2

.

Finally, we define the semi-norm on the element K and the semi-norm on the
computational domain Ω as

|v|ℓ,K =

 ∑
α+β=ℓ

∥∥∥∥ ∂α+βv

∂xα∂yβ

∥∥∥∥2
0,K

1/2

, |v|ℓ =

( ∑
K∈Th

|v|2ℓ,K

)1/2

.

2.3. Inverse/trace estimates. In this subsection, we recall the basic proper-
ties of the finite element space V p

h . We summarize the classical inverse and trace
properties in the following lemma [20].

Lemma 2.1. Let K = Ii × Jj be an element in Th and denote its boundary by Γ.
Suppose that v ∈ V p

h . Then there exists a constant C independent of the mesh size
h and v such that

∥∇v∥0,K ≤ Ch−1 ∥v∥0,K ,(5a)

h ∥v∥∞,K + h1/2 ∥v∥0,Γ ≤ C ∥v∥0,K ,(5b)

where ∥v∥0,Γ =
(∫

Γ
v2(x(s), y(s)) ds

)1/2
and ∥v∥∞,K = max

(x,y)∈K
|v(x, y)|.

2.4. Projections. In this paper, we consider special projections in one and two
dimensions. We use Pp(Ii) to denote the space of polynomials of degree not ex-
ceeding p on Ii = [xi−1, xi]. For p ≥ 1, we define the special projection P−

x into V p
h

such that, for any u and for all i = 0, 1, . . . , n, the projection P−
x u satisfies:∫

Ii

(u− P−
x u)v dx = 0, ∀ v ∈ Pp−2(Ii),

(u− P−
x u)x(x

+
i−1) = 0, (u− P−

x u)(x−
i ) = 0.(6)

Similarly, for p ≥ 1, we define another projection P+
x into V p

h such that, for any u,
the projection P+

x u satisfies: for all i = 0, 1, . . . , n∫
Ii

(u− P+
x u)v dx = 0, ∀ v ∈ Pp−2(Ii),

(u− P+
x u)x(x

−
i ) = 0, (u− P+

x u)(x+
i−1) = 0.(7)

For the above one-dimensional projection, the following a priori error estimates
hold

(8)
∥∥u− P±

x u
∥∥+ h

∥∥u− P±
x u
∥∥
∞ + h1/2

∥∥u− P±
x u
∥∥
Γh

≤ Chp+1 ∥u∥p+1 .

where Γh denotes the set of boundary points of all elements Ii, and C is a positive
constant dependent on p but not on h.
Since Cartesian meshes are used in this paper, we apply the tensor product of the
projections in the one-dimensional case. On the rectangle element K = Ii × Jj ,
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we define special projections Π−
h for a real-valued function u = u(x, y) into V p

h as
tensor product of the projections in one dimension

(9) Π±
h u = P±

x ⊗ P±
y u,

with the subscripts x and y indicating the use of the one-dimensional projections
P±
x with respect to the corresponding variable. To be more specific, the projection

Π−
h u ∈ V p

h satisfies the following (p+ 1)2 conditions∫∫
K

(u−Π−
h u)v dxdy = 0, ∀ v ∈ Qp−2(K),(10a) ∫

Jj

(u−Π−
h u)(x

−
i , y)v(y) dy = 0, ∀ v ∈ Pp−2(Jj),(10b) ∫

Ii

(u−Π−
h u)(x, y

−
j )v(x) dx = 0, ∀ v ∈ Pp−2(Ii),(10c) ∫

Jj

(u−Π−
h u)x(x

+
i−1, y)v(y) dy = 0, ∀ v ∈ Pp−2(Jj),(10d) ∫

Ii

(u−Π−
h u)y(x, y

+
j−1)v(x) dx = 0, ∀ v ∈ Pp−2(Ii),(10e)

(u−Π−
h u)(x

−
i , y

−
j ) = 0,(10f)

(u−Π−
h u)x(x

+
i−1, y

−
j ) = 0,(10g)

(u−Π−
h u)y(x

−
i , y

+
j−1) = 0,(10h)

(u−Π−
h u)xy(x

+
i−1, y

+
j−1) = 0.(10i)

Similar to the one-dimensional case, we have the following error estimates.

Lemma 2.2. The two-dimensional projection Π−
h u satisfying ( 10) exists and is

unique. Furthermore, for u ∈ Hp+1(Ω), there exists a constant C independent of h
such that ∥∥u−Π−

h u
∥∥+ h

∥∥u−Π−
h u
∥∥
1
≤ Chp+1 ∥u∥p+1 .(11)

Proof. Since ( 10) is a linear problem in finite dimension, existence is equivalent to
uniqueness. Thus, it is enough to show uniqueness. We assume that there are two
solutions Π−

h u and Π̂−
h u. The difference Q−

h u = Π−
h u− Π̂−

h u ∈ Qp(K) satisfies

(12a)

∫∫
K

Q−
h u v dxdy = 0, ∀ v ∈ Qp−2(K),

(12b)

∫
Jj

Q−
h u(x

−
i , y)v(y) dy = 0, ∀ v ∈ Pp−2(Jj),

(12c)

∫
Ii

Q−
h u(x, y

−
j )v(x) dx = 0, ∀ v ∈ Pp−2(Ii),

(12d)

∫
Jj

(Q−
h u)x(x

+
i−1, y)v(y) dy = 0, ∀ v ∈ Pp−2(Jj),

(12e)

∫
Ii

(Q−
h u)y(x, y

+
j−1)v(x) dx = 0, ∀ v ∈ Pp−2(Ii),

(12f)
Q−

h u(x
−
i , y

−
j ) = (Q−

h u)x(x
+
i−1, y

−
j ) = (Q−

h u)y(x
−
i , y

+
j−1) = (Q−

h u)xy(x
+
i−1, y

+
j−1) = 0.
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Let Q−
h u =

∑p
k=0

∑p
l=0 ck,lLk(x)Ll(y). Using (12a) with v = Lr(x)Ls(y), r, s =

0, 1, . . . , p− 2, we get

0 =

p∑
k=0

p∑
l=0

ck,l

∫∫
K

Lk(x)Ll(y)Lr(x)Ls(y) dxdy

=

p∑
k=0

p∑
l=0

ck,l

∫
Ii

Lk(x)Lr(x) dx

∫
Jj

Ll(y)Ls(y) dy = cr,s
hi

2r + 1

kj
2s+ 1

.

Therefore

cr,s = 0, r, s = 0, 1, . . . , p− 2.(13)

Next, we use (12b) with v = Ls(y), s = 0, 1, . . . , p− 2 and we apply (13) to get

0 =

∫
Jj

p∑
k=0

p∑
l=0

ck,lLk(xi)Ll(y)Ls(y) dy =

p∑
k=0

p∑
l=0

ck,l

∫
Jj

Ll(y)Ls(y) dy

=
kj

2s+ 1

p∑
k=0

ck,s =
kj

2s+ 1
(cp−1,s + cp,s) .

Thus, we get

cp−1,s + cp,s = 0, s = 0, 1, . . . , p− 2.(14)

Similarly, we use (12d) with v = Ls(y), s = 0, 1, . . . , p−2 and L′
k(xi) = (−1)k+1 k(k+1)

hi

to get

0 =

∫
Jj

p∑
k=0

p∑
l=0

ck,lL
′
k(xi−1)Ll(y)Ls(y) dy

=

p∑
k=0

p∑
l=0

(−1)k+1 k(k + 1)

hi
ck,l

∫
Jj

Ll(y)Ls(y) dy

=
kj

2s+ 1

p∑
k=0

(−1)k+1 k(k + 1)

hi
ck,s

=
kj

hi(2s+ 1)

(
(−1)p(p− 1)pcp−1,s + (−1)p+1p(p+ 1)cp,s +

p−2∑
k=0

(−1)k+1k(k + 1)ck,s

)
Therefore

(−1)p(p− 1)pcp−1,s + (−1)p+1p(p+ 1)cp−1,s = 0, s = 0, 1, . . . , p− 2.(15)

Solving the system (14) and (15), we get

cp−1,s = cp,s = 0, s = 0, 1, . . . , p− 2.

Similarly, we use (12c) and (12e) to get

cr,p−1 = cr,p = 0, r = 0, 1, . . . , p− 2.

Thus, we we have

Q−
h u =cp−1,p−1Lp−1(x)Lp−1(y) + cp−1,pLp−1(x)Ll(p)

+ cp,p−1Lp(x)Ll(p− 1) + cp,pLp(x)Ll(p).
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Finally, we use the four conditions in (12f) to get

cp−1,p−1 + cp−1,p + cp,p−1 + cp,p = 0,

(16)

(−1)p ((p− 1)pcp−1,p−1 + (p− 1)pcp−1,p − p(p+ 1)cp,p−1 − p(p+ 1)cp,p) = 0,

(17)

(−1)p ((p− 1)pcp−1,p−1 − p(p+ 1)cp−1,p + (p− 1)pcp,p−1 − 1p(p+ 1)cp,p) = 0,

(18)

(p− 1)2p2cp−1,p−1 − (p2 − 1)p2cp−1,p − (p2 − 1)p2cp,p−1 + p2(p+ 1)2cp,p = 0.

(19)

Solving the above 4×4 linear system, we get cp−1,p−1 = cp−1,p = cp,p−1 = cp,p = 0,
since the determinant of the coefficient matrix is −16p8. Consequently, we get
Q−

h u = 0.
Finally, the standard approximation theory implies the a priori error estimate
(11). �

3. Error analysis

In this section, we prove the a priori error estimates of the UWDG scheme for
the model BVP (1). Throughout this section, we use c, C > 0 (with or without
subscripts) to denote generic constants, that may change from line to line, but are
not depending on the crucial quantities such as the mesh size h.
To derive the error estimates, let us first denote the error by

eu = u− uh.

We denote the error between the UWDG solution and the projection of the exact
solution by

ξu = uh −Π−
h u ∈ V p

h .

We denote the projection error by

ηu = u−Π−
h u.

Then, the actual error eu can be written as

(20) eu = ηu − ξu.

In our analysis, we shall assume that the function f in (1a) is sufficiently differen-
tiable function. Let D = {(x, y, u)| (x, y) ∈ Ω̄, u ∈ R} ⊂ R3. More precisely, we
assume that the f satisfies the following conditions:

Assumption A1. The function f(x, y, u) and its partial derivative fu are contin-
uous on D and fu is bounded on D i.e.,

(21) |fu(x, y, u)| ≤ M, ∀ (x, y, u) ∈ D.

Assumption A2. The function fu is Lipschitz function. That is, for all (x1, y1, u1)
∈ D and (x2, y2, u2) ∈ D, there exists a positive constant L such that

(22) |fu(x1, y1, u1)− fu(x2, y2, u2)| ≤ L (|x1 − x2|+ |y1 − y2|+ |u1 − u2|) .
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3.1. Preliminary results. In our error analysis, we need the following bilinear
form

(23) BK(u, v) =

∫∫
K

u∆v dxdy −
∫
∂K

u− n · ∇v ds+

∫
∂K

n · (∇u)+ vds.

In the next lemma, we state and prove essential results which will be needed to
prove our main optimal error estimate.

Lemma 3.1. Let BK be defined by (23). Then we have

(24) BK(ηu, v) = 0, ∀ u ∈ Pp+2(K), ∀ v ∈ Qp(K),

where Pp(K) is the space of polynomials of degree at most p on K ∈ Th. In addition,
for u ∈ Hp+3(K), we have the following estimate

(25)

∣∣∣∣∣ ∑
K∈Th

BK(ηu, v)

∣∣∣∣∣ ≤ Chp+1 |u|p+3 ∥v∥ , ∀ v ∈ V p
h .

Proof. Consider the rectangleK = Ii×Jj ∈ Th, where Ii = [xi−1, xi], i = 1, 2, . . . , n
and Jj = [yj−1, yj ], j = 1, 2, . . . ,m. We have

BK(ηu, v) =

∫∫
K

(u−Π−u)(vxx + vyy)dxdy

+

∫
Jj

(u−Π−u)(x−
i−1, y)vx(x

+
i−1, y)dy −

∫
Jj

(u−Π−u)(x−
i , y)vx(x

−
i , y)dy

+

∫
Ii

(u−Π−u)(x, y−j−1)vy(x, y
+
j−1)dx−

∫
Ii

(u−Π−u)(x, y−j )vy(x, y
−
j )dx

−
∫
Jj

(u−Π−u)x(x
+
i−1, y)v(x

+
i−1, y)dy +

∫
Jj

(u−Π−u)x(x
+
i , y)v(x

−
i , y)dy

−
∫
Ii

(u−Π−u)y(x, y
+
j−1)v(x, y

+
j−1)dx+

∫
Ii

(u−Π−u)y(x, y
+
j )v(x, y

−
j )dx.

We remark that u − Π−u = 0 for all u ∈ Qp(K). Thus, (24) holds true for all
u ∈ Qp(K). Thus, we only need to consider the cases u(x, y) = xp+1, xp+1y, xp+2,
yp+1, xyp+1, yp+2.
Let us start with u(x, y) = xp+1 then (u − Π−u)y = 0 since u in independent of
y. Also, by definition of the projection Π−, we have

∫∫
K
(u − Π−u)vxxdxdy = 0,

(u−Π−u)(x−
i , y) = (u−Π−u)x(x

+
i−1, y) = 0. Thus, BK(ηu, v) reduces to

BK(ηu, v) =

∫∫
K

(u−Π−u)vyydxdy

+

∫
Ii

(u−Π−u)(x, y−j−1)vy(x, y
+
j−1)dx−

∫
Ii

(u−Π−u)(x, y−j )vy(x, y
−
j )dx.

Since u−Π−u is independent of y, we write∫∫
K

(u−Π−u)vyydxdy

=

∫
Ii

[
(u−Π−u)(x, y−j )vy(x, y

−
j )− (u−Π−u)(x, y+j−1)vy(x, y

+
j−1)

]
dx.

Thus, BK(ηu, v) = 0 since (u− Π−u)(x, y+j−1) = (u− Π−u)(x, y−j−1). The proof of

the case u(x, y) = xp+2 is similar to that of the case u(x, y) = xp+1. Details are
omitted to save space.
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Next, we consider the case u(x, y) = xp+1y. In this case u − Π−u = y(xp+1 −
P−
x (xp+1)). Therefore∫∫

K

(u−Π−u)vxxdxdy =

∫
Jj

y

(∫
Ii

(xp+1 − P−
x (xp+1))vxxdx

)
dy = 0,∫

Jj

(u−Π−u)(x−
i−1, y)vx(x

+
i−1, y)dy =

∫
Jj

(u−Π−u)(x−
i , y)vx(x

−
i , y)dy = 0,∫

Jj

(u−Π−u)x(x
+
i−1, y)v(x

+
i−1, y)dy =

∫
Jj

(u−Π−u)x(x
+
i , y)v(x

−
i , y)dy = 0.

Thus, BK(ηu, v) simplifies to

BK(ηu, v) =

∫∫
K

(u−Π−u)vyydxdy

+

∫
Ii

(u−Π−u)(x, y−j−1)vy(x, y
+
j−1)dx−

∫
Ii

(u−Π−u)(x, y−j )vy(x, y
−
j )dx

−
∫
Ii

(u−Π−u)y(x, y
+
j−1)v(x, y

+
j−1)dx+

∫
Ii

(u−Π−u)y(x, y
+
j )v(x, y

−
j )dx.

Using u−Π−u = y(xp+1 − P−
x (xp+1)), we obtain

BK(ηu, v) =

∫∫
K

(u−Π−u)vyydxdy +

∫
Ii

yj−1(x
p+1 − P−

x (xp+1))vy(x, y
+
j−1)dx

−
∫
Ii

yj(x
p+1 − P−

x (xp+1))vy(x, y
−
j )dx

−
∫
Ii

(xp+1 − P−
x (xp+1))v(x, y+j−1)dx+

∫
Ii

(xp+1 − P−
x (xp+1))v(x, y−j )dx.(26)

Next, we integrate by parts to write∫∫
K

(u−Π−u)vyydxdy =

∫
Ii

(xp+1 − P−
x (xp+1))

(∫
Jj

yvyydy

)
dx

=

∫
Ii

(xp+1 − P−
x (xp+1))

(
yjvy(x, y

−
j )− yj−1vy(x, y

+
j−1)−

∫
Jj

vydy

)
dx

=

∫
Ii

yj(x
p+1 − P−

x (xp+1))vy(x, y
−
j )dx−

∫
Ii

yj−1(x
p+1 − P−

x (xp+1))vy(x, y
+
j−1)dx

−
∫
Ii

(xp+1 − P−
x (xp+1))v(x, y−j )dx+

∫
Ii

(xp+1 − P−
x (xp+1))v(x, y+j−1)dx.

(27)

Combining (26) and (27), we get BK(ηu, v) = 0.
We would like to remark that the proof of the cases u(x, y) = yp+1, u(x, y) = xyp+1,
and u(x, y) = yp+2 are very similar to the cases u(x, y) = xp+1, u(x, y) = xp+1y,
and u(x, y) = xp+2. We omit the details to save space. This completes the proof
of (24).
Finally, we will prove (25). We first assume that K is the reference square element

K̂ = [−1, 1]2. For û ∈ Hp+3(K̂) and for fixed v̂ ∈ Qp(K̂), the linear functional

û → BK̂(ηû, v̂) is continuous on Hp+3(K̂) with norm bounded by C ∥v̂∥0,K̂ and, by

(24), it vanishes for û ∈ Pp+2(K̂). By the Bramble-Hilbert lemma (see e.g., [19,

Lemma 6]), we obtain for û ∈ Hp+3(K̂) and v̂ ∈ Qp(K̂)∣∣BK̂(ηû, v̂)
∣∣ ≤ C1 |û|p+3,K̂ ∥v̂∥0,K̂ .
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Going back to the physical element K by using the transformation

(28) x(ξ) =
xi−1 + xi

2
+

hi

2
ξ, y(η) =

yj−1 + yj
2

+
kj
2
η,

we get for u ∈ Hp+3(K) and v ∈ Qp(K)

(29) |B(ηu, v)| ≤ C1

∣∣BK̂(ηû, v̂)
∣∣ ≤ C2 |û|p+3,K̂ ∥v̂∥0,K̂ ≤ Chp+1 |u|p+3,K ∥v∥0,K .

Summing over all the elements, we establish the superconvergence result (25). �

Next, we derive the error equations that will be used for the error analysis.

3.2. Error equations. For simplicity we only consider the case of periodic bound-
ary conditions or mixed Dirichlet-Neumann boundary conditions:

(30) u = gD, (x, y) ∈ ∂ΩD = ∂Ω−, n · ∇u = n · gN , (x, y) ∈ ∂ΩN = ∂Ω+.

We remark that this assumption is not essential. We note that if other boundary
conditions are chosen, the numerical fluxes can be easily designed; see e.g., [1, 8,
9, 10, 12]. When the mixed Dirichlet-Neumann boundary conditions (30) are used,
the numerical fluxes (3c) simplify to

(31a) ûh = u−
h and n · ∇̂uh = n · (∇uh)

+,

and if the edge Γ lies on ∂Ω, we take

ûh =

{
u−
h , (x, y) ∈ ΓI ∪ Γ+

B,
Π−

h gD, (x, y) ∈ Γ−
B,

n · ∇̂uh =

{
Π−

h (n · gN ), (x, y) ∈ Γ+
B,

n · (∇uh)
+, (x, y) ∈ ΓI ∪ Γ−

B,

(31b)

Subtracting the discrete formulation (3) from the continuous formulation (2) with
v ∈ V p

h , we obtain the following error equation on the element K: ∀ v ∈ V p
h ,

−
∫∫

K

eu∆v dxdy +

∫
∂K

e−u n · ∇v ds−
∫
∂K

n · (∇eu)
+ vds

(32) +

∫∫
K

(f(x, y, u)− f(x, y, uh)) v dxdy = 0.

Next, we apply the integral mean-value theorem to write

(33) f(x, y, u)−f(x, y, uh) = Reu, where R = R(x, y) =

∫ 1

0

fu (x, y, u− teu) dt.

By the assumption A1, we obtain

(34) |R| ≤ M, ∀ (x, y) ∈ Ω̄.

Substituting (33) into (32), we get

(35)

∫∫
K

eu(−∆v +R v) dxdy +

∫
∂K

e−u n · ∇v ds−
∫
∂K

n · (∇eu)
+ vds = 0.

Splitting the errors as in (20), we obtain∫∫
K

ξu(∆v−Rv) dxdy−
∫
∂K

ξ−u n ·∇v ds+

∫
∂K

n · (∇ξu)
+ vds =

∫∫
K

ηu∆v dxdy

(36) −
∫
∂K

η−u n · ∇v ds+

∫
∂K

n · (∇ηu)
+ vds−

∫∫
K

Rηu v dxdy.
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For simplicity, we rewrite (36) as∫∫
K

ξu(∆v −Rv) dxdy −
∫
∂K

ξ−u n · ∇v ds+

∫
∂K

n · (∇ξu)
+ vds

=BK(ηu, v)−
∫∫

K

Rηu v dxdy,(37)

where the bilinear operator BK(·, ·) is defined in (23). Summing over all elements
K ∈ Th yields∫∫

Ω

ξu(∆v −Rv) dxdy −
∑

Γ−∈Γ−
B

∫
Γ−

ξ−u n · (∇v)+ ds

−
∑

Γ+∈Γ+
B

∫
Γ+

ξ−u n · (∇v)− ds−
∑
Γ∈ΓI

∫
Γ

ξ−u n · J∇vK ds

+
∑

Γ−∈Γ−
B

∫
Γ−

n · (∇ξu)
+ v+ ds+

∑
Γ+∈Γ+

B

∫
Γ+

n · (∇ξu)
+ v−ds

+
∑
Γ∈ΓI

∫
Γ

n · (∇ξu)
+ JvKds = ∑

K∈Th

BK(ηu, v)−
∫∫

Ω

Rηu v dxdy.(38)

If the periodic boundary conditions are used then (38) reduces to∫∫
Ω

ξu(∆v −Rv) dxdy −
∑
Γ∈ΓI

∫
Γ

ξ−u n · J∇vK ds+
∑
Γ∈ΓI

∫
Γ

n · (∇ξu)
+ JvKds

=
∑

K∈Th

BK(ηu, v)−
∫∫

Ω

Rηu v dxdy.(39)

If the mixed Dirichlet-Neumann boundary conditions (30) are used then (38) re-
duces to∫∫

Ω

ξu(∆v −Rv) dxdy −
∑

Γ+∈Γ+
B

∫
Γ+

ξ−u n · (∇v)− ds−
∑
Γ∈ΓI

∫
Γ

ξ−u n · J∇vK ds

+
∑

Γ−∈Γ−
B

∫
Γ−

n · (∇ξu)
+ v+ ds+

∑
Γ∈ΓI

∫
Γ

n · (∇ξu)
+ JvKds = ∑

K∈Th

BK(ηu, v)

−
∫∫

Ω

Rηu v dxdy,

(40)

since ξ−u = 0 on Γ−
B and n · (∇ξu)

+ = 0 on Γ+
B .

3.3. Regularity estimates. Here, we present some regularity estimates, which
will be needed to prove the main error estimates of our UWDG scheme. When
the periodic boundary conditions are used, we consider the following linear elliptic
problem: find V ∈ H2(Ω) such that

−∆V +RV = ξu, for (x, y) ∈ Ω,

(41a)

u(a, y) = u(b, y), u(x, c) = u(x, d), ux(a, y) = ux(b, y), uy(x, c) = uy(x, d), x ∈ ∂Ω.

(41b)
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When the mixed Dirichlet-Neumann boundary conditions are used, we consider the
following linear elliptic problem: find V ∈ H2(Ω) such that

−∆V +RV = ξu, for (x, y) ∈ Ω,(42a)

V = 0, on Γ−
B , n · ∇V = 0, on Γ+

B.(42b)

The following lemma will be used to estimate ∥ξu∥ and ∥eu∥.

Lemma 3.2. Suppose that V ∈ H2(Ω) satisfies either (41) or (42). Then, we have
the following regularity estimate

(43) ∥V ∥2 ≤ C ∥ξu∥ .

Proof. This elliptic regularity estimate is classical. We refer the reader to e.g.,
[16, 28, 36]. �

3.4. A priori error estimates. In the next theorem, we state the a priori error
estimates for eu in the L2-norm.

Theorem 3.1. Let u ∈ Hp+3(Ω) be the solution of (1). Suppose that p ≥ 1 and uh

be the UWDG solution defined in (3). Then, for sufficiently small h, there exists a
constant C such that

(44) ∥ξu∥ ≤ Chp+1.

Consequently, we have the following error estimates

∥eu∥ ≤ Chp+1,(45)

∥eu∥∞ ≤ Chp.(46)

Proof. We first estimate ∥ξu∥ in the L2-norm by using a duality argument. When
the periodic boundary conditions are used, we assume that V satisfies (41) and
when the mixed Dirichlet-Neumann boundary conditions are used, we assume that
V satisfies (42). Then (39) and (40) with v = V both reduce to

∥ξu∥2 = −
∑

K∈Th

BK(ηu, V ) +

∫∫
Ω

Rηu V dxdy.(47)

Adding and subtracting Π−
h V , we get

∥ξu∥2 = T1 + T2 + T3,(48)

where

T1 = −
∑

K∈Th

BK(ηu, ηV ), T2 = −
∑

K∈Th

BK(ηu,Π
−
h V ), T3 =

∫∫
Ω

Rηu V dxdy.

Next, we will estimate T1, T2, and T3 one by one.

Estimate of T1: We first assume that K is the reference square element K̂ =

[−1, 1]2. Define the bilinear form B̂K̂(û, V̂ ) = BK̂(ηû, ηV̂ ). Clearly, for p ≥ 1, the

bilinear form B̂K̂ : Hp+1(K̂)×H2(K̂) → R satisfies

(i) B̂K̂(û, V̂ ) = 0 for all û ∈ Hp+1(K̂) and V̂ ∈ Pp(K̂),

(ii) B̂K̂(û, V̂ ) = 0 for all û ∈ Pp(K̂) and V̂ ∈ H2(K̂).

By the Bramble-Hilbert lemma, we obtain for û ∈ Hp+1(K̂) and V̂ ∈ H2(K̂)∣∣∣B̂K̂(û, V̂ )
∣∣∣ ≤ C1 |û|p+1,K̂

∣∣∣V̂ ∣∣∣
2,K̂

.
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Going back to the physical element K by using the transformation (28), we get for
u ∈ Hp+1(K) and V ∈ H2(K)

|B(ηu, ηV )| ≤C1

∣∣BK̂(ηû, ηV̂ )
∣∣ = C1

∣∣∣B̂K̂(û, V̂ )
∣∣∣

≤C2 |û|p+1,K̂

∣∣∣V̂ ∣∣∣
2,K̂

≤ C3h
p+1 |u|p+1,K |V |2,K .

Summing over all the elements, we obtain∣∣∣∣∣ ∑
K∈Th

BK(ηu, ηV )

∣∣∣∣∣ ≤ Chp+1 |V |2 .

Using the regularity estimate (43) yields

(49) |T1| ≤ C1h
p+1 ∥ξu∥ .

Estimate of T2: Using (25) with v = Π−
h V , we obtain

T2 ≤ C1h
p+1

∥∥Π−
h V
∥∥ .

Next, we show that
∥∥Π−

h V
∥∥ ≤ C2 ∥V ∥ by writing∥∥Π−

h V
∥∥ =

∥∥Π−
h V − V + V

∥∥ ≤
∥∥Π−

h V − V
∥∥+ ∥V ∥

≤ C2h
2 ∥V ∥2 + ∥V ∥

≤ C3 ∥V ∥2 .
Thus, we have

T2 ≤ C1C3h
p+1 ∥V ∥2 .

Using the regularity estimate (43) yields

(50) T2 ≤ C2h
p+1 ∥ξu∥ .

Estimate of T3: Using (34) and applying the Cauchy-Schwarz inequality, we get

T3 ≤ M ∥ηu∥ ∥V ∥ .
Using the regularity estimate (43) and the standard interpolation error estimate
(11) yields

(51) T3 ≤ C3h
p+1 ∥ξu∥ .

Now, combining (48) with (49), (50) and (51), we get

∥ξu∥2 ≤ Chp+1 ∥ξu∥ .
Dividing by ∥ξu∥, we get

∥ξu∥ ≤ Chp+1,

which completes the proof of (44).

Splitting the error as in (20), then applying the standard interpolation error esti-
mate (11) and the estimate (44), we get

∥eu∥ = ∥ηu − ξu∥ ≤ ∥ηu∥+ ∥ξu∥ ≤ Chp+1,

which completes the proof of (45). We note that the estimate (46) follows from the
inverse property, the triangle inequality, the interpolation property (11), and the
estimate (44)

∥eu∥∞ = ∥ηu − ξu∥∞ ≤ ∥ηu∥∞ + ∥ξu∥∞ ≤ C1h
p + C2h

−1 ∥ξu∥ ≤ Chp,

which completes the proof of the theorem. �
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4. Computational examples

In this section, we present several numerical results to illustrate the theoretical
results outlined in this paper. We apply the UWDG scheme (3), described above,
to solve numerically the elliptic problem (1). The results are given in the form
of tables, which reveal the convergence of the proposed UWDG method. In our
numerical experiments, we demonstrate that our theoretical results are valid for
periodic, purely Dirichlet, and mixed Dirichlet-Neumann boundary conditions. As
estimation of the convergence rates, the experimental order of convergence r is
computed using

r = − ln(∥e∥(n1) / ∥e∥(n2))

ln(n1/n2)
,

where ∥e∥(n) denotes the error ∥e∥ = ∥u− uh∥ using N = n2 elements.

Example 4.1. In this example, we consider the following semilinear Poisson-
Boltzmann (PB) equation, which appears in many applications, including semi-
conductor modeling [22] and charged particles in solutions [30]

(52a) −uxx − uyy = e−u + g(x, y), (x, y) ∈ [0, 1]2,

where the function g(x, y) = 8π2 sin(2π(x + y)) − e− sin(2π(x+y)) and boundary
conditions are extracted from the exact solution

u(x, y) = sin(2π(x+ y)).

We perform several numerical tests on this example to study the effect of boundary
conditions and investigate the convergence of the proposed UWDG solutions. We
will consider the mixed Dirichlet-Neumann, periodic, and purely Dirichlet bound-
ary conditions. First, we consider (52a) subject to the purely Dirichlet boundary
conditions

u(0, y) = sin(2πy), u(x, 0) = sin(2πx),

u(1, y) = sin(2πy), u(x, 1) = sin(2πx), (x, y) ∈ ∂Ω.(52b)

We solve (52a) subject to the dirichlet boundary conditions (52b) using the UWDG
scheme presented in Section 2 on a uniform Cartesian mesh having N = 25, 100,
225, 400, and 625 elements obtained by dividing the computational domain [0, 1]2

into n2 squares with n = 5, 10, 15, 20, and 25. We compute the UWDG solution
uh in the finite element spaces Qp with p = 1, 2, 3, 4. Both the L2 errors and orders
of accuracy are shown in Table 1. We observe that our UWDG scheme gives the
optimal (p + 1)−th order of the accuracy for this nonlinear problem. The results
are in agreement with the theoretical estimates.
We repeat the previous example with all parameters kept unchanged except that
we use the mixed Dirichlet-Neumann boundary conditions

u(0, y) = sin(2πy), u(x, 0) = sin(2πx),

ux(1, y) = cos(2πy), uy(x, 1) = cos(2πx), (x, y) ∈ ∂Ω.(52c)

The L2 errors ∥eu∥ are listed in Table 4.1. Clearly, these results suggest optimal
convergence rates. Again, our results are in full agreement with the theoretical
results.
Finally, we solve the same problem but using the periodic boundary conditions

u(0, y) = u(1, y), u(x, 0) = u(x, 1),

ux(0, y) = ux(1, y), uy(x, 0) = uy(x, 1), (x, y) ∈ ∂Ω.(52d)



AN UWDG METHOD FOR ELLIPTIC PROBLEMS ON CARTESIAN GRIDS 881

Table 1. Convergence rates for ∥eu∥ for the BVP (52a) subject
to (52b) on uniform meshes having N = n2 square elements with
n = 5, 10, 15, 20, and 25 using p = 1-4.

N p = 1 p = 2 p = 3 p = 4

∥eu∥ order ∥eu∥ order ∥eu∥ order ∥eu∥ order

25 1.0082e-1 NA 9.7831e-3 NA 7.3755e-4 NA 4.6402e-5 NA

100 2.4299e-2 2.0528 1.2083e-3 3.0173 4.6522e-5 3.9868 1.4510e-6 4.9991

225 1.0724e-2 2.0173 3.5784e-4 3.0012 9.2121e-6 3.9940 1.9133e-7 4.9968

400 6.0175e-3 2.0085 1.5104e-4 2.9982 2.9176e-6 3.9966 4.5434e-8 4.9977

625 3.8475e-3 2.0043 7.7366e-5 2.9981 1.1957e-6 3.9976 1.4893e-8 4.9984

Table 2. Convergence rates for ∥eu∥ for the BVP (52a) subject
to (52c) on uniform meshes having N = n2 square elements with
n = 5, 10, 15, 20, and 25 using p = 1-4.

N p = 1 p = 2 p = 3 p = 4

∥eu∥ order ∥eu∥ order ∥eu∥ order ∥eu∥ order

25 9.1671e-2 NA 9.2366e-3 NA 7.2601e-4 NA 4.5540e-5 NA

100 2.3778e-2 1.9468 1.1960e-3 2.9491 4.6397e-5 3.9679 1.4473e-6 4.9757

225 1.0631e-2 1.9853 3.5672e-4 2.9837 9.2036e-6 3.9896 1.9119e-7 4.9923

400 5.9916e-3 1.9932 1.5084e-4 2.9920 2.9164e-6 3.9948 4.5420e-8 4.9962

625 3.8381e-3 1.9959 7.7315e-5 2.9951 1.1954e-6 3.9968 1.4891e-8 4.9977

Table 3. Convergence rates for ∥eu∥ for the BVP (52a) subject
to (52d) on uniform meshes having N = n2 square elements with
n = 5, 10, 15, 20, and 25 using p = 1-4.

N p = 1 p = 2 p = 3 p = 4

∥eu∥ order ∥eu∥ order ∥eu∥ order ∥eu∥ order

25 9.2238e-2 NA 9.2305e-3 NA 7.2573e-4 NA 4.5533e-5 NA

100 2.3809e-2 1.9539 1.1959e-3 2.9483 4.6395e-5 3.9674 1.4472e-6 4.9756

225 1.0636e-2 1.9874 3.5671e-4 2.9836 9.2035e-6 3.9895 1.9119e-7 4.9921

400 5.9933e-3 1.9939 1.5084e-4 2.9919 2.9164e-6 3.9948 4.5420e-8 4.9962

625 3.8388e-3 1.9964 7.7314e-5 2.9951 1.1954e-6 3.9968 1.4891e-8 4.9977

We present the L2 errors in Table 4.1. These results indicate that ∥eu∥ = O(hp+1).
These results are consistent with the theoretical results.

Example 4.2. In this example, we consider the following semilinear elliptic prob-
lem

(53a) −uxx − uyy + u3 = g(x, y), (x, y) ∈ [0, 1]2,

where the function g(x, y) and the boundary conditions are chosen so that the exact
solution is

u(x, y) = sin(2πx) sin(2πy).

First, we consider (53a) subject to the purely Dirichlet boundary conditions

u(0, y) = u(x, 0) = u(1, y) = u(x, 1) = 0, (x, y) ∈ ∂Ω.(53b)

We solve (53a) subject to (53b) using the proposed UWDG scheme presented in
Section 2 on a uniform Cartesian mesh having N = 25, 100, 225, 400, and 625
elements obtained by dividing the computational domain [0, 1]2 into n2 squares
with n = 5, 10, 15, 20, and 25. We compute the UWDG solution uh in the finite
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Table 4. Convergence rates for ∥eu∥ for the BVP (53a) subject
to (53b) on uniform meshes having N = n2 square elements with
n = 5, 10, 15, 20, and 25 using p = 1-4.

N p = 1 p = 2 p = 3 p = 4

∥eu∥ order ∥eu∥ order ∥eu∥ order ∥eu∥ order

25 8.3350e-2 NA 6.0738e-3 NA 5.6930e-4 NA 3.0515e-5 NA

100 1.8514e-2 2.1706 8.2751e-4 2.8758 3.3519e-5 4.0861 1.0126e-6 4.9134

225 7.8031e-3 2.1309 2.5040e-4 2.9481 6.5533e-6 4.0254 1.3474e-7 4.9744

400 4.3111e-3 2.0624 1.0632e-4 2.9776 2.0684e-6 4.0086 3.2070e-8 4.9896

625 2.7394e-3 2.0321 5.4577e-5 2.9884 8.4659e-7 4.0033 1.0521e-8 4.9948

Table 5. Convergence rates for ∥eu∥ for the BVP (53a) subject
to (53c) on uniform meshes having N = n2 square elements with
n = 5, 10, 15, 20, and 25 using p = 1-4.

N p = 1 p = 2 p = 3 p = 4

∥eu∥ order ∥eu∥ order ∥eu∥ order ∥eu∥ order

25 6.5408e-2 NA 6.5320e-3 NA 5.1313e-4 NA 3.2199e-5 NA

100 1.6851e-2 1.9566 8.4573e-4 2.9493 3.2805e-5 3.9673 1.0234e-6 4.9756

225 7.5242e-3 1.9885 2.5225e-4 2.9837 6.5078e-6 3.9894 1.3519e-7 4.9923

400 4.2390e-3 1.9946 1.0666e-4 2.9921 2.0622e-6 3.9948 3.2117e-8 4.9961

625 2.7149e-3 1.9968 5.4670e-5 2.9951 8.4526e-7 3.9969 1.0529e-8 4.9979

element spaces Qp with p = 1, 2, 3, 4. We report the L2 errors ∥eu∥ with their orders
of accuracy in Table 4.2. We observe that our UWDG scheme gives the optimal
(p + 1)−th order of the accuracy for this nonlinear problem. The results are in
agreement with the theoretical estimates.
We repeat the previous example with all parameters kept unchanged except that
we use the mixed Dirichlet-Neumann boundary conditions

u(0, y) = u(x, 0) = 0, ux(1, y) = cos(y), uy(x, 1) = cos(x), (x, y) ∈ ∂Ω.

(53c)

The L2 errors ∥eu∥ are listed in Table 4.2. Clearly, these results suggest optimal
convergence rates. Again, our results are in full agreement with the theoretical
results.
Finally, we solve the same problem but using the periodic boundary conditions

u(0, y) = u(1, y), u(x, 0) = u(x, 1),

ux(0, y) = ux(1, y), uy(x, 0) = uy(x, 1), (x, y) ∈ ∂Ω.(53d)

We present the L2 errors in Table 4.2. These results indicate that ∥eu∥ = O(hp+1).
These results are consistent with the theoretical results.

Example 4.3. We consider the following nonlinear reaction-diffusion problem with
mixed boundary conditions

− uxx − uyy = − u3

u2 + 1
− u+ g(x, y), (x, y) ∈ [0, 1]2,(54a)

u(0, y) = u(x, 0) = 0, x ∈ [0, 1], y ∈ [0, 1],(54b)

ux(1, y) = (1− e)(1− y)(ey
2

− 1), y ∈ [0, 1],(54c)

uy(x, 1) = (1− e)(1− x)(ex
2

− 1), x ∈ [0, 1].(54d)
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Table 6. Convergence rates for ∥eu∥ for the BVP (53a) subject
to (53d) on uniform meshes having N = n2 square elements with
n = 5, 10, 15, 20, and 25 using p = 1-4.

N p = 1 p = 2 p = 3 p = 4

∥eu∥ order ∥eu∥ order ∥eu∥ order ∥eu∥ order

25 5.6923e-1 NA 5.8930e-2 NA 4.5929e-3 NA 2.8749e-4 NA

100 1.4879e-1 1.9357 7.5423e-3 2.9659 2.9203e-4 3.9752 9.1045e-6 4.9808

225 6.6666e-2 1.9800 2.2450e-3 2.9887 5.7873e-5 3.9920 1.2019e-6 4.9939

400 3.7605e-2 1.9902 9.4862e-4 2.9945 1.8332e-5 3.9961 2.8547e-7 4.9969

625 2.4098e-2 1.9943 4.8606e-4 2.9966 7.5129e-6 3.9975 9.3580e-8 4.9982

Table 7. Convergence rates for ∥eu∥ for the BVP (54) on uniform
meshes having N = n2 square elements with n = 5, 10, 15, 20, and
25 using p = 1-4.

N p = 1 p = 2 p = 3 p = 4

∥eu∥ order ∥eu∥ order ∥eu∥ order ∥eu∥ order

25 1.2489e-3 NA 8.1907e-5 NA 4.2346e-6 NA 2.1006e-7 NA

100 2.9839e-4 2.0654 1.2501e-5 2.7119 3.2665e-7 3.6964 7.8462e-9 4.7427

225 1.4633e-4 1.7573 3.9643e-6 2.8325 6.8450e-8 3.8543 1.0836e-9 4.8826

400 8.6806e-5 1.8152 1.7215e-6 2.8995 2.2189e-8 3.9158 2.6217e-10 4.9327

625 5.7216e-5 1.8680 8.9459e-7 2.9335 9.2011e-9 3.9449 8.6751e-11 4.9562

Table 8. Convergence rates for ∥eu∥ for the BVP (54a) subject
to (54e) on uniform meshes having N = n2 square elements with
n = 5, 10, 15, 20, and 25 using p = 1-4.

N p = 1 p = 2 p = 3 p = 4

∥eu∥ order ∥eu∥ order ∥eu∥ order ∥eu∥ order

25 8.0274e-3 NA 5.5325e-4 NA 3.1077e-5 NA 1.4830e-6 NA

100 2.1409e-3 1.9067 7.8183e-5 2.8230 2.1761e-6 3.8360 5.1574e-8 4.8457

225 9.9632e-4 1.8865 2.4053e-5 2.9073 4.4318e-7 3.9247 6.9763e-9 4.9338

400 5.7383e-4 1.9179 1.0309e-5 2.9451 1.4198e-7 3.9568 1.6733e-9 4.9628

625 3.7209e-4 1.9413 5.3211e-6 2.9637 5.8519e-8 3.9720 5.5124e-10 4.9761

The function g(x, y) is selected such that the exact solution is given by

u(x, y) = (1− x)(ex
2

− 1)(1− y)(ey
2

− 1).

We solve (54). For different values of p ∈ {1, 2, 3, 4} and for a series of triangulations
consisting of uniform Cartesian meshes having N = n2 squares with n = 5, 10, 15,
20, and 25, the L2 errors and the experimental orders of convergence are computed
and presented in Table 4.3. In each case, we observe a convergence ratio of about
r = p+1 for p = 1, 2, 3, 4, as predicted by Theorem 3.1. Finally, we solve the same
problem, but using the dirichlet boundary conditions

u(0, y) = u(1, y) = u(x, 0) = u(x, 1) = 0, (x, y) ∈ ∂Ω.(54e)

We present the L2 errors in Table 4.3. These results indicate that ∥eu∥ = O(hp+1).
These results are consistent with the theoretical results.

Example 4.4. In this final example, we consider the following semilinear elliptic
problem

(55a) −uxx − uyy + sin(u) = 2 sin(x+ y) + sin(sin(x+ y)), (x, y) ∈ [0, 2π]2,
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Table 9. Convergence rates for ∥eu∥ for the BVP (55) on rectan-
gular meshes having N = 3n

2 × n square elements with n = 4, 8,
12, 16, and 20 using p = 1-4.

N p = 1 p = 2 p = 3 p = 4

∥eu∥ order ∥eu∥ order ∥eu∥ order ∥eu∥ order

24 5.7572e-1 NA 5.8145e-2 NA 4.5654e-3 NA 2.8624e-4 NA

96 1.4932e-1 1.9470 7.5171e-3 2.9514 2.9157e-4 3.9688 9.0941e-6 4.9762

216 6.6775e-2 1.9848 2.2416e-3 2.9842 5.7831e-5 3.9899 1.2013e-6 4.9923

384 3.7640e-2 1.9927 9.4783e-4 2.9921 1.8325e-5 3.9949 2.8539e-7 4.9962

600 2.4113e-2 1.9956 4.8580e-4 2.9953 7.5109e-6 3.9970 9.3563e-8 4.9978

Table 10. Convergence rates for ∥eu∥∞ for the BVP (55) on rect-
angular meshes having N = 3n

2 ×n square elements with n = 4, 8,
12, 16, and 20 using p = 1-4.

N p = 1 p = 2 p = 3 p = 4

∥eu∥∞ order ∥eu∥∞ order ∥eu∥∞ order ∥eu∥∞ order

24 4.0606 NA 7.9735e-1 NA 8.3009e-2 NA 6.4848e-3 NA

96 2.0868 0.96040 2.0971e-1 1.9268 1.0645e-2 2.9631 4.1270e-4 3.9739

216 1.3991 0.98603 9.4106e-2 1.9763 3.1706e-3 2.9871 8.1806e-5 3.9914

384 1.0510 0.99446 5.3117e-2 1.9880 1.3402e-3 2.9932 2.5917e-5 3.9956

600 8.4131e-1 0.99728 3.4050e-2 1.9927 6.8684e-4 2.9957 1.0622e-5 3.9973

subject to the mixed Dirichlet-Neumann boundary conditions

u(0, y) = sin(y), u(x, 0) = sin(x),

ux(2π, y) = cos(y), uy(x, 2π) = cos(x), (x, y) ∈ ∂Ω.(55b)

The exact solution is given by

u(x, y) = sin(x+ y).

We solve (55a) using the proposed UWDG scheme presented in Section 2. We
assume that the mesh consists of N = 3n

2 × n rectangular elements with N = 24,
96, 216, 384, and 600, where n = 4, 8, 12, 16, 20. We compute the UWDG solution
uh in the finite element spaces Qp with p = 1, 2, 3, 4. We report the L2 errors ∥eu∥
and ∥eu∥∞ with their orders of accuracy in Tables 4.4 and 4.4. We observe that
our UWDG scheme gives ∥eu∥ = O(hp+1) and ∥eu∥∞ = O(hp). These results are
in full agreement with the theoretical estimates given in Theorem 3.1.

5. Concluding remarks

In this paper we presented and analyzed a new ultra-weal discontinuous Galerkin
(UWDG) method for the two-dimensional semilinear second-order elliptic problems
on Cartesian grids. We performed an a priori error analysis in the L2-norm. The
proposed scheme can be made arbitrarily high-order accurate in two-dimensional
space. The UWDG solution uh is shown to converge to the exact solution u at
O(hp+1) rate in the L2-norm, when tensor product polynomials of degree at most
p and grid size h are used. Although our error analysis is presented for the two-
dimensional problems, it can be readily extended to the three-dimensional problem-
s. The error analysis for the two- and three- dimensional problems on triangular
meshes will be investigated in a separate paper. In future work, we will study
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the superconvergence and error estimation of the UWDG method for nonlinear
elliptic problems in multidimensional cases on rectangular meshes. We are also
planning to develop a posteriori error estimators for the UWDG method applied to
two-dimensional parabolic and hyperbolic problems on rectangular and triangular
meshes.
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