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VALIDATION AND VERIFICATION OF TURBULENCE MIXING

DUE TO RICHTMYER-MESHKOV INSTABILITY OF AN AIR/SF6

INTERFACE

TULIN KAMAN AND RYAN HOLLEY

Abstract. Turbulent mixing due to hydrodynamic instabilities occurs in a wide range of science and

engineering applications such as supernova explosions and inertial confinement fusion. The experi-
mental, theoretical and numerical studies help us to understand the dynamics of hydrodynamically
unstable interfaces between fluids in these important problems. In this paper, we present an increas-
ingly accurate and robust front tracking method for the numerical simulations of Richtmyer-Meshkov

Instability (RMI) to estimate the growth rate. The single-mode shock tube experiments of Collins
and Jacobs 2002 [1] for two incident shock strengths (M = 1.11 and M = 1.21) are used to validate
the RMI simulations. The simulations based on the classical fifth order weighted essentially non-

oscillatory (WENO) scheme of Jiang and Shu [2] with Yang’s artificial compression [3] are compared
with Collins and Jacobs 2002 shock tube experiments. We investigate the resolution effects using
front tracking with WENO schemes on the two-dimensional RMI of an air/SF6 interface. We achieve
very good agreement on the early time interface displacement and amplitude growth rate between

simulations and experiments for Mach number M = 1.11. A 4% discrepancy on early-time amplitude
is observed between the fine grid simulation and the M = 1.21 experiments of Collins and Jacobs
2002.

Key words. Turbulent mixing, Rayleigh-Taylor instability, Richtmyer-Meshkov instability, front

tracking, weighted essentially non-oscillatory scheme.

1. Introduction

Turbulent mixing due to hydrodynamic instabilities occurs in many scientific and
engineering applications. The formation of gravitational induced mixing in oceanog-
raphy; supernovae explosions in astrophysics, and the performance assessment for
inertial confinement fusion (ICF) are ideal sub-problems to study and understand the
dynamics of turbulence and mixing [4]. In the dynamics of turbulence, hydrodynamic
instabilities of fluid flows such as Kelvin–Helmholtz, Rayleigh–Taylor, Richtmyer–
Meshkov are observed. The review papers of Zhou [5, 6], and Abarzhi, Gauthier and
Sreenivasan [7] provide detailed resource information on the theory, experiment and
computations of these important physical instabilities. While the velocity difference
at the interface between two fluids develops the Kelvin–Helmholtz instability (KHI),
the density difference with constant and impulsive acceleration develops the Rayleigh–
Taylor instabilitiy (RTI) and Richtmyer–Meshkov instabilitiy (RMI) respectively. RTI
arises at the perturbed interface between two fluids of different densities whenever the
pressure gradient opposes the density gradient. RMI arises when a shock wave inter-
acts with the perturbed interface. RMI is also known as impulsive or shock-induced
RTI. An overview of RTI and RMI and the effects of material strengths, chemical
reactions and magnetic fields, as well as the role of the instabilities in scientific and
engineering applications can be found in two review articles [8, 9]. The evolution of
the perturbed interface development and the interaction between the fluids at the
macro/meso/micro length scales have been the main interest of researchers.

Received by the editors February 28, 2022 and, in revised form, June 17, 2022; accepted June 19,
2022.

2000 Mathematics Subject Classification. 35Q31, 76F25, 60A10.

822



VALIDATION AND VERIFICATION OF RICHTMYER-MESHKOV INSTABILITY 823

The motions of fluid flows are described by the Euler equations, a system of par-
tial differential equations, where the effect of molecular processes are neglected. The
more general equations are Navier-Stokes equations (NSE). These problems are deeply
multiscale and the level of scales that are desired to be resolved identify the charac-
teristic properties. The three numerical approaches to model turbulence are (i) Direct
Numerical Simulation (DNS) [10], the full NSE are resolved without any models for
turbulence, (ii) Large Eddy Simulation (LES), the flow field is resolved down to a
certain length scale and scales smaller than that are modeled rather than resolved,
and (iii) Reynolds-Averaged Navier-Stokes (RANS), the time-averaged equations are
solved for mean values of all quantities. In the LES family, the implicit LES (ILES)
solves the governing equations using an implicit subgrid scale model. ILES assumes
that small and unresolved scales are purely dissipative and the numerical discretiza-
tion errors are the source of artificial dissipation [11]. These approaches are briefly
reviewed in section 2.1 and a recent review article summarizes in detail [12]. Within
these approaches, the most accurate DNS has the highest computational cost and the
least accurate RANS is the most desired approach in complex engineering applications
due to the low computational cost.

There are hydrodynamic codes such as CFDNS, HYDRA, Miranda, RAGE, RAP-
TOR, TURMOIL, and FronTier that have been under continuous development to
study the RTI/RMI induced flow, turbulence and mixing to predict the growth rate
of the mixing zone accurately based on the mathematical and numerical framework-
s [5, 6]. CFDNS is a Los Alamos National Laboratory (LANL) hydrodynamic simula-
tion code designed for direct numerical simulation of turbulent flows [13]. HYDRA is
based on arbitrary Lagrangian-Eulerian (ALE) mesh used for the numerical simulation
of instabilities in ICF laser-driven hohlraum [14]. Miranda is a Lawrence Livermore
National Laboratory (LLNL) hydrodynamic simulation code designed for large-eddy
simulation of multicomponent flows with turbulent mixing [15]. The spectral, high-
order compact scheme with local artificial viscosity, diffusivity is used in order to
remove oscillations and capture shocks and contact discontinuities [16]. RAGE is a
‘radiation adaptive grid Eulerian’ radiation-hydrodynamic code in which the hydro-
dynamics is a basic Godunov solver [17]. RAPTOR is a hydrodynamic code based on
a Godunov-type finite volume method that solves Riemann problem at cell interface
using an adaptive mesh refinement technique [18]. TURMOIL is a Lagrange-remap
hydrocode which calculates the mixing of compressible fluids by solving the Euler
equations plus advection equations for fluid mass fractions [19]. FronTier is based
on front tracking method for accurate representation of the interface [20]. In this
paper, we present the algorithmic features of FronTier that are used to study the
two-dimensional RMI instabilities. The front tracking algorithm is a way to track the
interface explicitly with high order accuracy. It is a unique method demonstrated to
avoid systematic errors in an important class of problems revolving around turbulent
mixing [21, 22, 23]. This technique stores and dynamically evolves a meshed front
that partitions a simulation domain into two or more regions, each representing a
different material or physics model (see section 2.2).

The incident shock strength characterized by Mach number has a big effect on
the dynamics of flows. Some numerical methods such as filtered spectral methods
only show numerically stable solutions under the moderate Mach number. When the
Mach number is large, the methods become non-robust. Robust numerical meth-
ods based on solution-averaged or solution-reconstruction methods also known as
reconstruction-evolutionary methods are used in the hydrodynamically unstable flow
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problems. Laney [24] reviews highly used reconstruction-evolutionary methods in-
cluding Van Leer’s MUSCL scheme [25], Collella and Woodward’s piecewise parabolic
method (PPM) [26], Harten and Osher’s uniformly high-order accurate non-oscillatory
(UNO) schemes [27] and Harten, Engquist, Osher and Chakravarthy’s essentially non-
oscillatory (ENO) scheme [28]. ENO shock-capturing schemes were first introduced
by Harten, Osher and Engquist [29]. The efficient implementation of ENO schemes
based on numerical fluxes and total variation diminishing (TVD) Runge-Kutta time
discretization are presented in [30]. Liu, Osher and Chan [31] proposed the WENO
schemes to shock capturing using a convex combination of all possible stencil candi-
dates. Their WENO schemes use logical statements to choose ENO stencils which
make the computation expensive. Jiang and Shu [2] introduced a new smoothness
indicator and increased the fourth order scheme of Liu to the fifth order. Balsara
and Shu [32] extended it to higher-order. In the last two decades, the weighted es-
sentially non-oscillatory (WENO) methods gained popularity for solving hyperbolic
systems of conservation laws to get accurate and robust solutions at sharp gradient
regions [33]. We use the classical fifth order WENO scheme of Jiang and Shu [2] with
Yang’s artificial compression [3] on the shock computation.

The main purpose of this paper is to predict the growth rate of the impulsively
accelerated interface before and after reshock for two induced shock strengths. The
organization of the paper is as follows. In section 2 the numerical approaches for
turbulence simulation and modeling approaches, the front tracking method and the
fifth order WENO scheme are briefly reviewed. In section 3 we present previous suc-
cessful validation and verification studies of RTI using front tracking. In section 4
we present the numerical results of the front tracking method with the fifth order
WENO scheme on test problems. We first introduce the two-dimensional Euler equa-
tions for inviscid flows and the mass fraction equation in section 4.1. The numerical
validation of WENO scheme on Sod’s shock tube and Shu-Osher’s shock-entropy wave
interaction problems are presented in sections 4.2 and 4.3. The numerical solutions
obtained using the classical fifth order WENO scheme of Jiang and Shu [2] with the
artificial compression idea of Yang [3] are compared with the reference solutions. In
section 4.4 we present our validation and verification results for the two-dimensional
shock-driven Richtmyer–Meshkov Instability of an air/SF6 interface problem. We
compare RMI simulations with the shock tube experiments conducted by Collins and
Jacobs. For validation of RMI simulations, in section 4.4.1 the single-mode shock
tube experiments of Collins and Jacobs with two incident shock waves (M = 1.11 and
M = 1.21) [1] are introduced. For verification of RMI simulations, in section 4.4.2
we present the effect of mesh resolution on the quantities of interest such as interface
displacement and amplitude. We present the concluding remarks and discussion on
the future improvement of RMI simulations in section 5.

2. Numerical Models and Algorithms

Numerical methods for simulating turbulent mixing due to RTI have been widely
explored. Schilling’s paper [12] on understanding RTI between simulation, modeling
and experiment reviews the efforts. In this section, a brief summary of numerical
approaches used for modeling turbulence, the front tracking method and the WENO
scheme is presented.

2.1. Turbulence Simulation and Modeling Approaches. The hydrodynamic
unstable turbulent flows such as KHI, RTI and RMI are deeply multiscale. The level
of temporal and spatial scales of a turbulent flow that are desired to be resolved
identify the characteristic properties of the numerical approach. The mesh resolution



VALIDATION AND VERIFICATION OF RICHTMYER-MESHKOV INSTABILITY 825

and time steps required to solve the fluid structure depends on the Reynolds number,
which indicates the laminar, transitional, or fully turbulent flow.

Direct numerical simulation (DNS) approach solves the full NSE numerically with-
out modeling turbulence. All the temporal and spatial scales of the flow are resolved
from the smallest scale (Kolmogorov’s scale η) to the largest scale (integral scale L).
DNS requires a mesh resolution that makes the computation unfeasible for engineer-
ing applications because the computational cost increases as the cube of the Reynolds
number. While it is the most accurate numerical approach, it is limited to the low
and moderate Reynolds numbers of flows and simple geometries.

Reynolds-Averaged Navier-Stokes (RANS) approach solves the time-averaged e-
quations for mean values of all quantities. The additional nonlinear stress terms in
momentum equation are modeled for the time-averaged solutions to the NSE. RANS
resolves length scales sufficient to specify the problem geometry. RANS is known as
the most computationally efficient and common approach in engineering applications
but it is the least accurate approach.

Large-Eddy Simulation (LES) approach solves the filtered NSE and resolves certain
length scales that contain the most energy. The smaller scales are modeled using the
explicit subgrid scale models [34, 35]. LES was first proposed by Smagorinsky [36] for
the study of the dynamics of the atmosphere’s general circulation. The multi-species
compressible Navier-Stokes equation, filtered at a grid level, is solved so that the LES
defines SGS terms (such as the Reynolds stress) as a source. These source terms are
modeled as gradient diffusion terms, and the coefficients (turbulent viscosity, etc.) are
recovered in a dynamic manner from the solution itself. That is called dynamic SGS
model, the coefficients are computed locally in the simulation [34]. A broad problem,
across many application areas, is to assess the accuracy of the SGS models.

Implicit Large-Eddy Simulation (ILES) approach solves the non-dissipative filtered
NSE using the implicit subgrid scale model. It models the effect of the small and
unresolved scales by adding dissipation in the high wave number range. This approach
limits the dissipation with the choice of the subgrid scale coefficients to constant
numerical values from discretization errors or the nonlinear flux limiters [11].

2.2. Front Tracking. This is an adaptive computational method that provides
sharp resolution of a wave front by tracking the interface between distinct materi-
als. Front-tracking (FT) discretizes and advects a surface representing the material
interface which can then be used to adjust solution steps, so that the unwanted mixing
between neighboring cells of different materials is prevented. It represents interface
explicitly as lower dimensional meshes moving through a rectangular grid. In 2D,
the wave is represented by a curve which is comprised of connected line segments. In
3D, the wave is represented by a triangular mesh. The states (density, pressure and
velocity) of fluids are located in the centers of each grid cell [20, 37]. The method
solves the equations with the following main steps: 1. interface propagation, 2. inter-
polation reconstruction, and 3. interior states update. In the interface propagation
step, the speed for each interface point is solved by either a local Riemann problem or
an interpolation method. Then, a new position for the point is determined from the
equation xnew = xold+V∆tn, where V is the wave speed, n is the normal direction on
the point and ∆t is the time step size. After all points in the interface are propagated,
we get a new interface at a new time step. Methods are implemented in FronTier
to resolve the topological change and to optimize all triangles in the interface. In the
interpolation reconstruction step, the components (defined in the sense of point set
topology relative to the ambient space with the interface removed) at the cell center
of all interior points are determined from the propagated interface. In the interior
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state update step, a Strang splitting is applied and three 1D equations are solved
consecutively. All the states on cell centers are updated using WENO scheme. If
the stencil of the scheme does not cross any interface, the states in the stencil are
given by the cell center values. Otherwise, a ghost cell method [38] is used to fill
the states on the points on the other side of the interface. FronTier code has been
developed for over three decades, and has been under continuous enhancement by the
computational and applied mathematics research groups at Stony Brook University
and the University of Arkansas.

2.3. WENO scheme. The stable and high order WENO (Weighted Essentially
Non-Oscillatory) scheme is widely used for turbulent mixing due to Richtmyer–Meshkov
Instability [39, 40, 41, 42, 43, 44, 45]. The main features of the WENO schemes de-
signed to solve the hyperbolic equations in computational fluid dynamics can be found
in [33]. In 2D, the fluxes in x and y are calculated separately. High order accurate
and non-oscillatory scheme flux reconstruction uses a convex combination of k candi-
date stencils [2]. For k = 3, the fifth (2k − 1) order finite difference WENO schemes
approximates the derivative F (U)x at a point xi,

(1) F (U)x|x=xi ≈
1

∆x
(F̂i+1/2 − F̂i−1/2)

where U is the state vector, F (U) is the flux, F̂i+1/2 and F̂i−1/2 are the fluxes at the

cell boundaries, and F̂+
i+1/2, F̂

−
i+1/2 are the positive and negative parts of

F̂i+1/2 = F̂+
i+1/2 + F̂−

i+1/2.

The fifth order WENO scheme uses three stencils

F̂i+1/2 =

3∑
j=1

ωiF̂
(j)
i+1/2

with three third order fluxes F̂
(j)
i+1/2 and the nonlinear weights ωi.

The flux-averaged WENO scheme uses Lax-Friedrichs flux splitting method. For
hyperbolic conservation equations, the nonlinear part of WENO is carried out in
(local) characteristic fields. The flux F̂i+1/2 uses the average state Ūi+1/2 at cell
boundary (i + 1/2, j). The implementation starts with computing the average state
Ūi+1/2,j , then the left and right eigenvectors and eigenvalues of the Jacobian at the
average state. We transform the conservative fields and physical fluxes onto the
characteristic fields using the left eigenvector matrix. We perform Lax-Friedrichs
flux splitting and use the WENO reconstruction procedure to compute the positive
and negative fluxes in the characteristic fields. We transform back the characteristic
fluxes to the physical fluxes using the right eigenvector matrix. We perform the same
steps for the other direction in y using the average states Ūi,j+1/2 for two-dimensional
problems.

3. Validation and Verification

FT for accurate representation of an interface is essential to achieve successful
validation and verification studies. Modeling hydrodynamics instabilities without
FT shows nonphysical mixtures produced by the numerical diffusion if the mesh is
not fine enough. Using FT/LES/subgrid scale models [21, 23, 22] showed excellent
agreement between experiments and numerical simulations of RTI. In the context of
the RTI, [22] examined the much-debated questions of models for initial conditions
for a set of Smeeton-Youngs experiments [46] and the possible influence of unrecorded
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long wavelength contributions to the instability growth rate. The spectral amplitudes
A(n, t) for Fourier mode n and for time t are used to estimate the spectral power law.
A self-similar initial spectral power law A(n)2 ≈ n−4 for the t = 0 amplitudes was
proposed [47, 48]. A similar power law was reported in the initial conditions for the
surface of a glass Inertial Confinement Fusion (ICF) pellet, with higher amplitudes for
the smaller wave lengths [48]. A power law A(n)2 ≈ n−3.3 (mean exponent averaged
over five experiments [46, 49]) in the reconstructed initial time t = 0 spectra was
found [50, 51, 52]. The error estimates in the reconstructed initial data t = t0 were
used to establish an uncertainty quantification interval for numerical simulations of
the RTI growth rate parameter, α. The studies showed that the long wave length
initial perturbations can affect the growth rate parameter αs with at most a 5% effect
relative to the experimental data. In order to find the optimal growth rate for RTI
simulations, the uncertainty quantification studies based on the polynomial chaos
expansion [53] showed that the initial perturbation wavelength has an effect of 4% on
the quantity of interest, the growth rate parameter α. The global sensitivity analysis
addressed in [53] is consistent with [22] that showed that the long wavelength initial
perturbations can affect the growth rate parameter at most ±5 %.

The main focus of this paper is to address the issues in achieving agreement between
simulations and experiment through validation and verification studies of single-mode
RMI which are the shock-induced RTI. The robust front tracking method with WENO
scheme is used for the numerical simulations of RMI of an air/SF6 interface. We inves-
tigate the dynamics of RMI with the single-mode perturbed interface and compare the
numerical simulation results with the Collins and Jacobs [1] shock-tube experiments.
In the impulsively accelerated fluid-interface problems, the goal is to predict the am-
plitude and the displacement of the interface at all times including the pre-reshock
and post-reshock.

4. Numerical Results

In section 4.1 the two-dimensional (2D) Euler equations with the mass fraction
solved for the inviscid numerical simulations are presented. In sections 4.2 and 4.3
two benchmark test problems i) Sod’s shock tube and ii) Shu-Osher’s shock–entropy
wave interactions are introduced for the numerical validation of the front tracking
method with WENO scheme. In section 4.4 we present our validation and verification
results for the single-mode shocked-induced RMI simulations of an air/SF6 interface.

4.1. Euler equations. In 2D, the governing equations of the compressible inviscid
gases are the Euler equations

(2) Ut + F(U)x +G(U)y = 0

where U,F(U) and G(U) are the vectors of conserved (mass, momentum, energy)
variables and the fluxes in x and y direction.

(3) U =


ρ
ρu
ρv
E

 ,F(U) =


ρu

ρu2 + p
ρuv

(E + p)u

 ,G(U) =


ρv
ρuv

ρv2 + p
(E + p)v

 .

Here ρ is the density, (u, v) is the velocity in (x, y) directions, p is the pressure,
E = ρe+ 1

2ρ(u
2 + v2) is the total energy e = p

(γ−1)ρ is the specific internal energy γ

is the constant specific heat ratio.



828 T. KAMAN AND R. HOLLEY

The Euler equations (3) are extended with the mass fraction equation for cases
with binary fluid mixing

(4)
∂ρM

∂t
+

∂ρMu

∂x
+

∂ρMv

∂y
= 0,

where M is the mass fraction for the heavy fluid.

4.2. Sod’s Shock Tube Problem. For the contact discontinuity tracking, we con-
sider the very well known shock-tube problem called Sod problem [54] which is a
Riemann problem with the initial condition as below.

(5) (ρ, u, p) =

{
(1, 0, 1) if −5 ≤ x ≤ 0

(0.125, 0, 0.1) if 0 ≤ x ≤ 5

The solution of Sod’s shock tube problem contains a rarefaction wave going to the
left, a contact discontinuity traveling slowly to the right, and a shock wave moving
fast to the right. The fifth order WENO scheme with and without Yang’s artificial
compression method on 100 mesh points is compared with the exact solution. The
slope correction in Yang’s artificial compression method shows improvement at the
contact discontinuity (see Figure 1). In Figure 2 the density, pressure and velocity
profiles with artificial compression on 100 and 200 mesh points at t = 2.0 are compared
with the exact solution.

Figure 1. Left: The fifth order WENO scheme with and without
artificial compression method of Yang [3] are compared with the exact
solution of Sod’s shock tube problem. Right: A zoomed view on
domain [1, 3].

4.3. Shock–entropy wave interaction. In order to study the stability and accu-
racy of the WENO scheme for the interaction between a shock wave and an entropy
wave, we consider the Riemann problems for the Euler equations for an ideal gas with
a constant ratio of specific heats (γ = 1.4). Shu-Osher’s test problem [30] corresponds
to a Mach M = 3 shock wave passing through an entropy wave on the spatial domain
(−5, 5) and the time domain (0, 2). The shock wave and its interaction with sine
waves in the density field on 200, 400 and 1600 mesh points at t = 1.8 are presented
in Figure 3.

(6) (ρ, u, p) =

{
(3.857143, 2.629369, 10.33333) if x ≤ −4

(1 + ϵ sin kx, 0, 1) if x ≥ −4

where ϵ = 0.2 and k = 5 are the amplitude and the wave number of the entropy wave.
The solution near N-wave (x ∈ [−2, 0]), the transition to the N-wave (x ∈ [0, 1]), the
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Figure 2. Density, pressure and velocity profiles on 100 and 200
mesh points are compared with the exact solution of Sod’s shock tube
problem.

Figure 3. Left: Density profile of the shock-wave interaction prob-
lem on domain [−5, 5] with 200, 400 and 1600 mesh points. Right: A
zoomed view on domain [0, 2.5].

entropy wave (x ∈ [1, 2]), and the shock (x ∈ [2, 2.5]) is displayed on three levels of
mesh refinement in Figure 3.

4.4. RMI simulations. In the impulsively accelerated RTI which is known as RMI,
the amplitude and displacement measurements are the quantities of interest. We are
interested in predicting the growth rate of the instability (da/dt) where a is the
amplitude and t is the time. Richtmyer [55] modeled and defined the growth rate
in terms of the wavenumber (k = 2π/λ), where λ is the perturbation wavelength,
the initial perturbation amplitude (a+0 ), the Atwood number (A+), and the interface
velocity (∆u) as below.

(7)
da

dt
= VRM = ka+0 A

+∆u
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The Atwood number, a dimensionless measure of the density contrast, is defined by

(8) A+ =
ρ+2 − ρ+1
ρ+1 + ρ+2

where ρ+1 and ρ+2 are the densities of the light and heavy fluids. The (+) sign indicates
the post-shock quantity.

4.4.1. Validation. For validation study, the model and input parameters used in our
RMI simulations are set according to Collins and Jacobs [1] shock tube experiments
conducted for the two shock wave Mach numbers M = 1.11 and M = 1.21. We
choose these experiments to compare with our numerical results because of the high
quality images obtained using planar laser-induced fluorescence (PLIF) visualization
technique in the experiments. The shock tube is 430 cm long and consists of a driver
and a driven section which are 100 cm and 330 cm long respectively. The sinusoidal
initial perturbation is created within the shock tube test section that has a 8.9 cm
square cross section and a length 75 cm. In our numerical studies, the computations
domain is set to Lx = 8.9 cm and Ly = 75 cm. The location of the initial shock
(y = 1 cm) and the perturbed interface (y = 3 cm) are set according to Latini,
Schilling and Don 2007 numerical studies [44, 45]. The distance from the initial
perturbed interface to the end of the shock tube is 72 cm. In Collins and Jacobs
experiments the sinusoidal perturbed interface between the light fluid (air) and the
heavy fluid (SF6) is initialized with an amplitude of a0 = 0.229 cm for M = 1.11 and
a0 = 0.183 cm for M = 1.21. The diffuse interface thickness is set to δ = 0.5 cm
between the two fluids. The initial perturbation wavelength is λ0 = 5.933 cm across
the width of shock tube. In our numerical simulations, the initial density profile over
the diffuse interface is set by ρ(y) = ρ̄ (1 +A erf(

√
πy/δ)) where ρ̄ = (ρ1 + ρ2)/2

is the average density, A is the Atwood number and δ is the initial diffuse interface
thickness. Figure 4 shows the diffuse sinusoidal perturbed initial interface for the
M = 1.21 simulation at time t = 0.05 ms and the first experimental PLIF image
taken just before the incident shock arrives to the interface. In this section, the
fine grid simulations, that are compared with experiments, have 256 grid points per
wavelength with a grid spacing ∆x = ∆y = 0.0232 cm. Table 1 shows the input
parameter values including the density, molecular weight and the ratio of specific
heats corresponding to the light and heavy fluids, the pressure at the interface and
the CFL number used in our numerical simulations.

There are some differences in the input parameters between our and Latini, Schilling
and Don’s numerical simulations (see [44, 45] for more details on their specification
of the input parameters). In [44, 45], the length of the domain Ly = 78 cm and the
initial amplitude a0 = 0.2 cm are larger than the originally reported experimental
values. The simulations presented in here are set using exactly the same experimen-
tal parameter values reported in [1] for the validation of our simulations. In terms of
repeatability of experiments, Collins and Jacobs reported 10% difference in the initial
perturbations. The effect of the input parameters on the quantities of interest such
as amplitude and displacement will be addressed in the future publication.

The light fluid (air) penetrates the heavy fluid (SF6) in bubbles and the heavy
fluid penetrates the light fluid in spikes. The interface displacement is computed by
averaging the distance of the bubble and spike tip locations to the initial tip locations.
In figure 5 the displacement of the interface is compared with the experiments for
shock strengths M = 1.11 and M = 1.21. The values for the interface velocities ∆u of
the simulations and experiments are given in Table 2. The experimental measurements
show a constant velocity of 33.0 m/s forM = 1.11 and 60.6 m/s forM = 1.21, whereas
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Figure 4. Initial diffusive sinusoidal perturbed interface in simula-
tion (left) and experiment (right) before the shock wave. The light
fluid (air) at the top and heavy fluid (SF6) at the bottom. Exper-
imental figure courtesy of J.W. Jacobs. The experimental image is
taken from Figure 6 of Collins and Jacobs (reprinted with the per-
mission of Cambridge University Press).

Table 1. The parameter values of RMI simulations.

Mach Numbers
1.11 1.21

Initial amplitude a0 (cm) 0.229 0.183
Initial wavelength λ0 (cm) 5.933
Ratio between a0/λ0 0.0386 0.0308
Initial diffusion layer δ (cm) 0.5
Heavy fluid (SF6) density ρ1 (g/cm3) 5.494× 10−3

Light fluid (air) density ρ2 (g/cm3) 1.351× 10−3

Atwood number A 0.6053
Molecular weight of SF6 (g/mol) 146.05
Molecular weight of air (g/mol) 34.76
Ratio of specific heats γ 1.276
Pressure at interface p (bar) 0.956
Courant–Friedrichs–Lewy (CFL) number 0.45

simulation interface velocity is 35.8 m/s for M = 1.11 and 66.1 m/s for M = 1.21.
Theoretical values computed using a one-dimensional analysis assuming ideal gas
behaviour and a nonventilated shock tube with the measured shock velocities are
36.0 m/s for M = 1.11 and 64.2 m/s for M = 1.21 [1]. The values of the interface
velocities of the numerical simulations are closer to the theory than the experiments.
It is reasonable to expect that the discrepancies in the interface velocities between
the simulations and experiments are due to the two open slots in the test section of
the shock tube experiments. When the incident shock passes through the slots in
the experiments, it creates expansion waves which slow down the interface velocity.
Because of the expansion waves which are only present in the experiments, a difference
less than 10% is observed (see table 2).

The amplitude is computed as half the vertical distance between the bubble and
spike tip locations. Figure 6 shows the amplitude data for the M = 1.11 Collins
and Jacobs 2002 experiments and the fine grid simulation. The early-time amplitude
(t ≈ 1 ms) shows linear growth. In figure 6 (right) each experimental data point
with error bar in time (ms) and amplitude (mm) shows the measurement from five
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Figure 5. Comparison of interface displacement (mm) and inter-
face velocity between Collins and Jacobs 2002 experiments and the
FronTier fine grid simulations for M = 1.11 and M = 1.21.

Table 2. The simulation and experiment values for the interface
velocity ∆u and Richtmyer velocity VRM . Discrepancy refers to the
comparison of numerical values outside of uncertainty values, if any.

M=1.11 M=1.21
sim. exp. [1] discrepancy sim. exp. [1] discrepancy

∆u(m/s) 35.8 33.0 -8.5% 66.1 60.6 -9.1%
VRM (m/s) 4.10 3.92± 0.23 0% 5.44 6.28± 0.6 4%

experiments. The numerical simulation result 4.10 m/s stays within the experiment
error margin 3.92 ± 0.23 m/s for M = 1.11. The shock is reflected at the end of the
test section and the reflected reshock reaches to the interface at t ≈ 7.2 ms, which is
about 1 ms later than the experiment.

Figure 6. Comparison of amplitude between Collins and Jacobs
2002 experiments and FronTier fine grid simulation for M = 1.11.
Right: The early-time amplitude (t ≈ 1.2 ms). Each experimental
data point with error bar in time (ms) and amplitude (mm) shows
the measurement from five experiments.

Figure 7 shows the amplitude as a function of time for the M = 1.21 Collins
and Jacobs experiments and fine grid simulation. A 4% discrepancy between the



VALIDATION AND VERIFICATION OF RICHTMYER-MESHKOV INSTABILITY 833

simulation and experiment early-time growth rate is observed. In the present study,
the shock wave arrives to the perturbed interface at time t = 0.05 ms (see figure 4).
The reflected shock reaches the interface at t ≈ 6 ms (see figure 8). After reshock,
a time delay ≈ 1.2 ms between simulations and experiments is observed because
the expansion waves in the experiments reduce the interface velocity. Therefore, in
this present study the density profile from the experimental PLIF images at time
6.006 ms is compared with simulation data at time 6 ms before reshock and after
reshock PLIF images at times 7.005 ms and 7.781 ms are compared with the fine
simulation density profile at times 6.2 ms and 6.4 ms. A similar time delay ≈ 1 ms
is also observed by Latini, Schilling and Don 2007 [45]. This time difference between
numerical simulations is because of the difference in the length of the domain between
our and Latini, Schilling and Don 2007 simulations. Figure 8 shows a good agreement
on the interface overall structure, but some of the finer details such the vortex roll-
up structure are missing. The missing issue in the transport of vorticity along the
interface requires an upgrade in the FronTier and WENO code.

Figure 7. Comparison of amplitude between Collins and Jacobs
2002 experiments and FronTier fine grid simulation for M = 1.21.
Right: The early-time amplitude (t ≈ 1 ms). Each experimental
data point with error bar in time (ms) and amplitude (mm) show
the measurement from three experiments.

4.4.2. Verification. While validation of the numerical simulations is done through
comparison with experiments, verification is done through mesh refinement. The goal
is to observe the impact of the mesh resolution on the amplitude growth. Two dimen-
sional simulations are performed on an uniform mesh with equal mesh spacing in x
and y directions. The computational domain length is Lx = 8.9 cm and Ly = 75 cm.
The coarse, medium and fine grid simulations performed using the fifth order WENO
method are on a uniform grid that has 64, 128 and 256 grid points per initial per-
turbation wavelength. Figure 9 shows the effect of the grid resolution on amplitude.
The high-resolution simulation for M = 1.21 is closest to the experimental measure-
ments. The coarse grid simulation with 64 grid points per initial wavelength with a
grid spacing ∆x = ∆y = 0.0928 cm leads to lower amplitudes. This is due to the low
resolution in amplitude where there are only 2 grid points per initial amplitude. This
low resolution simulation does not capture the structure of the interface separating
two fluids. Figure 10 shows the need for high-resolution simulations to accurately
capture the fine-scale structure of the secondary Kelvin-Helmholtz instability. The
vortex roll-ups known as the mushroom-shaped structures are not observed in the
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Figure 8. Top: The density profile of the fine grid simulation at
times 6, 6.2 and 6.4 ms. Bottom: Experimental PLIF images at
times 6.006, 7.005 and 7.781 ms. The experimental images are taken
from Figure 6 of Collins and Jacobs (reprinted with the permission
of Cambridge University Press).

Figure 9. Comparison of the amplitude between Collins and Jacobs
2002 experiments and FronTier simulations for M = 1.21. The
number of grid points per initial perturbation wavelength is 64, 128
and 256 for the coarse, medium and fine grid simulations.

coarse/medium simulations. The key issue is the jump in the tangential componen-
t of the velocity across the interface. This feature needs to be enabled to observe
the secondary Kelvin-Helmholtz instability and transport the vorticity along with the
perturbed interface. The simulations presented are performed at the Arkansas High
Performance Computing Center where a standard node has Intel Xeon Gold 6130
CPUs with a total of 32 cores at a clock rate of 2.1 GHz. Due to the limitation on the
maximum node numbers per run, the fine grid simulations are performed on 4 nodes
with a total 128 processors. To resolve the fine-scale structures, one can refine more
and more the mesh. However, high resolution front tracking simulations with fifth-
order WENO flux reconstructions and artificial compression of the diffuse interfaces
become computationally very expensive.
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Figure 10. Left to right: The density profile from coarse to fine
grid simulations. Top to bottom: At times 6, 6.2 and 6.4 ms.

5. Concluding Remarks

Numerical simulations of turbulent mixing due to hydrodynamic instabilities re-
quire an accurate representation of the perturbed interface between fluids. Accurate
and robust front tracking simulations with the classical fifth order WENO scheme
and artificial compression reveal agreement with experimental data. The single-
mode shock-induced RMI simulations of an air/SF6 interface for the Mach numbers
M = 1.11 and M = 1.21 experiments of Collins and Jacobs show good agreement on
the interface displacement and amplitude as a function of time. A difference less than
10% is observed between the experiments and simulations interface velocities due to
the expansion waves present only in the experiments. Our validation studies show
good agreement in early-time amplitude growth between the fine grid simulation and
the Mach number M = 1.11 experiments. However, we observe about 4% discrep-
ancy on the early-time growth rate for the Mach number M = 1.21. For high Mach
number, it is shown that the high resolution simulations with 256 mesh points per
initial perturbation wavelength lie closer to the experimental measured data, however
do not yet show numerical convergence at the grid resolutions presented in this paper.

In terms of repeatability of experiments, Collins and Jacobs reported differences
(approximately 10%) in amplitudes of the initial perturbations. According to Collins
and Jacobs, increasing the interface amplitude results in a larger growth rate and
more vorticity is created by the large interface amplitude values. The uncertainty
quantification studies to investigate the effect of model and input parameters on the
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growth rate and model improvement to capture the vortices at the interface are under
development.
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[41] JT. Morán-López and O. Schilling. Multicomponent Reynolds-averaged Navier–Stokes simula-

tions of reshocked Richtmyer-Meshkov instability-induced mixing. High Energy Density Physics,
9(1):112–121, 2013.

[42] O. Schilling and M. Latini. High-order WENO simulations of three-dimensional reshocked
Richtmyer-Meshkov instability to late times: dynamics, dependence on initial conditions, and
comparisons to experimental data. Acta Mathematica Scientia, 30(2):595–620, 2010.

[43] O. Schilling, M. Latini, and W. S. Don. Physics of reshock and mixing in single-mode Richtmyer-
Meshkov instability. Physical Review E, 76(2):026319, 2007.

[44] M. Latini, O. Schilling, and W. S. Don. Effects of WENO flux reconstruction order and spatial
resolution on reshocked two-dimensional Richtmyer-Meshkov instability. J. Comput. Phys.,

221(2):805–836, 2007.
[45] M. Latini, O. Schilling, and W. S. Don. High-resolution simulations and modeling of reshocked

single-mode Richtmyer-Meshkov instability: Comparison to experimental data and to amplitude
growth model predictions. Physics of Fluids, 19(2):024104, 2007.



838 T. KAMAN AND R. HOLLEY

[46] V. S. Smeeton and D. L. Youngs. Experimental investigation of turbulent mixing by Rayleigh-
Taylor instability (part 3). AWE Report Number 0 35/87, 1987.

[47] D. L. Youngs. Application of MILES to Rayleigh-Taylor and Richtmyer-Meshkov mixing. Tech-
nical Report 4102, American Institute of Aeronautics and Astronautics, 2003. Presented at the
16th AIAA Computational Fluid Dynamics Conference.

[48] G. Dimonte. Dependence of Rayleigh-Taylor instability on initial perturbations. Phys. Rev. E,

69:056305–1–056305–14, 2004.
[49] K. D. Burrows, V. S. Smeeton, and D. L. Youngs. Experimental investigation of turbulent

mixing by Rayleigh-Taylor instability, II. AWE Report Number 0 22/84, 1984.
[50] T. Kaman, J. Glimm, and D. H. Sharp. Initial conditions for turbulent mixing simulations.

Condensed Matter Physics, 13:43401, 2010.
[51] R. Kaufman, T. Kaman, Y. Yu, and J. Glimm. Stochastic convergence and the software tool

W*. In Proceeding Book of International Conference to honour Professor E.F. Toro, 37–41.
CRC, Taylor and Francis Group, 2012.

[52] T. Kaman, R. Kaufman, J. Glimm, and D. H. Sharp. Uncertainty quantification for turbulent
mixing flows: Rayleigh-Taylor instability. In A. Dienstfrey and R. Boisvert, editors, Uncertain-
ty Quantification in Scientific Computing, volume 377 of IFIP Advances in Information and

Communication Technology, 212–225. Springer, 2012.
[53] T. Kaman. Model calibration for turbulent mixing simulations. In G. Jourdan, L. Houas, and

C. Mariani, editors, Proceedings of the 16th International Workshop on the physics of com-
pressible turbulent mixing, 29–132. 2019.

[54] G. Sod. A survey of several finite difference methods for systems of nonlinear hyperbolic con-
servation laws. J. Comput. Phys., 27:1, 1978.

[55] R. D. Richtmyer. Taylor instability in shock acceleration of compressible fluids. Comm. Pure
Appl. Math., 13:297–319, 1960.

Department of Mathematical Sciences, University of Arkansas, Fayetteville, AR 72701, USA

E-mail : tkaman@uark.edu and rh027@uark.edu

URL: https://kaman.uark.edu


