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A STUDY ON PHASE-FIELD MODELS FOR BRITTLE

FRACTURE

FEI ZHANG, WEIZHANG HUANG, XIANPING LI, AND SHICHENG ZHANG

Abstract. In the phase-field modeling of brittle fracture, anisotropic constitutive assumptions
for the degradation of stored elastic energy due to fracture are crucial to preventing cracking in
compression and obtaining physically sound numerical solutions. Three energy decomposition

models, the spectral decomposition, the volumetric-deviatoric split, and a modified volumetric-
deviatoric split, and their effects on the performance of the phase-field modeling are studied.
Meanwhile, anisotropic degradation of stiffness may lead to a small amount of energy remaining on
crack surfaces, which violates crack boundary conditions and can cause unphysical crack openings

and propagation. A simple yet effective treatment for this is proposed: define a critically damaged
zone with a threshold parameter and then degrade both the active and passive energies in the zone.
A dynamic mesh adaptation finite element method is employed for the numerical solution of the
corresponding elasticity system. Four examples, including two benchmark ones, one with complex

crack systems, and one based on an experimental setting, are considered. Numerical results show
that the spectral decomposition and modified volumetric-deviatoric split models, together with
the improvement treatment of crack boundary conditions, can lead to crack propagation results
that are comparable with the existing computational and experimental results. It is also shown

that the numerical results are not sensitive to the parameter defining the critically damaged zone.

Key words. Brittle fracture, phase-field modeling, constitutive assumption, critically damaged
zone, moving mesh, finite element method.

1. Introduction

In recent years, the phase-field model for brittle fracture based on the variational
approach of Francfort and Marigo [7] has become a commonly used numerical sim-
ulation technique for engineering designs because it can handle complex cracks and
crack initiation and propagation more easily than other methods. The basic idea of
the phase-field modeling is to describe cracks by a continuous scalar field variable
d, which is used to indicate whether the material is damaged or not. This variable
d depends on a parameter l describing the actual width of the smeared cracks and
has a value of zero or close to zero near the cracks and one away from the cracks.
There are three major advantages of the phase-field modeling for brittle fracture
over other methods. Firstly, the behavior of the crack is completely determined
by a coupled system of partial differential equations (PDEs) based on the energy
functional. Therefore, additional calculations such as stress-intensity factors are
not required to determine the crack initiation and propagation. Secondly, com-
plex fracture networks can be easily handled since crack merging and branching
do not require explicitly keeping track of fracture interfaces. Thirdly, smooth in-
terfaces with sharp gradient can be introduced into the displacement field to avoid
discontinuities.

Since it was first proposed by Bourdin et al. [5, 7], the phase-field modeling
for brittle fracture has attracted considerable attention and significant progress has
been made; e.g., see [1, 3, 4, 15, 18, 20, 25]. However challenges still exist. In
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phase-field modeling, constitutive assumptions for the degradation of energy due
to fracture can be categorized into two groups, isotropic models and anisotropic
models. In the former group, the degradation function acts on the whole stored
bulk energy, which means that energy is released due to fracture in both tension
and compression. Thus, crack propagation may also arise under compressive load
state, which is physically unrealistic. On the other hand, in order to overcome
this unphysical feature, the elastically stored energy is decomposed into active and
passive parts and only the former is degraded. Two commonly used energy decom-
position models have been proposed in the past. Miehe et al. [20] introduced a fully
anisotropic constitutive model for the degradation of energy based on the spectral
decomposition of strains with the assumption that crack evolution is induced by
the positive principal strains. The other model is the unilateral contact model
proposed by Amor et al. [1] that splits the strain into volumetric and deviatoric
parts, with the expansive volumetric part and the total deviatoric part being de-
graded. Since the choice of the energy splitting controls the energy contribution in
the damage evolution, different splitting models can significantly affect numerical
approximations in the phase-field modeling of cracks. In this work we shall study
these models plus an modified version of the unilateral contact model.

In phase-field modeling, a pre-existing crack is often modeled as a discrete dis-
continuity in the geometry or an induced discontinuity in the phase-field. The
former has been successfully applied in phase-field models for a single initial crack.
However, it is difficult to handle complex crack boundary conditions since the loca-
tion of the initial crack is mesh-dependent. For the latter, an initial strain-history
field is introduced to define the location of the induced crack. One of the major
advantages of this treatment is that initial cracks can be placed anywhere in the
domain without referring to the mesh, which makes it possible to deal with complex
initial cracks. The induced crack model was first proposed by Borden et al. [3] and
significant improvements have been made [3, 18, 22]. However, a small amount of
energy remains in the totally damaged zone due to the anisotropic degradation of
stiffness. For the induced crack model, stress remains in the interior of the initial
crack and increases with external loads before the crack begins to propagate. This
violates the vanishing stress condition on the crack surface and often results in un-
physical crack propagation. May et al. [18] have observed that with the induced
crack setting for a single notched shear test, numerical results are very different
from those with discrete crack boundary conditions. To overcome this problem,
Strol and Seelig [23, 24] proposed a novel treatment of crack boundary conditions
in which crack orientation is taken into account so that both the positive normal
stress on the crack surfaces and the shear stress along the frictionless crack surface
vanish. However, the establishment of this constitutive assumption is not based on
the variational approach, which makes the phase-field model more complicated to
implement.

Another important issue is that the phase-field modeling approximates the orig-
inal discrete problem as l → 0 under the condition that h ≪ l or at least h < l,
where h denotes the mesh spacing. A very fine mesh is needed to fulfill the condition
when a uniform mesh is used in the computation, which increases the computation-
al cost significantly. Moreover, cracks can propagate under continuous load. Thus,
it is natural to use a dynamic mesh adaptation strategy to improve the efficiency
of the simulation. In this work we use the moving mesh PDE (MMPDE) method
[6, 12, 13, 14] to concentrate mesh elements around evolving cracks. The reader is
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referred to Zhang et al. [26] for the detailed study of the application of the MMPDE
method to the phase-field modeling of brittle fracture.

The objective of this paper is twofold. The first is to investigate two common-
ly used energy decomposition models, the spectral decomposition model [19] and
the volumetric-deviatoric split model [1], and their impacts on the performance
of the phase-field modeling for brittle fracture. The former degrades the energy
related to the tensile strain component while the latter degrades both the expan-
sive volumetric strain energy and the total deviatoric strain energy. In the latter
case, the compressive deviatoric strain energy is also accounted for contributing to
the damage process, which may cause unphysical crack propagation. A modified
volumetric-deviatoric model is proposed and studied to avoid this difficulty.

The second goal is to study the treatment of crack boundary conditions for the
induced crack model. As mentioned before, the induced crack model leads to a small
remaining stress in the damaged area, which can cause unrealistic crack boundary
conditions such as normal stress remaining on the crack surface. To overcome this
difficulty, we propose a simple yet effective treatment of crack boundary conditions:
define a critically damaged zone with 0 < d < dcr, where dcr is a positive parameter,
and then degrade both the active and passive components of the energy in this
zone. We shall consider four two-dimensional examples to verify the treatment.
The first two are classical benchmark problems, single edge notched tension and
shear tests. The third example is designed to demonstrate the ability of the models
to handle complex cracks. The last example is also a single edge notched shear
test but with the physical parameters and domain geometry chosen based on an
experiment setting. Numerical results show that the spectral decomposition and
modified volumetric-deviatoric models together with the improved treatment of
crack boundary conditions lead to correct crack propagation for all of the examples.

While the current work is based on the MMPDE-based moving mesh finite el-
ement method developed in [26], the two objectives stated above have not been
studied therein. The comparison study of different energy decomposition models,
modification of the volumetric-deviatoric split model, and introduction of critically
damaged zone are new contributions of this work.

The paper is organized as follows. Section 2 is devoted to the description of the
phase-field modeling with three energy decomposition models and the improved
treatment of crack boundary conditions. The MMPDE-based moving mesh finite
element method is described in Section 3 for the elasticity system. Numerical results
for four two-dimensional examples are presented in Section 4. Finally, Section 5
contains conclusions.

2. Phase-field models for brittle fracture

2.1. Variational approach to elastic models with cracks. We consider small
strain isotropic elasticity models with cracks. Let Ω be a two-dimensional bounded
domain filled with an elastic material and having the boundary ∂Ω = ∂Ωt ∪ ∂Ωu,
where the surface traction t is specified on ∂Ωt and the displacement u is given on
∂Ωu. Denote the displacement by u. Then the strain tensor is given by

ϵ =
1

2

(
∇u+ (∇u)T

)
,

where ∇u is the displacement gradient tensor. For isotropic material, the strain
energy density is given by Hooke’s law as

(1) Ψe(ϵ) =
λ

2
(tr(ϵ))

2
+ µ tr(ϵ2),
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d < 1
( ψ+(ε) degraded ,

ψ-(ε) kept no change )

d = 12l

(a) Regularized crack Γl(d) by the

phase-field approximation

Critical damaged region : d < dcr
( ψ+(ε) and ψ-(ε) are both degraded )

d = 1

Damaged region : dcr < d < 1
( ψ+(ε) degraded ,

ψ-(ε) kept no change )

(b) The critically damaged region

indicated by the critical value dcr

Figure 1. A sketch of the phase-field modeling of brittle crack.

where λ and µ are the Lamé constants and tr(·) denotes the trace of a tensor.
For an elastic body with a given crack Γ, we take the approach of Francfort and

Marigo [7] to define the total energy as

(2) W(ϵ,Γ) = We(ϵ,Γ) +Wc(Γ) ≡
∫
Ω\Γ

Ψe(ϵ) dΩ+

∫
Γ

gc dS,

where We(ϵ,Γ) represents the energy stored in the bulk of the elastic body, Wc(Γ)
is the energy input required to create the crack according to the Griffith criterion,
and gc is the fracture energy density that is the amount of energy needed to create
a unit area of fracture surface.

The model (2) treats the crack Γ as a discontinuous object, which has been a
challenge to simulate numerically. Here we use the phase-field approach with which
Γ is smeared into a continuous object. Specifically, a phase-field variable d(x, t)
is used to represent Γ along with the parameter l that describes the width of the
smooth approximation of the crack. The value of d(x, t) is zero or close to zero near
the crack and one away from the crack (see Fig. 1(a)). The fracture energy Wc(Γ)
is approximated by the smeared total fracture energy [5] as

(3) W l
c =

∫
Ω

gc
4l

(
(d− 1)2 + 4l2|∇d|2

)
dΩ.

The elastic energy needs to be modified to reflect the loss of material stiffness in
the damaged zone. A degradation function g(d) is commonly used for this purpose,
which is required to satisfy the following property

g(0) = 0 : Damage occurred for d = 0 and this part should vanish;

g(1) = 1 : No damage occurs for d = 1;

g′(0) = 0 : No more changes after the fully broken state;

g′(1) ̸= 0 : The damage has to be initiated at the onset.

In our computation, we use a common choice g(d) = d2. A straightforward attempt
for the modification of the elastic energy is to degrade the total stored energy in
the damaged region, i.e.,

(4) Ψl
e(ϵ, d) = g(d)Ψe(ϵ).

Unfortunately, this can result in crack opening in compressed regions, which is
physically unrealistic. To avoid this, it is common to decompose the total stored
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energy into two components as

(5) Ψe(ϵ) = Ψe,act(ϵ) + Ψe,pas(ϵ),

where Ψe,act(ϵ) and Ψe,pas(ϵ) represent the active and passive components, respec-
tively, with only the former contributing to the damage process that results in
fracture. Two commonly used decomposition models will be discussed in the next
subsection. Then, the damage model reads as

(6) Ψl
e(ϵ, d) = g(d)Ψe,act(ϵ) + Ψe,pas(ϵ),

and the corresponding total energy is

W l = W l
e +W l

c

=

∫
Ω

(
(d2 + kl)Ψe,act(ϵ) + Ψe,pas(ϵ) +

gc
4l

(
(d− 1)2 + 4l2|∇d|2

))
dΩ,(7)

where kl ≪ l is a regularization parameter added to avoid degeneracy. It is em-
phasized that with this setting, only the active component of the elastic energy is
degraded in damaged regions.

Letting

W = (d2 + kl)Ψe,act(ϵ) + Ψe,pas(ϵ) +
gc
4l

(
(d− 1)2 + 4l2|∇d|2

)
,

we obtain the variation of the energy as

δW l =

∫
Ω

∂W

∂d
δd dΩ+

∫
Ω

∂W

∂∇d
· ∇δd dΩ+

∫
Ω

∂W

∂ϵ
: ϵ(δu) dΩ,

where A : B is the inner product of tensors A and B, i.e., A : B =
∑
i,j

Ai,jBi,j .

Define the function spaces

Vu =
{
φ | φ ∈ H1(Ω), φ = u on ∂Ωu

}
,

V 0
u =

{
φ | φ ∈ H1(Ω), φ = 0 on ∂Ωu

}
,

where H1(Ω) is a Sobolev space defined as

H1(Ω) =

{
φ |

∫
Ω

φ2 dΩ < +∞,

∫
Ω

|∇φ|2 dΩ < +∞
}
.

Take Vd = H1(Ω). The weak formulation for the phase-field model is to find d ∈ Vd

and u ∈ Vu such that∫
Ω

((
2dH+

gc(d− 1)

2l

)
δd+ 2gcl∇d · ∇δd

)
dΩ = 0, ∀ δd ∈ Vd(8) ∫

Ω

σ : ϵ(δu)dΩ =

∫
Ωt

t · δu dS +

∫
Ω

f · δu dΩ, ∀ δu ∈ V 0
u(9)

where H = Ψe,act(ϵ) and σ is the Cauchy stress defined as

(10) σ ≡ ∂W

∂ϵ
= (d2 + kl)

∂Ψe,act

∂ϵ
+

∂Ψe,pas

∂ϵ
.

To ensure that cracks can only grow (i.e., crack irreversibility), we replace H =
Ψe,act(ϵ) in (8) by

(11) H = max
s≤t

Ψe,act(ϵ)(s),

where t is the quasi-time corresponding to the load increments.

2.2. Models for energy decomposition. In this subsection we discuss two com-
monly used models and a modified one for energy decomposition.
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2.2.1. Spectral decomposition. We first consider a commonly-used model pro-
posed by Miehe et al. [19] based on the spectral decomposition of the strain tensor.
To this end, we define the positive-negative decomposition of a scalar function f as

f = f+ + f−, f+ =
f + |f |

2
, f− =

f − |f |
2

.

For the strain tensor, we have

ϵ = ϵ+ + ϵ−, ϵ+ = Qdiag(λ+
1 , ..., λ

+
n )Q

T , ϵ− = Qdiag(λ−
1 , ..., λ

−
n )Q

T ,

where Qdiag(λ1, ..., λn)Q
T is the eigen-decomposition (or the spectral decomposi-

tion) of ϵ. Notice that ϵ+ represents the tensile strain component that contributes
to the damage process resulting in crack initiation and propagation while ϵ− rep-
resents the compression strain component that does not contribute to the damage
process. Based on this, the active and passive components of the elastic energy are
given by

Ψe,act(ϵ) =
λ

2

(
(tr(ϵ))+

)2
+ µ tr((ϵ+)2), Ψe,pas(ϵ) =

λ

2

(
(tr(ϵ))−

)2
+ µ tr((ϵ−)2).

The elastic energy density in (6) and the Cauchy stress in (10) can be written as

Ψl
e(ϵ, d) = (d2 + kl)

(
λ
((tr(ϵ))+)2

2
+ µ tr

(
(ϵ+)2

))
+

(
λ
((tr(ϵ))−)2

2
+ µ tr

(
(ϵ−)2

))
,

σ = (d2 + kl)
(
λ(tr(ϵ))+I + 2µϵ+

)
+
(
λ(tr(ϵ))−I + 2µϵ−

)
.

In this model, only is the energy component related to the tensile strain component
degraded in damaged regions.

2.2.2. Volumetric-deviatoric split. Another commonly-used model is proposed
by Amor et al. [1] based on the volumetric-deviatoric split (v-d split),

(12) ϵ = ϵS + ϵD, ϵS =
1

m
tr(ϵ)I, ϵD = ϵ− 1

m
tr(ϵ)I,

wherem is the spatial dimension, ϵS is the spherical component (called the volumet-
ric strain tensor) related to the volume change, and ϵD is the deviatoric component
(called the strain deviator tensor) related to distortion. In this model, the expan-
sive volumetric strain energy and the total deviatoric strain energy are released by
the creation of new cracks whereas the compressive volumetric strain energy is not.
The active and passive components of the elastic energy are given by

Ψe,act(ϵ) = κ0
((tr(ϵ))+)2

2
+ µ tr

(
(ϵD)2

)
, Ψe,pas(ϵ) = κ0

((tr(ϵ))−)2

2
,

where κ0 = λ+2µ/m is the bulk modulus of the material. The energy density and
Cauchy stress associated with this model are

Ψl
e(ϵ, d) = (d2 + kl)

(
κ0

((tr(ϵ))+)2

2
+ µ tr

(
(ϵD)2

))
+ κ0

((tr(ϵ))−)
2

2
,

σ = (d2 + kl)
(
κ0 (tr(ϵ))

+
I + 2µϵD

)
+ κ0 (tr(ϵ))

−
I.
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2.2.3. Modified volumetric-deviatoric split. According to unilateral contact
conditions, cracks can only open in the regions where the material tends to expand.
For the volumetric-deviatoric split model described in the previous subsection, both
the positive part of the volumetric component and the total deviatoric component
of the elastic energy are degraded in damaged regions. However, the three princi-
pal strains of the deviatoric component of the strain tensor can be negative, which
indicates that the compressive deviatoric strain energy is also accounted for con-
tributing to the damage process in the v-d split model. To avoid this unphysical
feature, we propose to apply the spectral decomposition to the strain deviatoric
tensor and call the resulting model as the modified v-d split model. Specifically,
the spectral decomposition of ϵD is

ϵD = ϵ+D + ϵ−D, ϵ+D = Qdiag(λ+
1 , ..., λ

+
m)QT , ϵ−D = Qdiag(λ−

1 , ..., λ
−
m)QT ,

provided that Qdiag(λ1, ..., λm)QT is the eigen-decomposition of ϵD. The degrada-
tion applies only to the expansive volumetric and deviatoric strain energies. Then,
the active and passive part of the elastic energy are given by

Ψe,act(ϵ) = κ0
((tr(ϵ))+)2

2
+µ tr

(
(ϵ+D)2

)
, Ψe,pas(ϵ) = κ0

((tr(ϵ))−)2

2
+µ tr

(
(ϵ−D)2

)
,

and the corresponding energy density and Cauchy stress are

Ψl
e(ϵ, d) = (d2+kl)

(
κ0

((tr(ϵ))+)2

2
+ µ tr

(
(ϵ+D)2

))
+

(
κ0

((tr(ϵ))−)2

2
+ µ tr

(
(ϵ−D)2

))
,

σ = (d2 + kl)
(
κ0 (tr(ϵ))

+
I + 2µϵ+D

)
+
(
κ0 (tr(ϵ))

−
I + 2µϵ−D

)
.

2.3. Improved treatment of crack boundary conditions (ItCBC). We re-
call that on any crack Γ, the material is totally damaged, the phase-field variable
is zero (i.e., d(x, t) = 0), and the stress vanishes, viz.,

(13) σ · n|Γ = 0,

where n is the unit outward normal to Γ. However, there is no guarantee that this
is satisfied in the above described three models of energy decomposition. Indeed,
we recall that Ψe,pas(ϵ) is not degraded. By close examination, we can see that it
does not vanish on Γ in general for all of the models described above; see Fig. 2(a)
for a sketch for this remaining energy in the totally damaged zone. This can also
be explained from (10). On Γ, we have d = 0 and

σ = kl
∂Ψe,act

∂ϵ
+

∂Ψe,pas

∂ϵ
≈ ∂Ψe,pas

∂ϵ
,

where we have used kl ≪ l ≪ 1. The fact that ∂Ψe,pas/∂ϵ does not vanish on Γ in
general implies that it is not guaranteed that (13) be satisfied. The violation of the
boundary condition can lead to unphysical crack propagation. To see the impacts,
we consider a single edge notched shear test, with the domain and boundary con-
ditions shown in Fig. 3(b). In this case, a relative displacement is expected and
no stress should remain on the crack surface. However, the results obtained with
the spectral decomposition model show a stiff response (Fig. 4(b)) and unrealistic
displacement under loading (Fig. 4(a)).

To avoid this problem, we propose here a modification which introduces a criti-
cally damaged zone with d < dcr and degrades the total stored energy in the zone;
see Fig. 1(b). Here, dcr ∈ (0, 1) is a threshold. When dcr = 0, the modified model
reduces back to the original model. On the other hand, when dcr = 1, the total
energy is degraded for the entire damaged region. For any dcr ∈ (0, 1), the total
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Figure 2. Energy stored in the bulk of the elastic body.
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(b) Shear test

Figure 3. Domain and boundary conditions for single edge
notched tests, (a) tension test for Example 1 and (b) shear test
for Example 2.

energy is degraded in the critically damaged zone with 0 ≤ d < dcr and only the
active component of the energy is degraded in the damaged zone with dcr < d ≤ 1.
More discussion on the choice of dcr and its effects will be given in the numerical
result section §4. Mathematically, the modified damage model reads as

(14) Ψl
e,m(ϵ, d) =

(
d2 + kl

)
Ψl

e,act,m(ϵ) + Ψl
e,pas,m(ϵ),

where

Ψl
e,act,m(ϵ) =

{
Ψl

e,act(ϵ) + Ψl
e,pas(ϵ) = Ψl

e, for 0 ≤ d ≤ dcr

Ψl
e,act(ϵ), for dcr < d ≤ 1

Ψl
e,pas,m(ϵ) =

{
0, for 0 ≤ d ≤ dcr

Ψl
e,pas(ϵ), for dcr < d ≤ 1.

By construction, Ψl
e,m(ϵ, d) = 0 and σ = 0 on Γ (assuming that kl = 0) and thus

the crack boundary condition (13) is satisfied. For simplicity, we will call this
modification as ItCBC (Improved treatment of Crack Boundary Conditions).

For the single edge notched shear test considered earlier, the results with and
without ItCBC for the spectral decomposition model are shown in Fig. 4. It can be
seen that ItCBC effectively reduces the stress to zero on the crack and the results
agree well with the expected response as shown in the deformed domain.
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(a) Mesh, dcr = 0 (b) Von Mises stress, dcr = 0
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Figure 4. The single edge notched shear test for the energy
spectral decomposition model with ItCBC (dcr > 0) and with-
out ItCBC (dcr = 0). The von Mises stress is defined as

(σ2
x + σ2

y − σxσy + 3τ2xy)
1
2 . (a) Mesh for dcr = 0, (b) von Mis-

es stress for dcr = 0, (c) Mesh for dcr = 0.2, (d) von Mises stress
for dcr = 0.2.

3. A moving mesh finite element method

In this section we briefly describe a moving mesh finite element method for
solving the phase-field problem (8) and (9). It was first considered for the phase-
field modeling of brittle fracture by Zhang et al. in [26]. The reader is referred to
the reference for more detailed discussion of the method. It is worth mentioning
that other adaptation strategies could also be used to solve this phase-field problem.

3.1. Finite element discretization and solution procedure. Let Th be a
simplicial mesh for the domain Ω and denoteN andNv as the number of its elements
and vertices, respectively. The function spaces Vd, Vu and V 0

u are approximated by

V h
d =

{
φh | φh ∈ C0(Ω); φh|K ∈ P1(K), ∀K ∈ Th

}
⊂ Vd,

V h
u =

{
φh | φh ∈ C0(Ω); φh|∂Ωu

= u; φh|K ∈ P1(K), ∀K ∈ Th
}
⊂ Vu,

V 0,h
u =

{
φh | φh ∈ C0(Ω); φh|∂Ωu = 0; φh|K ∈ P1(K), ∀K ∈ Th

}
⊂ V 0

u ,

where P1(K) is the set of polynomials of degree less than or equal to 1 defined on
K. For the phase-field problem (8) and (9), the linear finite element approximation
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is to find dh ∈ V h
d and uh ∈ V h

u such that∫
Ω

((
2dhH+

gc(dh − 1)

2l

)
φh + 2gcl∇dh · ∇φh

)
dΩ = 0, ∀ φh ∈ V h

d(15) ∫
Ω

σ(uh) : ϵ(φh)dΩ =

∫
Ωt

t · φh dS +

∫
Ω

f · φh dΩ, ∀ φh ∈ V 0,h
u .(16)

In our computation, we solve (15) for dh and (16) for uh alternately. The pro-
cedure leads to smaller and easier systems to solve since dh and uh are decoupled
and (15) is linear about dh. We recall that the energy density is decomposed into
active and passive components with only the former contributing to the evolution
of cracks. This decomposition results in a non-smooth elastic energy, increases non-
linearity of the displacement system, and makes Newton’s iteration often difficult to
converge. Three regularization methods have been proposed by Zhang et al. [26] to
smooth positive and negative eigenvalue functions via a switching technique (sonic-
point regularization) or convolution with a smoothed delta function. In this work,
we use the sonic-point regularization method with which the positive and negative
eigenvalue functions are replaced by

(17) λ+
α =

λ+
√
λ2 + α2

2
, λ−

α =
λ−

√
λ2 + α2

2
,

where α > 0 is the regularization parameter. It is shown in [26] that this regular-
ization can effectively make Newton’s iteration convergent.

We consider the problem in a quasi-static condition, with the quasi-time t being
introduced to represent the load increments. The solution procedure from tn to
tn+1 is described as follows.

(i) Suppose the mesh T n
h at time tn and the history field Hn

h in (11) (defined
on T n

h ) are given.

(ii) Compute the phase-field variable dn+1
h and new mesh T n+1

h as follows.

• Let T n+1,1
h = T n

h ;
• For k = 1 : K

- Compute H on T n+1,k
h using linear interpolation of Hn

h ;

- Compute dn+1,k
h using (15) and H on T n+1,k

h ;

- If k < K, compute the new mesh T n+1,k+1
h by the MMPDE mov-

ing mesh method based on T n+1,k
h and dn+1,k

h ; see Section 3.2.

• Let T n+1
h = T n+1,K

h and dn+1
h = dn+1,K

h .

(iii) Compute the displacement field un+1
h by solving the nonlinear system (16)

based on dn+1
h and T n+1

h . Newton’s iteration is used in this step.

(iv) Compute Ψl,n+1
e,act,h(ϵ(u

n+1
h )) and set Hn+1

h = max{Ψl,n+1
e,act,h(ϵ(u

n+1
h )), H̃n

h},
where H̃n

h is the linear interpolation of Hn
h from the old mesh T n

h to the

new mesh T n+1
h .

The parameter K in the above procedure determines the adaptivity of the mesh
T n+1
h to the phase-field variable dn+1

h . Our experience shows that K = 5 is sufficient

for the mesh to be well adaptive to dn+1
h .

3.2. The MMPDE moving mesh method. We use the MMPDE moving mesh
method [12, 14] for generating the new mesh T n+1

h . The method is based on the
observation that a nonuniform adaptive mesh can be viewed as a uniform one
in some metric specified by a tensor M. The metric tensor M is assumed to be
symmetric and uniformly positive definite on Ω and determines the shape, size,
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and orientation of the mesh elements through the so-called equidistribution and
alignment conditions (see [14] for details).

Denote H(dh) as a recovered Hessian of dh and assume its eigen-decomposition
is given by H(dh) = Qdiag(λ1, λ2)Q

T . Then we choose the metric tensor in our
computation as

(18) M = det(I + |H(dh)|)−
1
6 (I + |H(dh)|),

where |H(dh)| = Qdiag(|λ1|, |λ2|)QT . Since (18) is based on the Hessian of the
phase-field variable d, the mesh points are concentrated around the crack where
the curvature of d is large. The form (18) is known to be optimal for the L2

norm of linear interpolation error (e.g., see [14]). Moreover, numerical results in
[26] have demonstrated that the MMPDE method with this metric tensor is able
to effectively concentrate mesh points around cracks for situations with single and
multiple cracks.

Denote x1, ...., xNv as the coordinates of the vertices of Th. Let T̂c,h = {ξ̂1, ..., ξ̂Nv}
be the reference computational mesh which is taken as the initial physical mesh.
We also denote Tc,h = {ξ1, ..., ξNv} as an intermediate computational mesh. We

assume that Th, T̂c,h, and Tc,h have the same number of elements and vertices and
the same connectivity. Then for any element K ∈ Th, there exists a corresponding
element Kc ∈ Tc,h. Let FK be the affine mapping from Kc to K and F ′

K be its
Jacobian matrix. Denote the vertices of K and Kc as xK

0 , xK
1 , xK

2 and ξK0 , ξK1 , ξK2 ,
respectively. We define the edge matrices of K and Kc as

EK = [xK
1 − xK

0 , xK
2 − xK

0 ], ÊK = [ξK1 − ξK0 , ξK2 − ξK0 ].

It is easy to show that

F ′
K = EKÊK

−1
, (F ′

K)−1 = ÊKE−1
K .

An energy function that combines the equidistribution and alignment conditions
has been proposed by Huang [8] as

(19) Ih(Th; Tc,h) =
∑

K∈Th

|K|G(JK , det(JK),MK),

where JK = (F ′
K)−1 and

G(JK , det(JK),MK) =
1

3

√
det(MK)

(
tr(JKMKJTK)

) 3
2

+
2

3
2

3

√
det(MK)

(
det(JK)√
det(MK)

) 3
2

.

In principle, a new physical mesh T n+1
h can be found by minimizing Ih with respect

to Th for a given Tc,h (for example, taken as T̂c,h). However, this minimization
can be difficult and costly since Ih is generally not convex. Here, we use the ξ-
formulation of the MMPDE moving mesh method. That is, we first take Th = T n

h

and define the moving mesh equation as a gradient system of Ih with the coordinates
of the computational vertices, i.e.,

(20)
dξj
dt

= −Pj

τ

(
∂Ih
∂ξj

)T

, j = 1, ..., Nv

where τ > 0 is a parameter used to adjust the time of the mesh movement and
Pj = det(M(xj))

1
4 is chosen to make (20) invariant under the scaling transformation
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of M. Using the analytical formulas for the derivatives [10], we can rewrite (20)
into

(21)
dξj
dt

=
Pj

τ

∑
K∈ωj

|K|vKjK ,

where ωj is the element patch associated with the j-th vertex, jK is the correspond-
ing local index of the vertex on K, and vKjK is the local velocity of the vertex that
is given by[

(vK1 )T

(vK2 )T

]
= −E−1

K

∂G

∂J
− ∂G

∂ det(J)
det(ÊK)

det(EK)
Ê−1

K , vK0 = −
2∑

i=1

vKj .

The derivatives of the function G in the above equation are given by

∂G

∂J
=
√
det(M)

(
tr(JM−1JT )

) 1
2 M−1JT ,

∂G

∂ det(J)
=

√
2 det(M)−

1
4 det(J)

1
2 .

Note that the velocities for the boundary vertices need to be modified appropri-
ately so that they stay on the boundary. After that, (21) is integrated using the

Matlab R⃝ ODE solver ode15s from tn to tn+1 with T̂c,h as the initial mesh. The

new computational mesh is denoted as T n+1
c,h . This mesh and the physical mesh T n

h

form a piecewise linear correspondence, i.e., T n
h = Φh(T n+1

c,h ). The new physical

mesh is then defined as T n+1
h = Φh(T̂c,h), which can be computed using linear

interpolation.
It is worth pointing out that an x-formulation of the MMPDE moving mesh

method can also be obtained by taking Tc,h = T̂c,h and using the gradient system
of Ih with respect to the coordinates of the physical vertices. Although more com-
plicated to implement (e.g., see [10]) than the ξ-formulation, the x-formulation has
the advantage that the generated mesh is theoretically and numerically guaranteed
to be nonsingular if it is so initially (cf. [11]). On the other hand, a similar the-
oretical result has not yet been proven for the ξ-formulation although numerical
experiment has shown that it also produces no mesh tangling or crossing.

4. Numerical results

In this section we present numerical results for four examples. The first two
are classical benchmark problems, a single edge notched tension test and a shear
test. The third example is designed to demonstrate the ability of our method to
handle complex cracks. The last example is also a single edge notched shear test but
with the physical parameters and domain geometry chosen based on an experiment
setting. The numerical results obtained with the three energy decomposition models
with and without ItCBC are presented and compared. The effects of the critical
damage threshold dcr and ItCBC on the numerical solution are discussed. Unless
stated otherwise, the following choices of the parameters are used: α = 10−3 in
the sonic-point regularization method, N = 6, 400 for the number of elements of an
adaptive mesh, and l = 0.0075 mm for the width of smeared cracks.

4.1. Example 1. A single edge notched tension test. We first consider
a single edge notched tension test from Miehe et al. [19]. The geometry and
boundary conditions are show in Fig. 3(a). The bottom edge of the domain is
fixed. The top edge is fixed along the x-direction while along the y-direction a
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(a) spectral decomposi-
tion

(b) v-d split (c) modified v-d split
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(e) v-d split
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(f) modified v-d split

(g) spectral decomposi-
tion

(h) v-d split (i) modified v-d split

Figure 5. Example 1. Meshes and contours of the phase-field and
von Mises stress distribution are plotted at U = 5.3 × 10−3 mm.
Three energy decomposition models are used without ItCBC
(dcr=0).
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Figure 6. Example 1. The load-deflection curves are obtained for
spectral and v-d split decomposition models without ItCBC
(dcr=0).

uniform displacement U is increased with time to drive the crack propagation. The
following material properties are used in our computation: λ = 121.15 kN/mm2,
µ = 80.77 kN/mm2, and gc = 2.7 × 10−3 kN/mm. Due to the brutal character of
the crack propagation, we choose two displacement increments for the computation,
∆U = 10−5 mm for the first 500 time steps and ∆U = 10−6 mm afterwards. For
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(a) spectral decomposi-

tion

(b) v-d split (c) modified v-d split
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(e) v-d split
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(f) modified v-d split

(g) spectral decomposi-
tion

(h) v-d split (i) modified v-d split

Figure 7. Example 1. Meshes and contours of the phase-field and
von Mises stress distribution are plotted at U = 5.3 × 10−3 mm.
Three decomposition models with ItCBC (dcr = 0.4) are used.
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(a) spectral decomposition
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(b) v-d split
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(c) modified v-d split

Figure 8. Example 1. The load-deflection curves are obtained us-
ing three decomposition models with or without ItCBC. (a) spec-
tral decomposition with various dcr; (b) v-d split with various dcr;
(c) modified v-d split with various dcr.
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(a) dcr = 0.2
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(b) dcr = 0.4
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(c) dcr = 0.6
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Figure 9. Example 1. The load-deflection curves are compared
for three energy decomposition methods with ItCBC. (a) dcr = 0.2;
(b) dcr = 0.4; (c) dcr = 0.6; (d) dcr = 0.8.

comparison purpose, we compute the surface load vector on the top edge as

F = (Fx, Fy) ≡
∫
top edge

σ(ϵ) · ndl,

where n is the unit outward normal to the top edge. We are interested in Fy for
the tension test and Fx for the shear test.

We now investigate the effects of different energy decomposition models and the
crack boundary conditions on the numerical results. An initial triangular mesh
is constructed from a rectangular mesh by subdividing each rectangle into four
triangles along diagonal directions. Typical adaptive meshes and contours of the
phase-field and von Mises stress distribution using three decomposition models are
shown in Fig. 5. The load-deflection curves are shown in Fig. 6. For the spectral
decomposition and v-d split method, the resulting crack path and load-deflection
curves agree well with the results obtained by Miehe at al. [20] using pre-refined
mesh around the regions of the crack and its expected propagation path. Moreover,
the stress is always concentrated in the region around the crack tip during crack
evolution as shown in Figs. 5(g) and 5(h). Inconsistent results are obtained with the
modified v-d split model. The stress growth and concentration occur in the totally
damaged area as shown in Fig. 5(i). The reason of this unphysical phenomenon is
that for the tension test, this split model leads to a small remaining energy in the
damaged zone.

Next, we examine the effects of ItCBC (cf. §2.3) and the choice of the threshold
dcr. Using ItCBC with dcr = 0.4, typical adaptive meshes and contours of the
phase-field variable and von Mises stress at U = 5.3× 10−3 mm are shown in Fig.
7. One can see that the effects of ItCBC for both the spectral decomposition and v-
d split models are small. On the other hand, the effects of ItCBC on the modified
v-d split model are significant. Indeed, the von Mises stress distribution for the
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(a) U = 2.45× 10−2 mm (b) U = 2.55× 10−2 mm (c) U = 2.6× 10−2 mm
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(e) U = 2.55× 10−2 mm
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(f) U = 2.6× 10−2 mm

(g) U = 2.45× 10−2 mm (h) U = 2.55× 10−2 mm (i) U = 2.6× 10−2 mm

Figure 10. Example 2. Meshes and contours of the phase-field
and von Mises stress distribution are plotted at U = 2.45× 10−2,
2.55 × 10−2, and 2.60 × 10−2 mm. The spectral decomposition
model is used without ItCBC (dcr=0).

latter is now comparable to those obtained with the spectral decomposition and
v-d split models; see Fig. 7(i).

The load-deflection curves for three decomposition models with various values of
dcr (0.2, 0.4, 0.6, 0.8) are shown in Figs. 8 and 9. As we can see in Figs. 8(a) and
8(b), there is no significant difference between the original model and the model
with ItCBC with various values of dcr for the spectral decomposition and v-d split.
However, for the modified v-d split, smaller dcr values lead to underestimates of the
load after crack starts propagating, see 8(c). The work done by boundary tractions
and body forces (external work) on an elastic solid are stored inside the body in
the form of strain energy. According to the Griffith theory, the energy required
to create new crack surfaces is transformed from the stored elastic strain energy.
When dcr is large, more strain energy is degraded and stored energy becomes less.
In this case, more external work is needed to generate new crack, which means that
the peak of reaction force increases with dcr (see Fig. 8).

Figs. 9(b), 9(c), and 9(d) show that for ItCBC with dcr ∈ [0.4, 0.8], the load-
deflection curves are nearly the same for all three energy decomposition models. For
smaller dcr values (dcr = 0.2 in Fig. 9(a)), the modified v-d split underestimates
the load after crack starts propagating.
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(a) U = 1.1× 10−2 mm (b) U = 1.3× 10−2 mm (c) U = 1.45× 10−2 mm
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(f) U = 1.45× 10−2 mm

(g) U = 1.1× 10−2 mm (h) U = 1.3× 10−2 mm (i) U = 1.45× 10−2 mm

Figure 11. Example 2. Meshes and contours of the phase-field
and von Mises stress distribution are plotted at U = 1.1 × 10−2,
1.30 × 10−2, and 1.45 × 10−2 mm. The spectral decomposition
model with ItCBC (dcr = 0.4) is used.

4.2. Example 2. A single edge notched shear test. We now consider a
single edge notched shear test. The domain and boundary conditions are shown
in Fig. 3(b). The bottom edge of the domain is fixed and the top edge is fixed
along the y-direction while a uniform x-displacement U is increased with time to
drive the crack propagation. The material properties are the same as the tension
test in Example 1, that is, λ = 121.15 kN/mm2, µ = 80.77 kN/mm2, and gc =
2.7× 10−3 kN/mm. The displacement increment is chosen as ∆U = 10−5 mm for
the computation.

We first investigate the effects of the three decomposition models and ItCBC on
the crack propagation and the distribution of the stress. The spectral decomposition
model without ItCBC leads to the development of a secondary crack along the left
edge of the domain and the concentration of the stress in the damaged region; see
Fig. 10. This (unphysical) phenomenon has also been observed by May et al. [18]
where the initial notch is modeled with d = 0. The results with ItCBC modification
(dcr = 0.4) are shown in Fig. 11. It can be seen that a secondary crack does not
occur and the stress concentrates at the turning point and crack tip only. The crack
path agrees well with that in [19] where the initial crack is modeled as a discrete
crack in the geometry.
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(a) U = 1.2× 10−2 mm (b) U = 1.3× 10−2 mm (c) U = 1.4× 10−2 mm

(d) U = 1.2× 10−2 mm (e) U = 1.3× 10−2 mm (f) U = 1.4× 10−2 mm

(g) U = 1.2× 10−2 mm (h) U = 1.3× 10−2 mm (i) U = 1.4× 10−2 mm

Figure 12. Example 2. Meshes and contours of the phase-field
and von Mises stress distribution are plotted at U = 1.20× 10−2,
1.30 × 10−2, and 1.40 × 10−2 mm. The v-d split model is used
without ItCBC (dcr=0).

Figs. 12 and 13 show the results using the v-d split model without (dcr=0) and
with ItCBC (dcr = 0.4), respectively. The crack evolution paths are similar to
each other and consistent with the results in the literature [17] although slightly
different from those obtained with the spectral decomposition model. On the other
hand, the modified v-d split model together with ItCBC (dcr = 0.4) leads to a crack
propagation path similar to Miehe’s; see Fig. 14.

Next, we investigate the effects of the choice of dcr. The load-deflection curves
obtained using the spectral decomposition and modified v-d split model with various
values of dcr are plotted in Figs. 15 and 16.

As can be seen in Fig. 15(a), the effects of dcr on the load-deflection are small
for the spectral decomposition model when dcr is small (dcr ≤ 0.6). The load is
overestimated after crack starts propagating for large values of dcr (e.g., dcr = 0.8).
For the modified v-d split method, the peak of the load-deflection increases with
dcr; see Fig. 15(b). It is also interesting to observe that the curves for the two
decomposition methods with dcr = 0.4 are nearly identical, as can be seen in Fig.
16(b).
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(a) U = 1.2× 10−2 mm (b) U = 1.3× 10−2 mm (c) U = 1.4× 10−2 mm

(d) U = 1.2× 10−2 mm (e) U = 1.3× 10−2 mm (f) U = 1.4× 10−2 mm

(g) U = 1.2× 10−2 mm (h) U = 1.3× 10−2 mm (i) U = 1.4× 10−2 mm

Figure 13. Example 2. Meshes and contours of the phase-field
and von Mises stress distribution are plotted at U = 1.20× 10−2,
1.30×10−2, and 1.40×10−2 mm. The v-d split model with ItCBC
(dcr = 0.4) is used.

4.3. Example 3. A test with multiple cracks. In this example, we test the
modeling of complex crack systems. We consider a square plate of width 2 mm
with two or five cracks. The domain and boundary conditions are shown in Figs.
17(a) and 17(b), respectively. For both problems, the bottom edge of the domain is
fixed. The top edge is fixed along y-direction while a uniform x-displacement U is
increased with time. The material parameter are the same as in Example 1 except
gc = 2.7× 10−4 kN/mm for the five-crack problem. For the two-crack problem, the
lengths of Crack 1 and Crack 2 are 0.6 mm and 0.8 mm, with polar angle 9◦ and
64.8◦, respectively.

Fig. 18 shows the adaptive mesh and phase-field and von Mises stress distribution
for spectral decomposition with original crack boundary conditions. The results for
all three decomposition methods with ItCBC (dcr = 0.4) are shown in Figs. 19,
20, and 21, respectively. The results using modified v-d split in Fig. 21 agree well
with those using spectral decomposition as shown in Fig. 19 whereas the v-d split
(even with ItCBC) gives unphysical crack propagation. This finding is consistent
with the observations made from the previous examples.
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(a) U = 1.1× 10−2 mm (b) U = 1.3× 10−2 mm (c) U = 1.45× 10−2 mm
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(f) U = 1.45× 10−2 mm

(g) U = 1.1× 10−2 mm (h) U = 1.3× 10−2 mm (i) U = 1.45× 10−2 mm

Figure 14. Example 2. Meshes and contours of the phase-field
and von Mises stress distribution are plotted at U = 1.1 × 10−2,
1.30 × 10−2, and 1.45 × 10−2 mm. The modified v-d split model
with ItCBC (dcr = 0.4) is used.
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Figure 15. Example 2. The load-deflection curves are plotted for
two decomposition models. (a) The spectral decomposition model
with ItCBC (with various dcr); (b) The modified v-d split model
with ItCBC (with various dcr).

For the five-crack problem, the lengths of Crack 1 to Crack 5 are 0.3 mm, 0.35 m-
m, 0.35 mm, 0.5 mm and 0.5 mm, with polar angle 30◦, 45◦, 17.2◦, 28.6◦ and 9◦,
respectively. The phase-field and stress distribution for the spectral decomposition
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Figure 16. Example 2. The load-deflection curves are compared
for two decomposition models with ItCBC. (a) dcr = 0.2; (b) dcr =
0.4; (c) dcr = 0.6; (d) dcr = 0.8.
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Figure 17. Example 3. Domain and boundary conditions for the
shear test with multiple cracks, (a) two cracks, (b) five cracks.

method without and with ItCBC (dcr = 0.4) are shown in Fig. 22 and 23. Again,
unphysical stress concentration in the damaged zone is observed for the original
treatment of crack boundary conditions but vanishes with ItCBC.

4.4. Example 4. A single edge notched shear test based on an exper-
iment. To further verify the decomposition models, we compare the simulation
results with the experimental results obtained by Lee et al. [16]. The physical
experiments were performed on a modified version of the shear apparatus used in
Reber et al. [21]. Gelatin was used as the material in the experiments. The s-
ketch of the experimental setup can be seen in Fig. 24(a). The spring black arrow
represents the direction of the shear force. The bottom side of the table moves
under the constant velocity while the fixed side is stationary. For the numerical
computation, a rectangular plate with a length of 120 mm and a width of 70 mm
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(a) U = 6.0×10−2 mm (b) U = 6.2×10−2 mm (c) U = 6.4×10−2 mm (d) U = 6.6×10−2 mm
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(h) U = 6.6×10−2 mm

(i) U = 6.0×10−2 mm (j) U = 6.2×10−2 mm (k) U = 6.4×10−2 mm (l) U = 6.6×10−2 mm

Figure 18. Example 3. The mesh and contours of the phase-field
and von Mises stress distribution during crack evolution for the
two-crack shear test with l = 0.00375 mm, N = 10, 000 (51× 51).
(spectral decomposition without ItCBC, dcr = 0).

is considered. The initial fracture is located at the middle of the plate with the
length of 30 mm. The top edge of the domain is fixed and the bottom edge is
fixed along y-direction while a uniform x-displacement U is increased with time
(∆U = 5 × 10−3 mm). We consider a mesh size as 41 × 41 (N = 6, 400) and
l = 1.2 mm. The material properties are taken almost the same as the physical
experiment: the Young’s modulus is 1.4× 105 Pa, the Poisson ratio is 0.45 and the
fracture toughness is 1.96 Pa · m. (The Poisson ratio for gelatin is 0.499. We choose
the Poisson ratio to be 0.45 to avoid the locking effects in the finite element ap-
proximation of elasticity problems where the performance of certain commonly used
finite elements deteriorates when the Poisson ratio is close to 0.5; e.g. see Babuška
and Suri [2].) These material properties correspond to λ = 4.345× 10−4 kN/mm2,
µ = 4.829 × 10−5 kN/mm2, and gc = 1.96 × 10−6 kN/mm. The results from the
computation with three decomposition models and the experiment are comparable
qualitatively in crack propagation. As can be seen in Fig. 25, with ItCBC (dcr =
0.4), the spectral decomposition and the modified volumetric-deviatoric split lead
to results comparable with the physical experiment. The displacement load is al-
most the same (U = 3.5 mm in the experiments and U = 3.8 mm in the models)
when the crack starts propagating. However, the speed of crack propagation in the
numerical results is faster than that in the experiment (as can be seen in Fig. 25(e),
25(f), 25(k) and 25(l), where the crack quickly extends to the top boundary after its



STUDY ON PHASE-FIELD MODELS FOR BRITTLE FRACTURE 815
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(h) U = 4.2×10−2 mm

(i) U = 2.8×10−2 mm (j) U = 3.0×10−2 mm (k) U = 3.4×10−2 mm (l) U = 4.2×10−2 mm

Figure 19. Example 3. The mesh and contours of the phase-field
and von Mises stress distribution during crack evolution for the
two-crack shear test with l = 0.00375 mm, N = 10, 000 (51× 51).
(spectral decomposition with ItCBC, dcr = 0.4).

breaking). This discrepancy has also been observed by Lee et al. [16]. This may be
attributed to the fact that the assumptions used in the mathematical model such
as the perfectly homogeneous model material, friction less deformation (no friction
exist along the crack surface) and perfect boundary conditions may not accurately
describe the experimental setting. Nevertheless, this will be an interesting topic for
future investigations. Moreover, as can be seen in Fig. 25(g), 25(h) and 25(i), the
volumetric-deviatoric split model leads to incorrect crack propagation.

5. Conclusions

A crucial component in the phase-field modeling of brittle fracture is the de-
composition of the energy into the active and passive components, with only the
former contributing to the damage process that results in fracture and thus be-
ing degraded. An improper decomposition can lead to unphysical crack openings
and propagation. In the previous sections, we have studied two commonly used
decomposition models, the spectral decomposition model [19] and the volumetric-
deviatoric (v-d) split model [1]. The active energy consists of those related to the
tensile strain component in the former model and the expansive volumetric strain
energy plus the total deviatoric strain energy in the latter model. Four examples
have been discussed for those studies. The first two are classical benchmark prob-
lems, single edge notched tension and shear tests. The third example is designed
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(i) U = 2.4×10−2 mm (j) U = 2.6×10−2 mm (k) U = 2.8×10−2 mm (l) U = 3.2×10−2 mm

Figure 20. Example 3. The mesh and contours of the phase-field
and von Mises stress distribution during crack evolution for the
two-crack shear test with l = 0.00375 mm, N = 10, 000 (51× 51).
(v-d split with ItCBC, dcr = 0.4).

to demonstrate the ability of the models to handle complex cracks. The last exam-
ple is also a single edge notched shear test but with the physical parameters and
domain geometry chosen based on an experiment setting.

Numerical results have shown that the v-d split model can lead to different crack
propagation from the spectral decomposition model for some physical settings; e.g.,
see Example 2 (a single edge notched shear test) and particularly Fig. 12. An
explanation for this is that the v-d split model includes the total deviatoric strain
energy in the active energy and thus accounts both the compressive and expansive
deviatoric strain energies for contributing to the damage process. To avoid this,
we have proposed a modified v-d model (cf. Section 2.2.3) which degrades only
the the expansive volumetric and deviatoric strain energies in the damage zone.
This modified v-d model together with ItCBC improves the v-d model and leads
to results comparable with those obtained with the spectral decomposition model.

Numerical results have also shown that all of the models, including the spectral
decomposition and modified v-d models, can still lead to unphysical crack openings
and propagation for various physical settings. A close examination on this has
revealed that they do not generally satisfy the vanishing stress condition (13) and
there is stress remaining on the crack surface. We have proposed a simple yet
effective remedy (ItCBC or the Improved treatment of Crack Boundary Conditions,
cf. Section 2.3): define a critically damaged zone with 0 < d < dcr, where dcr is



STUDY ON PHASE-FIELD MODELS FOR BRITTLE FRACTURE 817
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(h) U = 4.2×10−2 mm

(i) U = 2.8×10−2 mm (j) U = 3.0×10−2 mm (k) U = 3.4×10−2 mm (l) U = 4.2×10−2 mm

Figure 21. Example 3. The mesh and contours of the phase-field
and von Mises stress distribution during crack evolution for the
two-crack shear test with l = 0.00375 mm, N = 10, 000 (51× 51).
(modified v-d split with ItCBC, dcr = 0.4).

(a) U = 0.179 mm (b) U = 0.182 mm (c) U = 0.184 mm (d) U = 0.186 mm (e) U = 0.2 mm

(f) U = 0.179 mm (g) U = 0.182 mm (h) U = 0.184 mm (i) U = 0.186 mm (j) U = 0.2 mm

Figure 22. Example 3. The contour of the phase-field during
crack evolution for the five-crack shear test with l = 0.00375 mm,
N = 25, 600 (81 × 81). (spectral decomposition without ItCBC,
dcr = 0).
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(a) U = 0.092 mm (b) U = 0.097 mm (c) U = 0.1 mm (d) U = 0.127 mm (e) U = 0.2 mm

(f) U = 0.092 mm (g) U = 0.097 mm (h) U = 0.1 mm (i) U = 0.127 mm (j) U = 0.2 mm

Figure 23. Example 3. The contour of the phase-field during
crack evolution for the five-crack shear test with l = 0.00375 mm,
N = 25, 600 (81× 81). (spectral decomposition with ItCBC, dcr =
0.4).
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Figure 24. Example 4. Sketch of the experiment and computa-
tion setup.

a positive parameter, and then degrade both the active and passive components of
the energy in this zone. It has been shown that the spectral decomposition and
modified v-d models with ItCBC lead to correct crack propagation for all of the
examples we have tested. It should be emphasized that they include Example 3
with multiple cracks and Example 4 which is based on an experimental setting.
In the latter case, both the spectral decomposition and modified v-d models with
ItCBC yield comparable crack propagation results that also agree well qualitatively
with the experiment. Moreover, it has been shown that the numerical results are
not very sensitive to the choice of dcr although dcr in the range of [0.4, 0.6] seems
to work best.

Finally, the numerical examples have demonstrated that the MMPDE moving
mesh method is able to dynamically concentrate the mesh elements around propa-
gating cracks even for complex crack systems.
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(a) Experiment: U = 3.5 mm (b) Experiment: U = 5.5 m-
m

(c) Experiment: U = 9 mm

(d) Spectral Dcmp.: U =
3.8 mm

(e) Spectral Dcmp.: U = 4 m-
m

(f) Spectral Dcmp.: U =
4.4 mm

(g) v-d split: U = 3.1 mm (h) v-d split: U = 3.3 mm (i) v-d split: U = 3.5 mm

(j) Mod. v-d split: U = 4.1 m-
m

(k) Mod. v-d split: U =
4.3 mm

(l) Mod. v-d split: U = 4.7 m-
m

Figure 25. Example 4. Comparison of geometry of the fracture
obtained from the numerical computation with different decompo-
sition models (with ItCBC dcr = 0.4) and the experiment [16].
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