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ASYMPTOTIC AND EXACT SELF-SIMILAR EVOLUTION OF A

GROWING DENDRITE

AMLAN K. BARUA, SHUWANG LI, XIAOFAN LI, AND PERRY LEO

Abstract. In this paper, we investigate numerically the long-time dynamics of a two-dimensional
dendritic precipitate. We focus our study on the self-similar scaling behavior of the primary
dendritic arm with profile x ∼ tα1 and y ∼ tα2 , and explore the dependence of parameters α1 and

α2 on applied driving forces of the system (e.g. applied far-field flux or strain). We consider two
dendrite forming mechanisms: the dendritic growth driven by (i) an anisotropic surface tension
and (ii) an applied strain at the far-field of the elastic matrix. We perform simulations using a
spectrally accurate boundary integral method, together with a rescaling scheme to speed up the

intrinsically slow evolution of the precipitate. The method enables us to accurately compute the
dynamics far longer times than could previously be accomplished. Comparing with the original
work on the scaling behavior α1 = 0.6 and α2 = 0.4 [Phys. Rev. Lett. 71(21) (1993) 3461–3464],
where a constant flux was used in a diffusion only problem, we found at long times this scaling

still serves a good estimation of the dynamics though it deviates from the asymptotic predictions
due to slow retreats of the dendrite tip at later times. In particular, we find numerically that
the tip grows self-similarly with α1 = 1/3 and α2 = 1/3 if the driving flux J ∼ 1/R(t) where

R(t) is the equivalent size of the evolving precipitate. In the diffusive growth of precipitates in an
elastic media, we examine the tip of the precipitate under elastic stress, under both isotropic and
anisotropic surface tension, and find that the tip also follows a scaling law.

Key words. Moving boundary problems, self-similar, dendrite growth, boundary integral equa-

tions.

1. Introduction

The evolution of precipitates during a solid-solid phase transformation is a clas-
sical example for studying interface dynamics or systems driven out of equilibrium.
A well-known feature observed during the phase transformation is the formation of
various dendritic microstructures, depending on the physical conditions (e.g. the
composition of the phases, the interfacial crystallographic properties and the ap-
plied far-field flux). Usually a dendrite includes the primary arm (tip region) and
accompanied side-branches. One key aspect of studying the precipitate morphol-
ogy is to understand the evolution of tip profile, as its dynamics determines the
resulting morphology of the dendrite.

An early theory trying to describe the dendritic tip is due to Ivantsov [4] who
assumed that the region near the tip of a dendrite is a branch-less paraboloid grow-
ing with a constant velocity. These assumptions allow him to solve the steady state
heat transport equation and establish an analytical relation between the Stefan
number and the Peclet number, the two dimensionless quantities important for the
process. A large number of work was built upon this original formulation. For
example, capillary effects were coupled to heat transfer problem through Gibbs-
Thomson condition due to the work of Nash and Glicksmann [21, 22]. In a more
recent paper [19], Lacombe et. al. showed that paraboloid shape assumption was
not valid if one moves slightly away from the tip and to a region where the side
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branches emanate. They showed that a much better match with experiments occurs
if a fourth-order correction, in terms of radius of curvature of the tip, is applied
to the predictions of Ivantsov. Ivantsov’s original formulation did not take into
account the effects of side-branching, however considerable research has been done
in this area where the main question is to understand the frequency and and am-
plitude of the secondary branches. These questions are tackled roughly through
two approaches. A few authors suggest that the deterministic oscillation at the
tip is responsible for side-branching [6, 15, 23]. Others explain the mechanism via
stochastic approach and consider selective, thermal fluctuation induced noise to be
responsible for side-branching process [2, 5, 8, 10,14,16].

Li and Beckerman [1] studied the scaling behavior of both the tip and side
branches with different geometric parameters by performing micro-gravity exper-
iments using pure succonitrile crystals. Their experimental results were in good
agreement with the theoretical predictions of [2]. A more recent work on den-
drite morphology using boundary integral methods can be found in [20, 27] where
deterministic side-branching mechanism for 2D and 3D growths were considered.

A seemingly different problem, the Hele-Shaw flow, should also be mentioned
in this context. Although the origins of the Hele-Shaw problem lie in creeping
flow between two closely placed parallel plates, the flow is governed by similar e-
quations. Interesting results that emerge in a Hele-Shaw cell can be found in [9]
where the author investigated formation of different patterns of a growing bubble
both in isotropic and anisotropic surface tension. Numerically, the boundary inte-
gral method has been the most successful approach in Hele-Shaw flow where long
dynamics, both in growing and shrinking interfaces, has been tracked with highly
accurate computation in references such as [26,28,29]. Almgren et al. [30] used ideas
from selection theory to argue that κ2V , where κ is the tip curvature and V is the
tip velocity, should be time independent for a Hele-Shaw bubble. They assumed
that a precipitate in its later phase of growth assumes a cross like shape where one
can ignore the lateral width of the arms of the precipitate in comparison to the arm-
length. From these considerations they derived a scaling law (x, y) → (x/tα1 , y/tα2)
for the growing tip, where t is the elapsed time and α1 and α2 are parameters. The
sum α1+α2 depends on the flux J of the incoming material. For constant flux J = c
they found these constants to be α1 = 0.60 and α2 = 0.40. Their simulations with
moderate and high anisotropy using boundary integral formulation indeed showed
the scaling to be true, however they investigated the precipitate growth for a very
short time duration. The scaling law was verified experimentally by Ignes-Mullol
et al. [17] and very good agreement between the simulation and experiment was
observed. In fact their experimentally verified exponent α1 turned out to be 0.64
which is just slightly off from the theoretical predictions of [30].

In this paper, we expanded the original work of Almgren et al. [30] by answering
several interesting questions that emerge naturally from their work. These are: (i)
whether the scaling law is valid at long times; (ii) what could be a scaling law for
the tip of a precipitate growing under time dependent flux and finally (iii) what
happens when precipitate grows in presence elastic fields, i.e. whether the tip still
exhibits scaling behavior? Our numerical results suggest that at long times, the
Almgren’s scaling law still provides a good estimate of the tip-profile although it
deviates from the asymptotic predictions due to slow retreat of the dendrite tip at
later times. In particular, we find that the tip grows self-similarly with α1 = 1/3
and α2 = 1/3 if the driving flux J ∼ 1/R where R is the equivalent radius of
the precipitate size. In the diffusive growth of precipitates, we observe the tip of
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Figure 1. Two phase domain with one precipitate occupying the
region ΩP (gray color). The diffusion occurs in the matrix region
ΩM (in cyan) bounded by the moving interface Γ(t) and a fixed
circular far-field boundary Γ∞ with large enough radius R∞. Here,
a point with coordinate x = (x1, x2), following the classical elas-
ticity notation, takes the same meaning as the usual x = (x, y)
description.

the precipitate under elastic stress, under both isotropic and anisotropic surface
tension, follows a scaling law albeit different from Almgren’s.

The paper is organized as follows: the problem formulation and numerical meth-
ods are described in Section 2, the numerical results are presented in Section 3, and
the future direction of the study is discussed in Section 4.

2. Problem formulation

2.1. Diffusion Problem. We first describe the phase transformation problem.
As shown in Fig. 1, the precipitate phase occupies a bounded region ΩP in the
two dimensional plane. The diffusion occurs in the matrix region exterior to the
precipitate, where the concentration U (x, t) of the diffusing species satisfies the
Laplace equation under the quasi-static assumption

(1) ∆U = 0, for x ∈ ΩM .

The boundary condition at the precipitate-matrix interface Γ (t) is given by a gen-
eralized Gibbs-Thomson condition [7], i.e.,

(2) U = τ0(1− ϵ cosmθ)κ (x, t) + ZGel (x, t) , for x ∈ Γ (t) ,

where θ is the tangent angle, τ0 is the surface tension parameter, ϵ is the strength of
anisotropy, m is the symmetry mode of anisotropy, κ (x, t) is the local curvature of
the interface, Gel (x, t) is the elastic energy, and parameter Z specifies the relative
importance between elastic and surface energy. Thus Z = 0 implies a pure diffusion
case without elastic effects.

At the far-field boundary Γ∞, we consider a material flux condition

(3) J(t) = − 1

2π

∫
Γ∞

∇U · n∞ ds,
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where s indicates arclength, i.e., ds =
√
(dx)2 + (dy)2 for (x, y) on a curve, and

J(t) is the flux of the diffusing species entering the system across Γ∞. The flux
J(t) is taken to be positive for growth condition and zero for equilibration.

Let V (x, t) be the velocity of the moving interface. Once the concentration
U (x, t) of the diffusing species in the matrix phase is solved, the velocity of the
interface can be computed via

(4) V = (∇U · n)Γ(t) .

The equations (1–4) remain virtually unchanged in the case of Hele-Shaw bubble
formation, one has to just ignore the term ZGel in Eq. (2) and interpret U as
negative of the non-dimensional pressure in the fluid.

2.2. Elasticity Problem. The elastic energy Gel is given by the formula

(5) Gel =
1

2
σP
ij(ε

P
ij − εTij)−

1

2
σM
ij ε

M
ij + σM

ij (ε
M
ij − εPij),

where εij and σij , i, j = 1, 2 are the elements of strain and stress tensors either
in the matrix phase (superscript “M”) or in the precipitate phase (superscript
“P”). Also εTij (superscript “T”) indicates the transformation (misfit) strain of the
precipitates due to unmatched crystal lattice. We also denote the displacement in
the matrix and precipitate phase by uM and uP , respectively. The elastic energy
can be computed once the equations of isotropic elasticity in both matrix and
precipitate phase are solved. These elasticity equations read

σχ
ij,j = 0 in Ωχ (force balance equation with no body force)(6)

uP
i = uM

i (continuity of displacement at interface Γ)(7)

σP
ijnj = σM

ij nj (continuity of traction at interface Γ)(8)

lim
r→R∞

εMij = ε0ij (far-field boundary condition),(9)

where the superscript or subscript χ can be either “M” or “P” depending on the
region where the equation is being applied, and r is the radial distance from the
origin. In above equations, we have used the double index notation and Einstein
summation convention when solving the elasticity problem in both phases. The

relation between the displacement and the strain is given by εχij =
1
2

(
∂uχ

i

∂xj
+

∂uχ
j

∂xi

)
,

whereas that between various stresses and strains are given by

σP
ij = CP

ijkl

(
εPkl − εTkl

)
,(10)

σM
ij = CM

ijklε
M
kl ,(11)

where the stiffness tensor Cχ
ijkl = 2µχ

[
νχ

1− νχ
δklδij + δikδjl

]
, µχ is the shear mod-

ulus, νχ is the Poisson ratio, and δij is the Kronecker delta. The elasticity problem
is non-homogeneous - the precipitate and matrix can be two different materials.
More about the origin of these equations can be found in [13]

2.3. Boundary integral equations. Both the diffusion and elasticity problem
are solved by recasting the original differential equations into boundary integral
equations [3, 13]. The integral formulation reduces the original two-dimensional
problem to a one dimensional problem defined only at the interface between the
precipitate and matrix.
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The boundary integral formulation of the elasticity problem is based on the fun-
damental solution (Kelvin’s solution) to the elasticity equations. The displacement
and traction components of the fundamental solution are respectively given by

Ujk(x,x
′) =

1

8πµ (1− ν)

[
(3− 4ν) log

(
1

r

)
δij + r,j′r,k′

]
,

Tjk(x,x
′) =

−1

4π (1− ν) r

[
∂r

∂n′ ((1− 2ν) δjk + 2r,j′r,k′) + (1− 2ν)
(
n′
jr,k′ − n′

kr,j′
)]

,

where r = |x− x′| is the radial distance between points x and x′, r,j′ =
∂r
∂x′

j
, n′

k is

the kth component of the unit normal vector n′ at x′ ∈ Γ(t).
The fundamental solution allows us to reformulate the elasticity problem in the

precipitate and matrix phase using the following integral equations

1

2
uP
j +

∫
Γ

uP
k T

P
jkds

′ −
∫
Γ

tPk U
P
jkds

′ =

∫
Γ

tTkU
P
jkds

′,(12)

1

2
uM
j −

∫
Γ

uM
k TM

jk ds
′ +

∫
Γ

tMk UM
jk ds

′ =
1

2
u0
j −

∫
Γ

u0
kT

M
jk ds

′ +

∫
Γ

t0kU
M
jk ds

′,(13)

where ds′ means ds(x′) at the integration point x′ ∈ Γ(t). In these equations
uj , tk are the unknown displacement and traction defined at point x ∈ Γ(t). At
the interface between matrix and precipitate, we consider a continuity condition
uM
i = uP

i and tMk = tPk , therefore we drop the superscripts and obtain the final
set of equations for the elasticity problem on the matrix-precipitate interface Γ as
follows:

1

2
uj +

∫
Γ

ukT
P
jkds

′ −
∫
Γ

tkU
P
jkds

′ =

∫
Γ

tTk U
P
jkds

′,(14)

1

2
uj −

∫
Γ

ukT
M
jk ds

′ +

∫
Γ

tkU
M
jk ds

′ =
1

2
u0
j −

∫
Γ

u0
kT

M
jk ds

′ +

∫
Γ

t0kU
M
jk ds

′.(15)

The diffusion problem (or the Hele-Shaw problem) can also be rewritten into an
integral equation using a dipole density function ϕ on Γ(t),

(16)

(
−1

2
I +K

)
[ϕ] + J log |x| = κ+ ZGel,

where I is the identity operator, and K is the integral operator defined as

(17) K [ϕ] (s, t) =
1

2π

∫
Γ(t)

ϕ (s′, t)

[
∂

∂n (s′, t)
log |x (s′, t)− x (s, t)|+ 1

]
ds′.

Here, n(s′, t) is the unit normal at the integration point x′(s, t). Equations (14),
(15) and (16) constitute the complete boundary integral formulation of the com-
bined diffusion and elasticity problem. After the diffusion problem is solved, the
normal velocity V of the interface is computed using the Dirichlet-Neumann map,

V (s, t) =
1

2π

∫
Γ

ϕs′
∂

∂s
log |x(s′, t)− x(s, t)| ds′ + J(t)

x(s, t) · n
|x(s, t)|2

,(18)

where ϕs′ =
∂ϕ(s′, t)

∂s′
. Note that some integrals in Eqs. (14), (15), (16), and

(18) are interpreted as principal value integrals due to the logarithmic and Cauchy
singularities, when both x(s, t),x(s′, t) ∈ Γ(t).
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2.4. Rescaling scheme. To increase the computational efficiency, we implement
a space-time rescaling of the integral equations [11,26] which enables us to compute
the evolution of the interface exponentially fast. In this rescaling scheme, the
original spatial coordinates x = (x, y) and time variable t are mapped onto another
set of coordinates x̄ = (x̄, ȳ) and t̄. The spatial coordinates of the original and
transformed systems are connected by the relation

(19) x = R̄ (t̄) x̄,

where the scale factor of the spatial coordinates R̄ is a function of the rescaled time
t̄. The variables t and t̄ are related through the following equation

(20) t̄ =

∫ t

0

1

f (s)
ds,

where f is a positive, continuous function of time t that represents the temporal
rescaling. The velocity in the rescaled coordinates therefore becomes

(21) V =
d

dt
x · n =

(
R̄ (t̄)

dx̄

dt̄
+ x̄

dR̄

dt̄

)
dt̄

dt
· n̄.

We define the normal velocity in the rescaled frame V̄ =
dx̄

dt̄
· n̄ and the area

Ā =
1

2

∫
Γ̄

x̄ · n̄. Then the flux J in new coordinates becomes

(22) J =
1

2π

∫
Γ

V ds =
1

2π

∫
Γ̄

R̄2 dt̄

dt
V̄ ds̄+

1

π
R̄
dR̄

dt̄

dt̄

dt
Ā.

If we impose the area conservation constraint
∫
Γ̄
V̄ ds̄ = 0, then because of Eq. (20),

we obtain the equation connecting the spatial and temporal scaling factors as

(23) J =
1

π

ĀR̄

f (t̄)

dR̄

dt̄
.

For different flux J , we can choose f (t̄) such that the spatial scaling factor in
Eq. (19) becomes an exponential function of t̄. For example, if the flux J = C
where C is a constant, we may choose f (t̄) = 1

R̄2 whereas if J = C/R̄ then we

can choose f (t̄) = 1
R̄3 . Under such conditions we can use Eq. (20) to map the

rescaled time t̄ to time t using exponential functions, thus a small advancement in
the rescaled frame amounts to a large step forward in the actual time. The integral
equations of the elasticity and diffusion equations are rescaled accordingly and the
details of the formulation can be found in [11]. Note that we do not change the real
physics by implementing the rescaling idea.

2.5. Interface dynamics. The explicit methods for updating the interface result
in numerical stiffness requiring the time step ∆t ∼ O

(
∆s3

)
, where ∆s is arclength

spacing of the points on interface. To remove the stiffness, we implement the
small scale decomposition technique [18]. This special temporal scheme reduces
the stability constraint to ∆t ∼ O (∆s) . Following [18], instead of the coordinates
of the marker points, we first repose the motion of the interface using the length
L of the interface and the tangent angle θ (an angle that the tangent line at the
marker point makes with positive x axis). These two quantities evolve according
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to the following equations:

L̄t =

∫ 2π

0

θ̄αV̄ (α, t)dα,(24)

θ̄t =
2π

L̄

(
−V̄α + T̄ θ̄α

)
,(25)

where the tangential velocity T̄ is obtain by

(26) T̄ (α, t̄) = T̄ (0, t̄)−
∫ α

0

s̄β κ̄V̄ dβ +
α

2π

∫ 2π

0

s̄βκ̄V̄ dβ.

The stiffness of the original problem propagates to Eq. (25) above. We then
identify, in the Fourier space, the dominant term on the right-hand side of the
Eq. (25) as −τ0n

3θn, where n is the frequency number. We time-integrate the
θ-equation in this form with a semi-implicit time stepping algorithm using an in-
tegrating factor for dominant term for all values of τ0. As only the mean value
term τ0 enters the dominant factor, results are more accurate for the cases of s-
mall anisotropy. We note that strong anisotropy might not be captured accurately
through this, nevertheless, we do this for large anisotropy and observe convergence
behavior too. Throughout the calculation, the points are spaced equally in arc-
length. At time t = 0 this condition is ensured by problem setup. At later time
instants this is achieved by adding the tangential velocity, given by Eq. (26), to
the marker points [18]. Note that the rescaling does not change the equations of
elasticity and they can be solved without any modifications [11,26].

2.6. Numerical methods. We implement the space-time rescaling, outlined above,
in our formulation. We first solve integral equations (14) and (15) to compute Gel

term for the diffusion problem. We then solve the diffusion problem Eq. (16) and
compute the velocity of the interface by Dirichlet-Neumann map [3]. Once the ve-
locity is known, we update the interface following Eq. (24) and (25) via small scale
decomposition [18]. Note that the kernels of the integral equations contain logarith-
mic and Cauchy type singularities and the equations are discretized by spectrally
accurate quadratures [13]. The discretized system is solved by an iterative tech-
nique, the GMRES (Generalized Minimal Residual) method, with a fast summation
algorithm [12]. The fast summation method reduces the computational complexity
of GMRES from O

(
N2

)
to O (N logN). The details of the computation steps are

given in Algorithm 1.

3. Results

The use of the space-time rescaled algorithm enables us to compute the evolution
of the precipitate for a very long time with high accuracy. The correctness of
these implementations was checked in a number of ways. This includes resolution
studies by halving the time step successively to confirm the expected 2nd order
temporal convergence, and by doubling the mesh points on the interface to confirm
the expected spectral accuracy in space. Our main goal is to simulate the growth of
the precipitate under different flux conditions, i.e., constant or variable in time. The
tip profile is examined under the scaling law proposed by Almgren et al. [30]. We
are interested to verify (i) if the scaling law of [30] about the asymptotic shape holds
at a time much longer than that observed in [30], (ii) if there is an asymptotic shape
to which the precipitate tip converges under time varying flux, and (iii) whether the
addition of elastic field preserves self-similarity of the tip under the same scaling
law.
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Algorithm 1 Numerical algorithm for computing the evolution of the precipitate

1: Input: Initial shape x̄ (s, 0)
2: At t = 0 perform equal arclength discretization
3: for t = 0 to tfinal do
4: Discretize the boundary integral equations of the elasticity problem, Eqs. (14)

and (15), using alternating point quadrature
5: Solve the discrete system for ūj and t̄k using preconditioned GMRES [13]
6: Compute Ḡel from Eq. (5)
7: Discretize the rescaled version [11] of Eq. (16) using alternating point quad-

rature
8: Solve discrete system for ϕ̄ using preconditioned GMRES [13]
9: Compute the normal velocity V̄ from Eq. (22)

10: Compute the tangential velocity T̄ from Eq. (26)
11: Update the interface Γ̄ (t̄) using Eq. (24) and (25),
12: end for

3.1. Asymptotic shape of a precipitate under four fold anisotropic sur-
face tension. In Fig. 2a and 2b, we display the results of a very long time sim-
ulation of the precipitate subject to a constant flux J = 1 and anisotropic surface
tension τ0 (1− 0.0067 cos 4θ). We start our simulation withN = 8192 marker points
on a circular interface r = 1 and our initial time step was ∆t = 6.25×10−6. We use
small time steps to compute the movement of the tip with high accuracy. Time step
is halved when the space resolution is doubled to maintain the stability constraint.

In Fig. 2b we display the interfaces of the precipitate at different times, we
stop the simulation at t ≈ 2956. We would like to point out that the similar
computation in [30] was run only up to time t = 3.5. Thus our simulation ran
more than 800 times longer. During this period, the side arms of the precipitate in
our computation grew 50 times more as compared to that of Almgren’s simulation.
Other things that we wish to stress about this simulation are (i) the suppression of
the higher Fourier modes (> 4th mode), which were visible in the initial phase of
the precipitate development and (ii) the better match of the shapes at later times
with the asymptotic prediction.

In Fig. 2a we have compared the interfaces obtained from our simulations with
the asymptotic shape predicted by Almgren et al. [30] assuming complementary
power law scaling for x and y axes. At the time when we stop simulation, the x
coordinate of the tip of the computed interface is around 1.875 whereas asymptotic
predictions of [30] suggests the tip length to be 1.83. Lastly we wish to emphasize
that the results in Almgren’s paper was obtained on the basis of an intermediate
shape of the precipitate, however our results are based on a much later shape which
looks significantly different from the shape at early stages of evolution and which is
more closer to asymptotic predictions confirming the validity of the theory outlined
in [30].

A similar computation is performed for the case of stronger anisotropy with
ϵ = 0.033 and other parameters are unchanged. The results of the simulation
are displayed in Fig. 3a and Fig. 3b. The simulation is performed up to time
t = 200. After this time, it is difficult to continue with the simulation because
of the formation of sharp tips due to the applied strong anisotropy. We observe
deviations from four-fold symmetry and have to stop the simulation.

Importantly, the long time evolution of the precipitate displays non-convergence
to the asymptotic shape predicted in [30]. While the numerically simulated shape
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(a) Comparison of numerical-
ly computed shape and asymp-
totic predictions. Inset: Early
time stage comparison made by

Almgren et al. [30].

(b) Morphology of the precipitate
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Figure 2. Comparison of the shape obtained from nonlinear
boundary integral method and the asymptotic shape, Fig. (3)
of [30]. The interface is evolving with flux J = 1, the initial shape
r = 1 and ϵ = 0.0067. The asymptotic tip is given in black dotted
lines in (a). The scaling specified by [30] works well in this case.
As time progresses the tip obtained from simulation gets closer to
the asymptotic prediction. In (b) we plot the shape of the precipi-
tate at different times and in (c) we plot the product of ρ2V where

ρ =
1

κ
, κ is the curvature and V is the tip velocity. According

to [30], as time progresses this should tend to a constant.

match the asymptotic shape around time t ≈ 1.5, at later times it does not. At
the beginning, the length of scaled tip is longer than the asymptotically predicted
value of 2.70. But the length of the (scaled) arm shortens as time progresses and
tip moves from right to left eventually crossing 2.70. Therefore this is a case where
we find disagreement between the theory and simulation.
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Figure 3. Comparison of the shape obtained from nonlinear
boundary integral method and the asymptotic shape, Fig. (4)
of [30]. In this case, ϵ = 0.033 and remaining parameters are same
as that in Fig. (2). The asymptotic tip is given in black dotted
line in (a). The scaling specified by [30] not working in this case.
In fact the tip computed by the code is initially to the right of the
asymptotic tip but it keeps on receding to the left and eventually
crosses the asymptotic shape. In (b) we plot the shape of the as
time progresses and in (c) we observe that the product of ρ2V is
not quite constant.

3.2. Simulation results with time increasing flux J ∼ t. In Fig. 4 we show
the simulation result with time varying flux where the flux J grows linearly with
time, J ∼ t and small anisotropy ϵ = 0.0067. We observe that the increasing flux
induces favorable growth condition for more modes as compared to the case of con-
stant flux. For example the 8th mode grows and manifests itself in the form of
a small branch between any two adjacent principal arms. Also unlike the case of
constant flux, this branch does not vanish.
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Scaling behavior: It is not difficult to derive a scaling law for the self-similar growth
of a precipitate driven by a flux J ∼ t. We assume all the conditions that Almgren
et al. [30] used in their derivation and take it a step further by considering the
relation

(27)
dA

dt
= J(t)

between the rate of change of area A of the precipitate and flux.
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(a) Tip profile of the precipitate

(b) Morphology of the precipitate
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(c) Evolution of ρ2V with time

Figure 4. Evolution of a precipitate under variable flux J =
0.50(t + 1). The anisotropy parameter ϵ = 0.0067. The initial
shape is circular with radius r = 0.10. In (a), we plot the tip of
the precipitate following Almgren’s scaling law which in this case
is x ∼ t1.4 and y ∼ t0.6. In (b), we plot the interfaces and in (c)
we plot ρ2V which becomes nearly flat as time progresses.

If we assume there exists a base shape (x0(s), y0(s)) such that the actual shape
is given by

(28) (tα1x0(s), t
α2y0(s)),

then using Eq. (27) we obtain the relation α1 +α2 = 2, under the assumption that
asymptotic shape looks like a cross described in [30]. We define ρ = 1

κ , therefore
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(b) Morphology of the precipitate
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Figure 5. Evolution of precipitate under rescaled flux 75/R and
initial shape r = 1+ 0.01 (cos 4θ + cos 5θ) and anisotropy parame-
ter ϵ = 0.01. In the (a), we plot the tip of the precipitate following

Almgren’s scaling law which in this case is x ∼ t
1
3 and y ∼ t

1
3 .

In (b), we plot the interfaces and (c) we plot ρ2V , which remain-
s flat after a brief transient period. Physical parameters of the
simulation are same as in first shape of Fig. 3(a) in [25].

ρ ∼
(

d2x
dy2

)−1

. Since
dx

dt

(
d2x

dy2

)−2

, the product of the tip velocity dx
dt and ρ2 should

be time independent, we get 4α2 − α1 = 1. This further results in

(29) α1 = 7/5, α2 = 3/5.

To verify the correctness of this analytic prediction, we ran a simulation with flux
J = 0.5(t+1) and ϵ = 0.0067. In Fig. 4 we have displayed the results of simulation.
The numerically computed shapes do exhibit the theoretically predicted scaling law
at least between R̄ = 105.64 and R̄ = 116.75. The tips of the precipitate merge at
these two time points.

In a short comment here we would like to mention that this type of simulation
can also be expanded to include an exponentially increasing flux where J ∼ et.
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Figure 6. Evolution of elastically stressed precipitate under uni-
axial elastic field with flux J = 1. The elastic field has parameters
Z = 250 and ε011 = 0.01. The precipitate grows under isotropic
surface tension. The initial shape is circular with radius r = 0.10.
The presence of uniaxial elastic field is evident by the shorter arm
along the x-axis.

Then we should assume that the relation between base shape (x0(s), y0(s)) and the
actual shape is given by

(30) (eα1tx0(s), e
α2ty0(s))

and a calculation with ideas from previous subsection results in

(31) α1 = 4/5, α2 = 1/5.

3.3. Simulation results with time decreasing flux J ∼ 1
R̄
. A very similar

analysis as above, was carried out for the case with flux J = c
R̄

and c = 75. The
reason for using this flux is that - after a transient period, the precipitate grows
self-similarly in time (see [24,25]). As shown in [25], for various values of constant
c and various initial shapes, the precipitate evolves to different n-fold shapes. For
example, the combination of c = 75 and a slightly perturbed circular precipitate
with shape r = 1+0.01 (cos 4θ + cos 5θ) at t = 0 and anisotropy parameter ϵ = 0.01
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Figure 7. Evolution of precipitate in presence of anisotropic sur-
face tension and uniaxial elastic field. The strength of anisotropy
is given by ϵ = 0.0067 which is used in Almgren’s Fig. (1). Rest of
the parameters are same as those used to generate Fig. (6c). The
presence of elastic field is marked by shorter arm along the x-axis.

results in a 4-fold shape (see Fig. (5a),(5b) and (5c)). In this case, the area of the

precipitate changes as t
2
3 and therefore we found α1 = α2 = 1

3 . We plotted the
tip profile with this scaling and found self-similarity. We observe that the contours
between time t = 2×107 to 1.6×1012 are indistinguishable under scaling. Therefore
Almgren’s law works the best in this case.

3.4. Asymptotic shape of the precipitate tip in presence of uniaxial e-
lastic field. We perform a simulation where a precipitate was subjected to ex-
ternal uniaxial elastic field with ε011 = 0.01 and ε0ij = 0 otherwise, however, the

surface tension that we applied is isotropic. We choose µP = 0.5, µM = 1 and
νP = 0.2, νM = 0.2, where the superscript P/M denotes the precipitate/matrix.
We set the parameter Z = 250. Other parameters remain the same as those used
in the previous simulation. In Fig. 6, we display the result of simulation. The p-
resence of the elastic field is evident from shorter precipitate arm along x-direction
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as compared to y-direction. We fit the tip growth numerically and observe differ-
ent scaling behavior for arms along x axis and y axis. While the x tip obeys the
law α1 = 0.55 and α2 = 0.45, the y-tip seems to obey the law α1 = 0.325 and
α2 = 0.675, at least in this phase of evolution.

In Fig. 7a and 7b, we display the evolution of an elastically stressed precipitate
growing in presence of anisotropic surface tension with ϵ = 0.0067 where we keep
the other parameters unchanged from the previous case. The time corresponding
to R̄1 is t1 = 10.19, to R̄2 is t2 = 17.14 and to R̄3 is t3 = 27.70. Checking the
self-similarity we find that the y tip obeys the same scaling law as the case with
elastic field and isotropic surface tension, but the scaling behavior for the x tip
changes slightly to α1 = 0.52 and α2 = 0.48. While the actual values of α1 and α2

might not be that important, we find a clear indication of self-similar tip growth
in precipitates, with or without elasticity. That is one of the main findings of this
work.

4. Conclusion and future work

In this paper, we have investigated the self-similar evolution of a dendritic pre-
cipitate driven by anisotropic surface tension and with or without elasticity. We
observed that in the case of a pure diffusional growth, the Almgren’s scaling law
holds roughly true under constant flux and small anisotropy. In the case of strong
of anisotropy, the law works for early time and not seem to work very well for long
times. A different scaling law seems to hold for the cases of time dependent flux.
We also performed numerical simulations of the dendritic growth of precipitates
growing in an elastic media both under isotropic and anisotropic surface tension.
While Almgren’s law for growth comes from the analysis of the diffusion equations,
the case of precipitate growth is more complex as one has to consider both elastic
fields and diffusion effects. Therefore we performed numerical simulations. Our
case studies suggest that scaling laws hold for precipitate growth problem but the
laws are different from the one proposed for the diffusion only problem. As a future
work we wish to study the effect of anisotropy on multiple precipitates.
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