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ANALYSIS OF WEAK GALERKIN FINITE ELEMENT

METHODS WITH SUPERCLOSENESS

AHMED AL-TAWEEL1,2, SAQIB HUSSAIN, AND XIAOSHEN WANG

Abstract. In [15], the computational performance of various weak Galerkin finite element meth-

ods in terms of stability, convergence, and supercloseness is explored and numerical results are

listed in 31 tables. Some of the phenomena can be explained by the existing theoretical results
and the others are to be explained. The main purpose of this paper is to provide a unified the-

oretical foundation to a class of WG schemes, where
(
Pk(T ), Pk+1(e), [Pk+1(T )]2

)
elements are

used for solving the second order elliptic equations (1)-(2) on a triangle grid in 2D. With this
unified treatment, all of the existing results become special cases. The theoretical conclusions are

corroborated by a number of numerical examples.

Key words. Weak Galerkin, finite element methods, weak gradient, second-order elliptic prob-

lems, supercloseness, superconvergence.

1. Introduction

A weak Galerkin finite element method was presented by Wang and Ye in [12]
to model the elliptic problems and then has been applied to solve various partial
differential equations [1, 4, 5, 6, 7, 8, 9, 10, 11, 14, 18, 19].

The main idea of weak Galerkin finite element methods is the use of weak func-
tions and their corresponding weak derivatives in algorithm design. Weak functions
have the form of v = {v0, vb}, where v0 and vb can be approximated by polynomials
in P`(T ) and Ps(e) respectively, where T stands for an element and e the edge or
face of T , ` and s are non-negative integers. Weak gradients are defined for weak
function in the sense of distributions and can be approximated in the polynomial
space [Pm(T )]2. Various combination of (P`(T ), Ps(e), [Pm(T )]2) leads to different
weak Galerkin methods tailored for specific partial differential equations.

In [15], the computational performance of various weak Galerkin finite element
methods in terms of stability, convergence, and supercloseness is explored and nu-
merical results are listed in 31 tables. Some of the phenomena can be explained by
the existing theoretical results and the others are to be explained. Table 1 (Table
6.3, [15]) shows the numerical results of a class of weak Galerkin schemes, where(
Pk(T ), Pk+1(e), [Pk+1(T )]2

)
elements are used for solving the second order elliptic

equations (1)-(2) on a triangle grid in 2D. Some of the results in that table have
theoretical explanations (such as elements 6.3.4, 6.3.8, and 6.3.12), while others are
posed as open questions. The goal of this paper is to answer these open questions
with a unified treatment. Furthermore, with this unified treatment, all of the ex-
isting results become spacial cases. As one of the main contributions of this paper,
it is shown that by using

(
Pk(T ), Pk+1(e), [Pk+1(T )]2

)
elements, the error between

L2-projection of the exact solution and the numerical solution will be dramatically
reduced if the right parameter is used. More precisely, by choosing the appropriate
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Table 1 (Table 6.3, [15]).

Element (Pk(T ), Pk+1(e), [Pk+1(T )]2) on triangular mesh, ||| · ||| = O(hr1) and
‖ · ‖ = O(hr2), t is defined in 7.

element Pk(T ) Pk+1(e) [Pk+1(T )]2 t r1 r2 Proved

6.3.1 -1 0 0 N|N
6.3.2 P0(T ) P1(e) [P1(T )]2 0 1 1 N|N
6.3.3 1 2 2 N|N
6.3.4 ∞ 2 2 Y|Y
6.3.5 -1 1 2 Y|N
6.3.6 P1(T ) P2(e) [P2(T )]2 0 2 3 N|N
6.3.7 1 3 4 N|N
6.3.8 ∞ 3 4 Y|Y
6.3.9 -1 2 3 Y|N
6.3.10 P2(T ) P3(e) [P3(T )]2 0 3 4 N|N
6.3.11 1 4 5 N|N
6.3.12 ∞ 4 5 Y|Y

parameter, order one and two supercloseness for k = 0 and k ≥ 1, respectively, can
be obtained.

In this paper, we are concerned with the second order elliptic problem that seeks
an unknown function u satisfying

−∇ · (a∇u) = f in Ω,(1)

u = g on ∂Ω,(2)

where Ω is a polytopal domain in R2, ∇u denotes the gradient of the function u,
and a is a symmetric 2 × 2 matrix-valued function in Ω. For simplicity, we shall
assume that there exist two positive numbers λ1, λ2 > 0 such that

(3) λ1ξ
tξ ≤ ξtaξ ≤ λ2ξ

tξ, ∀ξ ∈ R2.

Here ξ is understood as a column vector and ξt is the transpose of ξ.
The paper is organized as follows. In Section 2, we shall describe a WG scheme

for solving the second order elliptic equations (1)-(2). Section 3 is devoted to the
discussion of the well posedness of the WG scheme. The error analysis for the WG
solutions in an energy norm and in the L2 norm will be investigated in Section 4
and Section 5, respectively. In Section 6, we shall present some numerical examples
that confirm the theoretical estimates.

2. Weak Galerkin Finite Element Schemes

Suppose Th is a quasi uniform triangular partition of Ω. For every element
T ∈ Th, denote by hT its diameter and h = maxT∈Th hT . Let Eh be the set of all
the edges in Th.

First, we adopt the following notations,

(v, w)Th =
∑
T∈Th

(v, w)T =
∑
T∈Th

∫
T

vwdx,

〈v, w〉∂Th =
∑
T∈Th

〈v, w〉∂T =
∑
T∈Th

∫
∂T

vwds.



WEAK GALERKIN FINITE ELEMENT METHODS WITH SUPERCLOSENESS 763

For a given integer k ≥ 0, a weak Galerkin finite element space associated with
Th is defined as follows:

(4) Vh = {{v0, vb} : v0|T ∈ Pk(T ), vb|T ∈ Pk+1(e), T ∈ Th, e ⊂ ∂T} ,
and its subspace V 0

h is defined as

(5) V 0
h = {v : v ∈ Vh, vb = 0 on ∂Ω}.

We would like to emphasize that any function v ∈ Vh has a single value vb on each
edge e ∈ Eh.

For any v = {v0, vb} ∈ Vh+H1(Ω), a weak gradient ∇wv ∈ [Pk+1(T )]2 is defined
on T as the unique polynomial satisfying

(6) (∇wv,q)T = −(v0,∇ · q)T + 〈vb,q · n〉∂T ∀q ∈ [Pk+1(T )]2.

where n is the unit outward normal vector of ∂T . In the equation (6), we let v0 = v
and vb = v if v ∈ H1(Ω).

For each T ∈ Th, let Q0 be the element-wise defined L2 projections onto Pk(T )
and Qb be the element-wise defined L2 projections onto Pk+1(e) with e ⊂ ∂T .
Define Qhu = {Q0u,Qbu} ∈ Vh. Let Qh be the element-wise defined L2 projection
onto [Pk+1(T )]2 on each element T ∈ Th.

The stabilizer form is introduced for v, w ∈ Vh, as follows:

st(v, w) =
∑
T∈Th

htT 〈Qbv0 − vb, Qbw0 − wb〉∂T ,(7)

where t ≥ −1 is a parameter. When t =∞, we set st(v, w) = 0.

The WG finite element scheme for the elliptic equations (1)-(2) is as follows:

Algorithm 1 Weak Galerkin Algorithm

The weak Galerkin finite element: A numerical approximation for (1)-(2) can
be obtained by finding uh = {u0, ub} ∈ Vh, such that ub = Qbg on ∂Ω and the
following equation holds

(a∇wuh,∇wv)Th
+ st(uh, v) = (f, v0),(8)

for all v = {v0, vb} ∈ V 0
h . Here st(uh, v) is defined in (7).

We define the following energy norm ||| · ||| on Vh:

|||v|||2 =
∑
T∈Th

‖∇wv‖2T +
∑
T∈Th

htT ‖Qbv0 − vb‖2∂T .(9)

The following lemmas will be needed in the error analysis.

Lemma 1. Let φ ∈ H1(Ω) ∩ Vh. Then for each element T ∈ Th, we have

(Qh∇φ,q)T = (∇wQhφ,q)T + 〈φ−Qbφ,q · n〉∂T ∀q ∈ [Pk+1(T )]2,(10)

(Qh∇φ,q)T = (∇wφ,q)T .(11)

Proof. By definition (6) and integration by parts, for each q ∈ [Pk+1(T )]2 we have

(∇wQhφ,q)T = −(Q0φ,∇ · q)T + 〈Qbφ,q · n〉∂T
= −(φ,∇ · q)T + 〈Qbφ,q · n〉∂T
= (∇φ,q)T − 〈φ−Qbφ,q · n〉∂T
= (Qh(∇φ),q)T − 〈φ−Qbφ,q · n〉∂T ,
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which implies (10). Similarly,

(∇wφ,q)T = (∇φ,q)T + 〈Qb(φ− φ),q · n〉∂T
= (Qh∇φ,q)T ,

which implies (11). �

Lemma 2. (trace inequality) For any function ϕ ∈ H1(T ), the following inequality
holds true (see [13] for details):

(12) ‖ϕ‖2e ≤ C
(
h−1
T ‖ϕ‖

2
T + hT ‖∇ϕ‖2T

)
.

3. Well Posedness

We introduce a discrete H1 semi-norm on Vh as follows:

(13) ‖v‖21,h =
∑
T∈Th

(
‖∇v0‖2T + h−1

T ‖v0 − vb‖2∂T
)
.

It is easy to show that ‖v‖1,h defines a norm in V 0
h .

We need the following lemma.

Lemma 3. For any v ∈ Vh, we have

‖v‖21,h ≤ C(∇wv,∇wv),(14)

(for further details, see [2, 3, 16]).

Lemma 4. The weak Galerkin finite element scheme 8 has one and only one so-
lution when h is small enough.

Proof. If u
(1)
h and u

(2)
h are two solutions of (8), then %h = u

(1)
h − u

(2)
h ∈ V 0

h would
satisfy the following equation

(a∇w%h,∇wv)T∈Th + st(%h, v) = 0 ∀v ∈ V 0
h .(15)

Note that %h ∈ V 0
h . Then by letting v = %h in the equation (15) and (9), we have

C|||%h|||2 ≤ (a∇w%h,∇w%h)T∈Th + st(%h, %h) = 0.

It follows from Lemma 3 that %h = 0, and thus completes the proof. �

4. Error Estimates in Energy Norm

The goal of this section is to derive some error estimates for the WG finite
element solution uh arising from (8). For the sake of simplicity, we will confine our
attention to the case where the coefficient tensor a in (1) is a piecewise constant
matrix with respect to the finite element partition Th.

Next, we derive an error equation. First, we define bilinear forms `a(u, v) and
`b(u, v) by

`a(u, v) =
∑
T∈Th

〈a(∇u−Qh∇u) · n, v0 − vb〉∂T ,

`b(u, v) =
∑
T∈Th

〈u−Qbu, a∇wv · n〉∂T .

Lemma 5. Let eh = Qhu − uh ∈ Vh. For any v ∈ V 0
h , the error eh satisfies the

following equation

(a∇weh,∇wv)Th + st(eh, v) = st(Qhu, v) + `a(u, v)− `b(u, v).(16)
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Proof. For v = {v0, vb} ∈ V 0
h , testing (1) by v0 and using integration by parts gives

(17) (a∇u,∇v0)Th − 〈a∇u · n, v0 − vb〉∂Th = (f, v0)Th ,

where we have used the fact that 〈a∇u · n, vb〉∂Th = 0.
It follows from integration by parts, (6) and (10) that

(a∇u,∇v0)Th = (aQh∇u,∇v0)Th
= −(v0,∇ · (aQh∇u))Th + 〈v0, aQh∇u · n〉∂Th
= (aQh∇u,∇wv)Th + 〈v0 − vb, aQh∇u · n〉∂Th
= (a∇wQhu,∇wv)Th + 〈v0 − vb, aQh∇u · n〉∂Th

+ 〈u−Qbu, a∇wv · n〉∂Th .(18)

Combining (17) and (18) gives

(a∇wQhu,∇wv)Th = (f, v0) + `a(u, v)− `b(u, v).(19)

Adding the stabilizer term st(Qhu, v) to both sides of the above equation, we have

(a∇wQhu,∇wv)Th + st(Qhu, v) = st(Qhu, v)

+ (f, v0) + `a(u, v)− `b(u, v).(20)

The error equation follows from subtracting (8) from (20):

(a∇weh,∇wv)Th + st(eh, v) = st(Qhu, v) + `a(u, v)− `b(u, v), ∀v ∈ V 0
h .

This completes the proof of the lemma. �

For the sake of simplicity, we will use

t̂ =

{
t if −1 ≤ t ≤ 1,

1 if t > 1,

and

k̂ =

{
−1 if k = 0,

k if k > 0,

in the remaining part of this paper.

Theorem 1. Let uh ∈ Vh be the WG finite element solution of (8). In addition,
assuming the regularity of exact solution u ∈ Hk+3(Ω), then there exists a constant
C such that when 0 < h ≤ 1

(21) |||Qhu− uh||| ≤ Chk+t̂+1‖u‖k+3.

Proof. By letting v = eh in (16) and using (3), we have

|||eh|||2 ≤ (a∇weh,∇weh)Th + st(eh, eh) ≤ |st(Qhu, eh)|
+ |`a(u, eh)|+ |`b(u, eh)|.(22)
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By using the definition Qb, (12), and (14), we have

|st(Qhu, eh)| =

∣∣∣∣∣ ∑
T∈Th

htT 〈Q0u−Qbu, e0 − eb〉∂T

∣∣∣∣∣
=

∣∣∣∣∣ ∑
T∈Th

ht+1−1
T 〈Q0u− u, e0 − eb〉∂T

∣∣∣∣∣
≤

∣∣∣∣∣Cht+1
∑
T∈Th

h−1
T 〈Q0u− u, e0 − eb〉∂T

∣∣∣∣∣
≤ Cht+1

(∑
T∈Th

h−2
T ‖Q0u− u‖2T + ‖∇(Q0u− u)‖2T

) 1
2

·

(∑
T∈Th

h−1
T ‖e0 − eb‖2∂T

) 1
2

≤ Chk+t+1‖u‖k+1|||eh|||.(23)

Using the Cauchy-Schwarz inequality, the trace inequality (12), (3), and Lemma 3,
we have

|`a(u, eh)| =

∣∣∣∣∣ ∑
T∈Th

〈a(∇u−Qh∇u) · n, e0 − eb〉∂T

∣∣∣∣∣
≤ C

∑
T∈Th

‖∇u−Qh∇u‖∂T ‖e0 − eb‖∂T

≤ C

(∑
T∈Th

hT ‖(∇u−Qh∇u)‖2∂T

) 1
2
(∑
T∈Th

h−1
T ‖e0 − eb‖2∂T

) 1
2

≤ Chk+2‖u‖k+3|||eh|||.(24)

Similarly, Using the Cauchy-Schwarz inequality, the trace inequality (12), (3), and
Lemma 3, we have

|`b(u, eh)| =

∣∣∣∣∣ ∑
T∈Th

〈u−Qbu, a∇weh · n〉∂T

∣∣∣∣∣
≤ C

∑
T∈Th

‖u−Qbu‖∂T ‖∇weh‖∂T

≤ C

(∑
T∈Th

h−1
T ‖u−Qbu‖

2
∂T

) 1
2
(∑
T∈Th

hT ‖∇weh‖2∂T

) 1
2

≤ Chk+2‖u‖k+2|||eh|||.(25)

It follows from (22), (23), (24), and (25) that

|||eh|||2 ≤ Chk+t̂+1‖u‖k+3|||eh|||.

This completes the proof. �

Remark 1. It is easy to see that Theorem 1 covers all of the cases for r1 in Table
1 (Table 6.3, [15]).
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5. Error Estimates in L2 Norm

The duality argument is used to get L2 error estimate. Recall eh = {e0, eb} =
Qhu− uh = {Q0u− u0, Qbu− ub}. Considered the dual problem seeks Φ ∈ H1

0 (Ω)
satisfying

−∇ · a∇Φ = e0 in Ω.(26)

Suppose that the following H2-regularity conditions holds

(27) ‖Φ‖2 ≤ C‖e0‖.

The following lemma is from [17], which will be needed to get the optimal L2

convergence.

Lemma 6. Let ψ ∈ Hk+1(Ω), then

|||ψ −Qhψ||| ≤ Chk|ψ|k+1.(28)

Theorem 2. Let uh = {u0, ub} ∈ Vh be the WG finite element solution of (8).
Assume that the exact solution u ∈ Hk+3(Ω) and (27) holds true. Then, there
exists a constant C such that when 0 < h ≤ 1,

(29) ‖Q0u− u0‖ ≤ Chk̂+t̂+2‖u‖k+3.

Proof. By testing (26) with e0 and integrating by parts, we obtain

‖e0‖2 = −(∇ · (a∇Φ), e0)

= (a∇Φ, ∇e0)Th − 〈a∇Φ · n, e0 − eb〉∂Th ,(30)

where we have used the fact that eb = 0 on ∂Ω. Setting u = Φ and v = eh in (18)
yields

(a∇Φ, ∇e0)Th = (a∇wQhΦ, ∇weh)Th + 〈(aQh∇Φ) · n, e0 − eb〉∂Th
+ 〈Φ−QbΦ, a∇weh · n〉∂Th .(31)

Substituting (31) into (30) gives

‖e0‖2 = (a∇weh, ∇wQhΦ)Th + 〈a(Qh∇Φ−∇Φ) · n, e0 − eb〉∂Th
+ 〈Φ−QbΦ, a∇weh · n〉∂Th
= (a∇weh, ∇wQhΦ)Th − `a(Φ, eh) + `b(Φ, eh)

= (a∇weh, ∇wQhΦ)Th + st(eh, QhΦ)− st(eh, QhΦ)− `a(Φ, eh) + `b(Φ, eh)

= `a(u,QhΦ)− `b(u,QhΦ)− `a(Φ, eh) + `b(Φ, eh)

− st(eh, QhΦ) + st(Qhu,QhΦ).(32)

Using the Cauchy-Schwarz inequality, we obtain

|`a(u,QhΦ)| =

∣∣∣∣∣ ∑
T∈Th

〈a(∇u−Qh∇u) · n, Q0Φ−QbΦ〉∂T

∣∣∣∣∣
≤ C

∑
T∈Th

‖∇u−Qh∇u‖∂T ‖Q0Φ−QbΦ‖∂T

≤ C

(∑
T∈Th

‖∇u−Qh∇u‖2∂T

)1/2(∑
T∈Th

‖Q0Φ−QbΦ‖2∂T

)1/2

.(33)
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From the trace inequality (12) and the definition of Qb, we have(∑
T∈Th

‖Q0Φ−QbΦ‖2∂T

)1/2

≤

(∑
T∈Th

‖Q0Φ− Φ‖2∂T + ‖Φ−QbΦ‖2∂T

)1/2

≤ C

(∑
T∈Th

‖Q0Φ− Φ‖2∂T

)1/2

≤ Ch 3
2−i‖Φ‖2,

where i = 1, when k = 0 and i = 0 when k ≥ 1.
It is easy to see that(∑

T∈Th

‖a(∇u−Qh∇u)‖2∂T

)1/2

≤ Chk+ 3
2 ‖u‖k+3.

Combining the above two estimates with (33) gives

|`a(u,QhΦ)| ≤ Chk̂+3|u|k+3‖Φ‖2(34)

Using the Cauchy-Schwarz inequality, the trace inequality (12), (3), (14), and
(21), we have

|`a(Φ, eh)| =

∣∣∣∣∣ ∑
T∈Th

〈a(∇Φ−Qh∇Φ) · n, e0 − eb〉∂T

∣∣∣∣∣
≤ C

(∑
T∈Th

hT ‖(∇Φ−Qh∇Φ)‖2∂T

) 1
2
(∑
T∈Th

h−1
T ‖e0 − eb‖2∂T

) 1
2

≤ Ch‖Φ‖2|||eh|||
≤ Chk+t̂+2|u|k+3‖Φ‖2.(35)

Using the Cauchy-Schwarz inequality, the trace inequality (12), (3), (14), and
(21), we have

|`b(u,QhΦ)| =

∣∣∣∣∣ ∑
T∈Th

〈u−Qbu, a∇wQhΦ · n〉∂T

∣∣∣∣∣(36)

≤

∣∣∣∣∣ ∑
T∈Th

〈u−Qbu, a∇w(QhΦ− Φ) · n〉∂T

∣∣∣∣∣
+

∣∣∣∣∣ ∑
T∈Th

〈u−Qbu, a∇Φ · n〉∂T

∣∣∣∣∣ .
To estimate the terms on the right hand side of (36), let Q0 and Q1 be the element-
wise defined L2 projection onto [P0(T )]2 and Pk+1(T ), respectively, on each element
T ∈ Th. It follows from the definition of Qb and (28) that∣∣∣∣∣ ∑
T∈Th

〈u−Qbu, a∇w(QhΦ− Φ) · n〉∂T

∣∣∣∣∣ ≤ C
∑
T∈Th

‖u−Q1u‖∂T ‖∇w(QhΦ− Φ)‖∂T

≤ Chk+3|u|k+2‖Φ||2.(37)
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Next,

∣∣∣∣∣ ∑
T∈Th

〈u−Qbu, a∇Φ · n〉∂T

∣∣∣∣∣ =

∣∣∣∣∣ ∑
T∈Th

〈u−Qbu, a(∇Φ−Q0∇Φ) · n〉∂T

∣∣∣∣∣
≤ C

∑
T∈Th

‖u−Q1u‖∂T ‖∇Φ−Q0∇Φ‖∂T

≤ Chk+3|u|k+2‖Φ‖2,(38)

Combining (37) and (38), we have

|`b(u,QhΦ)| ≤ Chk+3|u|k+2‖Φ‖2
≤ Chk+t̂+2|u|k+2‖Φ‖2,(39)

when 0 < h ≤ 1.

|`b(Φ, eh)| =

∣∣∣∣∣ ∑
T∈Th

〈Φ−QbΦ, a∇weh · n〉∂Th

∣∣∣∣∣
≤ C

(∑
T∈Th

h−1
T ‖Φ−Q1Φ‖2∂T

)1/2(∑
T∈Th

hT ‖∇weh‖2∂T

)1/2

≤ Ch‖Φ‖2|||eh|||
≤ Chk+t̂+2|u|k+1‖Φ‖2.(40)

Using the definition of Qb and (12), we obtain

|st(Qhu,QhΦ)| =

∣∣∣∣∣ ∑
T∈Th

htT 〈Q0u−Qbu,Q0Φ−QbΦ〉∂T

∣∣∣∣∣
=

∣∣∣∣∣ ∑
T∈Th

ht+1−1
T 〈Q0u−Qbu,Q0Φ−QbΦ〉∂T

∣∣∣∣∣
≤

∣∣∣∣∣Cht+1
∑
T∈Th

h−1
T 〈Q0u−Qbu,Q0Φ−QbΦ〉∂T

∣∣∣∣∣
≤ Cht+1

(∑
T∈Th

h−2
T ‖Q0u− u‖2T + ‖∇(Q0u− u)‖2T

)1/2

·

(∑
T∈Th

h−2
T ‖Q0Φ− Φ‖2T + ‖∇(Q0Φ− Φ)‖2T

)1/2

≤ Chk+t̂+2|u|k+1‖Φ‖2.(41)
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It follows from (3) and (21) that

|st(QhΦ, eh)| =

∣∣∣∣∣ ∑
T∈Th

htT 〈Q0Φ−QbΦ, e0 − eb〉∂T

∣∣∣∣∣
≤

∣∣∣∣∣ ∑
T∈Th

ht+1−1
T 〈Q0Φ− Φ, e0 − eb〉∂T

∣∣∣∣∣
≤

∣∣∣∣∣Cht+1
∑
T∈Th

h−1
T 〈Q0Φ− Φ, e0 − eb〉∂T

∣∣∣∣∣
≤ Cht+2‖Φ‖2|||eh|||
≤ Chk+t̂+2|u|k+3‖Φ‖2.(42)

Substituting (34), (35), (40), (39), (41) and (42) into (32) yields

‖e0‖2 ≤ Chk̂+t̂+2‖u‖k+3‖Φ‖2,

when 0 < h ≤ 1. Using the regularity assumption (27) gives the error estimate
(29). �

Remark 2. It is easy to see that Theorem 2 covers all of the cases for r2 in Table
1 (Table 6.3, [15]).
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Figure 1. Example 1: Plot of the errors and convergence
rate for errors measured by ‖Q0u − u0‖ and |||Qhu − uh||| with
t = −1 and h = 1/64:

(
P1(T ), P2(e), [P2(T )]2

)
element (top);(

P2(T ), P3(e), [P3(T )]2
)

element (bottom).
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Table 2. Example 1: Error profiles and convergence rates.

h |||uh −Qhu||| rate ‖uh −Qhu‖0 rate

by the P0(T )-P1(e)-[P1(T )]2 element and t = 0

1/2 4.0876E-01 - 1.6398E-02 -

1/4 2.3901E-01 0.77 1.6577E-02 -0.02

1/8 1.2238E-01 0.97 1.0022E-02 0.73

1/16 6.1226E-02 1.00 5.2927E-03 0.92

1/32 3.0530E-02 1.00 2.6918E-03 0.98

1/64 1.5232E-02 1.00 1.3538E-03 0.99

by the P0(T )-P1(e)-[P1(T )]2 element and t =∞ stabilizer free

1/2 7.5114E-01 - 7.1931E-02 -

1/4 1.2680E-00 -0.76 9.4366E-02 -0.39

1/8 3.6930E-01 1.78 3.3120E-02 1.51

1/16 9.6181E-02 1.94 9.0440E-03 1.87

1/32 2.4305E-02 1.98 2.3122E-03 1.97

1/64 6.0937E-03 2.00 5.8131E-04 1.99

by the P1(T )-P2(e)-[P2(T )]2 element and t = 0

1/2 1.1768E-01 - 1.1279E-02 -

1/4 3.0280E-02 1.96 1.5810E-03 2.83

1/8 7.6031E-03 1.99 2.0383E-04 2.96

1/16 1.8992E-03 2.00 2.5564E-05 3.00

1/32 4.7420E-04 2.00 3.1925E-06 3.00

1/64 1.1844E-04 2.00 3.9857E-07 3.00

by the P1(T )-P2(e)-[P2(T )]2 element and t =∞ stabilizer free

1/2 1.4619E-00 - 1.1836E-01 -

1/4 2.0798E-01 2.81 1.1841E-02 3.32

1/8 2.8113E-02 2.89 9.0564E-04 3.96

1/16 3.5995E-03 2.97 5.9666E-05 3.71

1/32 4.5325E-04 2.99 3.7710E-06 3.98

1/64 5.6791E-05 3.00 2.3707E-07 3.99

by the P2(T )-P3(e)-[P3(T )]2 element and t = 0

1/2 1.6022E-02 - 7.9960E-04 -

1/4 2.0059E-03 3.00 5.1460E-05 3.96

1/8 2.4776E-04 3.02 3.2377E-06 3.99

1/16 3.0718E-05 3.01 2.0289E-07 4.00

1/32 3.8225E-06 3.00 1.2695E-08 4.00

1/64 4.7671E-07 3.00 7.9382E-10 4.00

by the P2(T )-P3(e)-[P3(T )]2 element and t =∞ stabilizer free

1/2 1.4173E-01 - 8.8638E-03 -

1/4 3.4657E-02 2.03 8.0415E-04 3.46

1/8 2.2842E-03 3.92 2.3562E-05 5.09

1/16 1.4413E-04 3.99 7.1949E-07 5.03

1/32 9.0288E-06 4.00 2.2357E-08 5.01

1/64 5.6473E-07 4.00 6.9772E-10 5.00

6. Numerical Experiments

In this section, various numerical examples in 2D uniform triangular meshes
are presented to support our theoretical findings. We perform the Weak Galerkin
Algorithm 1 using (Pk(T ), Pk+1(e), [Pk+1(T )]2), k = 0, 1, 2 elements and choose
various stabilizing parameters for comparison in the computation.

6.1. Example 1. In this example, we consider problem (1) with Ω = (0, 1)2 and

a =

(
1 0
0 1

)
. The source term f and the boundary value condition g are chosen so

that the exact solution is

u(x, y) = cos(x) cos(πy).

It can be observed from Figure 1 that the error between numerical solutions ob-
tained by WG Algorithm 1 and the L2 projection of u, eh, with t = −1 and k ≥ 1
converge to zero at the rate of O(hk) in H1-norm and O(hk+1) in L2-norm, re-
spectively. On the other hand, with t = ∞ and k ≥ 0 the corresponding rates are

O(hk̂+2) and O(hk̂+3) in H1-norm and L2 norm, respectively, as can be seen from
Table 2. Table 2 shows that the WG scheme 8 with t = 0 and k ≥ 1 has one orders
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Table 3. Example 1: Error profiles and convergence rates.

h |||uh −Qhu||| rate ‖uh −Qhu‖0 rate

by the P0(T )-P1(e)-[P1(T )]2 element and t = 1

1/2 3.1524E-01 - 1.2024E-02 -

1/4 1.0716E-01 1.56 7.7129E-03 0.64

1/8 2.9220E-02 1.87 2.4617E-03 1.65

1/16 7.5031E-03 1.96 6.5479E-04 1.91

1/32 1.8927E-03 1.99 1.6627E-04 1.98

1/64 4.7476E-04 2.00 4.1732E-05 1.99

by the P0(T )-P1(e)-[P1(T )]2 element and t = 2

1/2 8.2330E-01 - 7.8732E-02 -

1/4 1.3259E-00 -0.69 9.7907E-02 -0.31

1/8 3.7929E-01 1.81 3.4019E-02 1.53

1/16 9.7545E-02 1.96 9.1782E-03 1.89

1/32 2.4480E-02 1.99 2.3297E-03 1.98

1/64 6.1156E-03 2.00 5.8353E-04 2.00

by the P1(T )-P2(e)-[P2(T )]2 element and t = 1

1/2 8.4214E-02 - 7.9833E-03 -

1/4 1.2077E-02 2.80 6.2769E-04 3.67

1/8 1.5898E-03 2.93 4.1840E-05 3.91

1/16 2.0284E-04 2.97 2.6628E-06 3.97

1/32 2.5577E-05 2.99 1.6728E-07 3.99

1/64 3.2097E-06 2.99 1.0471E-08 4.00

by the P1(T )-P2(e)-[P2(T )]2 element and t = 2

1/2 1.6358E-00 - 1.3024E-01 -

1/4 2.2364E-01 2.87 1.2710E-03 3.35

1/8 2.9227E-02 2.94 9.4591E-04 3.76

1/16 3.6717E-03 2.99 6.1022E-05 3.95

1/32 4.5781E-04 3.00 3.8232E-06 4.00

1/64 5.7077E-05 3.00 2.3843E-07 4.00

by the P2(T )-P3(e)-[P3(T )]2 element and t = 1

1/2 1.1100E-02 - 5.4262E-04 -

1/4 7.5839E-04 3.87 1.8902E-05 4.84

1/8 4.8677E-05 3.96 6.1210E-07 4.95

1/16 3.0718E-06 3.99 1.9407E-08 4.98

1/32 1.9277E-07 3.99 6.1035E-10 4.99

1/64 1.2071E-08 4.00 1.9130E-11 5.00

by the P2(T )-P3(e)-[P3(T )]2 element and t = 2

1/2 1.6637E-01 - 1.0384E-02 -

1/4 3.8211E-02 2.12 8.9594E-04 3.53

1/8 2.4048E-03 3.99 2.4977E-05 5.16

1/16 1.4795E-04 4.02 7.4123E-07 5.07

1/32 9.1487E-06 4.02 2.2695E-08 5.03

1/64 5.6848E-07 4.01 7.0299E-10 5.01

of supercloseness in both H1 norm and L2 norm. As we can see from Table 3 that
the WG scheme 8 with t ≥ 1 and k ≥ 1 has two orders of supercloseness in both
energy norm and L2 norm.

Figure 2. Example 2: Plot of numerical solutions for(
P1(T ), P2(e), [P2(T )]2

)
element using WG method (8) with t = 1

and h = 1/64: (left) 2D plot; (right) 3D plot.
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Table 4. Example 2: Error profiles and convergence rates.

h |||uh −Qhu||| rate ‖uh −Qhu‖0 rate

by the P0(T )-P1(e)-[P1(T )]2 element with t = 0

1/2 9.2889E-01 - 9.5123E-02 -

1/4 5.5178E-01 0.75 6.2774E-02 0.60

1/8 3.1283E-01 0.82 3.6873E-02 0.77

1/16 1.6754E-01 0.90 1.9841E-02 0.89

1/32 8.6771E-02 0.95 1.0265E-02 0.95

1/64 4.4163E-02 0.97 5.2168E-03 0.98

by the P1(T )-P2(e)-[P2(T )]2 element with t = −1

1/2 4.9788E-01 - 4.6137E-02 -

1/4 2.6553E-01 0.91 1.2682E-02 1.86

1/8 1.3652E-01 0.96 3.2617E-03 1.96

1/16 6.9147E-02 0.98 8.2268E-04 1.99

1/32 3.4787E-02 0.99 2.0628E-04 2.00

1/64 1.7446E-02 1.00 5.1624E-05 2.00

by the P1(T )-P2(e)-[P2(T )]2 element with t = 0

1/2 3.0484E-01 - 2.8089E-02 -

1/4 8.3716E-02 1.86 4.1194E-03 2.77

1/8 2.1912E-02 1.935 5.4997E-04 2.91

1/16 5.6075E-03 1.97 7.0790E-05 2.96

1/32 1.4186E-03 1.98 8.9699E-06 2.99

1/64 3.5678E-04 1.99 1.1285E-06 2.99

by the P2(T )-P3(e)-[P3(T )]2 element with t = −1

1/2 5.7839E-02 - 2.7134E-03 -

1/4 1.4873E-02 1.96 3.1672E-04 3.10

1/8 3.7604E-03 1.98 3.8384E-05 3.04

1/16 9.4492E-04 1.99 4.7369E-06 3.02

1/32 2.3681E-04 2.00 5.8883E-07 3.01

1/64 5.9275E-05 2.00 7.3418E-08 3.00

by the P2(T )-P3(e)-[P3(T )]2 element with t = 0

1/2 3.4661E-02 - 1.6253E-03 -

1/4 4.5488E-03 2.93 9.9213E-05 4.03

1/8 5.8124E-04 2.97 6.1650E-06 4.01

1/16 7.3436E-05 2.98 3.8556E-07 4.00

1/32 9.2285E-06 2.99 2.4132E-08 4.00

1/64 1.1566E-06 3.00 1.5098E-09 4.00

Table 5. Example 2: Error profiles and convergence rates.

h |||uh −Qhu||| rate ‖uh −Qhu‖0 rate

by the P0(T )-P1(e)-[P1(T )]2 element with t = 1

1/2 6.6535E-01 - 6.5264E-02 -

1/4 1.9301E-01 1.79 2.1231E-02 1.62

1/8 5.1610E-02 1.90 5.9462E-03 1.84

1/16 1.3285E-02 1.96 1.5350E-03 1.95

1/32 3.3654E-03 1.99 3.8697E-04 1.99

1/64 8.4659E-04 1.99 9.6948E-05 2.00

by the P1(T )-P2(e)-[P2(T )]2 element with t = 1

1/2 1.9182E-01 - 1.7154E-02 -

1/4 2.6325E-02 2.87 1.2624E-03 3.76

1/8 3.4064E-03 2.95 8.2959E-05 3.93

1/16 4.3192E-04 2.98 5.2684E-06 3.98

1/32 5.4333E-05 2.99 3.3105E-07 3.99

1/64 6.8117E-06 3.00 2.0731E-08 4.00

by the P2(T )-P3(e)-[P3(T )]2 element with t = 1

1/2 2.1362E-02 - 9.8370E-04 -

1/4 1.3995E-03 3.93 3.0125E-05 5.03

1/8 8.8833E-05 3.98 9.2809E-07 5.02

1/16 5.5848E-06 3.99 2.8815E-08 5.00

1/32 3.4993E-07 4.00 8.9786E-10 5.00

1/64 2.1896E-08 4.00 2.8019E-11 5.00

6.2. Example 2. We solve problem (1) on an L-shaped domain Ω = [−1, 1]2 \
(0, 1) × (−1, 0). The source term f and the boundary value g are chosen so that
the exact solution is

u(x, y) = x4 − 6x2y2 + y4.
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Table 6. Example 3: Error profiles and convergence rates.

h |||uh −Qhu||| rate ‖uh −Qhu‖0 rate

by the P0(T )-P1(e)-[P1(T )]2 element and t = 0

1/2 4.6019E-00 - 2.6110E-01 -

1/4 2.4447E-00 0.91 1.5017E-01 0.80

1/8 1.1569E-00 1.08 7.8271E-02 0.94

1/16 5.6114E-01 1.04 3.9296E-02 0.99

1/32 2.7741E-01 1.02 1.9580E-02 1.00

1/64 1.3816E-01 1.01 9.7582E-03 1.00

by the P1(T )-P2(e)-[P2(T )]2 element and t = 0

1/2 1.2361E-00 - 6.4221E-02 -

1/4 3.1496E-01 1.97 9.2275E-03 2.80

1/8 7.8314E-02 2.01 1.2108E-03 2.93

1/16 1.9461E-02 2.01 1.5240E-04 2.99

1/32 4.8470E-03 2.01 1.9002E-05 3.00

1/64 1.2092E-03 2.00 2.3684E-06 3.00

by the P2(T )-P3(e)-[P3(T )]2 element and t = 0

1/2 2.0374E-01 - 6.9202E-03 -

1/4 2.5261E-02 3.01 4.2044E-04 4.04

1/8 3.0918E-03 3.03 2.4654E-05 4.09

1/16 3.8234E-04 3.02 1.4831E-06 4.06

1/32 4.7580E-05 3.01 9.1002E-08 4.03

1/64 5.9363E-06 3.00 5.6382E-09 4.01

Table 7. Example 3: Error profiles and convergence rates.

h |||uh −Qhu||| rate ‖uh −Qhu‖0 rate

by the P0(T )-P1(e)-[P1(T )]2 element and t = 1

1/2 3.6905E-00 - 1.8124E-01 -

1/4 1.2522E-00 1.56 3.8705E-02 2.28

1/8 3.4963E-01 1.84 7.9855E-03 2.28

1/16 9.1765E-02 1.93 1.8254E-03 2.13

1/32 2.3474E-02 1.97 4.4350E-04 2.04

1/64 5.9345E-03 1.98 1.1001E-04 2.01

by the P0(T )-P1(e)-[P1(T )]2 element and t = 3

1/2 4.0971E-00 - 2.1528E-01 -

1/4 1.5111E-00 1.44 6.8234E-02 1.66

1/8 4.2724E-01 1.82 1.8089E-02 1.92

1/16 1.1206E-01 1.93 4.5826E-03 1.98

1/32 2.8610E-02 1.97 1.1492E-03 2.00

1/64 7.2229E-03 1.99 2.8750E-04 2.00

by the P1(T )-P2(e)-[P2(T )]2 element and t = 1

1/2 1.0060E-00 - 4.6731E-02 -

1/4 1.5657E-01 2.68 3.8281E-03 3.61

1/8 2.1198E-02 2.88 2.6792E-04 3.84

1/16 2.7308E-03 2.96 1.7407E-05 3.94

1/32 3.4551E-04 2.98 1.1018E-06 3.98

1/64 4.3414E-05 2.99 6.9158E-08 3.99

by the P1(T )-P2(e)-[P2(T )]2 element and t = 3

1/2 8.2701E-01 - 3.2212E-02 -

1/4 1.1317E-01 2.87 2.0076E-03 4.00

1/8 1.4802E-02 2.93 1.2823E-04 3.97

1/16 1.8915E-03 2.97 8.1255E-06 3.98

1/32 2.3899E-04 2.98 5.1102E-07 3.98

1/64 3.0033E-05 2.99 3.2026E-08 4.00

by the P2(T )-P3(e)-[P3(T )]2 element and t = 1

1/2 1.5821E-01 - 4.9670E-03 -

1/4 1.1597E-02 3.77 1.7351E-04 4.84

1/8 7.6057E-04 3.93 5.4703E-06 4.99

1/16 4.8301E-05 3.98 1.7043E-07 5.00

1/32 3.0372E-06 3.99 5.3162E-09 5.00

1/64 1.9030E-07 4.00 1.6600E-10 5.00

by the P2(T )-P3(e)-[P3(T )]2 element and t = 3

1/2 1.2357E-01 - 3.3879E-03 -

1/4 7.9071E-03 3.97 9.6460E-05 5.13

1/8 5.0474E-04 3.97 2.9395E-06 5.04

1/16 3.1882E-05 3.98 9.1166E-08 5.01

1/32 2.0027E-06 3.99 2.8413E-09 5.00

1/64 1.2546E-07 4.00 8.8686E-11 5.00
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Tables 4 and 5 list errors and convergence rates in ||| · |||-norm and L2-norm. It
can be observed from Table 4 that the error between numerical solutions obtained
by the WG Algorithm 1 and the L2 projection of u, eh, with t = −1 and k ≥ 1
converge to zero at the rates of k and k+ 1 in H1-norm and L2-norm, respectively.
On the other hand we do have one order of supercloseness in both ||| · |||-norm and L2

norm with t = 0 and k ≥ 1. If the WG method (8) is used with t ≥ 1, eh converges

to zero at the rates of k̂+ 2 in H1-norm and k̂+ 3 in L2-norm, respectively, as can
be seen from Table 5. We observe from Table 5 that the numerical performance is
the same as those in Tables 3, two orders of supercloseness in both L2-norm and
||| · |||-norm. The numerical solutions for the WG are plotted in Figure 2.

6.3. Example 3. Consider problem (1) with Ω = (0, 1)2 and a =

(
2 0
0 3

)
. The

source term f and the boundary value g are chosen so that the exact solution is

u(x, y) = eπx cos(πy).

As we can see in Table 7 that the error between the numerical solution obtained
by using the WG method (8) and the L2-projection of u, eh, with t ≥ 1 and k ≥ 0,

is ‖Q0u − u0‖ = O(hk̂+3). If the WG method with t = 0 and k ≥ 1 is used,
‖Q0u − u0‖ = O(hk+2), as can be seen from Table 6. It can be observed from
Table 7 that the error between numerical solutions obtained by the WG algorithm

1 and the L2 projection of u, eh, with t ≥ 1 converge to zero at the rate of O(hk̂+2)
in H1-norm. On the other hand, the corresponding rates is O(hk+1) in H1-norm
with t = 0 and k ≥ 0. We can capture one and two order of supercloseness in both
L2-norm and H1-norm by using WG algorithm 1 with t = 0, 1, 3 and k ≥ 1, as can
be see from Table 6 and Table 7, respectively.
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