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A DECOUPLED, PARALLEL, ITERATIVE FINITE ELEMENT

METHOD FOR SOLVING THE STEADY BOUSSINESQ

EQUATIONS

YUANYUAN HOU, WENJING YAN∗, LIOBA BOVELETH, AND XIAOMING HE

Abstract. In this work, a decoupled, parallel, iterative finite element method for solving the
steady Boussinesq equations is proposed and analyzed. Starting from an initial guess, an iterative

algorithm is designed to decouple the Naiver-Stokes equations and the heat equation based on
certain explicit treatment with the solution from the previous iteration step. At each step of the
iteration, the two equations can be solved in parallel by using finite element discretization. The

existence and uniqueness of the solution to each step of the algorithm is proved. The stability
analysis and error estimation are also carried out. Numerical tests are presented to verify the
analysis results and illustrate the applicability of the proposed method.

Key words. Steady Boussinesq equations, decoupled parallel iterative algorithm, finite element

method, error analysis.

1. Introduction

The system of Boussinesq equations is an important model in fluid dynamics,
describing incompressible flow driven by heat difference, namely the natural convec-
tion phenomenon. The typical examples of the convection can be found in nature,
such as the ocean flow driven by temperature difference, the ventilation in a room,
and the ground water system (see [20, 48, 50, 63, 75, 80]). In engineering, free
convection is exploited in numerous applications, such as double-glazed windows,
cooling in small electronic devices, building insulation, and environmental transport
problems (see [4, 21, 37, 47, 49, 78]).

In the Boussinesq model, the density of the fluid is kept constant and the grav-
itational force depends on the temperature. In this approximation, the fluid and
the temperature are coupled by two terms. The first one is a buoyancy term, which
linearly depends on the temperature and acts in the direction opposite to the grav-
ity, in the stationary incompressible Navier-Stokes equations of the fluid variables.
The second one is a convective term, which is based on the velocity of the fluid, in
the convection-diffusion equation of the temperature variable.

In this work, the stationary Boussinesq equations are considered:

(u · ∇)u− Pr∆u+∇p = PrRaĝθ + γγγ1, in Ω,(1)

∇ · u = 0, in Ω,(2)

u = 0, on ∂Ω,(3)

u · ∇θ − k0∆θ = γ2, in Ω,(4)

θ = 0 on Γ0, ∇θ · n = 0 on ∂Ω \ Γ0, |Γ0| ̸= 0.(5)
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Here Ω is a bounded domain in Rd with Lipschitz continuous boundary ∂Ω, where
d = 2, 3 is the space dimension. Γ0 is part of ∂Ω with its measure |Γ0| ̸= 0. u
is the fluid velocity, p the pressure, and θ the temperature. Furthermore, γγγ1 and
γ2 are the given force functions in [H−1(Ω)]d and H−1(Ω), respectively. Pr and
Ra are Prandtl and Rayleigh numbers, respectively. k0 is the thermal conductivity
parameter. ĝ = g/|g| is the unified gravitational acceleration. Throughout this
paper, vector valued functions are denoted by boldface.

The stationary Boussinesq equations (1)-(5) include, in addition to the veloci-
ty and the pressure fields, the temperature field, making it non-trivial to find the
numerical solution. Early attempts on finding efficient numerical schemes to solve
(1)-(5) were coupled finite element methods, such as the standard Galerkin finite
element method [5], the low-order nonconforming finite element method [72], the
least squared finite element method [57], the projection-based stabilized mixed fi-
nite element method [14], and the two-level finite element method [41]. These
methods usually lead to coupled large systems to solve for u, p, and θ simultane-
ously. Furthermore, the systems are also nonlinear and need iterations to handle
the nonlinearity.

Exploiting the existing computing resources, various decoupled methods can
reduce the computational cost by solving several smaller problems, be easily im-
plemented based on the legacy code of the smaller problems, and speed up the
computation by parallel computation, such as the iterative domain decomposition
methods [6, 7, 9, 10, 11, 12, 22, 23, 24, 25, 28, 29, 30, 39, 53, 54, 55, 66, 79, 84], non-
iterative domain decomposition methods [13, 18, 19, 26, 27, 36, 40, 65, 73, 104, 105],
two-grid methods [2, 8, 60, 61, 82, 83], partition time-stepping methods [17, 62, 68],
Lagrange multiplier methods [3, 34, 51, 103], explicit-implicit linearized stablization
schemes [31, 32, 45, 58, 59, 71, 87, 94, 95, 102], the Invariant Energy Quadratiza-
tion (IEQ) method [15, 81, 88, 90, 91, 92, 97, 99], the Scalar Auxiliary Variable
(SAV) method [33, 52, 64, 69, 70, 98, 100], the zero-energy-contribution technique
[85, 86, 87, 89, 96], and others [38, 46, 56, 67].

To avoid resulting large coupled systems, decoupled methods were also developed
for the Boussinesq equations. By utilizing the data generated from previous iter-
ative steps or temporal steps, the decoupled methods can decompose the original
problem into several subsystems with smaller scales, and usually turn the original
nonlinear problem into linearized ones. For stationary Boussinesq equations, the
sequential iterative methods [42, 43] and two grid methods [74] are developed to
decouple this problem. For the time-dependent case, an implicit-explicit (IMEX)
scheme is proposed to decouple the system and solve the decoupled equations se-
quentially [93]. Extrapolation of velocities in previous temporal steps provides a
prediction in the convection-diffusion equation, which decouples the whole system
and linearizes the trilinear term in the convection-diffusion equation. Then the
Navier-Stokes part is solved by using the solution obtained from the convection-
diffusion equation.

In this paper, we aim to develop and analyze an efficient parallel iterative de-
coupling method for the stationary Boussinesq equations. The key technique is to
design an iteration, which provides a convergent prediction for the coupling terms
hence decouples the convection-diffusion equation from the Navier-Stokes equation-
s. The decoupled subsystems do not have to wait for each other at each step of the
iteration, thus can be solved in parallel. For the proposed method, we carry out the
well-posedness, stability, and convergence analysis. Compared with the analysis in
[5], a different mapping is introduced to prove the existence of the standard finite
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element method. It turns out to be a strictly contracting mapping and guarantees
the uniqueness if a restriction on the boundary data is imposed. The exponential
convergence of the algorithm is proved theoretically and then verified by numerical
experiment results with Ra = 103.

The remainder of this article is organized as follows. In Section 2, the functional
setting for the problem and some properties are introduced. In Section 3, the
decoupled parallel iterative finite element method is presented. Furthermore, the
existence and uniqueness of the solution, the stability and the error estimates are
obtained for the proposed scheme. In Section 4, three numerical tests are presented,
including one experiment to verify the convergence behavior of the algorithm, a
cavity square flow problem, and an isolated island problem.

2. Functional setting of the problem

In order to present the variational formulation of the problem, we refer to [1]
for the Sobolev spaces Lp(Ω), L∞(Ω), Hm(Ω), and Hm

0 (Ω) with the regular norms
defined for them. Particularly, the following Hilbert spaces are introduced:

H1
Γ(Ω) =

{
u ∈ H1(Ω)| u|Γ = 0}, L2

0(Ω) = {q ∈ L2(Ω)|
∫
Ω

qdx = 0

}
.

Note that the definitions here and hereafter include the case Γ = ∂Ω, where H1
Γ(Ω)

degenerates to H1
0 (Ω). By virtue of Poincaré inequality, the H1 semi-norm is a

norm on H1
Γ(Ω) if |Γ| ̸= 0. Furthermore, the norm on L2

0(Ω) is the usual L2(Ω)
norm. For convenience, ∥ · ∥L4(Ω), ∥ · ∥L2(Ω), ∥ · ∥L∞(Ω), and ∥ · ∥H1(Ω) are denoted
by ∥ · ∥0,4, ∥ · ∥0,2, ∥ · ∥0,∞, and ∥ · ∥1, respectively and | · |Hm(Ω) is denoted by | · |m.

For the d-dimensional case, the H1 norm is defined as

|u|1 =

(
d∑

i=1

|ui|21

)1/2

, u ∈ [H1
Γ(Ω)]

d.

In addition, the Hm norm on multidimensional cases can be defined similarly.
We denote l(·) = ⟨l, ·⟩, if l is a continuous linear functional on the spaces [H1

0 (Ω)]
d

or H1
Γ0
(Ω). For H1

Γ0
(Ω), γ2 belongs to H−1(Ω) and the norm on it is defined as

∥γ2∥−1 = sups∈H1
Γ0

(Ω)⟨γ2, s⟩/∥s∥1. For [H1
0 (Ω)]

d, γγγ1 ∈ [H−1(Ω)]d and its norm

can be chosen as any kind of norm on the product space, such as ∥γγγ∥[H−1(Ω)]d :=∑d
i=1 ∥γi∥−1 for γγγ = (γi)

d
i=1. For convenience, ∥ · ∥[H−1(Ω)]d is denoted as ∥ · ∥−1.

We set V = {u ∈ [H1
0 (Ω)]

d| ∇ · u = 0}. Moreover, to provide the definitions
of the bilinear and trilinear functionals of the problem, we set W = [H1

0 (Ω)]
d,

Q = L2
0(Ω), S = H1

Γ0
(Ω), and define

a(u,v) =

∫
Ω

∇u : ∇vdx, u,v ∈ W,

ã(θ, s) =

∫
Ω

∇θ · ∇sdx, θ, s ∈ S,

c(u,v,w) =
1

2

[ ∫
Ω

(u · ∇)v ·wdx−
∫
Ω

(u · ∇)w · vdx
]
, u ∈ V, v,w ∈ W,

c̃(u, θ, s) =
1

2

[ ∫
Ω

(u · ∇)θ · sdx−
∫
Ω

(u · ∇)s · θdx
]
, u ∈ V, θ, s ∈ S,

d(u, q) = −
∫
Ω

∇ · uqdx, u ∈ W, q ∈ Q.

This leads to the following properties (see [5]).
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Theorem 1. There hold the estimates and identities below:

|a(u,v)| ≤ |u|1|v|1, u,v ∈ W,(6)

a(u,u) ≥ |u|21, u ∈ W,(7)

|ã(θ, s)| ≤ |θ|1|s|1, θ, s ∈ S,(8)

ã(θ, θ) ≥ |θ|21, θ ∈ S,(9)

|c(u,v,w)| ≤ ∥u∥0,4|v|1∥w∥0,4, u ∈ V, v,w ∈ W,(10)

|c(u,v,w)| ≤ C1|u|1|v|1|w|1, u,v,w ∈ W,(11)

c(u,v,w) + c(u,w,v) = 0, u ∈ V, v,w ∈ W,(12)

|c̃(u, θ, s)| ≤ ∥u∥0,4|θ|1∥s∥0,4, u ∈ V, θ, s ∈ S,(13)

|c̃(u, θ, s)| ≤ C2|u|1|θ|1|s|1, u ∈ W, θ, s ∈ S,(14)

c̃(u, θ, s) + c̃(u, s, θ) = 0, u ∈ V, θ, s ∈ S,(15)

|( ˆgθ,v)| ≤ C3|θ|1|v|1, θ ∈ S,v ∈ W,(16)

|⟨γγγ1,v⟩| ≤ ∥γ1∥−1∥v∥1 ≤ C4∥γ1∥−1|v|1, v ∈ W,(17)

|⟨γ2, s⟩| ≤ ∥γ2∥−1∥s∥1 ≤ C5∥γ2∥−1|s|1, s ∈ S.(18)

The constants Ci, i = 1, . . . , 5 are positive real numbers depending on Ω.

Thus, the variational form of the problem is: Find (u, p, θ) ∈ W ×Q × S, such
that

c(u,u,v) + Pra(u,v) + d(v, p)− PrRa(ĝθ,v) = ⟨γγγ1,v⟩, ∀v ∈ W,(19)

d(u, q) = 0, ∀q ∈ Q,(20)

c̃(u, θ, s) + k0ã(θ, s) = ⟨γ2, s⟩, ∀s ∈ S.(21)

The variational problem has an equivalent form as follows [77]: Find (u, p) ∈ V ×S,
such that

c(u,u,v) + Pra(u,v)− PrRa(ĝθ, s) = ⟨γγγ1,v⟩, ∀v ∈ V,(22)

c̃(u, θ, s) + k0ã(θ, s) = ⟨γ2, s⟩, ∀s ∈ S.(23)

The existence and uniqueness of the solution to (19)-(21) can be referred to [5].

3. Finite element approximation

Let Th be a regular triangulation of Ω, with h = max{diamK| K ∈ Th} (see [16]).
For a specific triangulation Th, Wh × Qh × Sh are proper subspaces of [H1

0Ω]
d ×

L2
0(Ω) × H1

Γ0
(Ω). The pair Wh × Qh is assumed to satisfy the inf-sup condition,

that is, there exists a positive constant β, such that ∀qh ∈ Qh,

(24) sup
vh∈Wh

d(vh, qh)

|vh|1
≥ β∥qh∥0.

3.1. The traditional coupled finite element method. To lay a solid foun-
dation for the decoupled finite element method, in this section we first revisit the
traditional coupled finite element method: Find (uh, ph, θh) ∈ Wh × Qh × Sh sat-
isfying

c(uh,uh,vh) + Pra(uh,vh) + d(vh, ph)− PrRa(ĝθh,vh) = ⟨γγγ1,vh⟩,
∀vh ∈ Wh,

(25)

d(uh, qh) = 0, ∀qh ∈ Qh,(26)

c̃(uh, θh, sh) + k0ã(θh, sh) = ⟨γ2, sh⟩, ∀sh ∈ Sh.(27)
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Set Vh = {vh ∈ Wh| d(vh, qh) = 0, ∀qh ∈ Qh}. Then an equivalent problem to
(25)-(27) is: Find (uh, θh) ∈ Vh × Sh, such that

c(uh,uh,vh) + Pra(uh,vh)− PrRa(ĝθh,vh) = ⟨γγγ1,vh⟩, ∀vh ∈ Vh,(28)

c̃(uh, θh, sh) + k0ã(θh, sh) = ⟨γ2, sh⟩, ∀sh ∈ Sh.(29)

In [5], the proof for the existence for the continuous problem is completed by intro-
ducing an operator and proving the existence of a fixed-point with Leray-Schauder’s
fixed-point theorem. The uniqueness is derived by reductio ad absurdum. The proof
of well-posedness of the discrete problem is omitted due to its similarity to the con-
tinuous ones. In this paper, by introducing a different operator and employing
Brouwer’s fixed-point theorem, we carry out the proof for Theorem 2, which shows
the existence for the discrete problem. Then the uniqueness is shown by adding a
condition to ensure the operator to be a strictly contracting mapping in the proof
of Theorem 3.

Theorem 2. The problem (28) to (29) has at least one solution.

Proof. Due to inequalities (8)-(15), c̃(uh, ·, ·)+k0ã(·, ·) is an elliptic and continuous
bilinear form on Sh × Sh. Hence, there exists an operator Fh : Vh → Sh such that
c̃(uh, Fh(uh), sh) + k0ã(Fh(uh), sh) = ⟨γ2, sh⟩, ∀sh ∈ Sh. By setting sh = Fh(uh)
it is easy to prove

(30) |Fh(uh)|1 ≤ C5k
−1
0 ∥γ2∥−1.

Next, we define a mapping Gh : Vh → Vh, such that
(31)
c(uh, Gh(uh),vh) + Pra(Gh(uh),vh)− PrRa(ĝFh(uh),vh) = ⟨γγγ1,vh⟩, ∀vh ∈ Vh.

The bilinear form c(uh, ·, ·) + a(·, ·) is continuous and elliptic on Vh × Vh, which
ensures Gh(uh) to be well defined. The proof will be completed if Gh has a fixed-

point. Setting ρ = C4Pr−1∥γ1γ1γ1∥−1 + C3C5Rak−1
0 ∥γ2∥−1, B(0, ρ) ⊂ Vh is a convex

compact ball in a finite dimensional space Vh. By Brouwer’s fixed-point theorem,
we intend to prove Gh is a continuous mapping from B(0, ρ) to B(0, ρ).

To prove that Gh(uh) is bounded, let vh = Gh(uh) in (31). It follows from (7),
(12), (16), and (17) that

Pr|Gh(uh)|21 ≤ Pra(Gh(uh), Gh(uh))

= ⟨γγγ1,vh⟩+ PrRa(ĝFh(uh), Gh(uh))

≤ (C4∥γγγ1∥−1 + C3PrRa|Fh(uh)|1)|Gh(uh)|1.

Combined with (30), we obtain

(32) |Gh(uh)|1 ≤ C4Pr−1∥γγγ1∥−1 + C3C5Rak−1
0 ∥γ2∥−1 := ρ,

which implies Gh maps B(0, ρ) to B(0, ρ).
Next, we prove that Gh is continuous. Replace uh with uhi, i = 1, 2 in (31) and

subtract between these two cases,

c(uh1 − uh2, Gh(uh1),vh) + c(uh,2, Gh(uh1)−Gh(uh2),vh)

+Pra(Gh(uh1)−Gh(uh2),vh)− PrRa(ĝ(Fh(uh1)− Fh(uh2)),vh) = 0.

Setting vh = Gh(uh1)−Gh(uh2) and applying (7), (11), (12), and (16), there holds
(33)
|Gh(uh1)−Gh(uh2)|1 ≤ Pr−1C1|Gh(uh1)|1|uh1−uh2|1+C3Ra|Fh(uh1)−Fh(uh2)|1.
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Replace uh with uhi and θh with Fh(uhi), i = 1, 2 in (29) and subtract one from
the other. It follows that

k0ã((Fh(uh1)− Fh(uh2)), sh) =− c̃(uh1 − uh2, Fh(uh1), sh)− c̃(uh2, Fh(uh1)

− Fh(uh2), sh), ∀sh ∈ Sh.

Then replacing sh with Fh(uh1)− Fh(uh2) and using (14), we obtain

|Fh(uh1)− Fh(uh2)|1 ≤C2k
−1
0 |uh1 − uh2|1|Fh(uh1)|1

≤C2C5k
−2
0 ∥γ2∥−1|uh1 − uh2|1.

(34)

Combining (32), (33), and (34), we obtain

|Gh(uh1)−Gh(uh2)|1 ≤Pr−1
(
C1C4Pr−1∥γγγ1∥−1 + C3C5k

−1
0 Ra(C1

+ C2Prk−1
0 )∥γ2∥−1

)
|uh1 − uh2|.

(35)

This implies that Gh is continuous and completes the proof. �
Remark 1. Suppose uh is a fixed-point of operator Gh in (32). We obtain the
prior estimate of uh,

(36) |uh|1 ≤ C4Pr−1∥γγγ1∥−1 + C3C5k
−1
0 Ra∥γ2∥−1.

The uniqueness of the solution to problem (28)-(29) is guaranteed under the
assumption that the extension of the boundary data is sufficiently small, which
will be demonstrated by Theorem 3. Before stating this theorem, the following
notations are introduced.

Nh := sup{c(uh,vh,wh)| |uh|1 = |vh|1 = |wh|1 = 1, uh,vh,wh ∈ Vh},(37)

Lh := sup{c̃(uh, θh, sh)| |uh|1 = |θh|1 = |sh|1 = 1, uh ∈ Vh, θh, sh ∈ Sh}.(38)

Theorem 3. Suppose there holds the condition

(39) C4NhPr−1∥γγγ1∥−1 + C3C5k
−1
0 Ra(Nh + LhPrk−1

0 )∥γ2∥−1 < Pr,

then (28)-(29) has one unique solution.

Proof. As Nh and Lh are sharper bounds for c(·, ·, ·) and c̃(·, ·, ·), we replace the
constants C1 and C2 with Nh and Lh, respectively in (35) and obtain

|Gh(uh1)−Gh(uh2)|1 ≤Pr−1
(
C4NhPr−1∥γγγ1∥−1 + C3C5k

−1
0 Ra(Nh

+ LhPrk−1
0 )∥γ2∥−1

)
|uh1 − uh2|1

:=σ|uh1 − uh2|1.
Note that σ < 1 if (39) holds, implying that the operator Gh is a strict contracting
mapping from Vh to Vh. Thus the uniqueness of the fixed-point is guaranteed. �
3.2. The parallel, iterative, decoupled finite element method. In this sec-
tion, we propose our parallel, iterative, decoupled scheme of the Boussinesq equa-
tions: Find (uk

h, p
k
h, θ

k
h) ∈ Wh ×Qh × Sh, such that

c(uk
h,u

k
h,vh) + Pra(uk

h,vh) + d(vh, p
k
h)− PrRa(ĝθk−1

h ,vh) = ⟨γγγ1,vh⟩,
∀vh ∈ Wh,

(40)

d(uk
h, qh) = 0,∀qh ∈ Qh,(41)

c̃(uk−1
h , θkh, sh) + k0ã(θ

k
h, sh) = ⟨γ2, sh⟩, ∀sh ∈ Sh,(42)

where (u0
h, p

0
h, θ

0
h) are appropriately chosen initial guesses.

By employing the Newton iteration, the scheme can be linearized leading to the
following algorithm.
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Algorithm 1 The algorithm for solving (40)-(42).

Given initial (u0
h, θ

0
h) ∈ Wh ×Qh;

ERR1 = 109; k = 1;
while ERR1 > ϵS , do

Procedure 1: Given initial guess uk,0
h ;

ERR2 = 109; l = 1;
while ERR2 > ϵN , do

Find (uk,l
h , pk,lh ) ∈ Wh ×Qh, such that

c(uk,l−1
h ,uk,l

h ,vh) + c(uk,l
h ,uk,l−1

h ,vh) + Pra(uk,l
h ,vh) + d(vh, p

k,l
h )

− PrRa(ĝθk−1
h ,vh) = ⟨γγγ1,vh⟩+ c(uk,l−1

h ,uk,l−1
h ,vh), ∀vh ∈ Wh,

(43)

d(uk,l
h , qh) = 0, ∀qh ∈ Qh,(44)

Compute ERR2 = ∥(uk,l
h , pk,lh )− (uk,l−1

h , pk,l−1
h )∥N ;

l = l + 1;
end while
Procedure 2: Find θkh ∈ Sh, such that

(45) c̃(uk−1
h , θkh, sh) + k0ã(θ

k
h, sh) = ⟨γ2, sh⟩, ∀sh ∈ Sh.

Compute ERR1 = ∥(uk
h, p

k
h, θ

k
h)− (uk−1

h , pk−1
h , θk−1

h )∥S ;
k = k + 1;

end while

Remark 2. ∥ · ∥S and ∥ · ∥N can be any chosen norms on Wh × Qh × Sh and
Wh ×Qh. ϵS and ϵN are error tolerances with respect to the iteration.

Remark 3. Procedure 1 and Procedure 2 are independent and implemented in
parallel.

Now we consider the existence and uniqueness of (40)-(42). We first recall the
following theorem from [35].

Theorem 4. Consider the abstract problem: Find u ∈ V , such that

(46) a1(u,u,v) = ⟨l,v⟩, ∀v ∈ V.

Suppose there hold the following conditions:

(i) The bilinear form a1(w, ·, ·) is uniformly elliptic with respect to w, i.e., there
exists a positive constant α, such that a1(w,v,v) ≥ α∥v∥2V , ∀w,v ∈ V .

(ii) There exists a continuous and nondecreasing function L : R+ → R+, such
that ∀µ > 0, |a1(w1,u,v) − a1(w2,u,v)| ≤ L(µ)∥w1 − w2∥V ∥u∥V ∥v∥V ,
∀u,v ∈ V , w1,w2 ∈ Sµ = {w ∈ V |∥w∥V ≤ µ}.

(iii) (∥l∥V ′/α2)L(∥l∥V ′/α) < 1.

Then (46) has a unique solution.

By employing this theorem, we prove the existence and uniqueness of (40)-(42)
presented below.

Theorem 5. If C4∥γγγ1∥−1 + C3C5PrRak−1
0 ∥γ2∥−1 < Pr2N−1

h , the problem (40)-
(42) is solvable and has one unique solution.

Proof. Let vh ∈ Vh in (40)-(41). Then

(47) c(uk
h,u

k
h,vh) + Pra(uk

h,vh) = PrRa(ĝθk−1
h ,vh) + ⟨γγγ1,vh⟩, ∀vh ∈ Vh.



746 Y. HOU, W. YAN, L. BOVELETH, AND X. HE

Set a1(w,u,v) = c(w,u,v)+Pra(u,v), ⟨l,v⟩ = PrRa(ĝθk−1
h ,vh)+⟨γγγ1,vh⟩. Then

it suffices to prove (i)-(iii). Based on (7), (11), and (12), (i) and (ii) can be proved
as follows:

a1(wh,vh,vh) = c(wh,vh,vh) + Pra(vh,vh) ≥ Pr|vh|21, ∀vh ∈ Vh,

|a1(wh1,uh,vh)− a1(wh2,uh,vh)| =|c(wh1 −wh2,uh,vh)|
≤Nh|wh1 −wh2|1|uh|1|vh|1.

Moreover, it follows from (16), (17), and (30) that

∥l∥V ′
h
= sup

vh∈Vh

|⟨γγγ1,vh⟩+ PrRa(ĝθk−1
h ,vh)|/|vh|1

≤C4∥γγγ1∥−1 + C3PrRa|θk−1
h |1

≤C4∥γγγ1∥−1 + C3C5PrRak−1
0 ∥γ2∥−1,

which implies l is continuous. Thus, if C4∥γγγ1∥−1+C3C5PrRak−1
0 ∥γ2∥−1 < Pr2N−1

h ,
condition (iii) is satisfied. Hence problem (47) has one unique solution.

Before discussing the uniqueness and existence of ph, we rewrite problem (40)-
(41) as follows: Find (uk

h, p
k
h) ∈ Wh ×Qh, such that

A(uk
h)u

k
h +B⋆pkh = l in W ′

h,(48)

Buk
h = 0 in Q′

h,(49)

where ⟨A(uh)vh,wh⟩ = a1(uh,vh,wh), ⟨Bvh, qh⟩ = d(vh, qh), uh,vh,wh ∈ Wh,
qh ∈ Qh and B⋆ is the dual operator of B. Define V 0

h = {f ∈ W ′
h|⟨f,vh⟩ = 0,∀vh ∈

Vh}. It is easy to verify that l − A(uk
h)u

k
h is an element in V 0

h . By virtue of (24),
B⋆ is an isomorphism from Qh to V 0

h , (see [35]).
Thus, there exists one pkh ∈ Qh, such that B⋆pkh = l − A(uk

h)u
k
h in V ′

h. This
implies that there exists one unique (uk

h, p
k
h) as the solution to (40)-(41).

As (42) is a linear system, it is sufficient to prove that (42) has a unique solution

or, equivalently, to prove that c̃(uk−1
h , θkh, sh) + k0ã(θ

k
h, sh) = 0, ∀sh ∈ Sh only has

zero as solution. Set sh = θkh, by (9) and (15), we have k0|θkh|21 ≤ c̃(uk−1
h , θkh, θ

k
h) +

k0ã(θ
k
h, θ

k
h) = 0. Thus θkh = 0 and we prove the theorem. �

3.3. Stability of the decoupled finite element method. In this section we
consider the stability of the numerical schemes including the decoupled parallel
iterative scheme and the Newton iteration. First, we present an estimate of the
decoupled parallel iterative scheme’s solution, which indicates the scheme is sta-
ble. Next, Theorem 7 shows that the linearized procedure is stable under certain
conditions.

Theorem 6. The solution to (40)-(42) satisfies

|uk
h|1 ≤ C4Pr−1∥γγγ1∥−1 + C3C5Rak−1

0 ∥γ2∥−1,(50)

|θkh|1 ≤ C5k
−1
0 ∥γ2∥−1,(51)

for any integer k ≥ 1, if the initial data of θ0h satisfies |θ0h|1 ≤ C5k
−1
0 ∥γ2∥−1.

Proof. Choosing vh = uk
h in (40) and employing the skew symmetry, we obtain

Pra(uk
h,u

k
h)− PrRa(ĝθk−1

h ,uk
h) = ⟨γγγ1,u

k
h⟩.

By the ellipticity of a(·, ·), we have

(52) Pr|uk
h|1 ≤ C3PrRa|θk−1

h |1 + C4∥γγγ1∥−1.
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Next, we set sh = θkh in (42), which leads to

(53) |θkh|1 ≤ C5k
−1
0 ∥γ2∥−1.

Combine (52) with (53), we prove the theorem. �

Theorem 7. Suppose the following conditions hold: |uk,0
h |1 < 1/4PrN−1

h and

C4∥γγγ1∥−1 + C3C5PrRak−1
0 ∥γ2∥−1 < 1/8Pr2N−1

h . Then the solution to (43)-(44)

(uk,l
h , pk,lh ) ∈ Wh ×Qh satisfies

|uk,l
h |1 ≤ 1/4PrN−1

h ,(54)

|pk,lh |1 ≤ 9/16Pr2(βNh)
−1.(55)

Proof. Setting vh = uk,l
h in (43), we obtain

Pra(uk,l
h ,uk,l

h ) =⟨γγγ1,u
k,l
h ⟩+ c(uk,l−1

h ,uk,l−1
h ,uk,l

h )− c(uk,l
h ,uk,l−1

h ,uk,l
h )

+ PrRa(ĝθk−1
h ,uk,l

h ).

By (7), (11), (16), and (17), we have

(Pr −Nh|uk,l−1
h |1)|uk,l

h |1 ≤C4∥γγγ1∥−1 +Nh|uk,l−1
h |21 + C3PrRa|θk−1

h |1.

Next, we use induction to prove the conclusion. Suppose |uk,l−1
h |1 < 1/4PrN−1

h

holds. By Theorem 6 and C4∥γγγ1∥−1 + C3C5PrRak−1
0 ∥γ2∥−1 < 1/8Pr2N−1

h , there
holds

|uk,l
h |1 ≤(Pr −Nh|uk,l−1

h |1)−1(C4∥γγγ1∥−1 +Nh|uk,l−1
h |21 + C3PrRa|θk−1

h |1)
≤1/4PrN−1

h .
(56)

Moreover, by (43), (24), and (56) we have

β∥pk,lh ∥0 ≤C4∥γγγ1∥−1 +Nh|uk,l−1
h |21 + 2Nh|uk,l−1

h |1|uk,l
h |1 + Pr|uk,l

h |1
+ C3PrRa|θk−1

h |1
≤C4∥γγγ1∥−1 + C3C5PrRak−1

0 ∥γ2∥−1 + 7/16Pr2/Nh,

≤9/16Pr2/Nh,

which leads to conclusion (55). �
3.4. Error analysis of the decoupled finite element method. In this sub-
section we carry out the error analysis for the decoupled parallel iterative scheme
and Newton method. The total error estimates will be presented in Theorem 11.
Moreover, the following approximation hypothesis are required. These abstract ap-
proximation properties will be fulfilled by specifically constructed finite dimensional
spaces on triangulations of domain Ω.

Hypothesis 1. There is an operator rh ∈ L([H3(Ω) ∩ H1
0Ω]

d,Wh), such that ∃
a positive C such that ∥v − rhv∥m ≤ Ch3−m|v|3, ∀v ∈ [H3(Ω) ∩ H1

0Ω]
d, where

m = 0, 1.

Hypothesis 2. There is an operator πh ∈ L(H2(Ω), Qh), such that ∃ a positive C
such that ∥q − πhq∥0,2 ≤ Ch2|q|2, ∀q ∈ H2(Ω).

Hypothesis 3. There is an operator Ih ∈ L(H3(Ω) ∩ H1
Γ0
(Ω), Sh), such that ∃

a positive C such that ∥θ − Ihθ∥m ≤ Ch3−m|θ|3, ∀θ ∈ H3(Ω) ∩ H1
Γ0
(Ω), where

m = 0, 1.

Then we present the convergence analysis for the decoupled scheme.
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Theorem 8. Suppose (uk
h, θ

k
h) is a solution to (40)-(42) and

(57) C4Pr−1Nh∥γγγ1∥−1 + C3C5k
−1
0 Ra(k−1

0 PrLh +Nh)∥γ2∥−1 < Pr.

Let (uh, θh) be a solution to (25)-(27). Then the iterative method (40)-(42) con-
verges and there hold the error estimates. When k = 2m, m = 1, 2, · · · ,

|uk
h − uh|1 ≤ δm1 |u0

h − uh|1,(58)

|θkh − θh|1 ≤ C5k
−2
0 Lh∥γ2∥−1δ0δ

m−1
1 |θ0h − θh|1.(59)

When k = 2m+ 1, m = 0, 1, 2, · · · ,

|uk
h − uh|1 ≤ δ0δ

m
1 |θ0h − θh|1,(60)

|θkh − θh|1 ≤ C5k
−2
0 Lh∥γ2∥−1δ

m
1 |u0

h − uh|1.(61)

Here δ1 = C5k
−2
0 Lh∥γ2∥−1δ0, δ0 =

(
Pr−Nh(C3C5k

−1
0 Ra∥γ2∥−1+C4Pr−1∥γγγ1∥−1)

)−1

×C3PrRa.

Proof. It is easy to see that (uk
h, θ

k
h) is a solution to

c(uk
h,u

k
h,vh) + Pra(uk

h,vh)− PrRa(ĝθk−1
h ,vh) = ⟨γγγ1,vh⟩, ∀vh ∈ Vh,(62)

c̃(uk−1
h , θkh, sh) + k0ã(θ

k
h, sh) = ⟨γ2, sh⟩, ∀sh ∈ Sh.(63)

Subtracting (62) from (28) yields

c(uk
h,u

k
h − uh,vh) + c(uk

h − uh,uh,vh) + Pra(uk
h − uh,vh)

− PrRa(ĝ(θk−1
h − θh),vh) = 0, ∀vh ∈ Vh.

Set vh = uk
h − uh and apply (7), (11), (12), and (16). Then we obtain

Pr|uk
h − uh|21 ≤− c(uk

h − uh,uh,u
k
h − uh) + PrRa(ĝ(θk−1

h − θh),u
k
h − uh)

≤Nh|uk
h − uh|21|uh|1 + C3PrRa|θk−1

h − θh|1|uk
h − uh|1.

By virtue of (36), we obtain

|uk
h − uh|1 ≤C3PrRa(Pr −Nh|uh|1)−1|θk−1

h − θh|1
≤δ0|θk−1

h − θh|1,
(64)

where δ0 = C3PrRa
(
Pr−Nh(C3C5k

−1
0 Ra∥γ2∥−1+C4Pr−1∥γγγ1∥−1)

)−1
. Subtract-

ing (63) from (29), there holds

c̃(uk−1
h − uh, θ

k
h, sh) + c̃(uh, θ

k
h − θh, sh) + k0ã(θ

k
h − θh, sh) = 0, ∀sh ∈ Sh.

Let sh = θkh − θh and employ (51). We obtain

(65) |θkh − θh|1 ≤ C5k
−2
0 Lh∥γ2∥−1|uk−1

h − uh|1.

Combining (64) with (65),

|uk
h − uh|1 ≤δ0C5Lhk

−2
0 ∥γ2∥−1|uk−2

h − uh|1
:=δ1|uk−2

h − uh|1.

By employing induction, we obtain (58) and (60) and can verify |δ1| < 1, which
implies the procedure is convergent. (59) and (61) can be derived likewise by (65),
(58), and (60). �
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Next, we consider the convergence of the Newton iteration. Set the initial value

(uk,0
h , pk,0h ) ∈ Wh ×Qh, such that

Pra(uk,0
h ,vh) + d(vh, p

k,0
h )− PrRa(ĝθk−1

h ,vh) = ⟨γγγ1,vh⟩, ∀vh ∈ Wh,(66)

d(uk,0
h , qh) = 0, ∀qh ∈ Qh.(67)

Then we come to the conclusion that:

Theorem 9. Let δ3 = 2/
√
3NhPr−1(C4Pr−1∥γγγ1∥−1 + C3C5Rak−1

0 ∥γ2∥−1) and
suppose |δ3| < 1 holds. Then, the Newton method converges and

|uk,l
h − uk

h|1 ≤3/4PrN−1
h δ2

l+1

3 ,(68)

∥pk,lh − pkh∥0,2 ≤27/16Pr2(βNh)
−1δ2

l+1

3 .(69)

Proof. The solution to (43)-(45) satisfies

c(uk,l−1
h ,uk,l

h ,vh) + c(uk,l
h ,uk,l−1

h ,vh) + Pra(uk,l
h ,vh)− PrRa(ĝθk−1

h ,vh)

= ⟨γγγ1,vh⟩+ c(uk,l−1
h ,uk,l−1

h ,vh), ∀vh ∈ Vh.
(70)

Subtracting (70) from (62), we obtain

Pra(uk,l
h − uk

h,vh) =c(uk
h − uk,l−1

h ,uk
h − uk,l−1

h ,vh) + c(uk
h − uk,l

h ,uk,l−1
h ,vh)

+ c(uk,l−1
h ,uk

h − uk,l
h ,vh).

Choose vh = uk,l
h − uk

h and apply the ellipticity to get

Pr|uk,l
h − uk

h|21 ≤c(uk
h − uk,l−1

h ,uk
h − uk,l−1

h ,uk,l
h − uk

h) + c(uk
h − uk,l

h ,uk,l−1
h ,

uk,l
h − uk

h) + c(uk,l−1
h ,uk

h − uk,l
h ,uk,l

h − uk
h)

≤Nh|uk
h − uk,l−1

h |21|u
k,l
h − uk

h|1 +Nh|uk
h − uk,l

h |21|u
k,l−1
h |1.

Considering (54), there holds

|uk,l
h − uk

h|1 ≤ 4/3Pr−1Nh|uk,l−1
h − uk

h|21 := δ2|uk,l−1
h − uk

h|21.

Next we will use induction to prove the result. Suppose (68) holds for l − 1. For l
we have

|uk,l
h − uk

h|1 ≤δ2|uk,l−1
h − uk

h|21
≤δ2

l−1
2 |uk,0

h − uk
h|2

l

1 .

Letting vh ∈ Vh in (66), the initial value uk,0
h satisfies

Pra(uk,0
h ,vh) + d(vh, p

k,0
h )− PrRa(ĝθk−1

h ,vh) = ⟨γγγ1,vh⟩, ∀v ∈ Vh.

Subtracting the identity from (47) and employing the inequalities in Theorem 1

along with (50), there holds the estimate of |uk,0
h − uk

h|1,

|uk,0
h − uk

h|1 ≤ Pr−1Nh(C4Pr−1∥γγγ1∥−1 + C3C5Rak−1
0 ∥γ2∥−1)

2.

Hence, we obtain (68).
Next we subtract (43) from (40) and obtain

d(vh, p
k,l
h − pkh) =− Pra(uk,l

h − uk
h,vh)− c(uk,l−1

h ,uk,l
h − uk

h,vh)

− c(uk,l
h − uk

h,u
k,l−1
h ,vh)

+ c(uk,l−1
h − uk

h,u
k,l−1
h − uk

h,vh), ∀vh ∈ Wh.
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By (24), (6), (11), (54), and (68), there holds

β∥pk,lh − pkh∥0,2 ≤(Pr + 2Nh|uk,l−1
h |1)|uk,l

h − uk
h|1 +Nh|uk,l−1

h − uk
h|21

≤9/8Pr2N−1
h δ2

l+1

3 + 9/16Pr2N−1
h δ2

l+1

3

≤27/16Pr2N−1
h δ2

l+1

3 ,

which leads to (69).
�

The total error estimates, which include the errors arising from the finite element
method, the decoupled parallel iterative scheme, and the Newton iteration, are
presented in Theorem 11. First we recall the following theorem regarding the errors
of the coupled finite element method from [5].

Theorem 10. Suppose the original problem (22)-(23) has a unique solution (u, θ)
and (uh, θh) is the solution to (28)-(29). Then, there are positive constants C6−C10

independent of h, such that

|uh − u|1 ≤ C6 inf
qh∈Qh

∥p− qh∥0,2 + C7 inf
vh∈Wh

|u− vh|1 + C8 inf
sh∈Sh

|θ − sh|1,(71)

|θh − θ|1 ≤ C9 inf
sh∈Sh

|θ − sh|1 + C10|u− uh|1.(72)

If the finite dimensional spaces are chosen to satisfy Hypothesis 1-3 (for example,
Taylor-Hood element ([76]) for u-p and quadratic element for θ), then, based on the
approximating property (see [16]), we obtain the total error estimates immediately.

Theorem 11. Suppose the solution to (22)-(23) satisfies u ∈ [H3(Ω)]d ∩ [H1
0Ω]

d,

θ ∈ H3(Ω)∩H1
Γ2
(Ω), p ∈ H2(Ω)∩L2

0(Ω). (u
k,l
h , θkh) is a solution to (43)-(45). Then

there holds: When k = 2m, m = 1, 2, · · · ,

|uk,l
h − u|1 ≤3/4PrN−1

h δ2
l+1

3 + δm1 |u0
h − uh|1 + Ch2|u|3 + Ch2|p|2

+ Ch2|θ|3,
(73)

|θkh − θ|1 ≤C5k
−2
0 Lh∥γ2∥−1δ0δ

m−1
1 |θ0h − θh|1 + Ch2|θ|3 + Ch2|u|3.(74)

When k = 2m+ 1, m = 0, 1, 2, · · · ,

|uk,l
h − u|1 ≤3/4PrN−1

h δ2
l+1

3 + δ0δ
m
1 |θ0h − θh|1 + Ch2|u|3 + Ch2|p|2

+ Ch2|θ|3,
(75)

|θkh − θ|1 ≤C5k
−2
0 Lh∥γ2∥−1δ

m
1 |u0

h − uh|1 + Ch2|θ|3 + Ch2|u|3.(76)

Here δ0, δ1, δ3, u
0
h, θ

0
h are defined in Theorem 8 and 9 and C is independent of h.

Proof. We prove the error estimate for u under the case k = 2m, m = 1, 2, · · · . By
triangle inequality, there holds,

|uk,l
h − u|1 ≤|uk,l

h − uk
h|1 + |uk

h − uh|1 + |uh − u|1,

≤|uk,l
h − uk

h|1 + |uk
h − uh|1 + C6∥p− πhp∥0,2 + C7|u− rhu|1

+ C8|θ − Ihθ|1.

Employing (68), (58), and (71) along with Hypothesis 1-3, (73) holds. The rest of
the proof can be completed likewise. �
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Remark 4. Concerning all the conditions related to Pr and Ra in Theorems 3,
5, 7, 8, and 9, the wellposedness and convergence of the scheme require that the
following conditions hold:

C4∥γγγ1∥−1 + C3C5PrRa
1

k0
∥γ2∥−1 <

1

8

Pr2

Nh
,

C4∥γγγ1∥−1 + C3C5PrRa
1

k0Nh

(
1

k0
PrLh +Nh

)
∥γ2∥−1 <

Pr2

Nh
,

implying that

Pr > max

{√
8C4Nh∥γγγ1∥−1, 8C3C5NhRa

1

k0
∥γ2∥−1

}
,

Ra < min

{
k20

C3C5Lh
,

k0Pr

8C3C5Nh∥γ2∥−1

}
.

4. Numerical examples

In this section, we present three numerical experiments to verify the theoretical
analysis and illustrate the proposed method. In the first example, a problem with
given accurate solution on (0, 1)×(−0.25, 0) is computed. As the solution is smooth
enough, the convergence order of the scheme is dominated by properties of the finite
element spaces, which is constructed by the Taylor-Hood elements and quadratic
elements. We present the convergence orders and verify the conclusions under
Ra = 103. In the second example, a cavity-flow problem is presented to further
validate the proposed method. In the third example, an isolated island problem is
simulated to test the behavior of the flow on less regular domains.

4.1. Example 1. The purpose of this example is to verify the numerical analysis
in Section 3. Here, let the domain be (0, 1) × (−0.25, 0). The parameters of our
problem are chosen as Pr = 1, Ra = 103, and k0 = 1. The equations are solved
on a uniform triangulation, in which the domain is divided into sub-rectangles
by horizontal and vertical lines. A sub-rectangle is then divided into triangles by
connecting the vertices from upper left to bottom right. The exact solution to this
problem is chosen as follows:

u1 = x2y2 + exp(−y),

u2 = −2/3xy3 + 2− π sin(πx),

p = −
(
2− π sin(πx)

)
cos(2πy),

θ = exp(x+ y).

Here, we consider the nonhomogeneous problem with the right-hand side of (1)-(5)
set to fit the analytical solution. The iterative tolerances are set as ϵS = 10−9 and
ϵN = 10−6 in (43)-(45). Then, we present the numerical results in Tables 1-3. Since
the analytical solution is sufficiently smooth, the convergence orders are dominated
by the orders of the polynomials. Hence, as shown in the tables, the convergence
orders are optimal for the utilized Taylor-Hood elements and quadratic elements.

We also observe the convergence behavior of the iterative method on different
meshes. Two cases with mesh edge size h = 1/64 and h = 1/128 are considered. As
shown in Figures 1 and 2, the errors of u, p, and θ reach the optimal convergence
in Table 1 to Table 3 after the fifth iteration. In Figures 3 and 4, we obtain the
solution to (40)-(42) at each iterative step and compute the errors between the
solution of the decoupled finite element method and the solution of the standard
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Table 1. The L2 errors and corresponding convergence orders of
decoupled parallel iterative finite element method for the steady
Boussineq equations (1)-(5) with Ra = 1000.

1
h L2 Error u Order L2 Error p Order L2 Error θ Order
4 2.7607e-03 - 8.2564e-02 - 6.9312e-05 -
8 3.564e-04 2.9534 2.2597e-02 1.8694 8.5992e-06 3.0108
16 4.4016e-05 3.0174 8.6689e-03 1.3822 1.0718e-06 3.0042
32 5.4798e-06 3.0058 2.4765e-03 1.8075 1.3389e-07 3.0009
64 6.8421e-07 3.0016 6.5585e-04 1.9169 1.6733e-08 3.0002
128 8.5497e-08 3.0005 1.6841e-04 1.9614 2.0916e-09 3.0001

Table 2. The H1 errors and corresponding convergence orders of
decoupled parallel iterative finite element method for the steady
Boussinesq equations (1)-(5) with Ra = 1000.

1
h H1 Error u Order H1 Error p Order H1 Error θ Order
4 80557e-02 - 2.3539e+00 - 2.6175e-03 -
8 2.0429e-02 1.9794 1.2647e+00 0.89627 6.5321e-04 2.0025
16 5.0681e-03 2.0111 6.3069e-01 1.0038 1.6323e-04 2.0006
32 1.2623e-03 2.0054 3.1369e-01 1.0076 4.0804e-05 2.0001
64 3.1523e-04 2.0016 1.5658e-01 1.0024 1.0201e-05 2
128 7.8782e-05 2.0004 7.8254e-02 1.0007 2.5502e-06 2

Table 3. The infinity errors and corresponding convergence or-
ders of decoupled parallel iterative finite element method for the
steady Boussinesq equations (1)-(5) with Ra = 1000.

1
h Inf Error u Order Inf Error p Order Inf Error θ Order
4 1.1759e-02 - 3.7727e-01 - 3.0632e-04 -
8 1.6853e-03 2.8027 1.3608e-01 1.4711 4.0349e-05 2.9244
16 2.0223e-04 3.0589 4.5862e-02 1.5691 5.181e-06 2.9612
32 2.5167e-05 3.0064 1.2533e-02 1.8716 6.5635e-07 2.9807
64 3.1048e-06 3.0189 3.251e-03 1.9468 8.2594e-08 2.9904
128 3.8464e-07 3.0129 8.2649e-04 1.9758 1.0359e-08 2.9952

coupled finite element method. In the standard finite element method, the Newton
method is utilized with iterative tolerance set as ϵ = 10−9. We observe that the
errors decrease fast. As for the errors of u, the L2 error descends all the way from
10−2 to 10−15 in twelve steps, which implies the exponential relation shown by the
theoretical analysis in Theorem 8. A satisfying result can generally be achieved in
five or six steps for all the variables. These indicate that the proposed method is
efficient.

4.2. Example 2. In this subsection, a square cavity flow is presented to further
illustrate the algorithm. The problem is considered on Ω = (0, 1)× (0, 1). A Non-
slip boundary condition is imposed for the velocity. The top horizontal wall of the
square is adiabatic, i.e. ∂θ

∂n = 0. Dirichlet conditions are imposed at the other
walls, with θ = 0 at the left and bottom wall, θ = 4y(1− y) at the right wall. The
physical parameters are set as Pr = 0.1, Ra = 10, and k0 = 1. The right hand
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Figure 1. The errors of the velocity u, the pressure p, and the
temperature θ in each iterative step k (k = 1, 2, . . . , 5) of the decou-
pled parallel scheme with Ra = 1000 and mesh edge size h = 1/64.
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Figure 2. The errors of the velocity u, the pressure p and the tem-
perature θ in each iterative step k (k = 1, 2, . . . , 5) of the decoupled
parallel scheme with Ra = 1000 and mesh edge size h = 1/128.
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Figure 3. The errors between solutions of (40)-(42) with solutions
of standard finite element method at each iterative step k (k =
1, 2, . . . , 10) with Ra = 1000 and mesh edge size h = 1/64.

side of the equation system is set as γγγ1 = 0 and γ2 = 0. In contrast to the first
experiment, we employ Delaunay triangulation to the square cavity. The boundary
conditions are given in Figure 5. The resulting velocity fields and isotherms of the
problem at mesh size h = 0.02 are shown in Figure 6, whose results are consistent
with those in [101].
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Figure 4. The errors between solutions of (40)-(42) with solutions
of standard finite element method at each iterative step k (k =
1, 2, . . . , 12) with Ra = 1000 and mesh edge size h = 1/128.
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Figure 5. The geometry and the boundary conditions of the phys-
ical model.

4.3. Example 3. Finally, we simulate an isolated island problem [44]. The test
is set up on a square cavity with an rectangular insulator, namely, Ω = (0, 1) ×
(0, 1) \ (0.822, 0.903) × (0.081, 0.594). We set ∂θ

∂n = 0 on the boundary of the
insulator. The geometry and other boundary conditions can be found in Figure
5. The physical parameters are Pr = 0.01, Ra = 103, k0 = 0.1. The mesh is
a Delaunay triangulation, again, with mesh size h = 0.025. The velocity field,
isobar and isotherm are presented in Figure 7. The physically valid results further
illustrate the applicability of the proposed method for a less regular domain.

5. Conclusions

In this work a decoupled, parallel, iterative scheme for the Boussinesq equa-
tions is proposed and analyzed. The existence and uniqueness of the scheme are
proved. Numerical analysis shows that the scheme is stable and convergent with
optimal convergence rates. A test exploiting the given analytical solution verifies
the convergence behavior and shows that only five or six steps can already lead to
a satisfying approximation of the solution of the problem. Two benchmarks are
presented to show the applicability of the proposed method.
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Figure 6. The triangulation and the velocity field, isobar and
isotherm of the cavity flow with Pr = 0.1, Ra = 10, k0 = 1 at
mesh size h = 0.02.
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at mesh size h = 0.025.
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