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Abstract. As an important pre-processing step for many related computer vision tasks, color

image denoising has attracted considerable attention in image processing. However, traditional
methods often regard the red, green, and blue channels of color images independently without
considering the correlations among the three channels. In order to overcome this deficiency, this

paper proposes a novel dictionary method for color image denoising based on pure quaternion
representation, which efficiently deals with both single-channel and cross-channel information.
The pure quaternion constraint is firstly used to force the sparse representations of color images
to contain only red, green, and blue color information. Moreover, a total variation regularization is

proposed in the quaternion domain and embedded into the pure quaternion-based representation
model, which is effective to recover the sharp edges of color images. To solve the proposed model,
a new numerical scheme is also developed based on the alternating minimization method (AMM).
Experimental results demonstrate that the proposed model has better denoising results than the

state-of-the-art methods, including a deep learning approach DnCNN, in terms of PSNR, SSIM,
and visual quality.

Key words. Color image denoising, singular value decomposition, pure quaternion matrix, total
variation, sparse representation.

1. Introduction

Color image denoising is a fundamental image processing task that focuses on
obtaining a clean color image from a noisy observation [39]. Color images have been
widely used in many fields, from medical imaging to automatic driving [15, 47, 53]
Generally speaking, a color image contains red, blue, and green (RGB) channels,
which are highly related to the image [18]. As a matter of fact, each pixel x of color
image contains three gray pixels, i.e., x = (xr, xg, xb), where xr, xg, and xb are
RGB channels respectively. With a little changes of any channel, the color of x will
have corresponding effects. The phenomenon of image degradation resulting from
noise adversely affects the subsequent image processing and analysis, and visual
effects [23, 26, 25]. Therefore, noise suppressing for improving color image quality
is an essential process for many imaging tasks [37]. In this paper, we focus on the
problem of removing additive Gaussian noise in color images. Mathematically, the
degraded image Y ∈ Rm×n can be formulated as

(1) Y = X+W,

where X ∈ Rm×n is the original image, and W ∈ Rm×n is the Gaussian white
noise. In the past decades, many excellent denoising methods have been proposed,
such as dictionary learning method [19], nonlocal means [3], block-matching and
3D filtering [9], and total variation [45, 46, 51], etc. We refer the reader to see [16]
for a comprehensive review of the image denoising.
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Among the various denoising techniques, the dictionary-based method general-
ized K-means clustering for singular value decomposition (K-SVD) shows its supe-
riority in reserving the textures, therefore, it has attracted considerable improve-
ments in the last decade [11]. Indeed, Elad and Aharon [1] firstly proposed the
effective patch-based method with K-SVD algorithm via sparse representation over
a learned dictionary and updated the coefficients with orthogonal matching pursuit
(OMP) algorithm. Given the noisy observation Y, their model can be expressed as

(2) min
D,aij ,X

λ∥X−Y∥22 +
∑
i,j

(µij∥aij∥0 + ∥Daij −RijX∥22),

where D ∈ Rm×k is the dictionary matrix, the [i, j] indicates the image patch lo-
cation, Rij is an operator extracting the square

√
n ×

√
n patch from the image

at position [i, j], and the vector aij ∈ Rk×1 is the coefficient vector for the cor-
responding patch with ∥ · ∥0 being the ℓ0-norm to count the nonzero number in
the vector. As this method is designed for gray images initially, it will generate
color distortion while be applied to color images by dealing with the three channels
independently [50]. Hence, the patch-based dictionary method was improved to
the patch group-based dictionary methods [48], which can eliminate the color bias.
However, they still ignore the relationship among the color channels [50].

Recently, the quaternion representation has obtained much attention in image
processing. The quaternion represents a color pixel by a structure, which can
integrate the information of three channels. This advantage has promoted the
application of quaternion representation in the color image processing [24]. For ex-
ample, Yu et al. [54] applied quaternion-based weighted nuclear norm minimization
(QWNNM) for color image denoising. The QWNNM model achieves better results
than the real value-based weighted nuclear norm minimization method. Wang et
al. [42] handled the color image segmentation with the quaternion-based method
and has better results than the real value-based methods. Denoting a dot in vari-
ances as quaternion number and H as quaternion domain, the quaternion-based
degradation model for color noise is given as

Ẏ = Ẋ+ Ẇ,(3)

where Ẏ, Ẋ, and Ẇ ∈ Hm×n are the noisy image, latent clear image, and Gaussian
white noise with zero mean and standard variance σ of quaternion form, respective-
ly. The detailed information about quaternion please see Section 2.2. Comparing
with vector-based models, the quaternion-based models fully utilize the relation-
ship between channels and the orthogonal property for the coefficients of differ-
ent channels [6] and thus generate better results. Due to the superiority of the
quaternion-based method, Xu et al. [50] improved the model (2) with quaternion
representation, and called it the K-QSVD model. Their idea is to fit color im-
ages with quaternion matrices and train the dictionary with the K-QSVD1 and the
QOMP2 algorithms. Their K-QSVD model is formulated as follows

(4) min
Ḋ,ȧij ,Ẋ

λ∥Ẋ− Ẏ∥22 +
∑
i,j

(µij∥ȧij∥0 + ∥Ḋȧij − ṘijẊ∥22),

where Ḋ ∈ Hm×k is the dictionary matrix in quaternion form, the indicator [i, j]

marks the patch location, Ṙij is an operator extracting the square
√
n×

√
n patch

1The K-QSVD algorithm is the extension of the K-SVD algorithm, with all algebra operations in
quaternion system.
2The QOMP algorithm is the extension of the OMP algorithm, with all algebra operations in
quaternion system.
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of coordinates [i, j] from the image Ẋ, and the vector ȧij ∈ Hk×1 is the coefficient
vector for the corresponding patch. This patch-based dictionary learning method
achieves better results with quaternion representation while there are still some
limitations. The first comes from the calculation of quaternion numbers. Three
imaginary parts and one real part compose a quaternion number. During the
calculation of the quaternion-based algorithm, the real part will unavoidable be
corrupted with some minor errors. This leads to the inappropriate representation
of the color images. The second problem is the artifacts in images, especially when
the noise level is high [12].

In this paper, we propose a novel approach to overcome the above-mentioned
problems. Firstly, we propose and study an optimization model for color image
denoising by enforcing the zero real part constraint in quaternion computation. A
quaternion has four components (one real part and three imaginary parts), which
increases the difficulty of calculation and brings a great challenge to establishing a
pure quaternion-based dictionary learning model. Especially, the quaternion with
four parts is a whole number. During the iteration, the real part of the quaternion
will crop some unexpected numbers. Since the color image has three channels,
we usually need to truncate the real part of the resulted quaternion matrix after
the iteration, which leads to information loss. Different from [19], we investigate
the pure quaternion-based sparse representation (pQS) method by adding a zero
constraint to ensure that the color image is always represented as a pure quaternion
matrix. In this case, the channel relationships and all the information of images can
be well preserved at the same time. To overcome the second problem, we design an
original quaternion-based total variation (q-TV) regularizer and study the denoising
model based on pQS with q-TV regularizer, named by pQSTV model. This novel
model can be solved by the alternating minimization method. dictionary learning
part, due to the simplicity and efficiency of the K-SVD and OMP algorithms [1], we
apply the quaternion-based K-SVD (K-QSVD) algorithm to learn the dictionary
and the quaternion-based OMP (QOMP) algorithm to update coefficients.

The contribution of this paper is listed as follows:

• A new pure quaternion-based sparse representation (pQS) model is pro-
posed for color image denoising, with a zero constraint on the real part.
Without loss the geometric information of images, the structure of color
channels is appropriately presented and preserved by this new model.

• A pure quaternion-based TV regularizer is firstly designed and embedded
into the pQS model, which generates a pQSTV model. To the best of
our knowledge, this pQSTV model is the first pure quaternion-based joint
model to denoise the color image directly from the degraded image.

• Numerical results demonstrate clearly that the proposed model can provide
better denoising results than the state-of-the-art methods, including K-
QSVD, DnCNN, etc., by a large margin in average.

The outline of this paper is as follows. Section II recalls some basic concepts of
quaternion algebra, dictionary learning, and the total variation method. Section
III presents our approach. In Section IV, we display a series of experiments to
compare the proposed method and other competitive methods. We conclude this
work in Section V.

2. Related Works

2.1. Image recovery by dictionary. Various image processing methods have
been proposed to denoise an image from its corrupted one. One popular class
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of denoising methods is based on dictionary learning and sparse coding, such as
[10, 4]. If an image X ∈ Rm×n satisfies X = DA (or X ≈ DA), where A ∈ Rk×n

is the sparse coefficient matrix (i.e., A has few nonzeros), then we call X is sparse
(or approximately sparse) under a dictionary D ∈ Rm×k [13]. Many classes of
images can be sparsely represented by different dictionaries [30]. Assuming that X
is represented sparsely under a fixed dictionary D, we can recover X via solving

(5) min
A

∥A∥0, s.t. ∥X−DA∥22 ≤ ϵ,

where the ℓ0-norm counts the number of non-zero elements and ϵ ≥ 0 is a parameter
corresponding to the noise level. Once we get the solution of Eq. (5), i.e., the
coefficient matrix A, the ideal restored image X can be estimated by DA. There
are some predetermined dictionaries [41], such as overcomplete wavelets, discrete
cosine transforms (DCT), and curvelets [49]. However, a learned dictionary can
better represent the natural images and improve the recovery quality [13, 22]. A
dictionary can be learned by algorithm K-SVD [1], MOD [14], and OLM [31], etc.
With the character of simpleness and effectiveness [28], we train the dictionaries
by the classical K-SVD method with the noisy image. The K-SVD method can be
expressed by the following model

(6)
min
D,A

∥X−DA∥2F ,

s.t. ∥di∥2 = 1, i = 1, ..., k; ∥aj∥0 ≤ s, j = 1, ...n,

where X ∈ Rm×n represents the original sample, di is the i-th column of the trained
dictionaryD. K-SVD method tries to solve Eq. (6) by alternatively updatingA and
D [1]. This problem can easily be solved by the Lasso (Least Absolute Shrinkage
and Selection Operator) algorithm [40] and the OMP algorithm [35].

Aharon et al. [1] used the dictionary learning model to solve image denoising
task, which generates better results than the predetermined dictionary. They re-
shape the color matrix as a large vector and treat an image as the linear connection
of vectors, which ignores the correlation of image channels. Later, the quaternion
matrix-based color image processing model is proposed in [50]. They represented
color images with the quaternion matrix and completely preserved the inherent
color structures during reconstruction. Next, we will review some concepts of the
quaternion algebra and the quaternion’s matrix and vector representation.

2.2. Quaternion algebra. A quaternion number [17] in quaternion domain H is
expressed in the form

ȧ = a0 + a1i+ a2j+ a3k,

where a0, a1, a2, and a3 ∈ R, i, j, and k are the fundamental quaternion units
which satisfy the quaternion rules

i2 = j2 = k2 = ijk = −1.

However, quaternion does not follow the multiplicatively commutative law, because
ij = k, whereas ji = −k.

Let ȧ = a0 + a1i+ a2j+ a3k ∈ H, ḃ = b0 + b1i+ b2j+ b3k ∈ H, and λ ∈ R, then
we have

ȧ+ ḃ = (a0 + b0) + (a1 + b1)i+ (a2 + b2)j+ (a3 + b3)k,

λȧ = (λa0) + (λa1)i+ (λa2)j+ (λa3)k,
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and

ȧḃ = (a0b0 − a1b1 − a2b2 − a3b3) + (a0b1 + a1b0 + a2b3 − a3b2)i

+ (a0b2 − a1b3 + a2b0 + a3b1)j+ (a0b3 + a1b2 − a2b1 + a3b0)k.

The conjugate and modulus of ȧ are defined by

ȧ∗ = a0 − a1i− a2j− a3k,

|ȧ| =
√
a20 + a21 + a22 + a23.

The quaternion matrix is a matrix whose entries are elements of the quaternion’s
algebra. Suppose Q̇ is a quaternion matrix, i.e., Q̇ ∈ Hm×n, then

(7) Q̇ = Q0 +Q1i+Q2j+Q3k,

where Q0, Q1, Q2, and Q3 ∈ Rm×n. Therefore, the RGB channels of a color pixel
q̇ij can be encoded as the three imaginary parts of the quaternion [36]

q̇ij = riji+ gijj+ bijk,(8)

where i = 1, . . . ,m, j = 1, . . . , n, q̇ij ∈ H is a pure quaternion number (i.e., without
real component), and rij , gij , and bij are the RGB channels corresponding to a
pixel in the color image.

The norms of quaternion matrix and vector are defined as follows.

Definition 2.1. The ℓ2-norm of quaternion vector ȧ = α0 +α1i+α2j+α3k ∈ Hn

is ∥ȧ∥2 :=
√∑

i

|αi|2; the ℓ2-norm of quaternion matrix Q̇ = (q̇ij)m×n is ∥Q̇∥2 :=

max(σ̇i), where σ̇i is the set of singular values of Q̇, i = 1, ..., s, and the Frobenius

norm is ∥Q̇∥F :=
√∑

i,j

|q̇ij |2.

The singular value decomposition (SVD) of a quaternion matrix was firstly pro-
posed in [55].

Theorem 2.2. (Quaternion Singular Value Decomposition (QSVD)) Let

Q̇ ∈ Hm×n, then there exist two unitary quaternion matrices U̇ ∈ Hm×m and
V̇ ∈ Hn×n such that U̇∗Q̇V̇ = Σ̇, where Σ̇ = diag(σ̇1, σ̇2, . . . , σ̇s), with |σ̇i| ≥ 0 and
s = min(m,n).

Based on the above definition, the quaternion-based model (4) can be well han-
dled. In [50], Xu et al. proposed the QOMP and the K-QSVD algorithm to solve
their quaternion-based model and reported competitive results by representing im-
ages with the quaternion matrix in color image processing. The dictionary learning
prior in the quaternion domain can match similar patches information in color im-
ages and generate promising denoising results [50]. In [1], the authors apply the
OMP and the K-SVD algorithms to solve the dictionary learning-based model.
However, their results generate unexpected artifacts. Considering the effectiveness
of TV in suppressing artifacts [7], we consider combining the dictionary learning
method and the TV regularizer for color image denoising. Next, we will give a brief
introduction to the TV term.

2.3. Quaternion-based total variation regularizer. The total variation [38]
was designed for grayscale image processing and has become one of the most popular
regularization methods in grayscale image processing. In the last decades, total
variation has been developed to many other forms for image processing problems
[29]. For example, we have high-order TV [21], weighted TV [8], anisotropic TV
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[34], and nonlocal TV [24], etc. The TV model proposed in [38] can be expressed
as

X = argmin
X

ηJTV (X) +
1

2
∥Y −X∥22,(9)

where 1
2∥Y −X∥22 is the fidelity term and JTV (X) is the regularization term, η is

the regular parameter.
There are two popular types of regularization terms. One is the ℓ2-based isotropic

TV [38] defined as

JTV (X) = ∥∇X∥2 =
√
X2

s +X2
t ,(10)

and the other is the ℓ1-based anisotropic TV [33] defined as

JTV (X) = ∥∇X∥1 = |Xs|+ |Xt|,(11)

where ∇ = ( ∂
∂s ,

∂
∂t ) is the gradient operator and ∇X = (Xs,Xt). Here, Xs and

Xt are the gradients of X in the directions of s and t, respectively. And JTV (X)
denotes the total variation of X. When it comes to the quaternion domain, the ℓ1
and ℓ2-based TV of a quaternion matrix Ẋ = X0 +X1i+X2j+X3k ∈ Hm×n can
be defined as

∥∇Ẋ∥1 := ∥∇X0∥1 + ∥∇X1∥1 + ∥∇X2∥1 + ∥∇X3∥1,(12)

and

∥∇Ẋ∥2 := ∥∇X0∥2 + ∥∇X1∥2 + ∥∇X2∥2 + ∥∇X3∥2.(13)

By the number of numerical experiments, we find that the ℓ1-based TV regular-
ization overcomes the grid artifacts well and it also costs less computational flops
than the ℓ2-based TV regularization. So that we concentrate on the definition (12)
and denote it by the q-TV in this paper.

3. Pure quaternion-based sparse representation TV model

In this section, we present a novel color image denoising model based on pure
quaternion-based sparse representation and TV regularization.

3.1. Zero constraint Re(Ẋ) = 0. Let quaternion matrix Ẋ = X0 +X1i+X2j+
X3k ∈ Hm×n represent a color image, where the real part X0 ∈ Rm×n is zero,
and three imaginary parts X1, X2, X3 ∈ Rm×n denote the red, green, and blue
channels, respectively. Due to the errors of truncation and rounding, the quaternion
matrices generated by the proposed algorithm have absolutely small nonzero entries
in their real parts. In traditional methods, the nonzero real part is often cut off at
the outputting step, which makes the reconstructed color images have sight color
distortion. To solve this deficiency, the solution of our model will be constrained to
be a pure quaternion matrix representing a color image with three color channels.
That is, all quaternion matrices generated in the solving process will be forced
to have zero real parts. Such zero constraint is described by Re(Ẋ) = 0. To
simplify the computation, an indicator function Φ0 is introduced to the set of
pure quaternion matrices, {Ẋ | X0 = 0, Ẋ = X0 + X1i + X2j + X3k}. The zero
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constraint can be reformulated as Φ0(Ẋ) = 0. Explicitly, let Ẋ =


X0

X1

X2

X3

, then

Φ0(Ẋ) = Φ0


X0

X1

X2

X3

 =
[
1 0 0 0

] 
X0

X1

X2

X3

 = X0.

3.2. The pQS Representation Model and Algorithm. Now, we study the
image denoising problem under Gaussian noise. Assuming that the degraded im-
age Ẏ ∈ Hm×n is formulated through Eq. (3), we propose the following pure
quaternion-based sparse representation (pQS) model

(14)

min
Ḋ,ȧij ,Ẋ

λ∥Ẋ− Ẏ∥22 +
∑
i,j

µij∥ȧij∥0 +
∑
i,j

∥Ḋȧij − ṘijẊ∥22,

s.t. Re(Ẋ) = 0,

where again Ḋ ∈ Hm×k is the dictionary matrix, the indicators [i, j] mark the

location of the patches in the image, Ṙij is an extracting operator, and the vectors
ȧij ∈ Hk×1 are the coefficient vectors for the corresponding patches. ∥ · ∥0 is the ℓ0
norm. As far as our knowledge goes, the real part is firstly constrained to be zero in
the above dictionary learning model to ensure that the color image is represented
as a pure quaternion matrix.

One of the advantages of constraining the real part of the quaternion matrix
to be zero is that one can fit color images perfectly. Even a tiny real part will
cause a loss of color information. Indeed, restricting the real part to zero has more
improvements than the quaternion matrix method. In Fig. 1, we display the two
dictionaries trained by the K-QSVD algorithm (i.e., [50]) and the proposed pure
quaternion-based dictionary learning model, respectively. From Fig. 1, we can see
that the dictionary on the left is not rich enough to denote the color image perfectly,
which leads to having artifacts in the restored image. In contrast, the trained
dictionary on the right is instead approaching the color image, which preserves the
connection of RGB channels and shows the image’s faultlessness.

The details of solving the Eq. (14) are as follows.

• We first give the dictionary Ḋ, the coefficient of every image patch is

(15) min
ȧ

µij∥ȧij∥0 + ∥Ḋȧij − ṘijẊij∥22.

The QOMP algorithm can deal with this problem.
• Given the initial image Ẋ, then we have

(16) min
Ḋ

∑
i,j

µij∥ȧij∥0 +
∑
i,j

∥Ḋȧij − ṘijẊ∥22.

The K-QSVD algorithm can handle this problem by updating the dictionary
Ḋ and ȧ, alternatively.

• Given the dictionary Ḋ and all coefficient ȧij , we can update Ẋ by

(17)

min
Ẋ

λ∥Ẋ− Ẏ∥22 +
∑
ij

∥Ḋȧij − ṘijẊ∥22,

s.t. Re(Ẋ) = 0.
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Figure 1. Display of different dictionaries, the left column is
the process of dictionary trained by the K-SVD algorithm with
a quaternion matrix, and the right column is with a pure quater-
nion matrix. The noisy image is covered with Gaussian noise and
the noise level is 35.

We apply the alternating minimization method (AMM) to solve Eq. (17).
At first, the constrained optimization problem (17) is derived into the fol-
lowing unconstrained optimization problem

min
Ẋ

λ∥Ẋ− Ẏ∥22 +
∑
ij

∥Ḋȧij − ṘijẊ∥22 + ξ∥Φ0(Ẋ)∥22,(18)

where
∑

ij ∥Ḋȧij − ṘijẊ∥22 is differentiable (see [50]), and ξ is a positive
parameter. Let

Ẏ =


Y0

Y1

Y2

Y3

 , Ḋ =


D0

D1

D2

D3

 , ȧij =


a0ij
a1ij
a2ij
a3ij

 , Ṙij =


R0ij

R1ij

R2ij

R3ij

 ,(19)
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then we reformulate the Eq. (18) as

min
X0,X1,X2,X3

λ

∥∥∥∥∥∥∥∥

X0

X1

X2

X3

−


Y0

Y1

Y2

Y3


∥∥∥∥∥∥∥∥
2

2

+ ξ

∥∥∥∥∥∥∥∥Φ0


X0

X1

X2

X3


∥∥∥∥∥∥∥∥
2

2

+
∑
ij

∥∥∥∥∥∥∥∥

D0

D1

D2

D3

 ·


a0ij

a1ij

a2ij

a3ij

−


R0ij

R1ij

R2ij

R3ij

 ·


X0

X1

X2

X3


∥∥∥∥∥∥∥∥
2

2

.

(20)

Note that

Φ0(Ẋ) = Φ0


X0

X1

X2

X3

 =
[
1 0 0 0

] 
X0

X1

X2

X3

 = X0,

then we have

min
X0,X1,X2,X3

λ

3∑
ι=0

∥Xι −Yι∥22 + ξ∥X0∥22 +
∑
ij

3∑
ι=0

∥Dιaιij −RιijXι∥22.(21)

The above minimization problem (21) has a closed-form solution

Ẋ =
λẎ +

∑
ij Ṙ∗

ijḊȧij

Ξİ+
∑

ij Ṙ∗
ijṘij

,(22)

where Ξ = (ξ + λ, λ, λ, λ)∗ ∈ H4m
4 ×1·n is a column vector.

The process of our pQS method is shown in Algorithm 1.

Algorithm 1 Color image denoising algorithm with our pQS model

Require:
The noisy image Y ∈ Rm×n;
Parameter λ ∈ R, iteration numbers N and M;

Ensure:
The denoised image X ∈ Rm×n;

1: Initialization: Representing Y as quaternion matrix Ẏ ∈ Hm×n. Randomly
choose column vector {ḋ1, ḋ2, ..., ḋk} from Ẏ as the initial dictionary Ḋ(0). Let
the coefficient vectors ȧij = 0;

2: for t = 1 : N do
3: Calculate ȧtij by Eq. (15);

4: Update Ḋt and ȧtij by Eq. (16);
5: for k = 1 : M do
6: Update Ẋk+1 by Eq. (22);
7: k = k + 1;
8: end for
9: t = t + 1;

10: end for
11: return Ẋ

3.3. The pQS Representation Model with q-TV Regularization and Al-
gorithm. In the strong noising case, the direct patch-based method may yield
artifacts. For instance, we test the color images with a high Gaussian noise level
(σ=50). Fig. 2 displays the restored results of our pQS method (the fourth column)
and the K-QSVD method (the third column). We can see that constraining the real
part of the quaternion matrix to be zero indeed works, and the improvement can
be seen from the visual quality and numerical results. Unfortunately, the restored
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image that Eq. (14) recovered still has some grid artifacts, especially for images
degraded by high-level noise.

We need careful treatment for reducing these artifacts. Indeed, the sparse repre-
sentation is good at preserving texture while the TV method can smooth artifacts
at the cost of slightly affecting the texture information. Hence, it is interesting
to check whether the combination of TV and sparse representation can improve
the restoration results. This can be regarded as one of our main contributions.
Indeed, in order to give a better evaluation of the pQS method, we can further
improve the model (14) by introducing the quaternion-TV regularization term. In
Fig. 2, we find that joint sparse representation and the q-TV regularizer have
good results in color image denoising. By designing a quaternion based TV as
∥∇Ẋ∥1 = ∥∇X0∥1 + ∥∇X1∥1 + ∥∇X2∥1 + ∥∇X3∥1, the proposed pQSTV model
can be written as

(23)

min
Ḋ,ȧij ,Ẋ

λ∥Ẋ− Ẏ∥22 + η∥∇Ẋ∥1 +
∑
i,j

(µij∥ȧij∥0 + ∥Ḋȧij − ṘijẊ∥22),

s.t. Re(Ẋ) = 0,

where η ∈ R is the regularization parameter, ∥∇Ẋ∥1 is the quaternion-based TV
regularization. Since the ℓ1-based TV regularization overcomes the grid artifacts
already, we will not discuss ℓ2-based TV regularization here. With the help of TV
regularization, Eq. (23) can stabilize the recovered results. The visual quality and
numerical results are shown in Fig. 2. Clearly, the recovered images show that the
artifacts are eliminated completely.

The remaining problem is how to efficiently solve the optimization problem (23).
Actually, it is not easy to solve Eq. (23), since the q-TV regularization is not
differentiable and this model is nonconvex. Fortunately, there are many methods
to solve this problem in these days. Here, we try to solve Eq. (23) by using the
variable splitting method [52]. Using the alternating minimization method and
quaternion rules, we try to solve the proposed model. The subproblems are listed
as follows.

• Given Ḋ, Ẋ, the minimization for ȧij satisfies

(24) min
ȧij

µij∥ȧij∥0 + ∥Ḋȧij − ṘijẊ∥22.

We can use the QOMP method to deal with the above subproblem.
• Given Ẋ, ȧij , the minimization for Ḋ satisfies

(25) min
Ḋ

∑
i,j

∥Ḋȧij − ṘijẊ∥22.

The K-QSVD method can effectively address above minimization which
stops searching the best candidate atom when approximation reaches the
sphere of radius

√
ϵ in Eq. (5).

• Given Ẏ, ȧij and Ḋ, the minimization for Ẋ satisfies

(26)

min
Ẋ

λ∥Ẋ− Ẏ∥22 + η∥∇Ẋ∥1 +
∑
ij

∥Ḋȧij − ṘijẊ∥22,

s.t. Re(Ẋ) = 0.
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(a) K6 (a) K3

(b) noisy (14.15/0.2792) (b) noisy (14.15/0.2595)

(c) K-QSVD+(25.36/0.7962) (c) K-QSVD+(28.97/0.9184)

(d) pQS (25.75/0.8136) (d) pQS (28.89/0.8862)

(e) pQSTV (25.92/0.8232) (e) pQSTV (29.81/0.9310)

Figure 2. Color image denoising results on K3 and K6 with P-
SNR/SSIM. (a) Original image; (b) Noisy image corrupted by
Gaussian noise with variance σ= 50; The denoised image recon-
structed by: (c) K-QSVD+(Eq.(4)), (d) Our pQS (Eq. (14)), (e)
pQSTV (Eq. (23)).
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We give the existence and uniqueness of the solution of problem (26) in
Proposition 1. According to Eq. (19), we rewrite (26) into

(27)
min

X0,X1,X2,X3

λ

3∑
ι=0

∥Xι −Yι∥22 + η

3∑
ι=0

∥∇ιXι∥1 +
∑
ij

3∑
ι=0

∥Dιaιij −RιijXι∥22,

s.t. Re(Ẋ) = 0.

We reformulate Eq. (27) to an unconstrained problem as

(28)

min
X0,X1,X2,X3

λ
3∑

ι=0

∥Xι −Yι∥22 + η
3∑

ι=0

∥∇ιXι∥1

+
∑
ij

3∑
ι=0

∥Dιaιij −RιijXι∥22 + ξ1∥Φ0(Ẋ)∥22,

where Φ0 denotes the indicator function of the set of pure quaternion ma-
trices. Denote the subjection of the minimization (28) by J(X). Recall the
definition of coerciveness as follows.

Definition 3.1. A function J : T → R on a Banach space T is called coer-
cive if ∥Xk∥ → +∞ implies J(Xk) → +∞ for every sequence {Xk}k∈N ⊂ T .

The existence of a solution to the proposed model (28) is based on the
theorem that any continuous, convex, and coercive function on a Banach
space has a global minimizer [2].

Proposition 1. There exists a unique minimizer for the objective function
in (28).

The proof of Proposition 1 can be found in the supplementary material
Appendix.

The AMM algorithm can handle Eq. (26). By introducing the auxil-
iary quaternion variable ṗ, then the above minimization problem can be
reformulated as

min
Ẋ,ṗ

λ∥Ẋ− Ẏ∥22 + η∥ṗ∥1 +
η1
2
∥∇Ẋ− ṗ∥22 +

∑
ij

∥Ḋȧij − ṘijẊ∥22 + ξ1∥Re(Ẋ)∥22,
(29)

where λ, η, η1, ξ1 are positive parameters. For fixed Ẋ, the minimization
for ṗ is an L1-regularized least square problem

(30) min
ṗ

η∥ṗ∥1 +
η1
2
∥∇Ẋ− ṗ∥22.

It can be solved by the least absolute shrinkage (see [43])

(31) ṗ = shrink(∇Ẋ,
η

η1
),

and the shrinkage operator can be defined as

(32) shrink(x, τ)ij := max(∥xij∥2 − τ, 0)
xij

∥xij∥2
,
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with xij denoting the ij-th component of x. Given ṗ, the subproblem for

Ẋ is a least squares problem

min
Ẋ

λ∥Ẋ− Ẏ∥22 +
η1
2
∥∇Ẋ− ṗ∥22 +

∑
i,j

∥Ḋȧij − ṘijẊ∥22 + ξ1∥Φ0(Ẋ)∥22.(33)

According to Eq. (21), the above minimization problem can be written as

min
X0,X1,X2,X3

λ

3∑
ι=0

∥Xι −Yι∥22 +
η1
2

3∑
ι=0

∥∇Xι − pι∥22

+
∑
i,j

3∑
ι=0

∥Dιaιij −RιijXι∥22 + ξ1∥X0∥22.(34)

Then we have

2λ(Ẋ− Ẏ) + η1∇∗(∇Ẋ− ṗ) + 2
∑
ij

R∗
ij(RijẊ− Ḋȧij) + 2ξ1X0 = 0.(35)

The closed-form solution is as follows

(36) Ẋ =
2λẎ + η1∇∗ṗ+ 2

∑
ij R∗

ijḊȧij

Ξİ+ η1∇∗∇+ 2
∑

ij R∗
ijRij

,

where Ξ = (2λ+ 2ξ1, 2λ, 2λ, 2λ)
∗ ∈ H4m

4 ×1·n is a column vector.

The whole procedure of our pQSTV (pure Quaternion Sparse Total Variation)
method is shown in Algorithm 2.

Algorithm 2 Color image denoising algorithm with our pQSTV model (23)

Require:
The noisy image Y ∈ Rm×n;
Parameters λ, η, η1 ∈ R, iteration numbers N and M;

Ensure:
The Denoised image X;

1: Initialization: Representing Y as quaternion matrix Ẏ ∈ Hm×n. Randomly
choose column vector {ḋ1, ḋ2, ...ḋk} from Ẏ as the initial dictionary Ḋ(0). Let
the coefficient vectors ȧij = 0;

2: for t = 1 : N do
3: Update ȧti,j by equation (24);

4: Update Ḋt by equation (25);
5: for k = 1 : M do
6: Update ṗk+1 by equation (31);

7: Update Ẋk+1 by equation (36);
8: k = k + 1;
9: end for

10: t = t + 1;
11: end for
12: return Ẋ
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Figure 3. Images in Kodak24 database.

4. Experiments

In this section, we first illustrate the experimental details and then compare the
proposed pQS and pQSTV methods to other state-of-the-art color image denoising
methods including ℓ1-ROF [5], SV-TV [20], CEM [27], the improved K-SVD denois-
ing method [32], K-QSVD method [50], K-QSVD+[50], PGPD [48], and DnCNN
[56]. The comparisons are conducted on three datasets, i.e., Kodak Image Dataset3

with image size 768×512 and 512×768, Set54 with image size S1 (512×512), S2
(256×256), S3 (280×280), S4 (288×288), S5 (228×344), and CSet85 with image
size 256×256, which are shown in Fig. 3, Fig. 4 and Fig. 5, respectively. In our
experiments, the noisy images are synthesized with Eq. (3) by adding the additive
white Gaussian noise with variance σ to the clean color images. For the numerical
comparison, we use the structural similarity index (SSIM) and the peak signal-to-
noise ratio (PSNR) [44] to measure the quality of the restored images from the
noisy images by different methods. Note that all the simulations are run in Matlab
R2020a on a 64-bit workstation with a 3.70GHz CPU and 8GB memory.

Figure 4. Images in Set5 database.

3http://www.r0k.us/graphics/kodak/
4http://people.rennes.inria.fr/Aline.Roumy/results/SR BMVC12.html
5https://github.com/ysix7/Dataset
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Figure 5. Images in CSet8 database.

4.1. Parameter setting. For the patch-based methods K-QSVD and proposed
pQSTV, we firstly adjust the overlapping patch size from 8×8 to 12×12 for each
image from Kodak24 in different noise levels to find out the one for the best-restored
results. The best results among different patch sizes for pQSTV and K-QSVD are
denoted by ‘⋆’ in Table 1 and Table 2, respectively. As one can see, for the proposed
model pQSTV, the patch size 9×9 performs best for most images in the case of lower
noise levels while the patch size 11×11 is better in the case of the higher noise level.
For the method K-QSVD, we select the patch size 9×9 for noise 25, 10×10 for noise
35, and 8×8 for noise 50. According to this observation, in the following Table 3,
4, and 5, we apply these selected patch sizes to perform the proposed pQS, pQSTV
and K-QSVD. Note that we denote the method K-QSVD with the selected patch
size by K-QSVD+ while K-QSVD denotes the method we test with the default
parameter defined in [50].

Table 1. Distribution of patchsize in our pQSTV (Kodak24).

σ
Patchsize Images

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

σ = 25

8×8 ⋆ ⋆ ⋆ ⋆
9×9 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
10×10 ⋆ ⋆ ⋆ ⋆
11×11 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
12×12

σ = 35

8×8 ⋆ ⋆ ⋆
9×9 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
10×10 ⋆ ⋆
11×11 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
12×12

σ = 50

8×8 ⋆
9×9 ⋆ ⋆ ⋆ ⋆ ⋆
10×10 ⋆ ⋆
11×11 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
12×12 ⋆ ⋆ ⋆

Apart from the patch size, the iteration number N of K-QSVD, K-QSVD+,
and our models (pQS and pQSTV) is set to be 1. For the proposed pQS and
pQSTV, the inner iteration number M of the proposed pQS and pQSTV is set to
be 1 with other parameters λ = 0.037, η = 0.1, η1 = 0.5, ξ = ξ1 = 1. All the
parameters of other competing methods are set as the default values as given in
their codes and papers. As to the data-driven method DnCNN [56], the training
part of the DnCNN was not considered in this paper, we apply the Matlab function
‘denoisingNetwork(‘Dncnn’)’ for the color image denoising task.
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Table 2. Distribution of patchsize in K-QSVD (Kodak24).

σ
Patchsize Images

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

σ = 25

8×8 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
9×9 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
10×10 ⋆ ⋆ ⋆ ⋆ ⋆
11×11 ⋆ ⋆ ⋆ ⋆
12×12 ⋆

σ = 35

8×8 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
9×9 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
10×10 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
11×11 ⋆ ⋆ ⋆ ⋆
12×12 ⋆

σ = 50

8×8 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
9×9 ⋆ ⋆ ⋆ ⋆ ⋆
10×10 ⋆ ⋆ ⋆ ⋆
11×11 ⋆ ⋆ ⋆
12×12 ⋆ ⋆ ⋆

4.2. Effectiveness of zero constraint and q-TV. The advantages of represent-
ing color images with zero constraint can be seen in Fig. 6. We test the images
with noise level σ=35 and present the results of several sparse representation-based
denoising methods. For the K-SVD method, we test their Matlab code with the
default parameters. The K-SVD denoising method [32] (the third column) intro-
duces blurring and color distortion. The K-QSVD+ (the fourth column) represents
the best results of different patch sizes and improves the original K-QSVD dictio-
nary learning method. However, there are artifacts shown in some results of the
K-QSVD+ method. From the zooming parts, we see clearly that our pQS model
is better than those dictionary learning methods, and can eliminate artifacts and
avoid color distortion at the same time.

As for the role of the proposed q-TV term, we compare the proposed pQS and
pQSTV by the average numerical results on the tested images with different noise
levels. As shown in Fig. 2 and Fig. 12, the TV term consistently helps improve
the results.

4.3. Experimental results. In this subsection, we give a thorough evaluation by
comparing the proposed models to all the competing methods on three benchmark
datasets with different noise levels σ = 25, 35, 50. In Tables 3, 4, and 5, respectively,
we list all the PSNR and SSIM values of each image as well as the average results
of each method. For a clearer display, we also highlight the best results in bold and
underline the second-best ones.

As shown in these tables, the proposed pQSTV and pQS methods get the highest
and the second-highest numerical results in most cases. From the average values,
one can see that our pQSTV model achieves the best numerical results among all
the methods, which proves the superiority of the proposed methods. Among the
competing methods, the classical K-SVD method proposed in [32] was first used in
gray image processing, and showed good image processing proficiency. From those
values in Tables 3, 4, and 5, we know that the K-SVD method is still good at
the SSIM values of the denoised images. As an improvement method of dictionary
learning, the method PGPD represents color images by vectors and shows better
results. Nevertheless, it ignores the inherent relationships among the color chan-
nels. Different from these methods, K-QSVD can keep the inner relation of RGB
channels by calculating the images in the quaternion domain. This explains why
the denoising effects of the K-QSVD and the proposed methods are generally better
than other dictionary learning methods.

We further compare the proposed models with other two methods including
TV terms, i.e., ℓ1-ROF [5] and SV-TV [20]. The conventional ℓ1-ROF model [5]
may suffer from the oversmoothness and therefore has better performance in those
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(a) K11 (a) K16 (a) K24

(b) noisy (17.25) (b) noisy (17.25) (b) noisy (17.25)

(c) K-SVD (26.42) (c) K-SVD (28.04) (c) K-SVD (24.48)

(d) K-QSVD+(28.01) (d) K-QSVD+(28.83) (d) K-QSVD+(26.71)

(e) pQS (28.18) (e) pQS (29.06) (e) pQS (26.85)

Figure 6. Color image denoising results on K11, K16, and K24.
(a) Original image; (b) Noisy image corrupted by Gaussian noise
with variance σ= 35; The denoised image reconstructed by: (c)
K-SVD [32], (d) K-QSVD+ [50], (e) the proposed pQS method.

Table 6. Average runtime (in seconds without training) for color
image denoising.

datasets\methods ℓ1-ROF SV-TV K-SVD K-QSVD K-QSVD+ PGPD DnCNN pQS pQSTV
Kodak24 32.61 14.17 75.92 72.31 89.54 140.05 13.67 101.89 96.23
Set5 8.07 8.64 42.49 20.34 25.41 35.61 5.19 25.55 15.59
CSet8 3.08 6.77 19.00 15.63 21.10 19.03 2.51 21.22 13.44
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(a) K22 (b) ground-truth (c) noisy (20.18)

(d) ℓ1-ROF (26.72) (e) SV-TV (29.23) (f) CEM (26.85)

(g) K-SVD (28.09) (h) K-QSVD (29.46) (i) K-QSVD+(29.66)

(j) PGPD (29.38) (k) DnCNN (29.13) (m) pQSTV (29.99)

Figure 7. Color image denoising results on K22. (a) Original
image; (b) Zooming part of the original image; (c) Noisy image
corrupted by Gaussian noise with variance σ= 25; The denoised
image reconstructed by: (d) ℓ1-ROF [5], (e) SV-TV [20], (f) CEM
[27], (g) K-SVD [32], (h) K-QSVD[50], (i) K-QSVD+[50], (j) PG-
PD [48], (k) DnCNN [56], (m) our pQSTV.
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(a) C07 (b) ground-truth (c) noisy (17.61)

(d) ℓ1-TV (25.06) (e) SV-TV (26.21) (f) CEM (26.51)

(g) K-SVD (25.93) (h) K-QSVD (27.54) (i) K-QSVD+ (27.57)

(j) PGPD (27.70) (k) DnCNN (27.37) (m) pQSTV (28.22)

Figure 8. Color image denoising results on C07. (a) Original
image; (b) Zooming part of the original image; (c) Noisy image
corrupted by Gaussian noise with variance σ= 35; The denoised
image reconstructed by: (d) ℓ1-ROF [5], (e) SV-TV [20], (f) CEM
[27], (g) K-SVD [32], (h) K-QSVD[50], (i) K-QSVD+[50], (j) PG-
PD [48], (k) DnCNN [56], (m) our pQSTV.
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(a) K13 (b) ground-truth (c) noisy (15.15)

(d) ℓ1-ROF (20.49) (e) SV-TV (22.83) (f) CEM (20.71)

(g) K-SVD (21.57) (h) K-QSVD (22.90) (i) K-QSVD+ (22.90)

(j) PGPD (22.30) (k) DnCNN (22.10) (m) pQSTV (23.15)

Figure 9. Color image denoising results on K13. (a) Original
image; (b) Zooming part of the original image; (c) Noisy image
corrupted by Gaussian noise with variance σ= 50; The denoised
image reconstructed by: (d) ℓ1-ROF [5], (e) SV-TV [20], (f) CEM
[27], (g) K-SVD [32], (h) K-QSVD[50], (i) K-QSVD+[50], (j) PG-
PD [48], (k) DnCNN [56], (m) our pQSTV.
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(a) K17 (b) ground-truth (c) noisy (14.15)

(d) ℓ1-ROF (26.04) (e) SV-TV (25.13) (f) CEM (21.88)

(g) K-SVD (26.34) (h) K-QSVD (27.50) (i) K-QSVD+(27.64)

(j) PGPD (27.87) (k) DnCNN (25.87) (m) pQSTV (28.06)

Figure 10. Color image denoising results on K17. (a) Original
image; (b) Zooming part of the original image; (c) Noisy image
corrupted by Gaussian noise with variance σ= 50; The denoised
image reconstructed by: (d) ℓ1-ROF [5], (e) SV-TV [20], (f) CEM
[27], (g) K-SVD [32], (h) K-QSVD[50], (i) K-QSVD+[50], (j) PG-
PD [48], (k) DnCNN [56], (m) our pQSTV.
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Figure 11. Quantitative evaluations on datasets Kodak24, Set5,
and CSet8. Our method performs competitively against the state-
of-the-art methods.

Figure 12. Quantitative results of our method pQS and pQSTV
with different noise levels. The total variation prior consistently
helps improve the results.

images with less texture. As a result of independent process to each channel of
RGB, ℓ1-ROF model also brings about the color distortion to the restored color
images. Contrastly, the SV-TV method handles images in HSV (Hue, Saturation,
Value) space instead of traditional RGB space. As shown in Fig. 7(e), Fig. 8(e),
and Fig. 9(e) the SV-TV model eliminates color distortion in image denoising to
some extent when noise level σ is less than or equal to 25. However, when noise
levels go to 35 and 50, the results of the SV-TV method become unsatisfactory.
Compared to these methods, the proposed methods have a stable and pleasing
performance in different noise levels in terms of both noise removal and texture
reservation abilities. For the denoising results of CEM [27], we can see that CEM
has a competitive denoising performance for images with a low noise level, but for
images with a high noise level, there still has room for improvement.
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We also compare the proposed models with a learning-based denoising method
DnCNN [56], which trains a deep neural network by a huge number of data be-
forehand. Compared to this data-driven network, our model computes a specific
dictionary for any given noisy image and therefore produces more reliable results.
The numerical results in the table also show that our methods are better than D-
nCNN. For all the methods compared, we list the average running time in Table 6.
Here, the training time of the network and the dictionary are not considered.

Lastly, we exhibit some examples with different noise levels in Figs. 7, 8, 9, and
10 for visual comparison. To get a better observation, we reveal the zooming parts of
the denoised images in the figures. As shown in the zooming parts, some noise spots
still remain in the images denoised by K-SVD and SV-TV methods. Tuning to the
best overlapping patch size for K-QSVD, the K-QSVD+ method removes Gaussian
noise completely, however it introduces color bias and some artifacts, especially in
Figs. 9 and 10. Model ℓ1-ROF also removes Gaussian noise well, but this method
brings about the well-known staircasing artifacts or the oversmooth problem, as
shown in Figs. 7(d), 8(d), 9(d), and 10(d). Comparing with these methods, the
PGPD model overcomes the problems of color bias and different artifacts with a
slight loss of details. As an improvement of PGPD, the proposed pQSTV method
avoids the oversmoothness and achieves the best visual quality among all competing
methods.

5. Conclusion

In this paper, we proposed a novel color image denoising model which combines
the total variation and dictionary learning method for color image denoising. Spe-
cially, we proposed a pure quaternion strategy to describe the correlation between
channels of color images very well. Secondly, we proposed a novel q-TV regularizer
and combined the q-TV with the proposed pQS model. In this way, our method
can eliminate artifacts and better preserve the true color of color images, simulta-
neously. Our model can process three color channels holistically and preserve the
correlations of RGB channels. Extensive experiments have demonstrated the effec-
tiveness of our pQSTV method in color image denoising. In the future, we plan to
extend this denoising model to other color image processing tasks, like deblurring,
inpainting, and super-resolution, etc.

Appendix

Proof of Proposition 1

Proof. It is obvious that both ℓ1 and ℓ2 norms are continuous and convex on the
Banach Space, so the Eq. (28) is continuous and convex. Additionally for any

sequence ∥Ẋk∥ → +∞,
∑3

ι=0 ∥Xι − Yι∥22 will go to infinity.
∑3

ι=0 ∥∇ιXι∥1,∑
ij

∑3
ι=0 ∥Dιaιij − RιijXι∥22, and Φ0(Ẋ) are non-negative. So J(X) will go to

infinity, which means J(X) is coercive and has a global minimizer.
Moreover, suppose that u̇ = u0 + u1i + u2j + u3k ∈ Hm×n and v̇ = v0 + v1i +
v2j+ v3k ∈ Hm×n are both minimizers of J(X). Since J(X) is strictly convex, we
have for any 0 ≤ t ≤ 1 that

(37) J(tu̇+ (1− t)v̇) = tJ(u̇) + (1− t)J(v̇).

Since each term of J(X) is convex, then (37) implies that u̇ = v̇. Hence J(X) has
a unique minimizer. �
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