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A SECOND-ORDER EMBEDDED LOW-REGULARITY

INTEGRATOR FOR THE QUADRATIC NONLINEAR

SCHRÖDINGER EQUATION ON TORUS

FANGYAN YAO

Abstract. A new embedded low-regularity integrator is proposed for the quadratic nonlinear

Schrödinger equation on the one-dimensional torus. Second-order convergence in Hγ is proved
for solutions in C([0, T ];Hγ) with γ > 3

2
, i.e., no additional regularity in the solution is required.

The proposed method is fully explicit and can be computed by the fast Fourier transform with

O(N logN) operations at every time level, where N denotes the degrees of freedom in the spatial
discretization. The method extends the first-order convergent low-regularity integrator in [14] to

second-order time discretization in the case γ > 3
2
without requiring additional regularity of the

solution. Numerical experiments are presented to support the theoretical analysis by illustrating
the convergence of the proposed method.

Key words. Quadratic nonlinear Schrödinger equation, low-regularity integrator, second-order
convergence, fast Fourier transform.

1. Introduction

This paper is concerned with the development of low-regularity integrators for
the quadratic nonlinear Schrödinger (NLS) equation on the one-dimensional torus,
i.e.,

(1)

{
i∂tu(t, x) + ∂xxu(t, x) = µu2(t, x), t > 0 and x ∈ T = [0, 2π],

u(0, x) = u0(x).

where u : R+ × T → C is a complex-valued unknown function with initial value
u0 ∈ Hγ(T), γ ≥ 0, and µ ∈ R is a given constant. The well-posedness of the
equation has been proved in [1].

Time discretization of the nonlinear Schrödinger equation has been considered
in many papers with different methods. In general, classical time discretizations
require the solution to be in C([0, T ];Hγ+2) and C([0, T ];Hγ+4) in order to have
first- and second-order convergence in Hγ , respectively, i.e., two additional deriva-
tives in the solution are required for every order of convergence. The convergence of
time discretizations under these (or stronger) regularity conditions has been proved
for the finite difference methods [17], operator splitting [2, 5, 10], and exponential
integrators [4].

In practical computations, the initial data may be polluted by nonsmooth
noises from the measurements. Accordingly, the development of low-regularity
integrators which can reduce the regularity requirement of the solution and has
attracted much attention from numerical analysts. Ostermann and Schratz [14]
proposed a new exponential-type integrator for the cubic NLS equation in the
d-dimensional space, and proved its first-order convergence in Hγ for solutions
in C([0, T ];Hγ+1), with γ > d

2 . In one dimension, Wu and Yao [18] proposed
a new time discretization which has first-order convergence in Hγ for solutions
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in C([0, T ];Hγ) with γ > 3
2 , without requiring any additional regularity in the

solution. These articles are all concerned with first-order convergent low-regularity
integrators.

Knöller, Ostermann and Schratz [7] proposed a second-order low-regularity
integrator which requires two and three additional derivatives in the solution in
one- and higher-dimensional spaces, respectively. In two- and higher-dimensional
spaces, the regularity requirement was relaxed to two additional derivatives by
Bruned and Schratz [3] and Ostermann, Wu and Yao [15] with different methods.

For convergence in L2, Ostermann, Rousset and Schratz [12, 13] proved certain
fractional-order convergence of some filtered methods for solutions in C([0, T ];Hγ)
with γ ∈ (0, 1]. Li and Wu [8] constructed a fully discrete low-regularity integrator
with first-order convergence in both time and space for solutions in C([0, T ];H1).
Ostermann and Yao [16] proposed a different fully discrete method with an error

estimate of O(τ
3
2γ−

1
2−ε +N−γ) for solutions in C([0, T ];Hγ) with γ ∈ ( 12 , 1].

More recently, Wu and Zhao [19, 20] introduced an embedded low-regularity
integrator for the Korteweg-de Vries (KdV) equation with first- and second-order
convergence in Hγ(T) for solutions in C([0, T ];Hγ+1) and C([0, T ];Hγ+3), respec-
tively. By using new harmonic analysis techniques, Li, Wu and Yao [9] proposed
a method for the KdV equation with 1

2 -order convergence in Hγ for solutions in

C([0, T ];Hγ) with γ > 3
2 , without requiring any additional derivatives in the so-

lution. For the modified KdV equation, Ning, Wu and Zhao [11] proposed a new
embedded low-regularity integrator and proved first-order convergence by requiring
the boundedness of one additional spatial derivative of the solution.

For the quadratic nonlinear Schrödinger equation on the one-dimensional torus,
Ostermann and Schratz [14] proposed a low-regularity integrator with first-order
convergence in Hγ for solutions in C([0, T ];Hγ), γ > 1

2 . In the present paper, we
propose a new embedded low-regularity integrator with second-order convergence
in Hγ for solutions in C([0, T ];Hγ), γ > 3

2 . The construction of the method extends
the low-regularity integrators in [19] and [15], which were originally proposed for the
KdV equation and cubic nonlinear Schrödinger equation, respectively. The proof
of convergence for the proposed method is based on harmonic analysis techniques.

The rest of this paper is organized as follows. The notations and the main
result are presented in Section 2. The construction of the low-regularity integrator
and the technical lemmas to be used in the convergence analysis are presented in
Section 3. The proof of the main theorem is presented in Section 4. Numerical
experiments are reported in Section 5. Some concluding remarks are presented in
Section 6.

2. Notations and main results

2.1. Some notations. We denote by ⟨·, ·⟩ the inner product of L2 = L2(T), i.e.,

⟨f, g⟩ =
∫
T
f(x)g(x) dx, f, g ∈ L2.

The Fourier transform (f̂k)k∈Z of a function f : T → C is defined by

f̂k =
1

2π

∫
T
e−ikxf(x) dx.

The inverse Fourier transform formula is given by

f(x) =
∑
k∈Z

f̂ke
ikx.
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The following standard properties of the Fourier transform are well known:

∥f∥2L2(T) = 2π
∑
k∈Z

∣∣f̂k∣∣2, f ∈ L2;

(̂fg)k =
∑

k=k1+k2

f̂k1 ĝk2 , f, g ∈ L2.

We denote by Hs, s ≥ 0, the space of functions in L2 such that their s-order
derivatives are also in L2, equipped with the following norm:∥∥f∥∥2

Hs =
∥∥Jsf

∥∥2
L2 = 2π

∑
k∈Z

(1 + k2)s|f̂k|2, Js = (1− ∂xx)
s
2 .

Further, we denote by ∂−1
x the operator defined in Fourier space as

(2) (∂̂−1
x f)k =

{
(ik)−1f̂k if k ̸= 0,

0 if k = 0.

For the convenience of notations, we introduce the zero-mode operator P0 :
L2 → C, defined by

P0f = f̂0 =
1

2π

∫
T
f(x) dx,

and we denote by P the orthogonal projection onto the space of mean-zero functions

Pf = f − P0f.

The following phase functions will be used in the convergence analysis:

ϕ1 = k2 − k21 − k22,(3)

ϕ2 = k2 − k21 − k22 − k23,(4)

ϕ3 = k2 − k21 − (k2 + k3)
2.(5)

Furthermore, we define the following functions:

φ(z) =


ez − 1

z
, z ̸= 0,

1, z = 0,
ψ(z) =


ez − 1− zez

z2
, z ̸= 0,

− 1

2
, z = 0.

(6)

2.2. The numerical method and the main result. Let tn = nτ , n = 0, 1, . . . , L =
T/τ , be a partition of the time interval [0, T ] with a uniform stepsize τ > 0. The
low-regularity integrator proposed in this paper for equation (1) is given by

un+1 = Φ(un),(7)

with

Φ(un) := eiτ∂
2
xun

(
1 + 2µ2τ2(P0u

n)2
)
−
(
iµ+ 4µ2τP0u

n
)
Gn(u

n, un)

+ iµ2Gn(∂
−1
x un, ∂−1

x un · un)− iµ2τP0

((
∂−1
x un

)2 · (φ(2iτ∂2x) + ψ(2iτ∂2x)
)
un

)
+ iµ2τP0

(
e−iτ∂2

x
(
eiτ∂

2
x∂−1

x un
)2 · ψ(2iτ∂2x)un)

− iµ2P0

(
Gn(∂

−1
x un, ∂−1

x un)
)
· eiτ∂

2
xPun +

iµ2

τ
∂−1
x Gn

(
∂−1
x Gn(Pun,Pun),Pun

)
+
µ2

2
∂−1
x

(
∂−1
x

(
eiτ∂

2
x∂−1

x un
)2 · eiτ∂2

xPun
)
− µ2

2
eiτ∂

2
x∂−1

x

(
∂−1
x

(
∂−1
x un

)2 · Pun)
+
µ2

3
∂−1
x

(
eiτ∂

2
x∂−1

x un
)3 − µ2

3
eiτ∂

2
x∂−1

x (∂−1
x un)3 + 2iµ2P0u

n · ∂−1
x Gn(∂

−1
x un, un),
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where the bilinear functional Gn is defined by

Gn(u, v) =
i

2

(
eiτ∂

2
x∂−1

x u · eiτ∂
2
x∂−1

x v
)
− i

2
eiτ∂

2
x
(
∂−1
x u · ∂−1

x v
)

+ τP0u · eiτ∂
2
xv + τP0v · eiτ∂

2
xu− τP0u · P0v.

Although we focus on the analysis of the time discretization without consid-
ering spatial discretizations, we point out that the proposed time discretization in
(7) can be implemented with FFT in the practical computation.

The main theoretical result of this paper is the following theorem.

Theorem 2.1. We assume that the solution of (1) satisfies u ∈ C([0, T ];Hγ) for
some γ > 3

2 , and consider the numerical solution un, n = 0, 1, . . . , L, given by (7).
Then there exist positive constants τ0 and C0 such that for any stepsize τ ∈ (0, τ0]
the following error bound holds:

(8) ∥u(tn, ·)− un∥Hγ ≤ C0τ
2,

where the constants τ0 and C0 depend only on T and ∥u∥C([0,T ];Hγ).

For the simplicity of notation, we denote by A . B or B & A the state-
ment “A ≤ CB for some positive constant C”, where C may be different at each
occurrence but is always independent of τ and n.

3. The construction of the scheme and some technical lemmas

In this section, we present the construction of the low-regularity integrator for
the quadratic Schrödinger equation, and then state some technical lemmas to be
used in the error analysis.

3.1. The construction of the scheme. By using Duhamel’s formula, we can
write the solution of the quadratic Schrödinger equation as

u(tn+1) = eiτ∂
2
xu(tn)− iµ

∫ τ

0

ei(tn+1−(tn+s))∂2
xu2(tn + s) ds.

Then, by introducing the twisted function v(t) = e−it∂2
xu(t), the formula above can

be expressed as

v(tn+1) = v(tn)− iµ

∫ τ

0

e−i(tn+s)∂2
x
(
ei(tn+s)∂2

xv(tn + s)
)2
ds.(9)

We are interested in the construction of a second-order convergent method for the
quadratic Schrödinger equation. To this end, we consider the following approxima-
tion to the term v(tn + s) in (9):

v(tn + s) ≈ v(tn)− iµFn(v(tn), v(tn), s),

where Fn is defined as

Fn(f, g, s) =

∫ s

0

e−i(tn+t)∂2
x
(
ei(tn+t)∂2

xf · ei(tn+t)∂2
xg

)
dt.(10)

This type of approximations was proposed in [19] for the KdV equation. By insert-
ing this approximation into (9), we get

v(tn+1) = v(tn)− iµFn(v(tn), v(tn), τ) + I(v(tn)) +R1(v(tn)),(11)

where R1(v(tn)) is the remainder term and I(v(tn)) denotes

I(v(tn)) := −2µ2

∫ τ

0

e−i(tn+s)∂2
x

(
ei(tn+s)∂2

xv(tn) · ei(tn+s)∂2
xFn(v(tn), v(tn), s)

)
ds.
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First, we consider the term Fn(v(tn), v(tn), τ) in (11). To simplify the notation,
we use v instead of v(tn) in the rest of this paper. Then, by applying the Fourier
transform to (10), we have

F̂n(v, v, τ)k =

∫ τ

0

∑
k=k1+k2

ei(tn+s)ϕ1 v̂k1 v̂k2 ds,(12)

where v̂k denotes the kth Fourier coefficient of v(tn) and ϕ1 is the phase function
defined in (3). Under condition k = k1 + k2, the following relation holds:

ϕ1 = k2 − k21 − k22 = 2k1k2.(13)

Hence, Fn(v, v, τ) can be explicitly integrated. In particular, integrating it with
respect to s yields the following expression:

F̂n(v, v, τ)k =
∑

k=k1+k2

[ 1

2ik1k2

(
eitn+1ϕ1 − eitnϕ1

)
v̂k1 v̂k2

]
+ 2τ v̂0v̂k for k ̸= 0.

F̂n(v, v, τ)0 =
∑

0=k1+k2

[ 1

2ik1k2

(
eitn+1ϕ1 − eitnϕ1

)
v̂k1 v̂k2

]
+ τ(v̂0)

2.

The inverse Fourier transform of this expression gives that

Fn(v, v, τ) =
i

2
e−itn+1∂

2
x
(
eitn+1∂

2
x∂−1

x v
)2 − i

2
e−itn∂

2
x
(
eitn∂

2
x∂−1

x v
)2

+ 2τ v̂0v − τ(v̂0)
2.

(14)

Next, we consider the term I(v) in (11). Applying the Fourier transform, we
have

Îk(v) = −2µ2

∫ τ

0

∑
k=k1+k2

ei(tn+s)ϕ1 v̂k1 F̂n(v, v, s)k2 ds.

From (14) we see that the above formula can be written as

Îk(v) = iµ2

∫ τ

0

∑
k=k1+k2+k3

1

k1k2
ei(tn+s)ϕ2 v̂k1 v̂k2 v̂k3 ds

− iµ2

∫ τ

0

∑
k=k1+k2+k3

1

k1k2
eitnϕ2eisϕ3 v̂k1 v̂k2 v̂k3 ds

− 4µ2τ v̂0

∫ τ

0

∑
k=k1+k2

ei(tn+s)ϕ1 v̂k1 v̂k2 ds+ 2µ2τ2(v̂0)
2v̂k

=: Î1,k(v) + Î2,k(v) + Î3,k(v) + 2µ2τ2(v̂0)
2v̂k,

where ϕ2 and ϕ3 are phase functions defined in (4) and (5), i.e.,

ϕ2 = k2 − k21 − k22 − k23, ϕ3 = k2 − k21 − (k2 + k3)
2.

Note that

I2(v) =iµ
2Fn

(
∂−1
x v, e−itn∂

2
x [(eitn∂

2
x∂−1

x v)(eitn∂
2
xv)], τ

)
,

I3(v) =− 4µ2τ v̂0Fn(v, v, τ).

We consider Î1,k(v) in the following two cases.
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Case 1: k = 0. From the definition of Î1,k(v) we see that

Î1,0(v) = iµ2

∫ τ

0

∑
0=k1+k2+k3

1

k1k2
ei(tn+s)(−k2

1−k2
2−k2

3) v̂k1 v̂k2 v̂k3 ds.

Under the assumption 0 = k1 + k2 + k3, we can express the phase function as

−k21 − k22 − k23 = −2k23 + 2k1k2.

We recall the following formula introduced in [15]:∫ τ

0

eis(α+β) ds = τφ(iτα)− τ
(
eiτβ − 1

)
ψ(iτα) +R(α, β, τ),(15)

where |R(α, β, τ)| . τ3|β|2, φ and ψ are defined in (6).

Utilizing this formula, choosing α = −2k23 and β = 2k1k2, we note that Î1,0(v)
is approximately integrable, with the following expression:

Î1,0(v) = −iµ2τP0

((
eitn∂

2
x∂−1

x v
)2 · (φ(2iτ∂2x) + ψ(2iτ∂2x)

)
eitn∂

2
xv

)
+ iµ2τP0

(
e−iτ∂2

x
(
eitn+1∂

2
x∂−1

x v
)2 · ψ(2iτ∂2x)eitn∂2

xv
)
+R2(v),

where

|R2(v)| . τ3
∑

0=k1+k2+k3

|k1||k2| |v̂k1 ||v̂k2 ||v̂k3 |.(16)

Case 2: k ̸= 0. By using the identity 1 =
k1 + k2 + k3

k
and symmetry, we can

decompose Î1,k into the following two parts:

Î1,k = iµ2

∫ τ

0

∑
k=k1+k2+k3

k3
kk1k2

ei(tn+s)ϕ2 v̂k1 v̂k2 v̂k3 ds

+ 2iµ2

∫ τ

0

∑
k=k1+k2+k3

k2 ̸=0

1

kk1
ei(tn+s)ϕ2 v̂k1 v̂k2 v̂k3 ds

=: Î11,k + Î12,k.

In the estimation of Î11,k, we consider the following decomposition of ϕ2:

ϕ2 = 2k1k2 + 2k1k3 + 2k2k3 = 2k3(k1 + k2) + 2k1k2.

By considering the two cases k1+k2 = 0 and k1+k2 ̸= 0, separately, we can further
divide Î11,k into two parts, i.e.,

Î11,k = Î11a,k + Î11b,k,

where

Î11a,k = iµ2

∫ τ

0

∑
0=k1+k2

1

k1k2
ei(tn+s)(−k2

1−k2
2) v̂k1 v̂k2 ds · v̂k,

Î11b,k = iµ2

∫ τ

0

∑
k=k1+k2+k3

k1+k2 ̸=0

k3
kk1k2

ei(tn+s)ϕ2 v̂k1 v̂k2 v̂k3 ds.

Using (12) and the formula of inverse Fourier transform, we obtain

I11a = −iµ2P0(Fn(∂
−1
x v, ∂−1

x v, τ)) · v̂k.
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If α ̸= 0 then the expressions in (6) imply that

τφ(iτα)− τ
(
eiτβ − 1

)
ψ(iτα) = τ

eiτα − 1

iτα
− τ

(
eiτβ − 1

)eiτα − 1− iταeiτα

(iτα)2

= τ
eiτ(α+β) − 1

iτα
− τ

(
eiτα − 1

)(
eiτβ − 1

)
(iτα)2

.

Hence, we can choose α = 2k3(k1+k2), β = 2k1k2, and use (15) to get the following
expression:

Î11b,k =
µ2

2

∑
k=k1+k2+k3

k3 ̸=0

eiτϕ2 − 1

kk1k2(k1 + k2)
eitnϕ2 v̂k1 v̂k2 v̂k3

+
iµ2

4τ

∑
k=k1+k2+k3

(
e2iτk1k2 − 1

)(
e2iτk3(k1+k2) − 1

)
kk1k2k3(k1 + k2)2

· eitnϕ2 v̂k1 v̂k2 v̂k3 + R̂3,k(v),

where

|R̂3,k(v)| . τ3
∑

k=k1+k2+k3

|k1k2k3|
|k|

|v̂k1 ||v̂k2 ||v̂k3 |.(17)

The first term on right-hand side can be integrated explicitly. From (14) we derive
that

F̂n(Pv,Pv, τ)k =
∑

k=k1+k2

1

2ik1k2

(
e2itn+1k1k2 − e2itnk1k2

)
v̂k1 v̂k2 .

Therefore, the second term on right-hand side can be written as

−µ
2

2τ

∑
k=k̃+k3

e2iτk3k̃ − 1

kk3k̃2
· e2itnk3k̃ F̂n(Pv,Pv, τ)k̃v̂k3 ,

which is the kth Fourier coefficient of the function

iµ2

τ
∂−1
x Fn

(
∂−1
x Fn(Pv,Pv, τ),Pv

)
.

Hence, we obtain

I11b =
µ2

2
e−i(tn+s)∂2

x∂−1
x

(
∂−1
x

(
ei(tn+s)∂2

x∂−1
x v

)2 · ei(tn+s)∂2
xPv

)∣∣∣s=τ

s=0

+
iµ2

τ
∂−1
x Fn

(
∂−1
x Fn(Pv,Pv, τ),Pv

)
.

We rewrite Î12,k as

Î12,k = Ja + Jb,(18)

where

Ja = 2iµ2

∫ τ

0

∑
k=k1+k2+k3

1

kk1
ei(tn+s)ϕ2 v̂k1 v̂k2 v̂k3 ds,

Jb = −2iµ2

∫ τ

0

∑
k=k1+k2

1

kk1
ei(tn+s)ϕ1 v̂k1 v̂k2 ds · v̂0.

By using the symmetry among k1, k2 and k3, we can rewrite Ja as

Ja =
2iµ2

3

∫ τ

0

∑
k=k1+k2+k3

1

k

( 1

k1
+

1

k2
+

1

k3

)
ei(tn+s)ϕ2 v̂k1 v̂k2 v̂k3 ds.
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In particular, Ja can be integrated explicitly by using the identity

1

k1
+

1

k2
+

1

k3
=

ϕ2
2k1k2k3

,

with

Ja =
µ2

3

∑
k=k1+k2+k3

1

kk1k2k3

(
eitn+1ϕ2 − eitnϕ2

)
v̂k1 v̂k2 v̂k3 .

Jb can be expressed as follows by using the definition of Fn in (14):

Jb = 2iµ2v̂0F∂−1
x Fn(∂

−1
x v, v, τ)(k).

Combining with the above formulas and taking inverse Fourier transform, we obtain

I12 =
µ2

3
e−i(tn+s)∂2

x∂−1
x

(
ei(tn+s)∂2

x∂−1
x v

)3∣∣∣s=τ

s=0
+ 2iµ2v̂0∂

−1
x Fn(∂

−1
x v, v, τ).

To summarize, we obtain the following formula:

v(tn+1) = Φn(v(tn)) +R1(v(tn)) +R2(v(tn)) +R3(v(tn)),(19)

where Φn(v) is defined by

Φn(v) = v − (iµ+ 4µ2τ v̂0)Fn(v, v, τ) + iµ2Fn

(
∂−1
x v, e−itn∂

2
x [(eitn∂

2
x∂−1

x v)(eitn∂
2
xv)], τ

)
+ 2µ2τ2(v̂0)

2v − iµ2τP0

((
eitn∂

2
x∂−1

x v
)2 · (φ(2iτ∂2x) + ψ(2iτ∂2x)

)
eitn∂

2
xv

)
+ iµ2τP0

(
e−iτ∂2

x
(
eitn+1∂

2
x∂−1

x v
)2 · ψ(2iτ∂2x)eitn∂2

xv
)

− iµ2P0(Fn(∂
−1
x v, ∂−1

x v, τ)) · Pv + iµ2

τ
∂−1
x Fn

(
∂−1
x Fn(Pv,Pv, τ),Pv

)
+
µ2

2
e−i(tn+s)∂2

x∂−1
x

(
∂−1
x

(
ei(tn+s)∂2

x∂−1
x v

)2 · ei(tn+s)∂2
xPv

)∣∣∣s=τ

s=0

+
µ2

3
e−i(tn+s)∂2

x∂−1
x

(
ei(tn+s)∂2

x∂−1
x v

)3∣∣∣s=τ

s=0
+ 2iµ2v̂0∂

−1
x Fn(∂

−1
x v, v, τ).

(20)

By dropping the remainders R1(v(tn)), R2(v(tn)) and R3(v(tn)), we obtain the
following numerical scheme: For any given vn, compute

vn+1 = Φn
(
vn

)
, n = 0, 1, . . . , L; v0 = u0.(21)

Substituting un := eitn∂
2
xvn into (21) yields the numerical scheme in (7).

3.2. Some technical estimates. In this subsection we present two technical es-
timates which will be used in the error estimation.

Lemma 3.1 (Kato-Ponce inequality, [6]). Let f, g ∈ Hγ for some γ > 1
2 . Then

the following inequality holds:

∥fg∥Hγ . ∥f∥Hγ∥g∥Hγ .

Lemma 3.2 (Some trilinear estimates).

(i) Assume that f , g, h are functions in H1, and

|T (f, g, h)| .
∑

0=k1+k2+k3

|k1||k2| |f̂k1 ||ĝk2 ||ĥk3 |.

Then the following estimate holds:

|T (f, g, h)| . ∥f∥H1∥g∥H1∥h∥H1 .
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(ii) Assume that f, g, h ∈ Hγ with γ > 3
2 , and

|T̂k(f, g, h)| .
∑

k=k1+k2+k3

|k1k2k3|
|k|

|f̂k1
||ĝk2

||ĥk3
|.

Then the following estimate holds:

∥T (f, g, h)∥Hγ . ∥f∥Hγ∥g∥Hγ∥h∥Hγ .

Proof. We denote

f̃(x) =
∑
k∈Z

eikx|f̂k|, g̃(x) =
∑
k∈Z

eikx|ĝk|, h̃(x) =
∑
k∈Z

eikx|ĥk|.

Then
̂̃
fk(t) = |f̂k(t)| and the following identities hold (for all s ≥ 0):

∥f̃∥2Hs =2π
∑
k∈Z

(1 + k2)s|̂̃fk|2 = ∥f∥2Hs ,

∥g̃∥2Hs =∥g∥2Hs ,

∥h̃∥2Hs =∥h∥2Hs .

(22)

(i) The condition guarantees that

|T (f, g, h)| .
∑

0=k1+k2+k3

|k1||k2| |f̂k1 ||ĝk2 ||ĥk3 |

=
1

2π

∫
T
|∇|f̃ · |∇|g̃ · h̃ dx,

where the last equality is obtained by using the definition of the Fourier transform.
Then, by using Hölder’s inequality and (22), we obtain

|T (f, g, h)| . ∥f̃∥H1∥g̃∥H1∥h̃∥H1 = ∥f∥H1∥g∥H1∥h∥H1 .

(ii) The following result can be obtained by using Plancherel’s identity:∥∥T (f, g, h)∥∥
Hγ .

∥∥∥ ∑
k=k1+k2+k3 ̸=0

|k|γ−1|k1||k2||k3| |f̂k1(t)||ĝk2(t)||ĥk3(t)|
∥∥∥
L∞((0,T );l2)

.
∥∥|∇|f̃ · |∇|g̃ · |∇|h̃

∥∥
L∞((0,T );Hγ−1)

.

Since γ − 1 > 1
2 , the following result holds according to Lemma 3.1:∥∥T (f, g, h)∥∥

Hγ . ∥f̃∥Hγ∥g̃∥Hγ∥h̃∥Hγ = ∥f∥Hγ∥g∥Hγ∥h∥Hγ .

�

4. Proof of Theorem 2.1

By considering the difference between (21) and (19), we obtain the following
error equation:

v(tn+1)− vn+1 , Ln +Φn
(
v(tn)

)
− Φn

(
vn

)
, for all n = 0, 1, . . . , L,(23)

where
Ln = R1(v(tn)) +R2(v(tn)) +R3(v(tn))

is the consistency error.
For γ > 3

2 , the following estimate is a consequence of (16), (17) and Lemma
3.2:

∥R2(v(tn))∥Hγ + ∥R3(v(tn))∥Hγ ≤ Cτ3,(24)
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where the constant C depends only on ∥u∥L∞((0,T );Hγ).
The specific expression of R1(v(tn)) can be found by comparing (9) with (11),

which imply that

R1(v(tn)) = R11(v(tn)) +R12(v(tn)),

where

R11(v(tn)) =− iµ

∫ τ

0

e−i(tn+s)∂2
x

(
ei(tn+s)∂2

xv(tn + s)
)2

ds

+ iµ

∫ τ

0

e−i(tn+s)∂2
x

(
ei(tn+s)∂2

x

(
v(tn)− iµFn

(
v(tn), v(tn), s

)))2

ds,

R12(v(tn)) =iµ
3

∫ τ

0

e−i(tn+s)∂2
x

(
ei(tn+s)∂2

xFn

(
v(tn), v(tn), s

))2

ds.

The term R11(v(tn)) can be rewritten as

R11(v(tn)) =− iµ

∫ τ

0

e−i(tn+s)∂2
x

(
ei(tn+s)∂2

x
(
v(tn + s)− v(tn) + iµFn

(
v(tn), v(tn), s

))
· ei(tn+s)∂2

x
(
v(tn + s) + v(tn)− iµFn

(
v(tn), v(tn), s

)))
ds.

From (9) and (10) we can obtain the following estimate:∥∥v(tn + s)− v(tn) + iµFn

(
v(tn), v(tn), s

)∥∥
Hγ

=
∥∥∥− iµ

∫ s

0

e−i(tn+t)∂2
x

(
ei(tn+t)∂2

x
(
v(tn + t)− v(tn)

)
· ei(tn+t)∂2

x
(
v(tn + t) + v(tn)

))∥∥∥
Hγ

. τ∥v(tn + t)− v(tn)∥Hγ∥v(tn + t) + v(tn)∥Hγ .

Furthermore, by using (9), (10) and Lemma 3.1, we derive that

∥v(tn + t)− v(tn)∥L∞Hγ . ∥Fn(v(tn + s), v(tn + s), t)∥L∞Hγ . τ∥v∥2L∞Hγ .

The following result can be obtained by combining the estimates above:

∥R11(v(tn))∥L∞Hγ ≤ Cτ3,

where the constant C depends only on ∥u∥L∞((0,T );Hγ). The term R12(v(tn)) can
be estimated by using Lemma 3.1, i.e.,

∥R12(v(tn))∥L∞Hγ . τ∥Fn(v(tn), v(tn), s)∥L∞Hγ . τ3∥v∥4L∞Hγ .

The two estimates above imply the following result:

∥Ln∥L∞Hγ ≤ Cτ3,(25)

where the constant C depends only on ∥u∥L∞((0,T );Hγ).
In view of (11) and (19), the functional Φn defined in (20) can be rewritten

into the following integral form:

Φn(v) = v − iµFn(v, v, τ) + I(v)−R2(v)−R3(v).(26)

Using the definition of Fn in (10), we have

Fn(v(tn), v(tn), τ)− Fn(v
n, vn, τ)

=−
∫ τ

0

e−i(tn+s)∂2
x

(
ei(tn+s)∂2

x
(
v(tn)− vn

))2

dt

+ 2

∫ τ

0

e−i(tn+s)∂2
x

(
ei(tn+s)∂2

x
(
v(tn)− vn

)
· ei(tn+s)∂2

xv(tn)
)
.
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The following inequality can be obtained by applying the Kato–Ponce inequality in
Lemma 3.1:

∥Fn(v(tn), v(tn), τ)− Fn(v
n, vn, τ)∥L∞Hγ

. τ∥v(tn)− vn∥2L∞Hγ + τ∥v(tn)− vn∥L∞Hγ∥v(tn)∥L∞Hγ .

The other term can be estimated in a similar way. Specifically, the following result
holds for any γ > 3

2 :

∥I(v(tn))− I(vn)∥L∞Hγ ≤ Cτ
(
∥v(tn)− vn∥L∞Hγ + ∥v(tn)− vn∥3L∞Hγ

)
,

where the constant C depends only on ∥u∥L∞((0,T );Hγ). The following estimate can
be obtained by combining (24) with the estimates above:

∥Φn(v(tn))− Φn(vn)∥L∞Hγ ≤ (1 + Cτ)∥v(tn)− vn∥L∞Hγ + Cτ∥v(tn)− vn∥3L∞Hγ ,

(27)

where the constant C depends only on ∥u∥L∞((0,T );Hγ).
Substituting (25) and (27) into the error equation in (23), and applying discrete

Gronwall’s inequality, we obtain the following error estimate:∥∥v(tn+1)− vn+1
∥∥
Hγ ≤ Cτ2,

where the constant C depends only on ∥u∥L∞((0,T );Hγ). This proves Theorem 2.1.
�

5. Numerical experiments

In this section, we present numerical experiments to illustrate the convergence
of the proposed method under different regularity conditions. We consider the
quadratic nonlinear Schrödinger equation (1) with the following initial value:

(28) u0(x) :=
|∂x,N |−γUN

∥|∂x,N |−γUN∥L∞
, with UN = rand(N, 1) + irand(N, 1),

where γ is chosen to determine the regularity of the initial data, and the pseudo-
differential operator |∂x,N |−γ for γ ≥ 0 is defined as: for Fourier modes l =
−N/2, . . ., N/2− 1, (

|∂x,N |−γ
)
l
=

{
|l|−γ if l ̸= 0,

0 if l = 0.

UN are uniformly distributed random variables in [0, 1] + i[0, 1]. This choice of the
initial data guarantees u0 ∈ Hγ and therefore u ∈ C([0, T ];Hγ).

The errors of the numerical solutions with γ = 3
2 and γ = 2 are presented

in Figure 1, where the spatial discretization is performed with a Fourier spectral
method using FFT based on the grid points xj = j 2πN for j = 0, 1, . . . , N = 26. The
numerical results in Figure 1 indicate that the proposed method has the second-
order convergence in the Hγ norm for initial data in Hγ . This is consistent with
the theoretical result proved in Theorem 2.1.

6. Conclusion

We have constructed a low-regularity integrator for the quadratic NLS equation
on the one-dimensional torus based on harmonic analysis techniques. The proposed
low-regularity integrator can be implemented with FFT using the Fourier spectral
method with O(N logN) operations at every time level. Theoretically, we have
proved that the proposed low-regularity integrator has second-order convergence in
Hγ for solutions in C([0, T ];Hγ), for any γ > 3

2 , i.e. no additional regularity in the
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10-3

‖
u
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n
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H
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Temporal discretization error

γ=3/2
γ=2

O(τ2)

Figure 1. Hγ-norm errors of the numerical solutions at T = 2
for various different τ and γ, with N = 26 degrees of freedom in a
spatial discretization using the Fourier spectral method.

solution is required. The numerical experiments are consistent with the theoretical
analysis.
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