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A NUMERICAL ANALYSIS OF THE COUPLED
CAHN-HILLIARD/ALLEN-CAHN SYSTEM WITH DYNAMIC

BOUNDARY CONDITIONS

AHMAD MAKKI, ALAIN MIRANVILLE∗, AND MADALINA PETCU

Abstract. The numerical analysis of the coupled Cahn-Hilliard/Allen-Cahn system endowed
with dynamic boundary conditions is studied in this article. We consider a semi-discretisation
in space using a finite element method and we derive error estimates between the exact and
the approximate solution. Then, using the backward Euler scheme for the time variable, a fully
discrete scheme is obtained and its stability is proved. Some numerical simulations illustrate the
behavior of the solution under the influence of dynamical boundary conditions.
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1. Introduction

We consider the Cahn-Hilliard/Allen-Cahn system with dynamic boundary con-
ditions

(1)



ut = ∆µ, x ∈ Ω,
µ = −∆u + f(u + v) + f(u − v), x ∈ Ω,
vt = ∆v − f(u + v) + f(u − v) − αv, x ∈ Ω,
ut = δ∆Γµ − ∂nµ, x ∈ Γ,
µ = −σ∆Γu + g(u + v) + g(u − v) + ∂nu, x ∈ Γ,
vt + ∂nv − κ∆Γv + g(u + v) − g(u − v) = 0, x ∈ Γ,

where Ω is a 2d or 3d slab, i.e.

Ω =
d−1∏
i=1

(R/(LiZ)) × (0, Ld), Li > 0, i = 1, · · · , d, d = 2 or 3,

with smooth boundary

Γ = ∂Ω =
d−1∏
i=1

(R/(LiZ)) × {0, Ld};

in other words, when d = 2, Ω is the rectangle (0, L1) × (0, L2), u, µ and v are
periodic in x1-direction and the boundary conditions are valid for x2 = 0 and
x2 = L2; when d = 3, Ω is the parallelepiped (0, L1) × (0, L2) × (0, L3), u, µ and v
are periodic in the x1 and x2-directions and the boundary conditions are valid for
x3 = 0 and x3 = L3. The function f is the derivative of some double-well potential
(typically, f(s) = s3 − s) and g is the derivative of a surface potential, (typically,
g(s) = aΓs − bΓ, aΓ > 0, bΓ ∈ R).

In (1), u and v represent a conserved (typically an average concentration) and
a non-conserved order parameter, respectively. See [5] for further relevant refer-
ences. Furthermore, the parameter α reflects the location of the system within the
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phase diagram and may be either positive or negative. In what follows we consider,
without any restriction of generality, α positive (the case α negative can be treated
similarly, adapting certain a priori estimates). Moreover, δ, σ are nonnegative pa-
rameters related to the boundary diffusion and κ > 0 is a physical coefficient. Also,
∆Γ is the Laplace-Beltrami operator on Γ and ∂n is the outward normal deriva-
tive. The evolution boundary value problem (1) is completed by initial conditions
u(0) = u0 and v(0) = v0. We remark that in the particular case that we consider
here, when the domain is a slab, the Laplace-Beltrami operator on Γ reduces to
∂2

x1x1
for the case d = 2 and to ∂2

x1x1
+ ∂2

x2x2
for the case d = 3.

The Cahn-Hilliard/Allen-Cahn system endowed with Neumann boundary con-
ditions was introduced in [4, 5], in order to describe simultaneous order-disorder
and phase separation in binary alloys on a BCC lattice in the neighborhood of the
triple point. For further references on the physical pertinence of the model, we
refer the interested reader to [2]. The authors of [5] explored two phenomenologi-
cal approaches leading to systems of coupled Allen-Cahn/Cahn-Hilliard (AC/CH)
equations. Another important application of the coupled (AC/CH) equations is
that under appropriate compositional conditions, ordering can be induced in a
previously homogeneous material. If the composition differs slightly from these
conditions, the excess composition can emerge as droplets along the boundaries be-
tween the ordered regions. This phenomena can be modeled by a coupled (AC/CH)
system with degenerate mobilities. In similar applications, surface diffusion cou-
pled with motion by mean curvature appears quite naturally. There are additional
effects which are often neglected and which arguably should be included. However,
the coupled motion, by itself, is not finally understood and it was thus reasonable
to isolate it and study it, even given its limitations (see [9]).

In [4], the authors prove the well-posedness and the existence of maximal at-
tractors and inertial sets (i.e., exponential attractors) for the usual cubic nonlinear
term f(s) = s3 − βs in three space dimensions when Neumann boundary condi-
tions are considered. The numerical study using a finite element approximation
was treated in [3] for the case of a degenerate Allen-Cahn/Cahn-Hilliard system
under Neumann boundary conditions.

A similar system, with a non-constant mobility, was treated in [10] where the
existence of weak solutions for a degenerate parabolic system consisting of a fourth-
order and a second-order equation with singular lower-order terms in one space di-
mension with Neumann boundary conditions was proved. In addition, asymptotics
for a similar system with a non-constant mobility, proposed as a diffuse interface
model for simultaneous order-disorder and phase separation, was studied in [19].
There, A. Novick-Cohen focused on the motion in the plane. This framework yields
both sharp interface and diffuse interface models of sintering of small grains and
thermal grains boundary grooving in polycrystalline films. This work was extended
in [20], where the authors studied the partial wetting case, and their analysis ac-
counts for motion in three space dimensions.

The Cahn-Hilliard/Allen-Cahn system (1) is derived from the following Ginzburg-
Landau free energy

J(u, v) =1
2

(∥∇u∥2
Ω + ∥∇v∥2

Ω) + α

2
∥v∥2

Ω

+
∫

Ω
{F (u + v) + F (u − v)} dx + σ

2
∥∇Γu∥2

Γ

+ κ

2
∥∇Γv∥2

Γ +
∫

Γ
{G(u + v) + G(u − v)} dΓ,

(2)
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where ∥ · ∥Ω (resp. ∥ · ∥Γ) designates the norm on L2(Ω) (resp. on L2(Γ)) and ∇Γ
is the tangential gradient operator in Γ, F is the double-well potential and G the
surface potential.

The first line in (2) represent the Ginzburg-Landau (bulk) free energy and the
remaining terms represent the surface energy. If (u, µ, v) is a regular solution of
(1), then u, v dissipate J since

(3) d

dt
J(u(t), v(t)) = −∥∇µ∥2

Ω − δ∥∇Γµ∥2
Γ −

∥∥∥∥∂v

∂t

∥∥∥∥2

Ω
−
∥∥∥∥∂v

∂t

∥∥∥∥2

Γ
6 0, t > 0.

Moreover, the total mass of u in the bulk and on the boundary is conserved:

d

dt

(∫
Ω

u dx +
∫

Γ
u dΓ

)
= 0, t > 0,

which is immediately obtained by integrating (1)1 and (1)4 respectively over Ω and
Γ and adding the resulting equations.

We mention that numerical methods to solve coupled (AC/CH) systems were
studied in, e.g., [5, 17, 21, 24, 25, 26]. Furthemore, a NKS-method for the implicit
solution of a coupled (AC/CH) system was studied in [27].

The main result of our paper, Theorem 7.1, states optimal error estimates for the
differences uh − u and vh − v in energy norms and weaker norms as the mesh step
h tends to 0, where (uh, vh) is the solution of a finite element space semidiscrete
scheme and (u, v) is the solution of the continuous problem, which is supposed
regular enough.

When (u, v) are less regular, we prove in Theorem 5.1 that uh and vh tends to
u and v respectively in some weak sense, if the nonlinearity f has a subcritical
or critical growth. We also propose a fully discrete scheme obtained from the
previous one by using the backward Euler scheme for the time discretization: the
solution (un

h, vn
h) of the fully discrete scheme is shown to be unconditionally stable

(i.e., without mesh-dependent restriction on the time step) and to converge to
equilibrium as n → +∞.

2. Notation and assumptions

As mentioned previously, in what follows, we propose a numerical study for the
AC/CH model when dynamic boundary conditions are considered.

We introduce the space H = L2(Ω) × L2(Γ) and we endow the space H with
the scalar product (ρ, ω)H = (ρ1, ω1)Ω + (ρ2, ω2)Γ, ∀ρ = (ρ1, ρ2) ∈ H and ω =
(ω1, ω2) ∈ H and the corresponding norm is ∥ · ∥H = (·, ·) 1

2 .
We also introduce the space W = {ρ ∈ H1

p (Ω), ρ|Γ ∈ H1
per(Γ)}, which is a

Hilbert space for the norm ∥ρ∥W =
(

∥ρ∥2
H1(Ω) + ∥∇ρ∥2

H1(Γ)

)1/2
and the space

V2 = {ρ ∈ H2
p (Ω), ρ|Γ ∈ H2

per(Γ)}.
We mention that by Hm

p (Ω), with m > 1, we understand the functions that
belong to Hm(Ω) and which are periodic in the x1, · · · , xd−1-directions. More
precisely, when d = 2, a function ρ ∈ W is a function belonging to H1(Ω), which is
periodic in the x1-direction and for which we have that trace v|x=0 ∈ H1

per(0, L1)
and trace v|x=L2 ∈ H1

per(0, L1), where

H1
per(0, L1) = {ρ ∈ H1(0, L1), ρ is L1-periodic}.

A similar definition holds for d = 3 and for V2.
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We will also use the notation m(ρ) = 1
|Ω|+|Γ| (ρ, 1)H , where 1 = (1, 1) and Ḣ =

{ρ ∈ H; m(ρ) = 0}. More generally, for an arbitrary set X, we will note Ẋ = X∩Ḣ.
We also denote by W ′ the dual space of W .

The functions f and g belong to C2(R,R) and satisfy the following standard
dissipativity assumptions:
(4) lim inf

|s|→∞
f ′(s) > 0, lim inf

|s|→∞
g′(s) > 0,

which imply the existence of two constants c1 > 0, c2 > 0 such that
(5) F (s) > c1s2 − c2 and G(s) > c1s2 − c2

where F and G are the antiderivatives of the functions f and g. Moreover, in order
to prove Theorem 2.2 (and only at that point) we will assume that f and g have a
subcritical growth. More precisely, we assume that there exists a positive constant
c3 such that
(6) |f(s)| 6 c3(1 + |s|p−1), ∀s ∈ R,

with p ∈ [2, 4] when d = 3 and p > 2 arbitrary when d = 2. We also assume that
there exists a positive constant c4 such that
(7) |g(s)| 6 c4(1 + |s|q−1), ∀s ∈ R,

with q > 2 arbitrary. We note that the cubic nonlinearity for f satisfies this
assumption with p = 4 and q = 2.

We will often use the Poincaré inequality in the form (see [22])
(8) ∥ρ − m(ρ)∥H 6 cp |ρ|1,W , ∀ρ ∈ W,

with |ρ|21,W = ∥∇ρ∥2
Ω + ∥∇Γρ∥2

Γ,

as well as the following inequality:
(9) ∥ρ∥2

Ω 6 Cp (∥∇ρ∥2
Ω + ∥ρ∥2

Γ), ∀ρ ∈ H1
p (Ω).

Inequality (9) ensures the fact that (∥∇ρ∥2
Ω + ∥ρ∥2

Γ)1/2 is a norm on H1
p (Ω), equiv-

alent to the usual one.
Using these notations, we can introduce the variational formulation of (1) which

reads:

For f satisfying (4) and u0, v0 ∈ W , find u, v ∈ L∞(0, T, W ) and µ ∈ L2(0, T, W )
such that u(0) = u0, v(0) = v0 and:

(10)


(ut, Ψ)H + (∇µ, ∇Ψ)Ω + δ(∇Γµ, ∇ΓΨ)Γ = 0,
(µ, Φ)H = (∇u, ∇Φ)Ω + (f(u + v) + f(u − v), Φ)Ω

+σ(∇Γu, ∇ΓΦ)Γ + (g(u + v) + g(u − v), Φ)Γ,
(vt, φ)H + (∇v, ∇φ) + κ(∇Γv, ∇Γφ)Γ + α(v, φ)Ω

= −(f(u + v) − f(u − v), φ)Ω − (g(u + v) − g(u − v), φ)Γ,

for all Ψ, Φ and φ ∈ W .

3. The space semidiscrete scheme

For the space discretization of these equations, we first let {Ωh} be a quasiu-
niform family of decompositions of Ω̄. Every decomposition Ωh is composed of
d-simplices uniquely (i.e. triangles if d = 2 and tetrahedrons if d = 3); the decom-
position takes into account the periodic boundary conditions on Ω, so that {Ωh}
is in fact a triangulation of Ω̄. The triangulation Ωh of Ω̄ induces a triangulation
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Γh of Γ into d − 1 simplices in a natural way. We associate to Ωh =
∪

T ∈Ωh T the
conforming P 1 finite element space

W h =
{

ρh ∈ C0(Ω̄), ρh|T is affine ∀T ∈ Ωh

}
.

Note that for every ρh ∈ W h, the restriction φh = ρh
|Γ on the boundary is a P 1 finite

element on the (d − 1)-dimensional domain Γ. In fact, the space of such functions
φh is the usual P 1 conforming finite element discretization of the space H1

per(Γ)
built on the triangulation Γh. It is thus well-known that W h has finite dimension,
that W h ⊂ W and that W h satisfies
(11) for all h > 0, W h contains the constants;

(12)
∪
h>0

W h is dense in W.

Note that the same space W h is used for both the discretization of H1
p (Ω) and that

of W .
For ρ ∈ C0(Ω̄), let Ihρ denotes the P 1 interpolate of ρ on Ωh, i.e. Ihρ is the unique

function in W h such that Ihρ(xi) = ρ(xi) for every node xi of the triangulation
Ωh. Note that (Ihρ)|Γ is the P 1 interpolate of ρ|Γ on Γh.

Throughout the paper, the letters C and c will denote constants independent of
h which may vary from line to line.

We can thus introduced the following space semidiscrete variational formulation:
Find (uh, µh, vh) : [0, T ] → W h × W h × W h such that

(13)
(uh

t , Ψ)H + (∇µh, ∇Ψ)Ω + δ(∇Γµh, ∇ΓΨ)Γ = 0,
(µh, Φ)H = (∇uh, ∇Φ)Ω + (f(uh + vh) + f(uh − vh), Φ)Ω

+σ(∇Γuh, ∇ΓΦ)Γ + (g(uh + vh) + g(uh − vh), Φ)Γ,
(vh

t , φ)H + (∇vh, ∇φ)Ω + κ(∇Γvh, ∇Γφ)Γ + α(vh, φ)Ω
= −(f(uh + vh) − f(uh − vh), φ)Ω − (g(uh + vh) − g(uh − vh), φ)Γ,

for all Ψ, Φ and φ ∈ W h.
Taking Ψ = 1 in (13)1, we find

(14) m(uh
t (t)) = 0 which implies m(uh(t)) = cst, ∀t > 0,

thus, the finite element approximation uh conserves the mass conservation property
of the exact solution u.

4. Discrete energy estimate and convergence to steady state

Let us first prove the existence and uniqueness of an approximate solution
(uh, µh, vh) given by the space semi-discrete problem (13). More exactly, we have
the following result:

Theorem 4.1. For every uh
0 , vh

0 ∈ W h, problem (13) has a unique solution

(uh, µh, vh) ∈ C1([0, +∞), W h × W h × W h)
such that uh(0) = uh

0 and vh(0) = vh
0 . Moreover, the following energy estimate

holds

(15) J(uh(t), vh(t))+
∫ t

0

{
∥∇µh∥2

Ω+δ∥∇Γµh∥2
Γ+∥vh

t ∥2
H

}
ds 6 J(uh

0 , vh
0 ), ∀t > 0,

where J is defined in (2).
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Proof. Let (φ1, . . . , φM ) be an orthonormal basis of W h for the H-scalar product
and such that φ1 ≡ cst. We seek for

uh(t) =
M∑

i=1
ui(t)φi, µh(t) =

M∑
i=1

µi(t)φi and vh(t) =
M∑

i=1
vi(t)φi.

We define the matrices

(A)ij = (∇φi, ∇φj)Ω and (AΓ)ij = (∇Γφi, ∇Γφj)Γ, 1 6 i, j 6 M,

the vectors

U =

 u1
...

uM

 , Z =

 µ1
...

µM

 , V =

 v1
...

vM


and the functions

F1(U, V ) =

 (f(uh + vh), φ1)Ω
...

(f(uh + vh), φM )Ω

 , F2(U, V ) =

 (f(uh − vh), φ1)Ω
...

(f(uh − vh), φM )Ω


and

G1(U, V ) =

 (g(uh + vh), φ1)Γ
...

(g(uh + vh), φM )Γ

 , G2(U, V ) =

 (g(uh − vh), φ1)Γ
...

(g(uh − vh), φM )Γ

 .

Then (13) can be written as
(16) U ′ = −(A + δAΓ)Z,

Z = σAΓU + AU + F1(U, V ) + F2(U, V ) + G1(U, V ) + G2(U, V ),
V ′ = −AV − κAΓV − αV − F1(U, V ) + F2(U, V ) − G1(U, V ) + G2(U, V )

and thus
(17) U ′ = −(A + δAΓ)

(
σAΓU + AU + F1(U, V ) + F2(U, V ) + G1(U, V ) + G2(U, V )

)
,

V ′ = −AV − κAΓV − αV − F1(U, V ) + F2(U, V ) − G1(U, V ) + G2(U, V ).

Therefore, by the Cauchy-Lipschitz theorem, problem (13) has a unique maximal
solution (uh, µh, vh) ∈ C1([0, T +); W h × W h × W h) such that uh(0) = uh

0 and
vh(0) = vh

0 .
Taking Ψ = µh (resp. Φ = uh

t ) in the first (resp. the second) equation of (13)
and summing the two resultant equations, we get

1
2

d

dt
{∥∇uh∥2

Ω + σ∥∇Γuh∥2
Γ} + ∥∇µh∥2

Ω + δ∥∇Γµh∥2
Γ

+ (f(uh + vh) + f(uh − vh), uh
t )Ω + (g(uh + vh) + g(uh − vh), uh

t )Γ = 0.

(18)

We take now φ = vh
t in third equation of (13) and obtain

1
2

d

dt

{
∥∇vh∥2

Ω + κ∥∇Γvh∥2
Γ + α∥vh∥2

Ω

}
+ ∥vh

t ∥2
H

+ (f(uh + vh) − f(uh − vh), vh
t )Ω + (g(uh + vh) − g(uh − vh), vh

t )Γ = 0.

(19)
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Summing (18) and (19), we obtain

(20) d

dt
{J(uh, vh)} + ∥∇µh∥2

Ω + δ∥∇Γµh∥2
Γ + ∥vh

t ∥2
H = 0,

so (uh, µh, vh) satisfies the energy estimate (15) of Theorem 4.1. Therefore, using
(5), we find uh, vh ∈ L∞(0, T +; W ) and we conclude that T + = +∞ (i.e. the
solution is global).

�

In order to obtain the convergence to steady state we will first introduce the
following definition:

Definition 4.1. A steady state for (13) with initial condition (uh
0 , vh

0 ) is a triplet
(ūh, µ̄h, v̄h) ∈ W h × W h × W h such that

(21)


(ūh, 1)H = (uh

0 , 1)H ,
(µ̄h, Φ)H = (∇ūh, ∇Φ)Ω + σ(∇Γūh, ∇ΓΦ)Γ

+(f(ūh + v̄h) + f(ūh − v̄h), Φ)Ω + (g(ūh + v̄h) + g(ūh − v̄h), Φ)Γ,
0 = (∇v̄h, ∇φ)Ω + κ(∇Γv̄h, ∇Γφ)Γ + α(v̄h, φ)Ω + (f(ūh + v̄h)

−f(ūh − v̄h), φ)Ω + (g(ūh + v̄h) − g(ūh − v̄h), φ)Γ.

∀Φ, φ ∈ W h.

Corollary 4.1. The flow Sh(t)(uh
0 , vh

0 ) = (uh(t), vh(t)) defined in Theorem 4.1 is
a gradient flow for J in the affine space W̃ h = {uh ∈ W h : m(uh) = m(uh

0 )}, i.e.

⟨(uh
t , vh

t ), (Ψ, Φ)⟩h = − dJ

dβ

(
(uh(t), vh(t)) + β(Ψh, Φh)

)
|β=0, ∀(Ψh, Φh) ∈ Ẇ h×W h,

where ⟨·, ·⟩h is a scalar product on Ẇ h ×W h given by (25). In particular, if f and g
are real analytic functions, there exists a steady state (ūh, µ̄h, v̄h) ∈ W h ×W h ×W h

such that (uh(t), µh(t), vh(t)) → (ūh, µ̄h, v̄h) as t → +∞.

Proof. Let us start by noticing that, since φ1 = cst, the first line and the first
column of matrix A + δAΓ are filled only with null elements and thus the matrix
is not invertible. In order to handle this difficulty, we need to rewrite system (16)
into a more convenient form. For a vector X = (xi)16i6M ∈ RM , we write Ẋ =
(xi)26i6M ∈ RM−1 (recall that the first component x1 is associated to the constant
φ1). For a square matrix C = (cij)16i,j6M of size M , we write Ċ = (cij)26i,j6M .
Equation (16) without the two lines corresponding to φ1 becomes

(22)


U̇ ′ = −(Ȧ + δȦΓ)Ż,
Ż = σȦΓU̇ + ȦU̇ + Ḟ1(u1, U̇ , V ) + Ḟ2(u1, U̇ , V )

+Ġ1(u1, U̇ , V ) + Ġ2(u1, U̇ , V ),
V ′ = −AV − κAΓV − αV − F1(u1, U̇ , V ) + F2(u1, U̇ , V )

−G1(u1, U̇ , V ) + G2(u1, U̇ , V ),

with u1 obtained from the conservation of mass as u1 = (uh(0), φ1)H .
Now, the matrix Ȧ + δȦΓ is invertible, thus we obtain

(23)


(Ȧ + δȦΓ)−1U̇ ′ = −(σȦΓU̇ + ȦU̇ + Ḟ1(u1, U̇ , V ) + Ḟ2(u1, U̇ , V )

+Ġ1(u1, U̇ , V ) + Ġ2(u1, U̇ , V )),
V ′ = −AV − κAΓV − αV − Ḟ1(u1, U̇ , V ) + Ḟ2(u1, U̇ , V )

−Ġ1(u1, U̇ , V ) + Ġ2(u1, U̇ , V ).
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This is a gradient flow for the function

(U̇ , V ) → J(U, V ) = J(u1φ1 +
M∑

i=2
uiφi,

M∑
i=1

viφi) ∈ R,

U̇ = (u2, · · · , uM ), V = (v1, · · · , vM ),(24)

with respect to the scalar product in RM−1 × RM

(25) ⟨ · , · ⟩h =
(

(Ȧ + δȦΓ)−1 · , ·
)

+
(

· , ·
)

.

Since f and g are assumed to be real analytic and W h ⊂ C0(Ω̄), the function defined
by (24) is also analytic on RM−1 ×RM . Then the Lojasiewicz inequality [15] implies
the convergence to a steady state as t → +∞. �
5. Convergence as h → 0

In this section (and only this section), we have to assume that f and g have
a subcritical growth (i.e., f and g satisfy respectively (6) and (7)). We will first
introduce the following definition, which will be used in the following

Definition 5.1. We set the operator Aδ : W → W ′ defined by
(Aδu, Ψ) = (∇u, ∇Ψ)Ω + δ(∇Γu, ∇ΓΨ)Γ,

where W ′ is the dual of W . We also define A−1
δ : W ′ → Ẇ , f → A−1

δ f , where
A−1

δ f is the unique solution of the problem

(26) (∇A−1
δ f, ∇χ)Ω + δ(∇ΓA−1

δ f, ∇Γχ)Γ = (f, χ)H , ∀χ ∈ Ẇ .

Theorem 5.1. Assume that f, g ∈ C1(R,R) satisfy (4), (6) and (7). Let u0, v0 ∈
W and let uh

0 , vh
0 ∈ W h such that uh

0 → u0 and vh
0 → v0 in W as h → 0. Then, for

all T > 0,
(uh, vh) → (u, v) weak star in L∞(0, T ; W × W )

and strongly in C0([0, T ]; L2(Ω) × L2(Ω)),
(uh

t , vh
t ) → (ut, vt) weakly in L2(0, T ; W ′ × H),

(uh
|Γ, vh

|Γ) → (u|Γ, v|Γ) strongly in C0([0, T ]; L2(Γ) × L2(Γ)),
µh → µ weakly in L2(0, T ; W ),

where (u, µ, v) is the unique solution of the continuous problem (10) such that u(0) =
u0 and v(0) = v0.

Proof. In order to handle the nonlinear terms in (21), we use the assumptions (6)
and (7), which imply the existence of some positive constants c5, · · · , c8 such that
(27) ∀s ∈ R, |F (s)| 6 c5|s|p + c6 and |G(s)| 6 c7|s|q + c8.

Using the Sobolev embeddings H1
p (Ω) ↩→ Lp(Ω), H1

per(Γ) ↩→ Lq(Γ) and (uh
0 , vh

0 ) →
(u0, v0) in W as h → 0, we obtain that the energy J(uh

0 , vh
0 ) is bounded by a constant

independent of h. From the discrete energy estimate (15) and (5), we conclude the
following bounds: (uh)h and (vh)h are bounded in L∞(0, T ; W ), (∇µh)h is bounded
in L2(0, T ; L2(Ω)) and (∇Γµh

|Γ)h is bounded in L2(0, T ; L2(Γ)). Now, taking Ψ = 1
in (13)2, we get

(µh, 1)H = (f(uh + vh) + f(uh − vh), 1)Ω + (g(uh + vh) + g(uh − vh), 1)Γ,

from which we deduce that (µh, 1)H is bounded in L2(0, T ). Subtracting eventu-
ally a subsequence we obtain the following convergences: uh → u weak star in
L∞(0, T ; W ), vh → v weak star in L∞(0, T ; W ) and µh → µ weakly in L2(0, T ; W ).
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It remains to prove the strong convergence of (uh, uh|Γ) in C0 ([0, T ], L2(Ω)
)

×
C0 ([0, T ], L2(Γ)

)
. For that we use the Ascoli theorem. Indeed,

∥uh(t) − uh(s)∥2
Ω + ∥uh(t) − uh(s)∥2

Γ

= 2
∫ t

s

(uh
t (σ), uh(σ) − uh(s))Ω dσ + 2

∫ t

s

(uh
t (σ), uh(σ) − uh(s))Γ dσ

= −2
∫ t

s

(∇µh(σ), ∇(uh(σ)−uh(s)))Ω dσ−2δ

∫ t

s

(∇Γµh(σ), ∇Γ(uh(σ)−uh(s)))Γ dσ

6 c∥µh∥L2(0,T ;W )∥uh∥L∞(0,T ;W )|t − s|1/2, for all 0 6 s 6 t 6 T.

We can thus deduce that (uh)h is uniformly equicontinuous in C0([0, T ]; L2(Ω))
and (uh)|Γ is uniformly equicontinuous in C0([0, T ]; L2(Γ)). Since (uh)h is bounded
in L∞(0, T ; W ), the Ascoli theorem implies that uh → u strongly in C0([0, T ]; L2(Ω))
and uh

|Γ → u|Γ strongly in C0([0, T ], L2(Γ)).
Now, for the strong convergence of (vh)h, we have from (15) that (vh

t )h is
bounded in L2(0, T ; H) and we get, up to a subsequence that

vh
t → vt weakly in L2([0, T ]; H),

so, by the Aubin-Lions compacteness Lemma, we have the strong convergence for
(vh)h such that

vh → v strongly C0([0, T ]; H).
Uniqueness of (u, µ, v):

Let (u1, µ1, v1) and (u2, µ2, v2) be two solutions to (10) with initial data (u0,1, µ0,1,
v0,1) and (u0,2, µ0,2, v0,2), respectively. We set

(u, µ, v) = (u1 − u2, µ1 − µ2, v1 − v2)

and
(u0, µ0, v0) = (u0,1 − u0,2, µ0,1 − µ0,2, v0,1 − v0,2).

Then, (u, µ, v) satisfies
(28)

(ut, Ψ)H + (∇µ, ∇Ψ)Ω + δ(∇Γµ, ∇ΓΨ)Γ = 0,
(µ, Φ)H = (∇u, ∇Φ)Ω + σ(∇Γu, ∇ΓΦ)Γ + (f(u1 + v1) − f(u2 + v2), Φ)Ω

+(f(u1 − v1) − f(u2 − v2), Φ)Ω + (g(u1 + v1) − g(u2 + v2), Φ)Γ
+(g(u1 − v1) − g(u2 − v2), Φ)Γ,

(vt, φ)H + (∇v, ∇φ) + κ(∇Γv, ∇Γφ)Γ + α(v, φ)Ω
= −(f(u1 + v1) − f(u2 + v2), φ)Ω + (f(u1 − v1) − f(u2 − v2), φ)Ω

−(g(u1 + v1) − g(u2 + v2), φ)Γ + (g(u1 − v1) − g(u2 − v2), φ)Γ.

Taking Ψ = A−1
δ u, Φ = u and φ = v in (28) and summing the resulting equa-

tions, in view of Definition 5.1, we obtain
1
2

d

dt

{
|u|2−1,H + ∥v∥2

H

}
+ ∥∇u∥2

Ω + σ∥∇Γu∥2
Γ + ∥∇v∥2

Ω

+ κ∥∇Γv∥2
Γ + α∥v∥2

Ω

+ (f(u1 + v1) − f(u2 + v2), u + v)Ω

+ (f(u1 − v1) − f(u2 − v2), u − v)Ω + (g(u1 + v1) − g(u2 + v2), u + v)Γ

+ (g(u1 − v1) − g(u2 − v2), u − v)Γ = 0.

(29)
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Let p = u1 + v1, q = u2 + v2, h = u1 − v1 and l = u2 − v2.We have

(30)

(f(u1 + v1) − f(u2 + v2), u + v)Ω = (f(p) − f(q), p − q)Ω

= (f ′(ξ)(p − q), p − q)Ω

≥ −Cf ∥p − q∥2
Ω

≥ −Cf ∥u + v∥2
Ω,

and

(31) (f(u1 − v1) − f(u2 − v2), u − v)Ω = (f(h) − f(l), h − l)Ω > −Cf ∥u − v∥2
Ω.

Similarly, we obtain

(32) (g(u1 + v1) − g(u2 + v2), u + v)Γ > −Cg∥u + v∥2
Γ,

and

(33) (g(u1 − v1) − g(u2 − v2), u − v)Ω > −Cg∥u − v∥2
Γ.

Here, we have used the fact that the dissipative property (4) imply the existence of
some positive constant Cf > 0 and Cg > 0 such that

(34) f ′(s) > −Cf , g′(s) > −Cg ∀s ∈ R.

Therefore, using the previous inequalities, equation (29) yields
1
2

d

dt

{
|u|2−1,H + ∥v∥2

H

}
+ ∥∇u∥2

Ω + σ∥∇Γu∥2
Γ + ∥∇v∥2

Ω + κ∥∇Γv∥2
Γ + α∥v∥2

Ω

6 Cf (∥u + v∥2
Ω + ∥u − v∥2

Ω) + Cg(∥u + v∥2
Γ + ∥u − v∥2

Γ)
6 Cf (∥u∥2

Ω + ∥v∥2
Ω) + Cg(∥u∥2

Γ + ∥v∥2
Γ)

6 2 max(Cf , Cg)(∥u∥2
H + ∥v∥2

H).

(35)

Employing the interpolation inequality

∥u∥2
H 6 c |u|−1,H∥∇u∥H 6 ε∥∇u∥2

H + c|u|2−1,H ,

we deduce that
d

dt

{
|u|2−1,H + ∥v∥2

H

}
+ ∥∇u∥2

Ω + σ∥∇Γu∥2
Γ + ∥∇v∥2

Ω + κ∥∇Γv∥2
Γ + α∥v∥2

Ω

6 c(|u|2−1,H + ∥v∥2
H).

(36)

It finally follows from Gronwall’s lemma that

(37) |u(t)|2−1,H + ∥v(t)∥2
H 6 ec′t(|u0|2−1,H + ∥v0∥2

H).

Hence the uniqueness of (u, µ, v) follows. �

6. Error estimates for the space semidicrete scheme

We are now ready to derive error estimates on a finite time interval [0, T ], T > 0.
But first, we have the following standard approximation results (see also [6]),

(38) ∀ρ ∈ V2, ∥ρ − Ihρ∥Ω + h|ρ − Ihρ|1,Ω 6 Ch2|ρ|2,Ω,

(39) ∀φ ∈ H2
per(Γ), ∥φ − Ihφ∥Γ + h|φ − Ihφ|1,Γ 6 Ch2|φ|2,Γ,

where C is a strictly positive constant which depends only on the family Ωh, |ρ|m,Ω
and |ρ|m,Γ are the seminorms associated with respectively the Hm

p (Ω) and Hm
per(Γ)

norms, for m ∈ N∗.
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Moreover, since the family {Ωh}h>0 is quasiuniform, we have the inverse esti-
mates (see for instance [12]):
(40) ∀ωh ∈ W h, ∥ωh∥C0(Ω̄) 6 Ch−d/2∥ωh∥Ω,

where d = 2 or 3 is the dimension of the space Ω.
In order to estimate the errors uh − u, µh − µ and vh − v, we write, following a

standard approach (see for instance [7, 8, 11, 14, 23]):
uh(t) − u(t) = θu(t) + wu(t) with θu = uh − ũh, wu = ũh − u,

µh(t) − µ(t) = θµ(t) + wµ(t) with θµ = µh − µ̃h, wµ = µ̃h − µ,

vh(t) − v(t) = θv(t) + wv(t) with θv = vh − ṽh, wv = ṽh − v,

(41)

with ũh, µ̃h, ṽh the elliptic projections of u, µ, v in W h, defined by

(42)


(∇ũh, ∇Φ)Ω + σ(∇Γũh, ∇ΓΦ)Γ = (∇u, ∇Φ)Ω + σ(∇Γu, ∇ΓΦ)Γ,
(∇µ̃h, ∇Φ)Ω + δ(∇Γµ̃h, ∇ΓΦ)Γ = (∇µ, ∇Φ)Ω + δ(∇Γµ, ∇ΓΦ)Γ,
(∇ṽh, ∇Φ)Ω + κ(∇Γṽh, ∇ΓΦ)Γ + α(ṽh, Φ)Ω

= (∇v, ∇Φ)Ω + κ(∇Γv, ∇ΓΦ)Γ + α(v, Φ)Ω,
(µ̃h, 1)H = (µ, 1)H ,

for all Φ ∈ W h.
We first start by estimating the error between the elliptic projections ũh, µ̃h, ṽh

and the projected quantities (u, µ, v). Thus,
Lemma 6.1. Given u, µ, v ∈ V2, the functions ũh, µ̃h, ṽh defined by (42) satisfy
the following inequalities:

∥ũh − u∥H + h|ũh − u|1,W 6 ch2(|u|2,Ω + |u|2,Γ),

∥µ̃h − µ∥H + h|µ̃h − µ|1,W 6 ch2(|µ|2,Ω + |u|2,Γ),

∥ṽh − v∥H + h|ṽh − v|1,W 6 ch2(|v|2,Ω + |v|2,Γ),
(43)

where c is a positive constant independent of h.
Proof. The proof of this result classical and follows closely the same arguments as
in [7, 8, 11], we thus omit it.

�
Definition 6.1. Let us define the operator T h : Ḣ → Ẇ h, f 7→ T hf , where T hf
is the unique solution of the problem
(44) (∇T hf, ∇χh)Ω + δ(∇ΓT hf, ∇Γχh)Γ = (f, χh)H , ∀χh ∈ Ẇ h.

We also introduce the discrete negative seminorm:

|f |−1,h = (T hf, f)1/2 =
(
∥∇T hf∥2

Ω + δ∥∇ΓT hf∥2
Γ
)1/2

, ∀f ∈ Ḣ.

We remark that (44) is still valid for χh ∈ W h, thanks to the fact that f ∈ Ḣ.
Concerning the operator T h we have the following result (see [7] for details on

the proof):

Lemma 6.2. The operator T h is self-adjoint, positive, semi-definite on Ḣ. More-
over, the following interpolation inequality holds, for all ρh ∈ Ẇ h,
(45) ∥ρh∥2

H 6 c|ρh|−1,h∥ρh∥1,W ∀ρh ∈ Ẇ h.

and
(46) |f |−1,h 6 c∥f∥H ∀f ∈ Ḣ,

where c is a positive constant independent of h.
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We have now all the tools in order to estimate θu = uh − ũh, θµ = µh − µ̃h and
θv = vh − ṽh. Using (10), (13)2 and (42)1, we obtain that θu = uh − ũh satisfies
the following equation:

(∇θu, ∇Φ)Ω + σ(∇Γθu, ∇ΓΦ)Γ + (f(uh + vh) − f(u + v), Φ)Ω

+ (f(uh − vh) − f(u − v), Φ)Ω + (g(uh + vh) − g(u + v), Φ)Γ

+ (g(uh − vh) − g(u − v), Φ)Γ − (θµ, Φ)H = (wµ, Φ)H ,

(47)

for all Φ ∈ W h.
From (10)1, (13)1 and (42)2, we get

(48) (θu
t , Ψ)H + (∇θµ, ∇Ψ)Ω + δ(∇Γθµ, ∇ΓΨ)Γ = −(wu

t , Ψ)H , Ψ ∈ W h.

Taking Ψ = 1 in (48) we obtain

(49) m(θu
t (t)) = −m(wu

t (t)) ∀t > 0.

From (13)3 and (42)3, we also get that θv = vh − ṽh satisfies the following
equation

(θv
t , φ)H + (∇θv, ∇φ)Ω + κ(∇Γθv, ∇Γφ)Γ + α(θv, φ)Ω = −(wv

t , φ)H

−(f(uh + vh) − f(u + v), φ)Ω + (f(uh − vh) − f(u − v), φ)Ω

−(g(uh + vh) − g(u + v), φ)Γ + (g(uh − vh) − g(u − v), φ)Γ.

(50)

Appropriate estimates on (θu, θµ, θv) will allow us to prove the following result:

Lemma 6.3. Let (u, µ, v) be a solution of the continuous problem (10) supposed
here to be regular enough and (uh, µh, vh) a solution of (13). Assume that

(51) sup
t∈[0,T ]

∥u(t)∥C0(Ω̄) 6 R, sup
t∈[0,T ]

∥ut(t)∥C0(Ω̄) 6 R, ∥uh(0)∥C0(Ω̄) < R

and

(52) sup
t∈[0,T ]

∥v(t)∥C0(Ω̄) 6 R, sup
t∈[0,T ]

∥vt(t)∥C0(Ω̄) 6 R, ∥vh(0)∥C0(Ω̄) < R,

for some constant R < +∞ and let T h ∈ (0, T ] be the maximal time such that
∥uh(t)∥L∞(Ω) 6 R and ∥vh(t)∥L∞(Ω) 6 R for all t ∈ [0, T h]. Then, for all t ∈ [0, T h]

N (t) +
∫ t

0

{
∥∇θu

t ∥2
Ω + σ∥∇Γθu

t ∥2
Γ + ∥∇θµ∥2

Ω + δ∥∇Γθµ∥2
Γ

+ ∥θv
t ∥2

H + ∥∇θv
t ∥2

Ω + κ∥∇Γθv
t ∥2

Γ + α∥θv
t ∥2

Ω

}
ds

6 N (0) + c

∫ t

0

{
∥wu∥2

H + ∥wv∥2
H + ∥wu

t ∥2
H + ∥wv

t ∥2
H

+ ∥wu
tt∥2

H + ∥wv
tt∥2

H + ∥wµ∥2
H + ∥wµ

t ∥2
H

}
ds,

(53)

where

N (t) =|θu
t − m(θu

t )|2−1,h + ∥∇θu∥2
Ω + σ∥∇Γθu∥2

Γ + ∥∇θv∥2
Ω

+ κ∥∇Γθv∥2
Γ + α∥θv∥2

Ω + ∥θv
t ∥2

H .(54)

Furthermore,

(55) |(θµ, 1)| 6 C(N (t)1/2 + ∥wu∥2
H + ∥wv∥2

H), ∀t ∈ [0, T h].
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Proof. Testing (47) by Φ = θu
t and (48) by Ψ = θµ, we get

1
2

d

dt
{∥∇θu∥2

Ω + σ∥∇Γθu∥2
Γ} + ∥∇θµ∥2

Ω + δ∥∇Γθµ∥2
Γ + (f(uh + vh) − f(u + v), θu

t )Ω

+ (f(uh − vh) − f(u − v), θh
t )Ω + (g(uh + vh) − g(u + v), θu

t )Γ

+ (g(uh − vh) − g(u − v), θh
t )Γ = −(wu

t , θµ)H + (wµ, θu
t )H .

(56)

We have the following estimates on the nonlinear terms f and g:

(57)



∥f(uh + vh) − f(u + v)∥Ω 6 Lf ∥(uh − u) + (vh − v)∥Ω
6 Lf (∥uh − u∥Ω + ∥vh − v∥Ω),

∥f(uh − vh) − f(u − v)∥Ω 6 Lf ∥(uh − u) − (vh − v)∥Ω
6 Lf (∥uh − u∥Ω + ∥vh − v∥Ω),

∥g(uh + vh) − g(u + v)∥Γ 6 Lg∥(uh − u) + (vh − v)∥Γ
6 Lg(∥uh − u∥Γ + ∥vh − v∥Γ),

∥g(uh − vh) − g(u − v)∥Γ 6 Lg∥(uh − u) − (vh − v)∥Γ
6 Lg(∥uh − u∥Γ + ∥vh − v∥Γ),

for all t ∈ [0, T h], where Lf and Lg are respectively the Lipschitz constant of f and
g on [−R, R].

Combining (56) and (57), we get
1
2

d

dt
{∥∇θu∥2

Ω + σ∥∇Γθu∥2
Γ} + ∥∇θµ∥2

Ω + δ∥∇Γθµ∥2
Γ

6Lf (∥θu∥Ω + ∥wu∥Ω + ∥θv∥Ω + ∥wv∥Ω) ∥θu
t ∥Ω

+ Lg (∥θu∥Γ + ∥wu∥Γ + ∥θv∥Γ + ∥wv∥Γ) ∥θu
t ∥Γ

+ ∥wu
t ∥H∥θµ∥H + ∥wµ∥H∥θu

t ∥H ,

(58)

which further implies
1
2

d

dt
{∥∇θu∥2

Ω + σ∥∇Γθu∥2
Γ} + ∥∇θµ∥2

Ω + δ∥∇Γθµ∥2
Γ

6c (∥θu∥H∥θu
t ∥H + ∥wu∥H∥θu

t ∥H + ∥θv∥H∥θu
t ∥H + ∥wv∥H∥θu

t ∥H)
+ ∥wu

t ∥H∥θµ∥H + ∥wµ∥H∥θu
t ∥H .

(59)

The mass of θµ is estimated by testing (47) by 1 and using (57) and (42)4:

(60) |(θµ, 1)H | 6 c(∥θu∥H + ∥wu∥H + ∥θv∥H + ∥wv∥H),

and by the Poincaré inequality (8), we obtain

(61) ∥θµ∥H 6 c(∥∇θµ∥2
Ω + δ∥∇Γθµ∥2

Γ) 1
2 + c|(θµ, 1)H |.

From (59) and (61), we finally get

1
2

d

dt
{∥∇θu∥2

Ω + σ∥∇Γθu∥2
Γ} + 1

2
∥∇θµ∥2

Ω + δ

2
∥∇Γθµ∥2

Γ

6 c(∥θu∥2
H + ∥θv∥2

H + ∥θu
t ∥2

H + ∥wu∥2
H + ∥wv∥2

H + ∥wu
t ∥2

H + ∥wµ∥2
H).

(62)

In (62) we need an estimate on ∥θu
t ∥H . Differentiating (47) and (48) with respect

to time, we get

(63) (θu
tt, Ψ)H + (∇θµ

t , ∇Ψ)Ω + δ(∇Γθµ
t , ∇ΓΨ)Γ + (wu

tt, Ψ)H = 0, ∀Ψ ∈ W h
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and

(∇θu
t , ∇Φ)Ω + σ(∇Γθu

t , ∇ΓΦ)Γ + (f ′(uh + vh)(uh
t + vh

t ) − f ′(u + v)(ut + vt), Φ)Ω

− (θµ
t , Φ) + (f ′(uh − vh)(uh

t + vh
t ) − f ′(u − v)(ut − vt), Φ)Ω

+ (g′(uh + vh)(uh
t + vh

t ) − g′(u + v)(ut + vt), Φ)Γ

+ (g′(uh − vh)(uh
t + vh

t ) − g′(u − v)(ut − vt), Φ)Γ = (wµ
t , Φ)H , ∀Φ ∈ W h.

(64)

Testing (63) by Ψ = T h(θu
t − m(θu

t )) and using (44), we get

(θu
tt−m(θu

tt), T h(θu
t − m(θu

t )))H + (m(θu
tt), T h(θu

t − m(θu
t )))H

+ (θu
t − m(θu

t ), θµ
t )H = −(wu

tt, T h(θu
t − m(θu

t )))H .
(65)

Since m(wu
tt) = −m(θu

tt), we obtain

(66) 1
2

d

dt
|θu

t −m(θu
t )|2−1,h+(θu

t −m(θu
t ), θµ

t )H = −(wu
tt−m(wu

tt), T h(θu
t −m(θu

t )))H .

Testing (64) by Φ = θu
t − m(θu

t ), we have

∥∇θu
t ∥2

Ω + σ∥∇Γθu
t ∥2

Γ + (f ′(uh + vh)(uh
t + vh

t ) − f ′(u + v)(ut + vt), θu
t − m(θu

t ))Ω

− (θµ
t , θu

t − m(θu
t ))H + (f ′(uh − vh)(uh

t + vh
t ) − f ′(u − v)(ut − vt), θu

t − m(θu
t ))Ω

+ (g′(uh + vh)(uh
t + vh

t ) − g′(u + v)(ut + vt), θu
t − m(θu

t ))Γ

+ (g′(uh − vh)(uh
t + vh

t ) − g′(u − v)(ut − vt), θu
t − m(θu

t ))Γ

= (wµ
t , θu

t − m(θu
t ))H .

(67)

Since
f ′(uh + vh)(uh

t + vh
t ) − f ′(u + v)(ut + vt)

=f ′(uh + vh)(uh
t − ut) + f ′(uh + vh)(vh

t − vt)

+ (f ′(uh + vh) − f ′(u + v))(ut + vt),
the following inequality holds

|(f ′(uh + vh)(uh
t + vh

t ) − f ′(u + v)(ut + vt), θu
t − m(θu

t ))Ω|
6 sup

[−R,R]
|f ′|∥uh

t − ut∥Ω∥θu
t − m(θu

t )∥Ω + sup
[−R,R]

|f ′|∥vh
t − vt∥Ω∥θu

t − m(θu
t )∥Ω

+ 2Lf ′R(∥uh − u∥Ω + ∥vh − v∥Ω)∥θu
t − m(θu

t )∥Ω

(68)

where Lf ′ is the Lipschitz constant of f ′ on [−R, R] and we argue similarly for the
second term in (67) containing f ′ as well as for the term g′.

Using these estimates on the terms in f ′ and g′ from (67), we obtain

∥∇θu
t ∥2

Ω + σ∥∇Γθu
t ∥2

Γ − (θµ
t , θu

t − m(θu
t ))H

6 sup
[−R,R]

|f ′|∥uh
t − ut∥Ω∥θu

t − m(θu
t )∥Ω + sup

[−R,R]
|f ′|∥vh

t − vt∥Ω∥θu
t − m(θu

t )∥Ω

+ Lf ′R(∥uh − u∥Ω + ∥vh − v∥Ω)∥θu
t − m(θu

t )∥Ω

+ sup
[−R,R]

|g′|∥uh
t − ut∥Γ∥θu

t − m(θu
t )∥Γ + sup

[−R,R]
|g′|∥vh

t − vt∥Γ∥θu
t − m(θu

t )∥Γ

+ Lg′R(∥uh − u∥Γ + ∥vh − v∥Γ)∥θu
t − m(θu

t )∥Γ + |(wµ
t , θu

t − m(θu
t ))H |,

(69)
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which combined to (66) leads to:

1
2

d

dt
|θu

t − m(θu
t )|2−1,h + ∥∇θu

t ∥2
Ω + σ∥∇Γθu

t ∥2
Γ

6|(wu
tt − m(wu

tt), T h(θu
t − m(θu

t )))H | + |(wµ
t , θu

t − m(θu
t ))H |

+ c
(
∥uh

t − ut∥Ω + ∥vh
t − vt∥Ω + ∥uh − u∥Ω + ∥vh − v∥Ω

)
∥θu

t − m(θu
t )∥Ω

+ c
(
∥uh

t − ut∥Γ + ∥vh
t − vt∥Γ + ∥uh − u∥Γ + ∥vh − v∥Γ

)
∥θu

t − m(θu
t )∥Γ,

(70)

where the constant c depends on R, Lf ′ and Lg′ . Using m(wu
t ) = −m(θu

t ), we can
bound each term from the right hand side of (70) and finally obtain:

1
2

d

dt
|θu

t − m(θu
t )|2−1,h + ∥∇θu

t ∥2
Ω + σ∥∇Γθu

t ∥2
Γ

6 c(|wu
tt − m(wu

tt)|2−1,h + |θu
t − m(θu

t )|2−1,h + ∥θu
t − m(θu

t )∥2
H)

+ c(∥θu∥2
H + ∥θv∥2

H + ∥θv
t ∥2

H + ∥wu∥2
H + ∥wu

t ∥2
H + ∥wv∥2

H + ∥wv
t ∥2

H + ∥wµ
t ∥2

H).

(71)

Thanks to (45) and (46), we find

1
2

d

dt
|θu

t − m(θu
t )|2−1,h + ∥∇θu

t ∥2
Ω + σ∥∇Γθu

t ∥2
Γ 6 c|θu

t − m(θu
t )|2−1,h

+ c(∥θu∥2
H + ∥θv∥2

H + ∥θv
t ∥2

H + ∥wu∥2
H

+ ∥wu
t ∥2

H + ∥wv∥2
H + ∥wv

t ∥2
H + ∥wµ

t ∥2
H + ∥wu

tt∥2
H).

(72)

Summing (62) and (72) and using the generalized Poincaré inequality (8), we
have:

d

dt

{
|θu

t − m(θu
t )|2−1,h + ∥∇θu∥2

Ω + σ∥∇Γθu∥2
Γ
}

+ 1
2

∥∇θu
t ∥2

Ω + σ

2
∥∇Γθu

t ∥2
Γ + ∥∇θµ∥2

Ω + δ∥∇Γθµ∥2
Γ

6 c(|θu
t − m(θu

t )|2−1,h + ∥∇θu∥2
Ω + σ∥∇Γθu∥2

Γ) + c(∥θv∥2
H + ∥θv

t ∥2
H)

+ c(∥wu∥2
H + ∥wu

t ∥2
H + ∥wv∥2

H + ∥wv
t ∥2

H + ∥wµ∥2
H + ∥wµ

t ∥2
H + ∥wu

tt∥2
H).

(73)

Taking φ = θv
t in (50) we get:

1
2

d

dt
{∥∇θv∥2

Ω + κ∥∇Γθv∥2
Γ + α∥θv∥2

Ω} + ∥θv
t ∥2

H = −(wv
t , θv

t )H

− (f(uh + vh) − f(u + v), θv
t )Ω + (f(uh − vh) − f(u − v), θv

t )Ω

− (g(uh + vh) − g(u + v), θv
t )Γ + (g(uh − vh) − g(u − v), θv

t )Γ.

(74)

Using (57), we obtain

d

dt
{∥∇θv∥2

Ω + κ∥∇Γθv∥2
Γ + α∥θv∥2

Ω} + ∥θv
t ∥2

H

6c(∥θu∥2
H + ∥θv∥2

H) + c(∥wu∥2
H + ∥wv∥2

H + ∥wv
t ∥2

H).(75)
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Now, we differentiate (50) with respect to time. We get
(θv

tt,φ)H + (∇θv
t , ∇φ)Ω + κ(∇Γθv

t , ∇Γφ)Γ + α(θv
t , φ)Ω

= −(wv
tt, φ)H − (f ′(uh + vh)(uh

t + vh
t ) − f ′(u + v)(ut + vt), φ)Ω

+ (f ′(uh − vh)(uh
t − vh

t ) − f ′(u − v)(ut − vt), φ)Ω

− (g′(uh + vh)(uh
t + vh

t ) − g′(u + v)(ut + vt), φ)Γ

+ (g′(uh − vh)(uh
t − vh

t ) − g′(u − v)(ut − vt), φ)Γ.

(76)

We take the test function φ = θv
t in (76) and obtain

1
2

d

dt
∥θv

t ∥2
H + ∥∇θv

t ∥2
Ω + κ∥∇Γθv

t ∥2
Γ + α∥θv

t ∥2
Ω = −(wv

tt, θv
t )H

− (f ′(uh + vh)(uh
t + vh

t ) − f ′(u + v)(ut + vt), θv
t )Ω

+ (f ′(uh − vh)(uh
t − vh

t ) − f ′(u − v)(ut − vt), θv
t )Ω

− (g′(uh + vh)(uh
t + vh

t ) − g′(u + v)(ut + vt), θv
t )Γ

+ (g′(uh − vh)(uh
t − vh

t ) − g′(u − v)(ut − vt), θv
t )Γ.

(77)

Repeating the same type of computations as for (68), we obtain, using the fact that
m(θu) = −m(wu),

1
2

d

dt
∥θv

t ∥2
H + ∥∇θv

t ∥2
Ω + κ∥∇Γθv

t ∥2
Γ + α∥θv

t ∥2
Ω

6c(∥θu∥2 + ∥θv∥2 + ∥θu
t ∥2 + ∥θv

t ∥2)
+ c(∥wu∥2

H + ∥wv∥2
H + ∥wu

t ∥2
H + ∥wv

t ∥2
H + ∥wv

tt∥2
H),

(78)

Combining (73), (75) and (78), since m(θu
t ) = −m(wu

t ) and using the Poincaré
inequality, we obtain:

d

dt

{
|θu

t − m(θu
t )|2−1,h + ∥∇θu∥2

Ω + σ∥∇Γθu∥2
Γ + ∥∇θv∥2

Ω

+κ∥∇Γθv∥2
Γ + α∥θv∥2

Ω + ∥θv
t ∥2

H

}
+ 1

2
∥∇θu

t ∥2
Ω + σ

2
∥∇Γθu

t ∥2
Γ + ∥∇θµ∥2

Ω + δ∥∇Γθµ∥2
Γ

+ ∥θv
t ∥2

H + ∥∇θv
t ∥2

Ω + κ∥∇Γθv
t ∥2

Γ + α∥θv
t ∥2

Ω

6 c(|θu
t − m(θu

t )|2−1,h + ∥∇θu∥2
Ω + σ∥∇Γθu∥2

Γ + ∥∇θv∥2
Ω

+ κ∥∇Γθv∥2
Γ + α∥θv∥2

Ω + ∥θv
t ∥2

H)
+ c(∥wu∥2

H + ∥wv∥2
H + ∥wu

t ∥2
H + ∥wv

t ∥2
H

+ ∥wu
tt∥2

H + ∥wv
tt∥2

H + ∥wµ∥2
H + ∥wµ

t ∥2
H).

(79)

Applying the Gronwall lemma to (79) and using (54), we derive (53) and (55)
follows from the Generalized Poincaré inequality.

�

Theorem 6.1. Let (u, µ, v) be the solution of (10) with u(0) = u0 and v(0) = v0
such that
(80) u, ut, utt, v, vt, vtt, µ, µt ∈ L2(0, T ; V2)
and let (uh, µh, vh) be the solution of the discrete problem (13) with uh(0) = uh

0 and
vh(0) = vh

0 . If
(81) θu(0) = 0, θµ(0) = 0 and θv(0) = 0,
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then the following error estimates hold, for h small enough

sup
[0,T ]

(∥uh − u∥H + |uh
t − ut|−1,h + ∥vh − v∥H + ∥vh

t − vt∥H)

+

(∫ T

0
∥µh − µ∥2

H ds

) 1
2

6 ch2,

sup
[0,T ]

(
|uh − u|1,W + |vh − v|1,W

)
+

(∫ T

0
|uh

t − ut|21,W + |µh − µ|21,W + |vh
t − vt|21,W ds

) 1
2

6 ch,

with c a positive constant independent of h.

Proof. Applying Lemma 6.1 to u, v replaced by ut, vt or utt, vtt and µ replaced by
µt, we have the following estimates

∥wu∥H 6 ch2(|u|2,Ω + |u|2,Γ), ∥wµ∥H 6 ch2(|µ|2,Ω + |µ|2,Γ),
∥wv∥H 6 ch2(|v|2,Ω + |v|2,Γ), ∥wu

t ∥H 6 ch2(|ut|2,Ω + |ut|2,Γ),
∥wµ

t ∥H 6 ch2(|µt|2,Ω + |µt|2,Γ), ∥wv
t ∥H 6 ch2(|vt|2,Ω + |vt|2,Γ),

∥wu
tt∥H 6 ch2(|utt|2,Ω + |utt|2,Γ), ∥wv

tt∥H 6 ch2(|vtt|2,Ω + |vtt|2,Γ).

(82)

The regularity required on u, v implies that u, v ∈ C1([0, T ]; V2) and by the
Sobolev continuous injection H2(Ω) ⊂ C0(Ω̄), we have u, ut, v, vt ∈ C0([0, T ]; C0(Ω̄)).
Thus

(83) sup
t∈[0,T ]

∥u(t)∥C0(Ω̄) < R, sup
t∈[0,T ]

∥ut(t)∥C0(Ω̄) 6 R

and

(84) sup
t∈[0,T ]

∥v(t)∥C0(Ω̄) < R, sup
t∈[0,T ]

∥vt(t)∥C0(Ω̄) 6 R,

for some fixed R > 0. By a standard argument using the inverse estimate (13) (see
for instance the of Theorem 4.6 in [14]), we also have

∥uh(0) − u(0)∥C0(Ω̄) 6∥uh(0) − Ihu(0)∥C0(Ω̄) + ∥Ihu(0) − u(0)∥C0(Ω̄)

6ch− d
2

{
∥uh(0) − u(0)∥Ω + ∥u(0) − Ihu(0)∥Ω

}
+ chγ∥u(0)∥H2

p(Ω)

and
∥vh(0) − v(0)∥C0(Ω̄) 6∥vh(0) − Ihv(0)∥C0(Ω̄) + ∥Ihv(0) − v(0)∥C0(Ω̄)

6ch− d
2

{
∥vh(0) − v(0)∥Ω + ∥v(0) − Ihv(0)∥Ω

}
+ chγ∥v(0)∥H2

p(Ω),

with γ ∈ (0, 1) is such that H2
p (Ω) ⊂ Cγ(Ω̄). Thus by Lemma 6.1, (38) and (81),

(85) ∥uh(0) − u(0)∥C0(Ω̄) 6 ch2− d
2 (|u(0)|2,Ω + |u(0)|2,Γ) + chγ∥u(0)∥H2

p(Ω)

and

(86) ∥vh(0) − v(0)∥C0(Ω̄) 6 ch2− d
2 (|v(0)|2,Ω + |v(0)|2,Γ) + chγ∥v(0)∥H2

p(Ω),
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for h small enough,

∥uh(0)∥C0(Ω̄) < R and ∥vh(0)∥C0(Ω̄) < R

and we may apply Lemma 6.3.
It remains to prove that N (0) 6 ch4. We first notice that, by (54) and (81),

N (0) reduces to

N (0) = |θu
t (0) − m(θu

t (0))|2−1,h + ∥θv
t (0)∥2

H .

We also infer from (48) and (81) that

(θu
t (0), Ψ) = −(wu

t (0), Ψ) ∀Ψ ∈ W h,

or, equivalently,

(87) (θu
t − m(θu

t )(0), Ψ) = −(wu
t (0) + m(θu

t )(0), Ψ) ∀Ψ ∈ W h,

the terms θu
t (0) − m(θu

t )(0) and wu
t (0) + m(θu

t )(0) having null average by (49).
Then, choosing Ψ = T h(θu

t (0) − m(θu
t )(0)) in (87), we obtain

|θu
t (0) − m(θu

t )(0)|2−1,h 6 |wu
t (0) + m(θu

t )(0)|−1,h|θu
t (0) − m(θu

t )(0)|−1,h.

Hence, we deduce (using (46) and (82))

|θu
t (0) − m(θu

t )(0)|−1,h 6 |wu
t (0) + m(θu

t )(0)|−1,h 6 ∥wu
t (0) + m(wu

t )(0)∥H

6 c∥wu
t (0)∥H 6 ch2(|ut(0)|2,Ω + |ut(0)|2,Γ).

(88)

Now, we infer from (50) and (81) that

(89) (θv
t (0), φ) = −(wv

t (0), φ) ∀φ ∈ W h.

Taking φ = θv
t (0) in (89) and have

∥θv
t (0)∥2

H 6 ∥θv
t (0)∥H∥wv

t (0)∥H ,

which yields

(90) ∥θv
t (0)∥H 6 ∥wv

t (0)∥H 6 ch2(|vt(0)|2,Ω + |vt(0)|2,Γ)

and, finally, from (88) and (90), we get that N (0) 6 ch4 as claimed. Hence, we
conclude from (53) and (82) that N (t) 6 ch4 ∀t ∈ [0, T h].

We also deduce that

sup
t∈[0,T h]

{∥uh(t) − u(t)∥C0(Ω̄) + ∥vh(t) − v(t)∥C0(Ω̄)} → 0 as h → 0.

Thus, for h small enough, T h = T . The conclusion follows from Lemma 6.1, Lemma
6.3 and (61).

�

Remark 6.1. We remark here that the regularity required in (80) is a strong one,
this is due to the fact that we need strong regularity results in order to estimate the
term θu

t and θv
t . Taking into account the parabolic nature of system (1), we expect

that the solutions are regular enough provided that the initial data u0 and v0 are
also regular enough.
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7. Stability of the backward Euler scheme

In what follows, we study the backward Euler scheme applied to the space
semidiscrete problem (13). Considering the fixed time step function τ > 0 the
fully discrete problem reads as follows:

Let u0
h, v0

h ∈ W h. For n > 1, find (un
h, µn

h, vn
h) ∈ W h × W h × W h such that

(91)



1
τ

(un
h, Ψ)H + (∇µn

h, ∇Ψ)Ω + δ(∇Γµn
h, ∇ΓΨ)Γ = 1

τ
(un−1

h , Ψ)H ,

(µn
h, Φ)H = (∇un

h, ∇Φ)Ω + (f(un
h + vn

h) + f(un
h − vn

h), Φ)Ω
+σ(∇Γun

h, ∇ΓΦ)Γ + (g(un
h + vn

h) + g(un
h − vn

h), Φ)Γ,
1
τ

(vn
h , φ)H + α(vn

h , φ)Ω + (∇vn
h , ∇φ)Ω + κ(∇Γvn

h , ∇Γφ)Γ

= −(f(un
h + vn

h) − f(un
h − vn

h), φ)Ω

−(g(un
h + vn

h) − g(un
h − vn

h), φ)Γ + 1
τ

(vn−1
h , φ),

for all Ψ, Φ, φ ∈ W h.
In what follows, we prove the existence, uniqueness and stability of the sequence

(un
h, µn

h, vn
h)n constructed by (91).

Theorem 7.1. If u0
h, v0

h ∈ W h, there exists a sequence (un
h, µn

h, vn
h)n>1 generated

by (91) and satisfying the following discrete energy inequality

(92) J(un
h, vn

h) + 1
2τ

|un
h − un−1

h |2−1,h + 1
2τ

∥vn
h − vn−1

h ∥2
H 6 J(un−1

h , vn−1
h ), ∀n > 1.

Furthermore, if the time step τ is small enough, more exactly if

τ < min
{

1
max(Cf , Cg)2 ,

σ

δ max(Cf , Cg)2 ,
1

2 max(Cf , Cg)

}
,

then the sequence is uniquely defined.

Proof. Let us start by considering the following variational problem

(93) Eh(ρ, η) = inf
(ũ,ṽ)∈Kh

E(ũ, ṽ),

where
Eh(ρ, η) = J(ρ, η) + 1

2τ
|ρ − un−1

h |2−1,h + 1
2τ

∥η − vn−1
h ∥2

H

and

(94) Kh =
{

(ρ, η) ∈ W h × W h; (ρ − un−1
h , 1)H = 0

}
.

Using (2) and (5), we can bound from below Eh as follows:

Eh(ũ, ṽ) > 1
2

{
(min(1, σ)|u|21,W + min(1, κ)|v|21,W + 2c1(∥u∥2

H + ∥v∥2
H) + α∥v∥2

Ω

}
− c2(|Ω| + |Γ|), ∀(ũ, ṽ) ∈ W h × W h

(95)

and using the fact that Eh is continuous, we deduce that problem (93) has a solution
for (93) satisfies the following Euler-Lagrange equations

(∇u,∇φ)Ω + σ(∇Γ, ∇Γφ)Γ + (f(u + v) + f(u − v), φ)Ω

+ (g(u + v) + g(u − v), φ)Γ + 1
τ

(T h(u − un−1
h ), φ)H

− β(1, φ)H = 0, ∀φ ∈ W h,

(96)
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(∇v,∇Ψ)Ω + κ(∇Γv, ∇ΓΨ)Γ + α(v, Ψ)Ω + 1
τ

(v − vn−1
h , Ψ)H

+ (f(u + v) − f(u − v), Ψ)Ω + (g(u + v) − g(u − v), Ψ)Γ = 0, ∀Ψ ∈ W h,

(97)

where β is the Lagrange multiplier for the constraint (94).
We take u = un

h, µ = β − 1
τ

T h(un
h − un−1

h ) in (96) and v = vn
h in (98) and

obtain that (un
h, µn

h, vn
h) is a solution of problem (91). By construction Eh(un

h, vn
h) 6

Eh(un−1
h , vn−1

h ) = J(un−1
h , vn−1

h ) and we thus deduce the energy inequality (92).
It remains to prove the uniqueness of solutions to (91). Let us assume that

there exist two solutions (un
h,1, µn

h,1, vn
h,1) and (un

h,2, µn
h,2, vn

h,2) originating from the
same initial data (un−1

h , µn−1
h , vn−1

h ) and set zh = un
h,1 − un

h,2, ξh = µn
h,1 − µn

h,2 and
rh = vn

h,1 − vn
h,2. Then (zh, ξh, rh) is solution to the following problem

(98)

1
τ

(zh, Ψ)H + (∇ξh, ∇Ψ)Ω + δ(∇Γξh, ∇ΓΨ)Γ = 0,

(ξh, Φ)H = (∇zh, ∇Φ)Ω + σ(∇Γzh, ∇Φ)Γ + (f(un
h,1 + vn

h,1) − f(un
h,2 + vn

h,2), Φ)Ω
+(f(un

h,1 − vn
h,1) − f(un

h,2 − vn
h,2), Φ)Ω + (g(un

h,1 + vn
h,1) − g(un

h,2 + vn
h,2), Φ)Γ

+(g(un
h,1 − vn

h,1) − g(un
h,2 − vn

h,2), Φ)Γ,
1
τ

(rh, φ)H + α(rh, φ)Ω + (∇rh, ∇φ)Ω + κ(∇Γrh, ∇Γφ)Γ

= −(f(un
h,1 + vn

h,1) − f(un
h,2 + vn

h,2), φ)Ω
+(f(un

h,1 − vn
h,1) − f(un

h,2 − vn
h,2), φ)Ω − (g(un

h,1 + vn
h,1) − g(un

h,2 + vn
h,2), φ)Γ

+(g(un
h,1 − vn

h,1) − g(un
h,2 − vn

h,2), φ)Γ,

Setting Ψ = ξh and Φ = zh in (98) and subtracting the two resulting equations,
we get:

τ∥∇ξh∥2
Ω + τδ∥∇Γξh∥2

Γ + ∥∇zh∥2
Ω + σ∥∇Γzh∥2

Γ

= − (f(un
h,1 + vn

h,1) − f(un
h,2 + vn

h,2), zh)Ω − (f(un
h,1 − vn

h,1) − f(un
h,2 − vn

h,2), zh)Ω

− (g(un
h,1 + vn

h,1) − g(un
h,2 + vn

h,2), zh)Γ − (g(un
h,1 − vn

h,1) − g(un
h,2 − vn

h,2), zh)Γ.

(99)

Then, choosing φ = rh in (98), we obtain

1
τ

∥rh∥2
H + α∥rh∥2

Ω + ∥∇rh∥2
Ω + κ∥∇Γrh∥2

Γ

= − (f(un
h,1 + vn

h,1) − f(un
h,2 + vn

h,2), rh)Ω + (f(un
h,1 − vn

h,1) − f(un
h,2 − vn

h,2), rh)Ω

− (g(un
h,1 + vn

h,1) − g(un
h,2 + vn

h,2), rh)Γ + (g(un
h,1 − vn

h,1) − g(un
h,2 − vn

h,2), rh)Γ.

(100)

Summing (99)-(100), we get

τ∥∇ξh∥2
Ω + τδ∥∇Γξh∥2

Γ + ∥∇zh∥2
Ω + σ∥∇Γzh∥2

Γ

+ 1
τ

∥rh∥2
H + α∥rh∥2

Ω + ∥∇rh∥2
Ω + κ∥∇Γrh∥2

Γ

= −(f(un
h,1 + vn

h,1) − f(un
h,2 + vn

h,2), zh + rh)Ω

− (f(un
h,1 − vn

h,1) − f(un
h,2 − vn

h,2), zh + rh)Ω − (g(un
h,1 + vn

h,1)
− g(un

h,2 + vn
h,2), zh − rh)Γ − (g(un

h,1 − vn
h,1) − g(un

h,2 − vn
h,2), zh − rh)Γ

(101)

Thanks to (34), we have

(102) (f(un
h,1 + vn

h,1) − f(un
h,2 + vn

h,2), zh + rh)Ω > −Cf ∥zh + rh∥2
Ω,
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(103) (f(un
h,1 − vn

h,1) − f(un
h,2 − vn

h,2), zh + rh)Ω > −Cf ∥zh − rh∥2
Ω,

(104) (g(un
h,1 + vn

h,1) − g(un
h,2 + vn

h,2), zh − rh)Γ > −Cg∥zh + rh∥2
Γ,

and
(105) (g(un

h,1 − vn
h,1) − g(un

h,2 − vn
h,2), zh − rh)Γ > −Cg∥zh − rh∥2

Γ.

Thus, from (101)-(105), we obtain
τ∥∇ξh∥2

Ω + τδ∥∇Γξh∥2
Γ + ∥∇zh∥2

Ω + σ∥∇Γzh∥2
Γ

+ 1
τ

∥rh∥2
H + α∥rh∥2

Ω + ∥∇rh∥2
Ω + κ∥∇Γrh∥2

Γ

6Cf (∥zh + rh∥2
Ω + ∥zh − rh∥2

Ω) + Cg(∥zh + rh∥2
Γ + ∥zh − rh∥2

Γ)
6max(Cf , Cg)(∥zh + rh∥2

H + ∥zh − rh∥2
H)

62 max(Cf , Cg)(∥zh∥2
H + ∥rh∥2

H).

(106)

Setting Ψ = zh in equation (98), we obtain
∥zh∥2

H = − τδ(∇Γξh, ∇Γzh)Γ − τ(∇ξh, ∇zh)Ω

6τδ∥∇Γξh∥Γ∥∇Γzh∥Γ + τ∥∇ξh∥Ω∥∇zh∥Ω,

which implies that
2 max(Cf , Cg)∥zh∥2

H 6 τδ∥∇Γξh∥2
Γ + τδ max(Cf , Cg)2∥∇Γzh∥2

Γ

+τ∥∇ξh∥2
Ω + τ max(Cf , Cg)2∥∇zh∥2

Ω.

Returning to (107), we finally obtain(
1 − τ max(Cf , Cg)2) ∥∇zh∥2

Ω +
(
σ − τδ max(Cf , Cg)2) ∥∇Γzh∥2

Γ

+ ∥∇rh∥2
Ω + κ∥∇Γrh∥2

Γ +
(

1
τ

+ α − 2 max(Cf , Cg)
)

∥rh∥2
Ω

+
(

1
τ

− 2 max(Cf , Cg)
)

∥rh∥2
Γ 6 0.

Choosing the time step τ small enough, more exactly

τ < min
{

1
max(Cf , Cg)2 ,

σ

δ max(Cf , Cg)2 ,
1

2 max(Cf , Cg)

}
,

we obtain that zh = rh = 0 and, by (98) we also get that ξh = 0. �

We can also prove the following fully discrete version of Corollary 4.1:

Corollary 7.1. If f and g are real analytic, then for all (u0
h, v0

h) ∈ W h × W h, any
sequence (un

h, µn
h, vn

h)n>1 generated by (91) and which satisfies the energy estimate
(92) converges to a steady state (uh, µh, vh) as n → +∞.

Proof. The proof mimicks exactly the one made in [16, Theorem 3.1] or [8] for the
Cahn-Hilliard equation but for the reader’s convenience we give here the details.
The main idea of the proof is to use the Lojasiewicz gradient inequality (see also
[1]). Let (u0

h, v0
h) ∈ W h × W h. By (92), the sequence (J(un

h, vn
h))n is nonincreasing

and since it is bounded from below by 0, we have J(un
h, vn

h) → J∗ for some J∗ > 0.
We assume without loss of generality that J∗ = 0. By (5), J(u, v) → +∞ as
∥u∥H and ∥v∥H goes to +∞, so (un

h, vn
h)n is bounded. We deduce that there

exist (u∞
h , v∞

h ) ∈ W h × W h and a subsequence (un′

h , vn′

h )n′ of (un
h, vn

h)n such that
(un′

h , vn′

h )n′ −→ (u∞
h , v∞

h ) as n′ → +∞.
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Since, (un
h, 1)H = (u0

h, 1) for all n > 1 and eliminating µn
h from the scheme (91),

we can write problem (91) under the following form:

(107) Ċ
W n − W n−1

τ
= −∇Jh(W n),

where Ċ =
(

(Ȧ + δȦΓ)−1 0
0 IM

)
is a symmetric positive definite matrix of size

2M − 1 and

Jh(W ) = J

(
u1φ1 +

M∑
i=2

uiφi,
M∑

i=1
viφM−1+i

)
, ∀W = (U̇ , V ) ∈ RM−1 × RM .

This implies that

(108) λ1
∥W n − W n−1∥

τ
6 ∥∇Jh(W )∥ 6 λ2M−1

∥W n − W n−1∥
τ

,

where 0 6 λ1 < λ2M−1 < +∞ are respectively the smallest and the largest eigen-
values of Ċ.

Since f and g are real analytic, the function Jh is real analytic on R2M−1 and
it satisfies the Lojasiewicz inequality meaning that there exist ε > 0, ξ > 0 and
cL > 0 such that

(109) ∀W ∈ R2M−1, ∥W − W ∞∥ < ε =⇒ |Jh(W )|1−ξ 6 cL∥∇Jh(W )∥,

where here we have used that Jh(W ∞) = Jh(U̇∞, V ∞) = J(u∞
h , v∞

h ) = J∗ = 0,
and where ∥ · ∥ denotes the Euclidean norm in R2M−1.

Let us consider n such that ∥W n − W ∞∥ < ε. We distinguish between the
following two cases :
Case 1: Jh(W n) > Jh(W n−1)/2. Then

Jh(W n−1)ξ−Jh(W n)ξ =
∫ Jh(W n−1)

Jh(W n)
ξxξ−1 dx

case 1
> 2ξ−1ξJh(W n)ξ−1 [Jh(W n−1) − Jh(W n)

]
(92)
> 2ξ−2ch

∥W n − W n−1∥2

τJh(W n)1−ξ
,

where we used the equivalence of all norms on W h and more exactly the
existence of some positive constant ch > 0, independent of τ such that

(110) |u̇h|2−1,h + ∥vh∥2
H > ch∥u̇h∥2

H + ∥vh∥2
H , ∀u̇h ∈ Ẇ h, vh ∈ W h,

From (108) and (109), we obtain

(111) Jh(W n−1)ξ − Jh(W n)ξ > 2ξ−2ch

λ2M−1cL
∥W n − W n−1∥.

Case 2: Jh(W n) 6 Jh(W n−1)/2. Using (92) and (110), we have

∥W n − W n−1∥ 6
(

2τ

ch

)1/2 [
Jh(W n−1) − Jh(W n)

]1/2

case 2
6

(
1 − 1√

2

)1/2(2τ

ch

)1/2 [
Jh(W n−1)1/2 − Jh(W n)1/2

]
.
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Figure 1. u (left), v (middle) and µ (right), after 200 iterations
with hs = 0

Figure 2. Solution u after 329 (left), 568 (middle) and 967 (right)
iterations with hs = 0.1.

Thus, in both cases

∥W n − W n−1∥ 6 2ξ−2ch

λ2M−1cL

[
Jh(W n−1)ξ − Jh(W n)ξ

]
+
(

1 − 1√
2

)1/2(2τ

ch

)1/2 [
Jh(W n−1)1/2 − Jh(W n)1/2

]
Arguing as in the proof of [16, Theorem 2.4], we conclude from this inequality that
for N large enough

+∞∑
n=N+1

∥W n − W n−1∥ 6 2ξ−2ch

λ2M−1cL
Jh(W n)ξ +

(
1 − 1√

2

)1/2(2τ

ch

)1/2

Jh(W n)1/2

< +∞
This implies that, the whole sequence (W n)n converges to W ∞. Since µn

h, defined
in (91) is a continuous function of (un

h, vn
h) and (un−1

h , vn−1
h ), µn

h also has a limit
µ∞

h as n → +∞. Passing to the limit in (91), we can conclude that (un
h, µn

h, vn
h)

converges to a steady state (u∞
h , µ∞

h , v∞
h ). �

8. Numerical simulations

In this section we present some numerical simulations for the case when the
system is considered in a two dimensional slab. The software used is FreeFem++1.
The fully discrete scheme (91) requires at each time step the resolution of a nonlinear
system, done here with the use of a Newton algorithm. The domain considered is the
slab [0, 80] × [0, 40] and the triangulation Ωh is obtained by dividing the domain
into 200 × 100 identical rectangles, each rectangle being divided along the same
diagonal into two triangles. The nonlinearities are given by the functions:

f(u) = u3 − u and g(u) = gsu − hs, u ∈ R,

and for these numerical simulations we take gs = 3 and hs either 0 or 0.1.

1FreeFem++ is a software freely available at http://www.freefem.org//ff++.
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Figure 3. Solution v after 329 (left), 568 (middle) and 967 (right)
iterations with hs = 0.1.

Figure 4. Solution µ after 329 (left), 568 (middle) and 967 (right)
iterations with hs = 0.1.

Table 1. L2 error for u, v and µ with hs = 0.1.

δt error(u) error(v) error(µ)
16.45 0.0878458 0.01432 0.0401734
28.4 0.0619785 0.0110204 0.0195772
37.7 0.0525436 0.0121907 0.340819
43.75 0.0389784 0.00696255 0.00997087
47.8 0.0335856 0.00581545 0.00907754

The time step considered is τ = 0.05 and we take the parameters α = 4 and
δ = σ = κ = 1. We consider the initial conditions for u and v to be uniformly
distributed random fluctuations of amplitude ±0.01.

In Figure 1, we represent the solution u on the left-hand side, the solution v in the
middle and the solution µ on the right-hand side after 200 iterations with hs = 0.
The negative and the positive values of the solution are respectively represented in
white and black. Since in Figure 1 we considered the parameter hs = 0, we can see
that, compared with the behavior of the Cahn-Hilliard model endowed with similar
dynamic boundary conditions (see [7]), none of the components is preferentially
attracted by the walls, which is visible on the fact that both white and black zones
appear at the boundary. We also remark that away from the boundary, Figure 1
presents the same patterns. We notice that the choice of the boundary conditions
significantly modifies the behavior of the solution near the boundary.

In Figures 2, 3 and 4, we represent the solutions u, v and µ respectively after
329, 568 and 967 iterations in the case hs = 0.1. We see that one of the phases
is preferentially attracted by the walls. We can also remark that away from the
boundary, the patterns are the same for respectively u, v and µ. Also, we can see
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that we are close to the equilibrium for u, but that the convergence to equilibrium
for v, µ is much slower as far as the observed patterns are considered.

In Table 1, we give the L2-error between two consecutive iterates at several time
steps for u, v and µ with hs = 0.1.
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