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COMPARATIVE STUDIES ON MESH-FREE DEEP NEURAL

NETWORK APPROACH VERSUS FINITE ELEMENT METHOD

FOR SOLVING COUPLED NONLINEAR HYPERBOLIC/WAVE

EQUATIONS
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Abstract. In this paper, both the finite element method (FEM) and the mesh-free deep neural
network (DNN) approach are studied in a comparative fashion for solving two types of coupled
nonlinear hyperbolic/wave partial differential equations (PDEs) in a space of high dimension

Rd (d > 1), where the first PDE system to be studied is the coupled nonlinear Korteweg-De Vries
(KdV) equations modeling the solitary wave and waves on shallow water surfaces, and the second
PDE system is the coupled nonlinear Klein-Gordon (KG) equations modeling solitons as well as
solitary waves. A fully connected, feedforward, multi-layer, mesh-free DNN approach is devel-

oped for both coupled nonlinear PDEs by reformulating each PDE model as a least-squares (LS)
problem based upon DNN-approximated solutions and then optimizing the LS problem using a
(d+1)-dimensional space-time sample point (training) set. Mathematically, both coupled nonlin-
ear hyperbolic problems own significant differences in their respective PDE theories; numerically,

they are approximated by virtue of a fully connected, feedforward DNN structure in a uniform
fashion. As a contrast, a distinct and sophisticated FEM is developed for each coupled nonlinear
hyperbolic system, respectively, by means of the Galerkin approximation in space and the finite
difference scheme in time to account for different characteristics of each hyperbolic PDE system.

Overall, comparing with the subtly developed, problem-dependent FEM, the proposed mesh-free
DNN method can be uniformly developed for both coupled nonlinear hyperbolic systems with ease
and without a need of mesh generation, though, the FEM can produce a concrete convergence

order with respect to the mesh size and the time step size, and can even preserve the total ener-
gy for KG equations, whereas the DNN approach cannot show a definite convergence pattern in
terms of parameters of the adopted DNN structure but only a universal approximation property
indicated by a relatively small error that rarely changes in magnitude, let alone the dissipation

of DNN-approximated energy for KG equations. Both approaches have their respective pros and
cons, which are also validated in numerical experiments by comparing convergent accuracies of
the developed FEMs and approximation performances of the proposed mesh-free DNN method for
both hyperbolic/wave equations based upon different types of discretization parameters changing

in doubling, and specifically, comparing discrete energies obtained from both approaches for KG
equations.

Key words. Coupled hyperbolic/wave equations, Korteweg-De Vries (KdV) equations, Klein-
Gordon (KG) equations, deep neural network (DNN), finite element method (FEM), space-time

sample points (training) set, least-squares (LS), convergence accuracy, energy conservation.

1. Introduction

In this paper, we choose the following two types of coupled nonlinear hyperbol-
ic/wave partial differential equations (PDEs) as two model problems to be studied,
numerically: Korteweg-De Vries (KdV) equations and Klein-Gordon (KG) equa-
tions, both are coupled hyperbolic system defined in a space of high dimension
Rd (d > 1) and in a one-dimensional time interval [0, T ]. The KdV equation was
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first introduced in 1985 by Korteweg and de Vries for a (1+1)-dimensional case, lat-
er the (d+1)-dimensional cases of coupled KdV equations were developed to explain
more involved nonlinear phenomena [24, 39, 40, 46, 69, 51]. The KdV equation(s)
is a very important hyperbolic PDE model, both mathematically and practically,
for the description of small amplitude shallow-water waves with weakly nonlinear
restoring forces, long internal waves in a density-stratified ocean, ion acoustic waves
in a plasma, solitary waves on the intensity of light in optical fibers, acoustic waves
on a crystal lattice, and fluctuation phenomena in biological and physical systems
[9, 35, 64]. As for the second hyperbolic problem to be studied in this paper, KG
equations, plays a significant role in many scientific applications as well, such as
in studying solitons and condensed matter physics [6, 55, 8, 4, 1], in investigating
the interaction of solitons in a collisionless plasma [31, 42], and in examining the
recurrence of initial states and the nonlinear wave equations [15, 62, 61, 60, 45].

Both KdV and KG equations are targeted together in this paper because not
only their numerical studies are of great scientific significance and research interests
but also: (1) both of them fall into the same category of nonlinear hyperbolic/wave
problems, in general; (2) each one of them owns respective special properties in PDE
theories, in particular; (3) a stable, convergent and/or energy-preserving finite el-
ement method (FEM) for each PDE model is uneasy and subtle to be developed.
While a comprehensive numerical analysis for each one of these two PDE systems is
still a hot topic even now and somehow challenging [3, 67, 19, 33, 30, 34, 23, 11, 28],
in this paper we are dedicated to developing FEMs and recently emerging mesh-free,
deep neural network (DNN) approaches for both coupled nonlinear hyperbolic/wave
problems, respectively, to comparing numerical complexities and convergence prop-
erties of both FEM and DNN approach, and finally, to reaching a comparative
conclusion based on these two numerical approaches for two distinct problems that
belong to the same kind of PDEs, largely.

DNN has been demonstrated as a powerful tool to conquer the curse of dimen-
sionality [16, 18, 25, 63], and have been applied to solve PDEs, e.g., the deep BSDE
method [20, 27], the deep Galerkin method (DGM) [59], the physics-informed neu-
ral networks (PINN) [48, 44, 49, 32], the deep Ritz method (DRM) [21], the weak
adversarial networks (WAN) [68], and the deep Nitsche method (DNM) [38]. The
deep BSDE reformulates the time-dependent equations into stochastic optimiza-
tion problems. The DGM and the PINN train neural networks by minimizing the
mean squared error loss of the PDE residual, while the DRM trains networks by
minimizing the energy functional of the variational problem that is equivalent to
the targeted PDE. The WAN adopts the weak form of original PDEs and trains
the primary and adversarial network alternatively with the min-max weak form,
and, the DNM enhances the DRM with natural treatment of essential boundary
conditions. Recently, an additional neural network is trained to impose Dirichlet
boundary conditions [57].

In this paper, we employ a likelihood of the DGM and/or of the PINN approach-
es to solve both coupled nonlinear hyperbolic systems by adopting DNN functionals
to approximate unknown variables, reformulating each PDE model and its initial &
boundary conditions as a series of least-squares (LS) problems in the mean squared
error form, whose summation defines a total loss function, then minimizing this loss
function with a standard optimization algorithms such as the stochastic gradient
descent (SGD) method [53, 7, 43, 37, 54], the trust region method [13, 52, 65] or
the derivative-free method [50, 2, 66] based upon a (d+ 1)-dimensional space-time
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sample point (training) set. We will numerically illustrate that the mesh-free DNN-
approximated solutions can produce an acceptable accuracy, which however does
not actually show a clear convergence pattern with respect to the number of sample
points and the DNN’s structure (the number of neurons/hidden layers). This is un-
surprised since the approximation properties of DNN approach still remain an active
and open question. Mathematically, only a universal approximation theory exists
for the shallow neural networks [47], which leads to more recent convergence anal-
ysis work for DRM [70, 10, 58, 17, 41, 29], but still far from a satisfied convergence
theory for the DNN. Even so, the advantage of using the mesh-free DNN approach
circumvents the meshing procedure that especially remains as a challenging task
for solving high-dimensional problems with complex geometrical domains, greatly
reduces difficulties of the methodology development and computational costs that
traditional numerical methods (e.g., FEMs) usually have to confront, and makes a
real-time simulation/prediction possible, in practice.

In contrast to the uniformly developed mesh-free DNN approach, we will also
develop different FEMs for each presented coupled nonlinear hyperbolic system. It
is well known that developing a stable and convergent finite element approximation
to KdV equations is always subtle due to its highly hyperbolic property. As for the
system of KG equations, since it belongs to the Hamiltonian system, an energy-
conserved finite element discretization is crucial to preserve the total energy (the
sum of kinetic and potential energy) all the time. However, a generic FEM does
not usually fulfill this aim for KG equations, an energy-preserving FEM needs to
be delicately designed in order to conserve the total energy of KG equations during
the time-marching process. In this paper, we propose to develop a stable and con-
vergent FEM for the presented high-dimensional nonlinear system of coupled KdV
equations, and a particularly energy-preserving FEM for the presented coupled non-
linear KG equations in a stable and accurate fashion. Both FEMs can numerically
deliver optimal convergence rates for corresponding nonlinear hyperbolic system in
their respective energy norms.

Then, we come to a conclusion of the comparative study between two approach-
es for two hyperbolic/wave system, that is, both the DNN approach and the FEM
have their respective pros and cons in terms of the methodology complexity, the
development difficulty, the approximation accuracy, and/or the energy conserva-
tion, which are also validated in numerical experiments by comparing convergent
accuracies of the developed FEMs and approximation performances of the proposed
mesh-free DNN method for both hyperbolic/wave equations based upon different
types of discretization parameters varying in doubling, and specifically, comparing
discrete energies obtained from both approaches for KG equations.

The rest of this paper is organized as follows: In Section 2, we first introduce two
types of coupled system of nonlinear hyperbolic/wave equations: KdV equations
and KG equations. Then, we develop their specific finite element approximations,
respectively, in Section 3. Mesh-free DNN approaches are described, generally and
particularly, for each nonlinear hyperbolic problem in Section 4. Numerical exper-
iments and comparative studies are carried out for two presented hyperbolic/wave
problems by means of the developed FEMs and DNN approaches, respectively, in
Section 5.

In what follows, we use the standard notation for Sobolev spaces W l,p(Ψ) (0 ≤
l < ∞, 1 ≤ p ≤ ∞) and time-dependent Sobolev spaces Hm(0, T ;W l,p(Ψ)) (0 ≤
m <∞) (or Hm(W l,p(Ψ)) in abbreviation), and their associated norms defined in
the domain Ψ and within the time interval [0, T ]. For p = 2, W l,2(Ψ) = H l(Ψ), the
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standard L2 inner product (·, ·) is adopted, and ∥ · ∥s,Ψ = ∥ · ∥Hs(Ψ) for 0 ≤ s ≤ l,

where, when s = 0, H0(Ψ) coincides with L2(Ψ). In particular, if m = l =
0, p = 2, the time-dependent Sobolev space is denoted as L2(0, T ;L2(Ψ)), which is
abbreviated as L2(L2(Ψ)) and is equipped with the norm ∥ · ∥L2(L2(Ψ)).

2. Model Descriptions

In what follows, we introduce two coupled nonlinear hyperbolic/wave problems
to be studied in this paper, KdV equations and KG equations.

Korteweg-De Vries (KdV) equations: The (2 + 1)-dimensional coupled
system of nonlinear KdV equations is defined as follows:

(1)


ut + uxxx − 3uxv − 3uvx = f, (x, t) ∈ Ω× (0, T ],
ux − vy = 0, (x, t) ∈ Ω× (0, T ],
u(x, t) = g1, v(x, t) = g3, (x, t) ∈ ∂Ω× (0, T ],
uxx(x, t) = g2, (x, t) ∈ ∂Ω× (0, T ],
u(x, 0) = u0(x), x ∈ Ω,

where x = (x, y) ∈ Ω ⊂ R2. This system of KdV equations was first derived by
Boiti et al [5] and can also be considered as a model of an incompressible fluid [24]
where u is a component of the velocity.

Klein-Gordon (KG) equations: The coupled nonlinear KG (second-order
hyperbolic/wave) equations is described by the following system of PDEs:

(2)


utt − κ2∆u+ a1u+ b1u

3 + c1uv
2 = 0, (x, t) ∈ Ω× (0, T ],

vtt − κ2∆v + a2v + b2v
3 + c2u

2v = 0, (x, t) ∈ Ω× (0, T ],
u(x, t) = 0, v(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ],
u(x, 0) = ϕ1(x), v(x, 0) = ϕ2(x), x ∈ Ω,
ut(x, 0) = ψ1(x), vt(x, 0) = ψ2(x), x ∈ Ω,

where Ω ⊂ Rd (d = 2, 3), κ, ai, bi and ci (i = 1, 2) are all positive constants,
and bi and ci, (i = 1, 2) denote interaction constants, u(x, t) and v(x, t) represent
interacting relativistic fields of masses. This system, first proposed by Segal in [56],
describes the motion of charged mesons in a quantum/electromagnetic field.

We can reformulate (2) as the following unified form, equivalently [11]:

(3)


αutt −∇ · (β∇u) + ∂G

∂u (u, v) = 0, (x, t) ∈ Ω× (0, T ],
γvtt −∇ · (δ∇v) + ∂G

∂v (u, v) = 0, (x, t) ∈ Ω× (0, T ],
u(x, t) = 0, v(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ],
u(x, 0) = ϕ1(x), v(x, 0) = ϕ2(x), x ∈ Ω,
ut(x, 0) = ψ1(x), vt(x, 0) = ψ2(x), x ∈ Ω,

where,

(4) G(u, v) =
b1
4c1

u4 +
b2
4c2

v4 +
a1
2c1

u2 +
a2
2c2

v2 +
1

2
u2v2,

and α = 1/c1,β = κ2/c1, γ = 1/c2 and δ = κ2/c2.
It can be easily verified that the KG equations (3)-(4) preserve the following

total energy functional with respect to time:

(5) E(t) =
1

2

∫
Ω

[
α(ut)

2 + β(∇u)2 + γ(vt)
2 + δ(∇v)2 + 2G(u, v)

]
dx,

leading to [11, 28]

(6)
dE(t)

dt
= 0,
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i.e., the total energy E(t) is conserved as a constant, E(0), which is the initial
energy given by

(7) E(0) =
1

2

∫
Ω

[
α(ψ1)

2 + β(∇ϕ1)2 + γ(ψ2)
2 + δ(∇ϕ2)2 + 2G(ϕ1, ϕ2)

]
dx,

where the homogeneous Dirichlet boundary condition shown in (3) is necessary to
derive (6).

3. Finite element methods for two types of hyperbolic/wave problems

3.1. FEM for the coupled KdV equations. To develop an appropriate finite
element approximation to (1) that is convergent in an optimal fashion, we first try
a straight variational (weak) form for (1) that is directly derived from the governing
equations, i.e., find (u, v) ∈ H2

g1(Ω)×H1
g3(Ω) such that

(8)

{
(ut, ũ)− 3(uxv, ũ)− 3(uvx, ũ)− (uxx, ũx) = (f, ũ), ∀ũ ∈ H1

0 (Ω),
(ux, ṽ)− (vy, ṽ) = 0, ∀ṽ ∈ H1(Ω),

where Hj
gi(Ω) := {u ∈ Hj(Ω) : u|∂Ω = gi} for i = 1, 2, 3 and j = 1, 2, H1

0 (Ω) :=

{u ∈ H1(Ω) : u|∂Ω = 0}. However in our preliminary numerical trials, due to the
highly hyperbolic characteristics of the presented KdV equations, the finite element
discretization based upon the above direct weak form (8) cannot produce a stable
and convergent numerical result. In fact, the linear algebraic system derived from
the FEM lacks a dominant diagonal block for the finite element solution of the
variable v since both vt and vy are missing in (1), consequently, the mass matrix
block and the diffusion part of stiffness matrix block that are associated with v are
missing too in (8). In view of these numerical difficulties, we develop a new FEM
for the coupled KdV equations by starting with the following new weak form to
overcome flaws existing in (8), specifically.

First of all, we introduce an extra scalar-valued variable w = uxx to (1), and
reformulate (1)1 using three variables u, w and v. Then, we differentiate (1)2 with
respect to y, i.e., uxy = vyy that is subjecting to an extra boundary condition:
ux = vy on ∂Ω× (0, T ], which can actually lead to the original equation (1)2. Thus,
we can derive the following weak form for such a reformulated equivalent strong
form of (1): find (u,w, v) ∈ H1

g1(Ω)×H1
g2(Ω)×H1

g3(Ω) such that

(9)

 (ut, ũ) + 3(vu, ũx)− (w, ũx) = (f, ũ), ∀ũ ∈ H1
0 (Ω),

(w, w̃) + (ux, w̃x) = 0, ∀w̃ ∈ H1
0 (Ω),

(ux, ṽy)− (vy, ṽy) = 0, ∀ṽ ∈ H1
0 (Ω).

Let Th be a shape-regular simplicial decompositions of Ω with the mesh size h,
and introduce the following finite element spaces:

Wh := {u ∈ H1(Ω) : u|K ∈ P k(K),∀K ∈ Th},
Wh,gi := {u ∈Wh : u|∂Ω = gi}, i = 1, 2, 3,

W 0
h := {u ∈Wh : u|∂Ω = 0},

where P k represents the k-th degree piecewise polynomial defined in each element
K ∈ Th. Denote the temporal step size by ∆t, namely, for N ∈ Z+, let ∆t = T/N ,
tn = n∆t, un = u(tn). Then, we can define the following fully discrete finite
element approximation based upon the weak form (9) and the backward Euler
scheme. Given (unh, w

n
h , v

n
h) ∈ Wh,g1 × Wh,g2 × Wh,g3 , find (un+1

h , wn+1
h , vn+1

h ) ∈
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Wh,g1 ×Wh,g2 ×Wh,g3 for n = 0, 1, 2, · · · , N , such that

(10)


(
un+1
h −un

h

∆t , ũ) + 3(vn+1
h un+1

h , ũx)− (wn+1
h , ũx) = 0, ∀ũ ∈W 0

h ,
(wn+1

h , w̃) + (un+1
h,x , w̃x) = 0, ∀w̃ ∈W 0

h ,

(un+1
h,x , ṽy)− (vn+1

h,y , ṽy) = 0, ∀ṽ ∈W 0
h .

Noting that (10)1 is a nonlinear equation due to vn+1
h in the coefficient, we

employ Picard’s scheme to linearize the nonlinear finite element system (10), as
described in Algorithm 3.1.

Algorithm 3.1. The linearized finite element scheme via Picard’s iteration.

(1) Initialization of the time marching: set the time step n = 0 and u0h be the
interpolation of u0 on Th.

(2) Initialization of the nonlinear iteration: let (un+1,0
h , wn+1,0

h , vn+1,0
h ) = (unh,

wn
h , v

n
h) as the initial guess at the (n+ 1)-th time step (n ≥ 0).

(3) The linearized finite element method at the (m + 1)-th iteration step: for

m ≥ 0, find (un+1,m+1
h , wn+1,m+1

h , vn+1,m+1
h ) ∈Wh,g1 ×Wh,g2 ×Wh,g3 such

that
(11)

(
un+1,m+1
h −un

h

∆t , ũ) + 3(vn+1,m
h un+1,m+1

h , ũx)− (wn+1,m+1
h , ũx) = 0, ∀ũ ∈W 0

h ,

(wn+1,m+1
h , w̃) + (un+1,m+1

h,x , w̃x) = 0, ∀w̃ ∈W 0
h ,

(un+1,m+1
h,x , ṽy)− (vn+1,m+1

h,y , ṽy) = 0, ∀ṽ ∈W 0
h .

(4) Check the stopping criteria for the nonlinear iteration: for a given tolerance
ε, stop the iteration if

(12) ∥un+1,m+1
h −un+1,m

h ∥0+∥wn+1,m+1
h −wn+1,m

h ∥0+∥vn+1,m+1
h −vn+1,m

h ∥0 ≤ ε,

then set (un+1
h , wn+1

h , vn+1
h ) = (un+1,m+1

h , wn+1,m+1
h , vn+1,m+1

h ). Otherwise,
set m+ 1 to m, go back to Step 3 and continue the nonlinear iteration.

(5) Time marching: if n + 1 < N , then set n + 1 to n, go back to Step 2 and
continue the time marching. Otherwise, stop the entire computation.

Remark 3.1. In the above development of an optimally convergent FEM for the
presented KdV equations, we particularly introduce an extra variable w that equals
uxx in order to reduce the weak space to which the weak solution u belongs from
H2(Ω) down to H1(Ω), which is crucial to define a valid weak form with respect
to the weak solution u, further, a valid finite element discretization with respect to
the finite element solution uh, in an efficient and accurate manner. On the other
hand, to obtain a stable finite element approximation to the other variable v, we
reformulate the second equation of KdV system, ux = vy, to become uxy = vyy that
subjects to an extra boundary condition: ux = vy on the boundary. They lead to (9)2
and (9)3 in the weak form. and (10)2 and (10)3 in the finite element discretization,
where we particularly attain the inner product term (vy, ṽy) for the variable v that
can lead to a nonsingular, dominant diagonal block of sub-matrix that is associated
with the finite element solution vh, which results in a stable and optimal convergence
for vh even though it lacks a mass matrix that uh however holds.

We will rigorously conduct stability and convergence analyses of the FEM for
the presented KdV equations defined in (10) or (11) in our next paper rather than
here, so that we can focus on our true mission in this paper: a comparative study of
numerical performance between FEM and DNN for nonlinear hyperbolic equations,
where a solid convergence analysis for the DNN’s approximation is still missing
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even these days, so we omit the finite element analysis in this paper as well. But
numerical experiments in Section 5.1 will illustrate the optimal convergence rate of
the developed FEM for the presented KdV equations.

3.2. FEM for the coupled KG equations. It is well known that a straightfor-
ward finite element approximation to the second-order nonlinear wave equation such
as the presented system of KG equations (2), cannot produce a conservative energy

in a discrete manner if two nonlinear source terms, ∂G(u,v)
∂u and ∂G(u,v)

∂v , are directly
discretized in their original polynomial forms, i.e., without employing a first-order
difference scheme, even though we know that (2), or equivalently (3), belongs to the
Hamiltonian system and preserves the energy all the time on the continuous level
[45]. To preserve the discrete energy for nonlinear KG equations (2) at each time
step, it is crucial to treat the nonlinear source terms of (2) as partial derivatives
of another differentiable function G(u, v), then discretize ∂G

∂u and ∂G
∂v with proper

difference schemes of order one. In addition, the temporal discretizations for utt,
vtt as well as for diffusion terms also need to be appropriately defined. To that end,
two types of time difference methods, the three-level (leap-frog) method and the
two-level method, can be chosen to play the role of temporal discretization, where
utt and vtt are directly discretized by the second-order central difference scheme in
the three-level method, while in the two-level method they are reformulated as pt
and bt by introducing new variables p = ut, b = vt, and, are both discretized by
the first-order difference scheme.

A three-level energy-preserving finite element approximation to (3) is feasible
to be developed, which is partially verified in [45, 12], where a three-level energy-
preserving finite difference method is developed to preserve the induced two-level
discrete energy that involves two steps’ numerical solutions, and thus more post-
processing work are needed to find spatial and temporal derivatives of numerical
solutions in order to compute such a two-level discrete energy, let alone the extra
discrete initial values, u1h and v1h, need to be properly chosen in order not to lose
approximation accuracy. Therefore in this paper, we rather choose to develop a
two-level energy-preserving finite element approximation to (3) as initiated above,
by reformulating (3) in terms of four variables u, p, v and b, which leads to the fol-
lowing weak form of (3) with the homogeneous Dirichlet boundary condition shown
in (3)3: find (u, p, v, b) ∈ H1

0 (Ω)× L2(Ω)×H1
0 (Ω)× L2(Ω) such that

(αpt, ũ) + (β∇u,∇ũ) + (∂G∂u , ũ) = 0, ∀ũ ∈ H1
0 (Ω),

(αp, p̃) = (αut, p̃), ∀p̃ ∈ L2(Ω),
(γbt, ṽ) + (δ∇v,∇ṽ) + (∂G∂v , ṽ) = 0, ∀ṽ ∈ H1

0 (Ω),

(γb, b̃) = (γvt, b̃), ∀b̃ ∈ L2(Ω).

(13)

Then, based on the same spatial triangulation Th in Ω and the same temporal
partition in [0, T ], as shown in Section 3.1, we define the following finite element
spaces:

Uh := {v ∈ L2(Ω) : v|K ∈ P k(K),∀K ∈ Th}.

Let φn = ϕ(tn), φ
n+ 1

2 = φn+1+φn

2 and dtφ
n+ 1

2 = φn+1−φn

∆t . We thus define the
following fully discrete finite element approximation for (3)-(4) based upon the weak
form (13) and the Crank-Nicolson scheme. Given (unh, p

n
h, v

n
h , b

n
h) ∈W 0

h×Uh×W 0
h×

Uh, find (un+1
h , pn+1

h , vn+1
h , bn+1

h ) ∈W 0
h ×Uh×W 0

h ×Uh for n = 0, 1, 2, · · · , N , such
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that


(αdtp

n+ 1
2

h , ũ) + (β∇un+
1
2

h ,∇ũ) + (duG(u
n+ 1

2

h , v
n+ 1

2

h ), ũ) = 0, ∀ũ ∈W 0
h ,

(αp
n+ 1

2

h , p̃) = (αdtu
n+ 1

2

h , p̃), ∀p ∈ Uh,

(γdtb
n+ 1

2

h , ṽ) + (δ∇vn+
1
2

h ,∇ṽ) + (dvG(u
n+ 1

2

h , v
n+ 1

2

h ), ũ) = 0, ∀ṽ ∈W 0
h ,

(γb
n+ 1

2

h , b̃) = (γdtv
n+ 1

2

h , b̃), ∀b ∈ Uh,

(14)

where [11]

duG(u
n+ 1

2

h , v
n+ 1

2

h ) =

[
G(un+1

h , vn+1
h ) +G(un+1

h , vnh)
]
−
[
G(unh, v

n+1
h ) +G(unh, v

n
h)
]

2(un+1
h − unh)

,

(15)

dvG(u
n+ 1

2

h , v
n+ 1

2

h ) =

[
G(un+1

h , vn+1
h ) +G(unh, v

n+1
h )

]
−
[
G(un+1

h , vnh) +G(unh, v
n
h)
]

2(vn+1
h − vnh)

.

(16)

Carrying out an analogous analysis as done in [28], we can easily verify that the
total discrete energy Eh at the n-th time step defined by

(17) En
h =

1

2

∫
Ω

[
α(pnh)

2 + β(∇unh)2 + γ(bnh)
2 + δ(∇vnh)2 + 2G(unh, v

n
h)
]
dx,

is preserved as the initial energy E0
h, i.e., E

n
h = E0

h for n = 1, 2, · · · , N , where
(18)

E0
h =

1

2

∫
Ω

[
α(ψ1,h)

2 + β(∇ϕ1,h)2 + γ(ψ2,h)
2 + δ(∇ϕ2,h)2 + 2G(ϕ1,h, ϕ2,h)

]
dx,

and, ψi,h, ϕi,h are the interpolation values of ψi, ϕi (i = 1, 2) in the corresponding
finite element spaces Uh, W

0
h , respectively. Therefore we confirm that (14) defines

an energy-preserving FEM.

We can see that (14) is a nonlinear system including the nonlinear term duG(u
n+ 1

2

h ,

v
n+ 1

2

h ) and dvG(u
n+ 1

2

h , v
n+ 1

2

h ). The following Algorithm 3.2 describes how we adopt
the Picard’s iteration method to linearize these two nonlinear terms and implement
a nonlinear iteration process for the developed energy-preserving FEM (14).

Algorithm 3.2. The linearized energy-preserving finite element scheme.

(1) Initialization of the time marching: set the time step n = 0 and (u0h, p
0
h, v

0
h, b

0
h)

be the interpolation of (ϕ1, ψ1, ϕ2, ψ2) on Th.
(2) Initialization of the nonlinear iteration: let (un+1,0

h , pn+1,0
h , vn+1,0

h , bn+1,0
h ) =

1
2 (u

n
h, p

n
h, v

n
h , b

n
h) as the initial guess at the (n+ 1)-th time step (n ≥ 0).

(3) The linearized energy-preserving finite element method at the (m + 1)-th
iteration step: for m ≥ 0, find
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(un+1,m+1
h , pn+1,m+1

h , vn+1,m+1
h , bn+1,m+1

h ) ∈W 0
h ×Uh ×W 0

h ×Uh such that



(
α

pn+1,m+1
h −pn

h

∆t , ũ
)
+

(
β

∇un+1,m+1
h +∇un

h

2 ,∇ũ
)

+

(
[G(un+1,m

h ,vn+1,m
h )+G(un+1,m

h ,vn
h )]−[G(un

h ,v
n+1,m
h )+G(un

h ,v
n
h )]

2(un+1,m
h −un

h)
, ũ

)
= 0,(

α
pn+1,m+1
h +pn

h

2 , p̃
)
=

(
α

un+1,m+1
h −un

h

∆t , p̃
)
, ∀(ũ, p̃) ∈W 0

h × Uh.(
γ
bn+1,m+1
h −pn

h

∆t , ṽ
)
+

(
δ
∇vn+1,m+1

h +∇vn
h

2 ,∇ṽ
)

+

(
[G(un+1,m

h ,vn+1,m
h )+G(un

h ,v
n+1,m
h )]−[G(un+1,m

h ,vn
h )+G(un

h ,v
n
h )]

2(vn+1,m
h −vn

h )
, ṽ

)
= 0,(

γ
bn+1,m+1
h +bnh

2 , b̃
)
=

(
γ
vn+1,m+1
h −vn

h

∆t , b̃
)
, ∀(ṽ, b̃) ∈W 0

h × Uh.

(4) Check the stopping criteria for the nonlinear iteration: for a given tolerance
ε, stop the iteration if

∥un+1,m+1
h − un+1,m

h ∥0 + ∥pn+1,m+1
h − pn+1,m

h ∥0 + ∥vn+1,m+1
h − vn+1,m

h ∥0
+ ∥bn+1,m+1

h − bn+1,m
h ∥0 ≤ ε,(19)

then set (un+1
h , pn+1

h , vn+1
h , bn+1

h ) = (un+1,m+1
h , pn+1,m+1

h , vn+1,m+1
h , bn+1,m+1

h ).
Otherwise, set m + 1 to m, go back to Step 3 and continue the nonlinear
iteration.

(5) Time marching: if n + 1 < N , then set n + 1 to n, go back to Step 2 and
continue the time marching. Otherwise, stop the entire computation.

Remark 3.2. To let a nonlinear wave equation preserve the energy with time,
continuously, we notice that its nonlinear right hand side (source term) f(φ) must

satisfy f(φ) = −∂G(φ)
∂φ , where G(φ) is a third-order differentiable potential function

with respect to the primary variable φ. Numerically, to obtain an energy-preserving

discrete scheme for such a nonlinear wave equation, we need to discretize ∂G(φ)
∂φ

using the first-order difference scheme, such as (15) or (16), instead of discretizing
f(φ), directly. Similar theoretical analyses for proving the energy conservation and
optimal convergence properties of the proposed FEM (14) can refer to the authors’
earlier studies in [28].

4. Deep neural network approaches for two types of hyperbolic/wave
problems

4.1. DNN approach for the coupled KdV equations. To apply the DNN
approach to the coupled KdV equations (1), it is natural to consider the least-
squares (LS) formulation [14] to minimize all residuals of governing equations and
of initial & boundary conditions by defining a LS functional that incorporates
all equations introduced in (1) together. Following that idea, we can define the
following total LS functional for the coupled nonlinear KdV equations (1) with
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respect to any (ũ, ṽ) ∈ H1(0, T ;H3(Ω))× L2(0, T ;H1(Ω)):

RKdV (ũ, ṽ; f, g1, g2, g3, u
0)

:=

∫ T

0

(
ω1∥ũt + ũxxx − 3ũxṽ − 3ũṽx − f∥20,Ω

+ ω2∥ũx − ṽy∥20,Ω + ω3∥ũ− g1∥20,∂Ω

+ ω4∥ũxx − g2∥20,∂Ω + ω5∥ṽ − g3∥20,∂Ω
)
dt+ ω6∥ũ(x, 0)− u0∥20,Ω,

:=

6∑
i=1

RKdV
i (ũ, ṽ; f, g1, g2, g3, u

0), ∀(ũ, ṽ) ∈ H1(H3(Ω))× L2(H1(Ω)),(20)

where ωi (i = 1, · · · , 6) are weight coefficients of each corresponding L2 inner prod-
uct term. Then, the LS solution associated with the LS functional (20) is to find
(u, v) ∈ H1(0, T ;H3(Ω))× L2(0, T ;H1(Ω)) such that

RKdV (u, v; f, g1, g2, g3, u
0)

= arg min
(ũ,ṽ)∈H1(H3(Ω))×L2(H1(Ω))

RKdV (ũ, ṽ; f, g1, g2, g3, u
0).(21)

Remark 4.1. An optimal choice for all weight coefficients ωi in (20) can make
the LS optimization process convergent faster, i.e., can accelerate the minimization
of each LS term in (20) by letting it approach to zero as quickly as possible. In
practice, each weight coefficient associate with its L2-inner product or LS term is
usually chosen as the reciprocal of the sum of the absolute value of all parameters
in this LS term, just like a normalization process. On the other hand, a unified
dimension for all LS terms in the total LS functional is also another important
consideration for choosing these weight coefficients in order to accelerate the LS
minimization for a realistic PDE problem.

In this section, we aim to develop a mesh-free approach using the deep neural
network (DNN) technique for the coupled KdV equations based on the above min-
imization problem (21). We can prescribe the space-time domain Ω × [0, T ] that
belongs to Rd+1, then a (d + 1)-th dimensional input sample point (training) set,
S := {X(x, t) ⊂ Rd+1 |x ∈ Ω, t ∈ [0, T ]}, can be constructed by uniformly or
randomly distributing sample points in the (d+ 1)-dimensional domain Ω× [0, T ].
Thus the computational mesh, which is always required by traditional numerical
methods (e.g., FEMs) and is always troublesome for high-dimensional problem-
s with complex geometrical domains, is completely removed from the following
DNN’s numerical simulations. Instead, we need the sample point (training) set S
to train a DNN structure, then solve a discrete version of the minimization prob-
lem (21) based upon the DNN approximation to the solution of KdV equations.
More precisely, we employ a feedforward DNN model to approximate KdV equa-
tions based upon a (d + 1)-dimensional space-time sample point (training) set S,
that is, we utilize a fully connected DNN structure to approximate all primary vari-
ables (the solution of KdV equations), then adopt the LS formulation to minimize
residuals of governing equations and of initial & boundary conditions of the pro-
posed KdV equations (where d = 2) by utilizing the DNN-approximated solution
functions. Thereafter, we sum up all well-defined LS formulations together with
physics-dependent weights to establish a total loss functional, LKdV (X; Θ), where
X ∈ Rd+1 is an input vector that can be sampled from the space-time training set S,
Θ = {W l, bl, l = 1, · · · , L} are parameter variables that are used to construct the
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L-layer DNN with the weights W l and biases bl in the l-th layer for l = 1, · · · , L.
A classical fully connected, feedforward DNN structure can be schematically shown
in Figure 1.

Figure 1. Illustration of a classical feedforward DNN structure
with 3 hidden layers, where h

(l)
n denotes the n-th neuron in the

l-th hidden layer [22].

Concretely interpreting, let Rn1 and RnL+1 represent the input and output s-
paces with n1 and nL+1 units (neurons), respectively, and given any input vector
X ∈ Rn1 , a feedforward neural network (also termed as a multi-layer perceptron),
transforms the X to an output through layers of units (neurons) consisting scalar
nonlinear activation functions within units [26], resulting in the following represen-
tation of a DNN function

(22) NN(X; Θ) = TL ◦ NL−1 ◦ · · · ◦ N 2 ◦ N 1(X),

where, N l : Rnl → Rnl+1 is the l-th layer neural network defined as:

N l(X l) = σ ◦Tl(X l), for l = 1, · · · , L,
here σ : R → R is a scalar (nonlinear) activation function of which a large variety
have been considered in the machine learning literature [26], popular choices for
the activation function σ include the sigmoid function, the tanh function and the
ReLU function. And, Tl : Rnl → Rnl+1 (l = 1, · · · , L) is a linear transformation
defined as:

(23) Tl(X l) = W lX l + bl, for W l ∈ Rnl+1×nl , X l ∈ Rnl , bl ∈ Rnl+1 ,

where nl is the number of neurons in the l-th layer neural network for l = 1, · · · , L,
noting that n1 = d+1 = 3 and nL+1 = 2 for the proposed coupled KdV equations.

Thus in the terminology of machine learning, the deep neural network (22)
consists of an input layer, an output layer and (L − 1) hidden layers for some
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1 < L ∈ Z+. The l-th hidden layer (with nl neurons) is given an input vector
X l ∈ Rnl and transforms it first by a linear transformation Tl shown in (23)
and then by a nonlinear (component wise) activation σ. A straightforward ad-

dition shows that such defined DNN contains
L∑

l=1

nl neurons in total. It is also

straightforward to check that the concatenated set of (tunable) weights and biases,
Θ = {W l, bl, l = 1, · · · , L} ∈ RK, with

(24) K =
L∑

l=1

nl+1(nl + 1),

denoting the total number of tuning parameters (weights and biases) of a fully con-
nected, feedforward DNN. Additionally, we introduce the following nomenclature
for a deep neural network NN,

size(NN) := K, depth(NN) = L− 1,

with L− 1 being the number of hidden layers of the network.
With such a DNN structure, we develop a fully connected DNN approach to solve

the presented coupled KdV equations (1), where we adopt n1 = d+1, nL+1 = 2 for
the DNN structure to define the following two DNN functions for an approximation
to two unknowns (u, v) shown in (21), respectively:

UNN(X; Θ) ≈ u, VNN(X; Θ) ≈ v.

Then, the mesh-free DNN approach is described as follows in its continuous version:
find (UNN(X; Θ∗),VNN(X; Θ∗)) such that the following minimization problem:

(25) LKdV (X; Θ∗) = arg min
Θ∈ΨK

LKdV (X; Θ),

where, LKdV (X; Θ) is the total loss functional defined below according to the LS
functional (20):

LKdV (X; Θ) :=

6∑
i=1

LKdV
i (X; Θ)

:=

6∑
i=1

RKdV
i (UNN(X; Θ),VNN(X; Θ); f, g1, g2, g3, u

0),(26)

ΨK := {Θ : Θ|Di ∈ RK}, and Di (i = 1, · · · , 6) stand for subregions of Ω ×
[0, T ] associated with each LS functional RKdV

i defined in (20), including the d-
dimensional domain Ω at t = 0, the (d+ 1)-dimensional space-time Ω× (0, T ] and

the d-dimensional space-time ∂Ω× (0, T ]. In fact,
6∑

i=1

Di := Ω× [0, T ].

In practice, the loss functional LKdV (X; Θ) in its integral form is approximated
by its discrete version through a prescribed quadrature rule, say, the Monte Carlo
integration, based upon the input sample point (training) set, i.e., each LS func-
tional, LKdV

i (X; Θ) (1 ≤ i ≤ 6), in (26) is approximated by its mean squared error
(MSE) form, LKdV

disc,i(X; Θ), as:

LKdV
i (X; Θ) ≈ LKdV

disc,i(X; Θ) :=
1

Mi

Mi∑
k=1

|RKdV
i,NN(X|kQi ; Θ)|2,
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whereRKdV
i,NN = RKdV

i (UNN,VNN; f, g1, g2, g3, u
0) stands for the DNN-approximated

residual in each subregion Qi ⊆ Ω× [0, T ] that is associated with each LS functional
defined in (20), X|kQi is the k-th space-time sample point falling into Qi, and Mi is

the number of all sample points in Qi. If Mi = 0, then the corresponding discrete

loss functional LKdV
disc,i(X; Θ) is removed. M =

6∑
i=1

Mi is the total size of the sample

point (training) set. Thus, the total discrete loss functional, LKdV
disc (X; Θ), is well

defined as

LKdV
disc (X; Θ) =

6∑
i=1

LKdV
disc,i(X; Θ) ≈ LKdV (X; Θ).

On the other hand, during the process of computing residuals of governing equa-
tions, finding derivatives of DNN can be done by the backward/forward difference,
or directly, by employing an automatic differentiation package specifically applying
to the DNN function. Finally, standard optimization algorithms with the stochas-
tic gradient descent (SGD) method [53, 7, 43, 37, 54] can be applied to solve the
minimization problem:

(27) LKdV
disc (X; Θ∗) = arg min

Θ∈ΨK
LKdV
disc (X; Θ).

When the minimizer Θ∗ is reached, we attain the desired DNN-approximated so-
lution, (UNN(X; Θ∗),VNN(X; Θ∗)), as the DNN’s solution of the presented KdV
equations.

4.2. DNN approach for the coupled KG equations. First of all, we define a
total least-squares (LS) functional for the coupled nonlinear KG equations (2) as
follows

RKG(ũ, ṽ;ϕ1, ϕ2, ψ1, ψ2)

:=

∫ T

0

(
ω1∥ũtt − κ2∆ũ+ a1ũ+ b1ũ

3 + c1ũṽ
2∥20,Ω+

ω2∥ṽtt − κ2∆ṽ + a2ṽ + b2ṽ
3 + c2ũ

2ṽ∥20,Ω + ω3∥ũ∥20,∂Ω + ω4∥ṽ∥20,∂Ω
)
dt

+ ω5∥ũ(x, 0)− ϕ1∥20,Ω + ω6∥ṽ(x, 0)− ϕ2∥20,Ω
+ ω7∥ũt(x, 0)− ψ1∥20,Ω + ω8∥ṽt(x, 0)− ψ2∥20,Ω

:=
8∑

i=1

RKG
i (ũ, ṽ;ϕ1, ϕ2, ψ1, ψ2), ∀(ũ, ṽ) ∈ H2(H2(Ω))×H2(H2(Ω)).(28)

Then, the LS solution associated with the LS functional (28) is to find (u, v) ∈
H2(0, T ;H2(Ω))×H2(0, T ;H2(Ω)) such that

RKG(u, v;ϕ1, ϕ2, ψ1, ψ2)

= arg min
(ũ,ṽ)∈H2(H2(Ω))×H2(H2(Ω))

RKG(ũ, ṽ;ϕ1, ϕ2, ψ1, ψ2).(29)

We adopt n1 = d+ 1, nL+1 = 2 for the same fully connected, feedforward DNN
structure as described in Section 4.1 to define the following two DNN functions for
an approximation to two unknowns (u, v) shown in (29), respectively:

UNN(X; Θ) ≈ u, VNN(X; Θ) ≈ v.



616 X. ZHU, M. HE, AND P. SUN

The total loss functional, LKG(X; Θ), according to the LS functional (28), is then
defined as
(30)

LKG(X; Θ) :=
8∑

i=1

LKG
i (X; Θ) :=

8∑
i=1

RKG
i (UNN(X; Θ),VNN(X; Θ);ϕ1, ϕ2, ψ1, ψ2).

Therefore, the mesh-free DNN approach for solving the coupled KG equations in its
continuous version is to find (UNN(X; Θ∗),VNN(X; Θ∗)) such that the following
minimization problem:

(31) LKG(X; Θ∗) = arg min
Θ∈ΨK

LKG(X; Θ).

To derive its discrete version, we first use the following discrete loss functional,

(32) LKG
disc(X; Θ) =

8∑
i=1

LKG
disc,i(X; Θ) :=

8∑
i=1

1

Mi

Mi∑
k=1

|RKG
i,NN(X|kQi ; Θ)|2,

to approximate the continuous loss functional, LKG(X; Θ), in its integral form by
a prescribed quadrature rule, e.g., Monte Carlo integration. In (32), RKG

i,NN =

RKG
i (UNN,VNN;ϕ1, ϕ2, ψ1, ψ2) stands for the DNN-approximated residual in each

subregion Qi ⊆ Ω× [0, T ] that is associated with each LS functional defined in (28).
Then, the discrete version of the mesh-free DNN approach for solving the coupled
KG equations is to solve the following minimization problem

(33) LKG
disc(X; Θ∗) = arg min

Θ∈ΨK
LKG
disc(X; Θ)

with a standard optimization algorithms such as the SGD method based upon a
(d+ 1)-dimensional (space-time) sample point (training) set. When the minimizer
Θ∗ is reached, we attain the desired DNN-approximated solution, (UNN(X; Θ∗),
VNN(X; Θ∗)), for the presented KG equations.

In order to compare with the energy-preserving FEM specifically designed for
KG equations in Section 3.2, we need to compute the DNN’s total discrete energies
for KG equations, ENN(t), at each time level tn (n = 0, 1, · · · , N) based upon a
uniformly distributed space-time sample point set with the total size M = NΩ ×
(N+1), where NΩ denotes the number of sample points in space at each time level.
According to (5), the DNN-driven total discrete energy, ENN, is defined as

ENN(t) =
1

2

∫
Ω

[
α

(
∂UNN(X; Θ∗)

∂t

)2

+ β(∇UNN(X; Θ∗))2

+γ

(
∂VNN(X; Θ∗)

∂t

)2

+ δ(∇VNN(X; Θ∗))2

+2G(UNN(X; Θ∗),VNN(X; Θ∗))

]
dx,(34)

where (UNN(X; Θ∗),VNN(X; Θ∗)) is the DNN’s solution of KG equations with the
minimizer Θ∗. Numerically, we will compare ENN(t) with ENN(0) for t ∈ (0, T ] in
Section 5.2 to see whether or not the energy is conserved, if not, how the energy
changes in time.

5. Numerical experiments
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5.1. FEM and DDN approach for solving the coupled KdV equations.
The following two functions

(35)

{
u(x, y, t) = et sinx cos y,
v(x, y, t) = et cosx sin y,

which are defined in a two-dimensional domain Ω = [0, 1]× [0, 1] and the time inter-
val [0, 1], can be verified as the unique exact solution to the coupled nonlinear KdV
equations (1) by choosing corresponding functions f, g1, g2, g3 and u

0, accordingly.
We first adopt the piecewise linear (P 1) polynomial, i.e., k = 1, to construct finite
element spaces Wh, Wh,gi (i = 1, 2, 3) and W 0

h that are appropriately employed by
the developed FEM (10). Then we implement Algorithm 3.1 to carry out a series
of finite element approximations by using the grid doubling, i.e., taking the mesh
size h = 1/10, 1/20, 1/40 and 1/80, simultaneously, and letting ∆t = h2 at different
mesh levels. Convergence errors of linear finite element approximations to the solu-
tion (u,w, v) at the terminal time T = 1 are reported in Table 1 and Figure 3, from
which we can see that optimal convergence rates of all three variables are uniformly
obtained as: the second order in L2 norm, and the first-order in H1 norm, namely

∥uN − uNh ∥0 + ∥vN − vNh ∥0 + ∥wN − wN
h ∥0

+ h(∥uN − uNh ∥1 + ∥vN − vNh ∥1 + ∥wN − wN
h ∥1) = O(h2 +∆t).(36)

(a) FEM solution uh (b) FEM solution vh

Figure 2. Numerical results of the finite element solution for KdV
equations on the finest grid at t = T .

Next, we apply the mesh-free DNN approach as described in Section 4.1 to
solve the same coupled KdV equations (1) defined in the above (2+1)-dimensional
space-time domain for the same exact solution (35). A uniformly distributed sample
point (training) set in the space is adopted by partitioning the rectangular domain
Ω in the same way as the above finite element grid does, however, we do not
need any grid element information but only grid points as sample points of the
training set. By using such a uniformly generated sample point (training) set
that coincides with the finite element grid points, we can not only carry out a
training process of the DNN, but also plot the contour figure of DNN’s solutions by
means of a finite element grid formed by these sample points, as shown in Figure
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Table 1. Convergence results of FEM solutions for KdV equations
at t = T .

h 1/10 1/20 1/40 1/80
∥u− uh∥0 6.961E-03 1.758E-03 4.402E-04 1.101E-04
Order 1.99 2.00 2.00

∥u− uh∥1 1.121E-01 5.493E-02 2.725E-02 1.357E-02
Order 1.03 1.01 1.01

∥w − wh∥0 8.045E-02 2.015E-02 5.014E-03 1.249E-03
Order 2.00 2.01 2.01

∥w − wh∥1 2.490E+00 1.256E+00 6.272E-01 3.128E-01
Order 0.99 1.00 1.00

∥v − vh∥0 3.317E-03 8.538E-04 2.154E-04 5.399E-05
Order 1.96 1.99 2.00

∥v − vh∥1 1.021E-01 5.104E-02 2.552E-02 1.276E-02
Order 1.00 1.00 1.00

Figure 3. Convergence history of the finite element solution for
KdV equations at t = T .

4. In the meanwhile, a comparison can be easily and accurately conducted between
solutions of FEM and DNN at the same grid points and the same time level. On
the other hand, the sampling point set along the time dimension is also uniformly
distributed that is independent from the spatial distribution. Though, it does not
mean a uniformly distributed sample points set is necessary for the DNN’s approach,
actually, a randomly distributed (d + 1)-dimensional sample points set also works
well for the DNN approximation which is insensitive to the way of generating sample
points, further explaining that the DNN’s approach is mesh-free, essentially.

In addition, we adopt a variant of the stochastic gradient descent method, ADAM
[36], with an initial learning rate of 0.001 and 2×104 epochs to solve the minimiza-
tion problem (27) formed by the DNN approximation and the LS-formulated loss
functional (20). On the finest sample points set in space that is the same finest
grid points set of the FEM, Figure 4 shows contour results of the DNN’s solution
(UNN,VNN) at the highest time level tN = T = 1, which is comparable with that
of the finite element solution (uNh , v

N
h ) shown in Figure 2, and the difference be-

tween them is almost invisible. In fact, if exactly computing the total error between
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(a) DNN solution uh (b) DNN solution vh

Figure 4. Numerical results of the DNN’s solution for KdV equa-
tions on the finest sample points set at t = T .

solutions of FEM and DNN on the finest sample points set at tN = T = 1, we ob-
tain ∥uNh − UN

NN∥L2(Ω)) + ∥vN − VN
NN∥L2(Ω)) ≈ 2.79× 10−2, which holds the same

magnitude with DNN’s approximation errors over the sample set doubling shown
in Table 2 or over the DNN’s structure doubling shown in Table 3.

Circumstantiating in detail, along with the doubling size of the sample point
(training) set, M , from 10 × 10 × 5 up to 80 × 80 × 40 in the (2 + 1) dimensional
space-time domain, while fixing the DNN structure as 4 hidden layers with 10
neurons in each layer, i.e., 4× 10 neurons in total, we carry out the same mesh-free
DNN’s approximation to the coupled KdV equations (1) with the exact solution
(35), and obtain the total approximation errors |||euv||| = ∥u−UNN∥L2(0,T ;L2(Ω))+
∥v − VNN∥L2(0,T ;L2(Ω)) shown in Table 2. On the other hand, Table 3 illustrates
|||euv||| along with different DNN structures by fixing the size of training set M =
40 × 40 × 20 = 32000 while doubling the number of neurons and the number of
hidden layers of the neural network. Both tables show DNN’s approximation errors
with almost the same magnitude, 10−2, which does not show a distinct convergence
pattern in terms of either the sample set size or the number of neurons/layers of
the DNN, as the FEM does in terms of mesh size h. But, they do show a distinct
convergence trend, i.e., the approximation errors |||euv||| decrease to some extent if
increasing either the size of training set M , or the number of neurons/layers, which
leads to the smallest approximation error shown at the lower right corner of Table
3, relatively.

Table 2. Approximation errors of DNN’s solutions with 4 layers
× 10 neurons for KdV equations.

M |||euv|||
10× 10× 5 1.666× 10−2

20× 20× 10 1.872× 10−2

40× 40× 20 1.520× 10−2

80× 80× 40 1.537× 10−2
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Table 3. Approximation errors of various DNN’s solutions with
M = 40× 40× 20 for KdV equations.

# of Neurons 1 Layer 2 Layers 4 Layers
4 1.648× 10−1 4.609× 10−2 4.802× 10−2

8 5.707× 10−2 3.601× 10−2 1.811× 10−2

16 2.457× 10−2 2.130× 10−2 1.395× 10−2

32 1.961× 10−2 1.507× 10−2 1.124× 10−2

Remark 5.1. The above less accurate approximation results of DNN for the p-
resented KdV equations further confirm the following fact, currently the approxi-
mation process of the DNN’s approach still remain an active and open problem.
Although a universal approximation theory exists for the shallow neural network-
s [47], mathematically, which leads to some recent convergence analysis work [70,
10, 58, 17, 41, 29], they are still far from a satisfactory convergence theory for the
DNN in contrast to the optimal convergence property of the FEM. Even so, we have
seen that some advantages of the mesh-free DNN approach which is independent of
and insensitive of the way of generating the sample points (training) set, thus a
randomly distributed sample pints set on which the DNN’s loss function is opti-
mized by the SGD method can avoid the meshing procedure that especially remains
as a challenging task for solving high-dimensional problems with complex geomet-
rical domains. In addition, as shown in Section 3.1, the development of a stable
and convergent FEM for the coupled KdV equations (1) is sophisticated and skill-
ful, failing in developing a stable FEM for a highly hyperbolic system with optimal
convergence is possible, unusually, without deep expertise on computational mathe-
matics and long-term numerical trials. In contrast, the DNN’s approach is designed
for solving PDE problems in a uniform fashion, greatly reduces difficulties of the
methodology development and computational costs that FEMs usually have to con-
front, which may make a real-time simulation/prediction possible with a relatively
acceptable accuracy, in practice.

On the other hand, we also conduct an efficiency comparison in terms of the CPU
time cost by both the FEM and the DNN approach with the same and increasing
space-time “resolution”: [number of mesh nodes × number of time levels] for the
FEM that equals [the size of sample-point training set] for the DNN approach. As
illustrated in Table 4, we observe that CPU times of two approaches are not even on
the same magnitude. Due to totally different methodology between two approaches,
their differences in CPU time are so huge that such difference is amplified much
further along with higher space-time “resolution”. In fact, as long as a stable
FEM equipped with an optimal convergence property is able to be developed for a
PDE model bearing a relative low dimension, it is always more efficient than the
DNN approach whose efficiency is restricted by the gradient descent optimization
algorithm. However, this conclusion is quite opposite for a higher dimensional PDE
model (whose dimension is greater than 3), for which traditional numerical methods
(such as the FEM) fail in defining corresponding discretization forms, let alone to
solve it numerically, whereas the DNN approach can still deal with high dimensional
data in the training set with ease as it does for the low dimensional case.

5.2. FEM and DDN approach for solving the coupled KG equations.
Consider a coupled system of KG equations (2) defined in a two-dimensional domain
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Table 4. CPU time (second) cost by the FEM and the DNN
approach for KdV equations.

(# of Mesh Nodes) × # of Time Levels FEM DNN
≡≡ # of Sample Points

(10× 10)× 5 1 77
(20× 20)× 10 3 758
(40× 40)× 20 14 7428
(80× 80)× 40 100 15072

Ω = [0, 1]× [0, 1] and the time interval [0, 1] with the following exact solution [11]

(37)

{
u(x, t) = a3sech(ρ(x+ y − γt)),
v(x, t) = a4sech(ρ(x+ y − γt)),

where a3 =
√

2a1(c1−b2)
b1b2−c1c2

, a4 =
√

2a3(c2−b1)
b2b1−c2c1

and ρ =
√

−a1

γ2−2κ2 =
√

−a2

γ2−2κ2 , while

it is also employed as the initial condition at t = 0 and as the Dirichlet boundary
condition on ∂Ω. Clearly, such a Dirichlet boundary condition is nonhomogeneous
that leads to a nonconservative energy. However, it does not affect the proposed
FEM for the coupled KG equations to deliver optimally convergent results.

In this example, we take a1 = a2 = 1, b1 = −1, b2 = −2, c1 = 1, c2 = 0.5 and
κ = γ = 1, and, we still employ the linear (P 1) finite element, i.e., k = 1, to
construct finite element spaces W 0

h and Uh for the developed FEM (14). Then
we carry out Algorithm 3.2 to conduct a series of finite element approximations
by using the same grid doubling as adopted in Section 5.1, and letting ∆t = h
at different mesh levels. Numerical results at the terminal time t = T = 1 are
displayed in Table 5 and Figure 5, from which we can see all convergence errors
and convergence rates of uh, vh, ph and bh are optimal in their respective norms,
namely, of second order in L2 norm and of first order in H1 norm, predicted as

∥uN − uNh ∥0 + ∥vN − vNh ∥0 + ∥pN − pNh ∥0
+ ∥bN − bNh ∥0 + h(∥uN − uNh ∥1 + ∥vN − vNh ∥1) = O(h2 +∆t2).(38)

(a) FEM solution uh (b) FEM solution vh

Figure 5. Numerical results of the finite element solution for KG
equations on the finest grid at t = T .
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Table 5. Convergence results of the FEM for the coupled KG
system at t = T .

h 1/10 1/20 1/40 1/80
∥u− uh∥0 6.799E-03 1.721E-03 4.315E-04 1.080E-04
Order 1.98 2.00 2.00

∥u− uh∥1 1.391E-01 6.952E-02 3.475E-02 1.738E-02
Order 1.00 1.00 1.00

∥p− ph∥0 1.301E-02 3.360E-03 8.469E-04 2.121E-04
Order 1.95 1.99 2.00

∥v − vh∥0 4.807E-03 1.217E-03 3.051E-04 7.634E-05
Order 1.98 2.00 2.00

∥v − vh∥1 9.839E-02 4.916E-02 2.457E-02 1.229E-02
Order 1.00 1.00 1.00

∥b− bh∥0 9.196E-03 2.376E-03 5.989E-04 1.500E-04
Order 1.95 1.99 2.00

Figure 6. Convergence history of the finite element solution for
KG equations at t = T .

On the other hand, to investigate the energy-preserving property of the proposed
FEM for KG equations, we consider the coupled nonlinear KG equation (2) defined
in Ω × [0, 10] and equipped with the following homogeneous Dirichlet boundary
conditions and initial conditions,

(39)

 u(x, t) = 0, v(x, t) = 0, (x, t) ∈ ∂Ω× (0, 10],
u(x, 0) = 2ϕ(x), v(x, 0) = ϕ(x), x ∈ Ω,
ut(x, 0) = 0, vt(x, 0) = 0, x ∈ Ω,

where ϕ(x) = sin(πx) sin(πy). Discrete energies of finite element solutions are
computed at different time steps with a fixed time step size and a fixed mesh size
∆t = h = 1/20, and are illustrated in Table 6, where we can observe that the
maximum errors between discrete energies and the initial energy among all time
steps show an extremely small magnitude of 10−13, validating that the developed
FEM can efficiently preserve discrete energies for the coupled system of nonlinear
KG equations all the time.
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Table 6. Discrete energies’ change trend of the FEM for the coupled KG system.

t n En
h |En

h − E0
h|

t=0s 0 15.102856085836247502 0.00E+00
t=1s 20 15.102856085836155131 9.24E-14
t=2s 40 15.102856085836180000 6.75E-14
t=3s 60 15.102856085836160460 8.70E-14
t=4s 80 15.102856085836165789 8.17E-14
t=5s 100 15.102856085836165789 8.17E-14
t=6s 120 15.102856085836142697 1.05E-13
t=7s 140 15.102856085836060984 1.87E-13
t=8s 160 15.102856085836158684 8.88E-14
t=9s 180 15.102856085836132038 1.15E-13
t=10s 200 15.102856085836060984 1.87E-13

Next, we apply the mesh-free DNN approach as described in Section 4.2 to solve
the coupled KG equations with the same exact solution (37) defined in the same
(2+1)-dimensional space-time domain with the same parameters. So, the same
doubling sample point (training) sets are uniformly constructed as done in Section
5.1. In addition, we employ the same stochastic gradient descent method, ADAM,
with an initial learning rate of 0.001 and 2 × 104 epochs to solve the minimiza-
tion problem (33) formed by the DNN approximation and the LS-formulated loss
functional (28).

On the finest sample points set in space that is the same finest grid points set of
the FEM, Figure 7 shows contour results of the DNN’s solution (UNN,VNN) for the
coupled KG equations at the highest time level tN = T = 1, which is comparable
with that of the finite element solution (uh, vh) shown in Figure 5. Again, the
difference between FEM’s and DNN’s solutions is almost invisible, measured by
∥uNh −UN

NN∥L2(Ω)) + ∥vN −VN
NN∥L2(Ω)) ≈ 6.68× 10−3 after exactly computing the

total error between solutions of FEM and DNN on the finest sample points set at
tN = T = 1, which holds the same magnitude with DNN’s approximation errors
over the sample set doubling shown in Table 7 or over the DNN’s structure doubling
shown in Table 8.

In other words, along with the doubling size of the sampling point set M while
fixing the DNN structure as 4 hidden layers with 10 neurons in each layer, Table
7 illustrates total approximation errors for the same estimator, |||euv|||, of the pro-
posed DNN approach for the coupled KG equations (2). And, Table 8 displays total
errors of DNN’s solutions with the fixed size of training set M = 32000 while dou-
bling the number of neurons and the number of hidden layers of the neural network.
Both tables show DNN’s approximation errors with almost the same magnitude,
10−3. Same numerical phenomenon with that of DNN for KdV equations, they do
not show a clear convergence pattern in terms of either the sample set size or the
number of neurons/layers of the DNN, for the same reason as explained in Remark
5.1. In addition, the CPU-time comparison cost by both the FEM and the DNN
approach for KG equations is shown in Table 9, where the same phenomenon can
be observed as that of KdV equations, i.e., the FEM is much more efficient than the
DNN approach based upon the same space-time “resolution” for a low dimension-
al PDE model such as the targeted KG system, and, such an efficiency difference
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(a) DNN solution uh (b) DNN solution vh

Figure 7. Numerical results of the DNN’s solution for KG equa-
tions on the finest sample points set at t = T .

between two approaches is even huger when the space-time “resolution” increases
further.

Table 7. Approximation errors of DNN’s solutions with 4 layers
× 10 neurons for KG equations.

M |||euv|||
10× 10× 5 1.047× 10−3

20× 20× 10 1.289× 10−3

40× 40× 20 1.999× 10−3

80× 80× 40 2.742× 10−3

Table 8. Approximation errors of various DNN’s solutions with
M = 40× 40× 20 for KG equations.

# of Neurons 1 Layer 2 Layers 4 Layers
4 1.438× 10−3 9.422× 10−4 1.288× 10−3

8 1.280× 10−3 2.356× 10−3 2.058× 10−3

16 3.520× 10−3 2.369× 10−3 5.776× 10−3

32 6.290× 10−3 2.593× 10−3 9.201× 10−3

In addition, to compare with the energy-preserving FEM, discrete energies of
DNN’s solutions are also computed at different time levels based upon a fixed DNN
structure, 4 layers × 50 neurons, and a fixed (2 + 1)-dimensional sample point set
withM = 21×21×201 in the space-time domain Ω× [0, T ] := [0, 1]× [0, 1]× [0, 10],
where sample-point sets are uniformly distributed in time with the time step size
1/200 and in space with an equal spatial size 1/20 in the form of a checkerboard
at each time level, just chosen as the finest finite element grid for the comparison
purpose. Table 10 illustrates the change trend of DNN’s discrete energies in time
with 1 second as the increment, which shows a definite energy dissipation process
from the initial time (0s) all the way to the terminal time (10s), completely different
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Table 9. CPU time (second) cost by the FEM and the DNN
approach for KG equations.

(# of Mesh Nodes) × # of Time Levels FEM DNN
≡≡ # of Sample Points

(10× 10)× 5 3 93
(20× 20)× 10 8 596
(40× 40)× 20 54 29344
(80× 80)× 40 471 204734

from discrete energies’ change trend of the FEM shown in Table 6 that is basically
conserved all the time.

Table 10. Discrete energies’ change trend of the DNN approach for the
coupled KG system.

t n En
h |En

h − E0
h|

t=0s 0 1.43E+01 0.00E+00
t=1s 20 5.92E+00 8.42E+00
t=2s 40 8.20E-01 1.35E+01
t=3s 60 2.55E-02 1.43E+01
t=4s 80 2.18E-03 1.43E+01
t=5s 100 5.12E-04 1.43E+01
t=6s 120 1.23E-04 1.43E+01
t=7s 140 1.75E-05 1.43E+01
t=8s 160 1.69E-05 1.43E+01
t=9s 180 1.90E-05 1.43E+01
t=10s 200 1.70E-05 1.43E+01

Therefore, again, although the DNN’s approach for solving the coupled KG e-
quations is less sophisticated in contrast to the subtle development of an energy-
preserving FEM for the same KG equations, the energy conservation property is
lost from DNN’s solutions. In that sense, the DNN’s approach just likes a direct
finite element discretization for the KG equations as described in Section 3.2. Even
so, the DNN’s approach still does not hold a convergence pattern. But in a scenario
that the energy conservation is not a big concern, the DNN’s approach can always
deliver a fast solution in a short time of development with ease and an acceptable
accuracy for nonlinear hyperbolic/wave equations without confronting challenges of
grid generation for complex domains in high dimension, as commented in Remark
5.1.

6. Conclusions

For the purpose of a comparative study, two numerical approaches, finite ele-
ment method (FEM) and deep neural network approach (DNN) are studied for
two types of coupled nonlinear hyperbolic/wave system, KdV equations and KG
equations. Both approaches have their own advantages and disadvantages when
solving two nonlinear hyperbolic systems, respectively. Overall, a sophisticatedly
developed FEM can produce a stable, efficient and optimal convergence for both
hyperbolic problems that are defined in low dimension, and can even preserve the
total energy for the coupled KG equations. Such a subtle development of FEM for
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complex nonlinear hyperbolic problems, even they are modeled by low-dimensional
PDEs, is usually difficult and time-consuming, let alone high-dimensional PDEs to
which traditional numerical methods (such as the FEM) fail in defining correspond-
ing discretization forms in the first place. As a contrast, the uniformly designed
DNN’s approach can only produce a universal approximation to both hyperbol-
ic problems without holding a distinct convergence order, whereas its development
does not require high expertise on theories and implementations of numerical PDEs.
Moreover, the DNN’s approach belongs to the category of mesh-free methods that
circumvents the meshing procedure that especially remains as a challenging task
for solving high-dimensional problems with complex geometrical domains, greatly
reduces difficulties of the methodology development and computational costs that
traditional numerical methods (e.g., FEMs) usually have to confront and some-
times are even unable to deal with, making the DNN’s approach to possibly handle
real-time simulations/predictions using practical high-dimensional data with ease.
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