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A MESH-LESS, RAY-BASED DEEP NEURAL NETWORK

METHOD FOR THE HELMHOLTZ EQUATION WITH HIGH

FREQUENCY
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Abstract. This article introduces a mesh-less, ray-based deep neural network method to solve the
Helmholtz equation with high frequency. This method does not use an adaptive mesh refinement
method, nor does it design a numerical scheme using some specially designed basis function to

calculate the numerical solution, but it has the advantages of easy implementation and no mesh.
We have carried out various numerical examples to prove the accuracy and efficiency of the
proposed numerical method.
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1. Introduction

In mathematics, the eigenvalue problem of the Laplace operator is called the
Helmholtz equation, which has many applications in physics, including the wave
equation and diffusive equation. It also has applications in other scientific fields, in-
cluding electromagnetic radiation [4], acoustics [2], and plasma [16], etc. When the
Helmholtz equation is applied to a wave, the eigenvalue value is called the wavenum-
ber. The most obvious feature of the Helmholtz equation is that it is not positive
definite, which makes the solution of the equation have strong oscillations when
the wavenumber is large. In numerical calculations, the high oscillatory property of
the exact solution under high-frequency conditions will cause the approximate so-
lution obtained by the numerical calculation to only have very low accuracy, which
is called the “pollution effect”, cf. [1]. Therefore, from the perspective of algorithm
design, the highly oscillating nature of the solution makes it very challenging to
obtain an effective numerical method for this equation, which is also the purpose
of this article.

We recall that there exist many available numerical algorithms for the Helmholtz
equation with various boundary conditions including, for instance, the finite element
method (FEM), Discontinuous Galerkin method, Spectral method, hybridizable
discontinuous Galerkin method, weak Galerkin method, etc., see [1, 7, 13, 24, 29, 31]
and reference therein. Due to the high oscillating nature of the solution, some
commonly-used numerical methods based on low-order polynomials cannot resolve
the solution well. Instead, they will produce the so-called pollution effect, that is, for
a fixed number of grid points for each wavelength, the numerical error increases with
the increase of wavenumbers, see [1]. Therefore, while using the numerical method
based on the low-order polynomials, unless a certain number of grid points are used
for discretization for each wavelength, the calculation accuracy is relatively poor for
high-frequency waves. Therefore, it is natural to use higher-order polynomials or
oscillatory non-polynomial basis to replace the low-order polynomials. It has been
shown that higher-order polynomials can effectively reduce the pollution effect, see
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[24, 33], however, the computational cost is high due to the increase of degrees of
freedom.

In this article, we try to break away from the traditional numerical methods
based on variational framework using low/high-order polynomial basis, and use
a novel mesh-less deep neural network (DNN) method to solve the high-frequency
Helmholtz equation. We recall that the DNN method has attracted many attentions
in recent years to many classic problems involved in scientific computing, especially
the numerical solution of ordinary or partial differential equations, cf. [23, 5, 3, 8,
10, 12, 11, 18, 19, 21, 28, 30, 32] and references therein. Whether the algorithms
of DNN can be applied to the field of scientific computing to obtain effective and
accurate numerical algorithms has been confirmed by some recent research works.
For example, in [11, 27], the authors give the quantitative relationship between
neural network algorithms and low/high-order finite element methods; in [15], the
authors discuss the approximate properties of the function classes given by the
feedforward neural network using a single hidden layer; and in [17], the authors give
the framework of deriving error estimates for a class of neural network algorithms
according to the number of neurons. Based on these works, some novel methods on
applying the DNN to solving ordinary/partial differential equations are developed,
including the so-called PINN (the physics-informed neural network) method given in
[21, 18], DGM (Deep-Galerkin method) give in [30] and DRM (Deep-Ritz method)
given in [8]. Therefore, inspired by the DLSM (Deep-Least Squares Method) given
in [5], in this article, we introduce a mesh-less, ray-based DNN method to solve
the Helmholtz equation, and to investigate whether the method can be applied to
high-frequency situations well. The mesh-free nature of this method allows us to
easily get rid of designing adaptive grids or special spatial discretization methods,
so it is very easy to implement. For the large wavenumber case, the obtained
numerical results show that the designed DNNmethod can efficiently and accurately
approximate the exact solution of the Helmholtz equations.

The rest of this paper is organized as follows. In Section 2, we review the basic
idea of DNNs. In Section 3, the derivation of the methodology for the Helmholtz
equation is developed. In Section 4, we present some numerical results to demon-
strate the performance of our method. Some concluding remarks are given in
Section 5.

2. DNN method

In this section, we briefly discuss the definition and approximation properties of
the DNNs.

A DNN is a sequential alternative composition of linear functions and nonlinear
activation functions. A n-layer neutral network Nn can be defined as

• Input layer: N 0 = x,
• Hidden layers: N l = σl(W

lN l−1 + bl), l = 1, 2, · · · , n− 1,
• Output layer: Nn = WnNn−1 + bn,

where σ denotes the activation function, Wl denote the weights and bl denote the
biases. The most common used types of activation functions include the sigmoid
function σ(t) = (1 + e−t)−1 and the rectified linear unit (ReLU) σ(t) = max(0, t).
For simplicity, we denote all the parameters in DNN by a parameter vector Θ, i.e.,

Θ = {W1, · · · ,Wn,b1,b2, · · · ,bn}.
In Fig. 1, we sketch a simple fully connected DNN example with 3 hidden layers
and 8 neurons in each hidden layer. The number ml denotes the number of neurons
in the l-th layer.
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Figure 1. An example of a simple fully connected DNN.

We define a function ud(x,Θ) to be the output of a DNN with a single hidden
layer (n = 1) of m neurons, that is

ud(x,Θ) =

m∑
j=1

cjσ(Wj · x+ bj),x ∈ Ω,(1)

where Ω is the computational domain. The set of all functions formulated as
ud(x,Θ) is denoted as V σ

m.
The following lemma ensures that any function can be approximated by V σ

m

uniformly to arbitrary precision.

Lemma 2.1 (Universal Approximation, cf. [14]). Assuming that 1 ≤ p < ∞, 0 ≤
s < ∞ and Ω ⊂ Rd is compact, if σ ∈ Cs(Ω) is non-constant and bounded, then
V σ
L is dense in the Sobolev space

W s,p(Ω) = {v ∈ Lp(Ω) : Dαv ∈ Lp(Ω),∀|α| ≤ s}.
Namely, for any function f ∈ W s,p(Ω) and τ > 0, there exists m ∈ N (m depends

on τ and f) and f̃ ∈ V σ
m, such that

∥f − f̃∥W s,p < τ.(2)

3. Methodology using DNN for Helmholtz equation

3.1. DNN for Boundary value problem. We consider a boundary value prob-
lem that reads as {Lu = f in Ω,

Bu = g on ∂Ω,
(1)

where L and B are two linear operators, Ω ∈ Rd(d = 2, 3) denotes the computa-
tional domain. When adopting the DNN method, we train a neural network to
minimize the following least-square functional

Lleast(u) =

∫
Ω

|f − Lu|2dx+

∫
∂Ω

|g −Bu|2ds.(2)

In practice, the integral of the above loss function is usually computed by a nu-
merical way. A commonly-used approach in machine learning method is to use the
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Figure 2. The figure illustration of the model problem.

Monte Carlo integration that is given below. For any v, the numerical integral of
it reads as ∫

Ω

v(x)dx =
|Ω|
N

N∑
i=1

v(xi),(3)

where |Ω| is the volume of the domain Ω and {xi}Nı=1 are the random points in Ω.
When the operators in (1) take some specific forms, we get the high frequency

Helmholtz equation, that reads as follows

Lu ≡ ∆u+ k2u = f(x) in Ω,(4a)

u = uD on ΓD,(4b)

∂nu+ iku = g on ΓN ,(4c)

where ΓD ∪ ΓN = ∂Ω, k denotes the wavenumber and n denotes the outward unit
normal vector field on ΓN (cf. Fig. 2). In the next section, we give the ray-based
mesh-less DNN method to solve the system (4a)-(4c).

3.2. Asymptotic numerical methods. First, we consider one of the most well-
known asymptotic approaches for solving the Helmholtz equation, the so-called
LunebergKline expansion [4]. That is, the solution of the Helmholtz problem is
expanded to be a series of the following form:

u(x) ≈ eikϕ(x)
∞∑

n=0

Ãn(x)

knn
,

By taking k → ∞ and considering only the first term one has

(5) u(x) = A(x)eikϕ(x) +O(
1

k
),

where ϕ(x) denotes the phase function, and An means the amplitude function, both
of which are unknown.

In the standard geometrical optics approach for solving the Helmholtz equation
numerically, cf. [4], the source function f is ignored, i.e., f = 0 in (4a). Then,
similar as [4], by substituting the expression (5) into (4a), and taking k → ∞, we
obtain the following eikonal equation for the phase function, that reads as

|∇ϕ| = 1,(6)
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and a transport equation for the amplitude function, that reads as

2∇ϕ · ∇A+A∆ϕ = 0.(7)

However, it is well-known that there exists a major bottleneck that the above
asymptotic expansion can only capture single phase wave field. In general, the
phase function, ϕ, and the amplitude function, A, are multi-valued functions cor-
responding to multiple arrivals of wave fronts. Hence, many asymptotic methods
consider a more general expansion (cf. [26]) that reads as :

u(x) ≈
p∑

j=0

eikϕj(x)Aj(x, k),(8)

where the phase functions ϕn are independent from the wavenumber k, while the
amplitude functions An are dependent on the wavenumber k. The asymptotic
expansion (8) is basic for advanced asymptotic methods such as the geometrical
theory of diffraction (GTD) [4] and uniform theory of diffraction (UTD) [22]. Simi-
lar to the phase function ϕ(x) used in the Luneberg-Kline expansion (5) that is the
solution of eikonal equation (6), the phase functions ϕn in (8) are also obtained by
solving another similar eikonal equation (6), see [26]. The combination of direct and
asymptotic numerical method had been used in the so-called hybrid method given
in [26] for solving the system (4a)-(4c). The so-called phase-based IPDG method
with spatially varying wavenumber introduces the phase information into the basis
of the expansion formula (8) to obtain a more efficient numerical approach, see [20].

3.3. Ray-based mesh-less DNN method. In this paper, by combining the
DNN method for the generic boundary value problem with the asymptotic numer-
ical method together, we develop the so-called ray-based mesh-less DNN method
to solve the high frequency Helmholtz equation. The key is to combine the DNN
method with the plane wave approximation function.

We define a space Pk,p that is spanned by the plane wave functions with p
different unit direction dl ∈ RN−1 with |dl| = 1 and l = 1, 2, · · · , p, such that

Pk,p(R
N ) = {u ∈ C∞(RN ) : u(x) =

p∑
j=1

αle
ikx·dl}.(9)

Examples of such spaces are the so-called plane-wave DG (discontinuous Galerkin)
method, see [13], the ultra weak-variational formulation method, see [6].

We define a coupled DNN as

ud(x,Θ) =

p∑
j=1

eikx·djNj(x,Θ),(10)

to approximate the exact solution of the model problem (4a)–(4c), whereNj(x,Θ) =
NR

j (x,Θ)+ iN I
j (x,Θ) with NR

j (x,Θ) and N I
j (x,Θ) represent two different DNNs

which are independent with each other.
The DNN in (10) is used to compute the solution of Helmholtz equations by

minimizing the least squares of the Helmholtz equation’s residual, which are given
by the loss function as follows:

loss(Θ) = losseq(Θ) + ρ1loss
D
bc(Θ) + ρ2loss

N
bc(Θ),(11)
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where ρ1, ρ2 denote two penalty parameters and

losseq(Θ) =

N∑
m=1

|f(xm)− Lud(xm,Θ)|2,(12)

lossDbc(Θ) =

M1∑
m=1

|uD(xm)− ud(xm,Θ)|2,(13)

lossNbc(Θ) =

M2∑
m=1

|g(xm)− ∂nud(xm,Θ)− ikud(xm,Θ)|2,(14)

with N,M1,M2 denote the number of choosing points in Ω,ΓD,ΓN .

Remark 3.1. The approximation property using the coupled DNN formula given
in (10) can be ensured by the following conclusion. Namely, assuming that u ∈
HK+1(D) be the solution of homogeneous Helmholtz equation, where D is a bounded
open set and ∂D is Lipschitz, then there always exists (α1, α2, · · · , αp) ∈ Cp such
that, for every 0 ≤ j ≤ K + 1, the following inequality holds:

∥u−
p∑

j=1

αje
ikx·dj∥l,D ≤ C∥u∥K+1,D,(15)

where C is a constant that is independent with u, see [25].

Remark 3.2. One of the main advantages of the ray-based DNN method (10)-(6)
is its mesh-free feature, that is, we do not need to create a mesh that meets certain
characteristics like the finite element method or the Spectral method. In practical
calculation, we can randomly select the grid points in the computed region, which
brings great convenience to calculations. So far, the only existed work of using DNN
method to solve the high frequency Helmholtz problem is the so-called phase-DNN
method which is developed in [5], in which the high-frequency part is converted into
the low-frequency part through phase change technology, so that the convergence
speed of the network can be accelerated. Moreover, the main idea of our proposed
ray-based DNN method lies on the plane wave approximation property (15), which
is significantly different from the so-called phase-DNN method introduced in [5],
where the idea of phase shifts in the frequency domain is used.

Remark 3.3. In some special case, for example, the direction of wave propagation
x0 is known, thus one can introduce the so-called phase-shifted (see also in [20])
DNN method, namely, we set

ud(x) = eik|x−x0|N (x).(16)

Numerical experiments in section 4 show that the shifted method can give numerical
results with better convergence. But note that in most cases, x0 is unknown, so this
method is not applicable to most problems.

4. Numerical example

In this section, we implement some numerical examples to verify the proposed
mesh-less DNN method (10)-(6) to prove its effectiveness in solving the Helmholtz
equation with high wavenumbers.

Example 1 (uni-directional wave). In the first numerical test, we set the
computational domain Ω = [−1, 1]2, ΓN = ∅ and the wavenumber k = 100, 500.
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We set the exact solution of the Helmholtz problem as a uni-directional wave that
reads as

u(x) = H
(1)
0 (k|x− x0|),(1)

where H
(1)
0 denotes the zeroth-order Hankel function of the first kind, and x0 =

(2, 2) is the direction of wave propagation.
In our computation, we choose 10 unit direction vectors as

dj = (cos
2jπ

p
, sin

2jπ

p
), p = 10.(2)

To show the accuracy and efficiency of our proposed ray-based DNN method, we
set each NR

j (x),N I
j (x) with j = 1, · · · , 10 to be 4 hidden layers, each hidden layer

has 40 neurons for k = 10. We choose 8 hidden layers for k = 100, and each hidden
layer includes 80 neurons. In the learning process, i.e., the implementation of the
Stochastic Gradient Descent (SGD) method, we choose the points in each epoch to
be 5000.

In Table 1, we present the error in the maximum norm of the real part and the
imaginary part respectively for the two cases of k = 10 and k = 100. We adopt
uniform grid pints for spatial discretization, where 100 ∗ 100 uniform grid points
are used for k = 10, and 500 ∗ 500 uniform points are used for k = 100. We see
that as the number of epochs increases, the errors of real and imaginary parts both
decrease, which shows that the numerical solution of our proposed DNN method
converges well to the exact solution. In Fig. 3, we plot the profiles of the real
and imaginary parts of the exact solution, the computed solution, as well as their
difference. It can be seen that the obtained contours of the numerical solutions are
the same as the exact solution.

We further test the phase-shifted DNN method (16) since x0 in this particu-
lar example is known for the high frequency case with k = 100. We take each
NR(x),N I(x) to be a 4 hidden layers with 40 neurons in each hidden layer. The
computational results are shown in Table 2 where the computed accuracy is better
than Table 1 for k = 100. However, as mentioned in Remark 3.3, in most cases,
the direction of wave propagation x0 is unknown, therefore, the application of the
phase-shifted DNN method is very limited.

Example 2 (two-way wave propagation). In this numerical test, we set the
exact solution of the system as a two-way wave that reads as

u(x) = H
(1)
0 (k|x− x1|) +H

(1)
0 (k|x− x2|),(3)

Table 1. Example 1: maximum error with various epochs for
k = 10 and k = 100.

k No. of points epoch Re-Error ImError
10 100*100 100 3.5e-1 5.0e-1

5000 1.5e-2 1.7e-2
10000 9.3e-3 1.2e-2

100 500*500 1000 4.7e-1 5.0e-1
10000 8.6e-2 8.6e-2
50000 4.5e-2 4.5e-2
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(a) Real part.

(b) Imaginary part.

Figure 3. Example 1 with k = 10: (a) the real part, and
(b) imaginary part. In each subfigure, the profiles of the ex-
act solution, the numerical solution computed using the DNN
method, and the difference between these two are plotted from
left to right.

(a) Real part.

(b) Imaginary part.

Figure 4. Example 1 with k = 100: (a) the real part, and
(b) imaginary part. In each subfigure, the profiles of the ex-
act solution, the numerical solution computed using the DNN
method, and the difference between these two are plotted from
left to right.
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Table 2. Example 1: maximum error computed by the phase-
shifted DNN.

k No. of points epoch Re-Error ImError
100 500*500 100 1.3e-2 6.3e-3

500 6.2e-3 6.2e-3
1000 1.9e-3 1.9e-3

Table 3. Example 2: maximum error with various epochs for
k = 10 and k = 100.

k No. of points epoch Re-Error ImError
10 100*100 100 3.7e-1 3.6e-1

10000 8.5e-2 7.9e-2
30000 9.4e-3 9.7e-3

100 500*500 10000 2.7e-1 2.0e-1
50000 7.1e-2 7.2e-2
200000 8.6e-3 8.4e-3

where x1 = (0.3,−0.1),x2 = (0.7,−0.1) are the two directions of wave propagation.
The computational domain is set as Ω = [0, 1]2, ΓN = ∅, and the wavenumber k
are chosen to be 10 and 100, respectively.

In our computation, we choose 30 unit direction vectors as

dj = (cos
2jπ

p
, sin

2jπ

p
), p = 30.(4)

We set 6 hidden layers with 60 neurons in each layer for k = 10, and 10 hidden
layers with 100 neurons in each layer for k = 100. In the learning process, we choose
the points in each epoch to be 5000. The maximum errors are shown in Table 3
for each case and various epochs. As the number of epochs increases, the errors of
real and imaginary parts both decrease. In Fig. 5, for k = 100, we plot the profiles
of the real and imaginary parts of the exact solution, the computed solution, as
well as their difference. These results display a good correspondence between the
numerical and exact solutions.

Next, we apply the phase-DNN method developed in [5] to solve the above
problem. To do so, we define a function

ud(x,Θ) =

Nc∑
j=1

eiωj|x|Nj(x,Θ),(5)

which is used to approximate the exact solution of the model problem (4a)–(4c),
where Nj(x) = NR

j (x,Θ)+ iN I
j (x,Θ) with NR

j (x,Θ) and N I
j (x,Θ) represent two

different DNNs which are independent with each other.
The DNN in (5) is used to compute the solution of Helmholtz equations by

minimizing the least squares of the Helmholtz equation’s residual, which are given
by the loss function as follows:

loss(Θ) = losseq(Θ) + ρ1loss
D
bc(Θ) + ρ2loss

N
bc(Θ),(6)
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(a) Real part.

(b) Imaginary part.

Figure 5. Example 2 with k = 100: (a) the real part, and
(b) imaginary part. In each subfigure, the profiles of the ex-
act solution, the numerical solution computed using the DNN
method, and the difference between these two are plotted from
left to right.

where ρ1, ρ2 denote two penalty parameters and

losseq(Θ) =
N∑

m=1

|f(xm)− Lud(xm,Θ)|2,(7)

lossDbc(Θ) =

M1∑
m=1

|uD(xm, )− ud(xm,Θ)|2,(8)

lossNbc(Θ) =

M2∑
m=1

|g(xm)− ∂nud(xm,Θ)− ikud(xm,Θ)|2,(9)

with N,M1,M2 denote the number of choosing points in Ω,ΓD,ΓN .
For the low wavenumber of k = 10, we set ωj ∈ {2, 4, 6, 8, 10, 12}, i.e., Nc = 6,

and take 100 hidden layers with 1000 neurons in each layer. In the learning process,
we choose the points in each epoch to be 10000. As the number of epochs increases,
the errors of real and imaginary parts are very large, shown in Fig. 7.

Moreover, if we use the method in [5] to compute the case when k = 100, we find
it does not converge. Compared with the method in [5], our method can compute
the high wavenumber case with k = 100 show in Fig. 5 or ever lager wavenumber.
Therefore, it can be concluded that our ray-based DNN method is much more
efficient and accurate in solving Helmholtz equation with unknown wave directions
and high wavenumbers.
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(a) Real part.

(b) Imaginary part.

Figure 6. Example 2 with k = 10: (a) the real part, and
(b) imaginary part. In each subfigure, the profiles of the exact
solution, the two numerical solution computed using the phase-
DNN method(50000 epochs and 100000 epochs).

Example 3 (quadratic wave). In this example, we set the exact solution of
the system to be the following quadratic form:

u = eyeikx
2

.(10)

The computational domain is choosen as Ω = [0, 1]2, ΓN = ∅ and the wavenumber
k are choosen to be 100 and 500, respectively.

We choose the DNN as the following from

ud(x) = eikx
2

N1(x).(11)

To show the accuracy and efficiency of the proposed DNN, we set 4 hidden layers
with 40 neurons in each layer for k = 10, and 8 hidden layers with 100 neurons
in each layer for k = 100. In the learning process, we choose the points in each
epoch to be 5000. The maximum errors are shown in Table 4 for each k and various
epochs. In Fig. 7, for k = 100, we plot the profiles of the real and imaginary parts of
the exact solution, the computed solution, as well as their difference. The computed
results show good convergence to the exact solution.

Example 4 (wave scattering). In the final example, we consider the Helmholtz
scattering problem that reads as

∆u+ k2u = 0, in R2 \D,

u = u0 on ∂D,

√
r(
∂u

∂r
− iku) → 0 as r = |x| → ∞,

(12)

where the domain D is a unit circle. We assume the exact solution as u = H
(1)
0 (kx).

To truncate the domain into a bounded computational domain, we follow the crucial
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Table 4. Example 3: maximum error with various epochs for
k = 10 and k = 100.

k No. of points epoch Re-Error ImError
10 100*100 100 2.3e-1 2.4e-1

500 1.1e-2 1.3e-2
1000 5.6e-3 6.3e-3

100 500*500 100 5.7e-1 5.7e-1
10000 6.4e-2 6.3e-2
20000 1.2e-2 1.2e-2

(a) Real part.

(b) Imaginary part.

Figure 7. Example 3 with k = 100: (a) the real part, and
(b) imaginary part. In each subfigure, the profiles of the ex-
act solution, the numerical solution computed using the DNN
method, and the difference between these two are plotted from
left to right.

Table 5. Example 4: maximum error with various epochs for
k = 100 and k = 500.

k No. of points epoch Re-Error Im-Error
100 500*500 100 1.1e-2 1.2e-2

1000 6.9e-3 6.9e-3
3000 2.8e-3 2.9e-3
4000 2.4e-3 2.4e-3

500 2500*2500 100 2.6e-2 2.5e-2
1000 2.8e-3 2.7e-3
2000 1.8e-3 1.7e-3
4000 9.7e-4 9.8e-4
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(a) Real part.

(b) Imaginary part.

Figure 8. Example 4 with k = 100: (a) the real part, and
(b) imaginary part. In each subfigure, the profiles of the ex-
act solution, the numerical solution computed using the DNN
method, and the difference between these two are plotted from
left to right.

step taken in PWDG methods (see [9]). Namely, the first order absorbing boundary
condition is adopted:

∂nu+ iku = g on ΓR.(13)

We set NR(x),N I(x) to be 2 hidden layers with 20 neurons in each hidden layer for
k = 100, and 4 hidden layers with 60 neurons in each hidden layer for k = 500. In
the learning process, we choose the points in each epoch to be 1000. The maximum
errors are shown in Table 5 for each case and various epochs. The profiles of the
exact solution, the computed solution using the proposed DNN method, and their
errors using 3000 epochs are shown in Fig. 8. These results show that even when k
is large, the DNN method can converge to the exact solution well.

5. Concluding remarks

In this paper, in order to solve the high-frequency Helmholtz problem, we use the
approximate characteristics of plane waves to propose a ray-based mesh-less DNN
method. As shown by various numerical examples, the proposed method improves
the ability of DNN as a viable mesh-less tool for solving high-frequency Helmholtz
problems. Numerical results prove that the proposed method can approximate the
exact solution of the equation well. In our future research, we will explore the
generalization ability of DNN method to solve high-frequency Maxwell equations
and elastic equations.
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