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A MULTISCALE PARALLEL ALGORITHM FOR PARABOLIC

INTEGRO-DIFFERENTIAL EQUATION IN COMPOSITE MEDIA

FANGMAN ZHAI AND LIQUN CAO

Abstract. This paper studies the multiscale algorithm for parabolic integro-differential equations

in composite media combining with Laplace transformation. The new contributions reported
in this study are threefold: the convergence estimates with an explicit rate for the multiscale
solutions of the equations in general domains are proved, the boundary layer solution is defined

and the multiscale finite element algorithm which is suitable for parallel computation is presented.
Numerical simulations are then carried out to validate the theoretical results.
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1. Introduction

In this paper, we consider the parabolic integro-differential equations with rapid-
ly oscillating coefficients as follows:

(1)



∂uε(x, t)
∂t

− ∂
∂xi

(
aij(

x
ε )

∂uε(x, t)
∂xj

)
− ∂

∂xi

∫ t

0

β(t− s)aij(
x

ε
)
∂uε(x, s)

∂xj
ds

= f(x, t), (x, t) ∈ Ω× (0, T ),

uε(x, t) = g(x, t), (x, t) ∈ ∂Ω× (0, T ),
uε(x, 0) = ū0(x), x ∈ Ω,

where Ω ⊂ Rn, n ≥ 1 is a bounded convex polygonal domain or a bounded s-
mooth domain with a periodic microstructure. Here ε is a small periodic parameter.
aij(

x
ε ), β(t), f(x, t), g(x, t) and ū0(x) are given functions. We note that here and

in the sequel the Einstein summation convention is adopted on repeated indices.
Let ξ = ε−1x and we make the following assumptions:
(A1) aij(ξ), i, j = 1, 2, · · · , n are 1-periodic in ξ.
(A2) aij = aji, γ0|η|2 ≤ aij(ξ)ηiηj ≤ γ1|η|2, γ0, γ1 > 0, ∀(η1, η2, · · · , ηn) ∈ Rn,

where γ0, γ1 are constants independent of ε.
(A3) aij ∈ L∞(Ω), β ∈ L1(0, T ), f ∈ L2(0, T ;L2(Ω)), g ∈ L∞(0, T ;H

1
2 (∂Ω)),

ū0 ∈ H1(Ω).
(A4) Let Q = (0, 1)n be the reference cell and let Q′ be a bounded domain in

Rn with a C1,µ boundary, 0 < µ < 1. Let Q ⊂⊂ Q′, Q̄′ =
∪L

m=1

(
Dm

)
be a union

of some subdomains, where for each Dm, ∂Dm ∈ C1,µ and Dm∩Dk = ∅ for m ̸= k.
Assume aij ∈ Cγ(Dm), i, j = 1, 2, · · · , n, for some 0 < γ < 1,m = 1, 2, · · · , L,
where L, µ, γ are constants independent of ε (cf. [16]).

Remark 1.1. Under assumptions (A2)-(A3), the well-posedness for the problem
(1) can be established ( see, e.g., [10, 12, 27]).
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The problem (1) has wide applications in heat conduction with memory effects,
nuclear reactor dynamics, blow-up problems in composite material or in porous
media(see,e.g.,[20, 22, 33, 35] and the references therein). For a special choice of
the kernel β(t) = tα−1/Γ(α) (0 < α < 1), the integral term of (1) is actually the

Riemann-Liouville fractional integral of the function ∂
∂xi

(
aij(

x
ε )

∂uε(x, t)
∂xj

)
(see,

e.g., [25, 28]). In this case, (1) is a linear integro-differential equation of fractional
order. These kinds of equations describe anomalous diffusion processes and the
wave propagation in viscoelastic materials (cf. [13, 17, 19, 26]), which have attracted
considerable attention of researchers in recent years (see, e.g.,[7, 8]). As a parameter
ε > 0 is small enough, the direct numerical simulation for the problem (1) is a hard
work because it would require a very fine mesh, a very small time step and the
massive storage of the numerical solutions at all time steps.

All kinds of homogenization methods are utilized to solve the partial differential
equations and the integro-differential equations with rapidly oscillating coefficients
(e.g., periodic, almost periodic, quasi-periodic and non-periodic). For instance,
about the homogenization methods concerning linear parabolic equations, we re-
fer to Bensoussan et al. [2] and Sanchez-Palencia [29] for periodic cases and to
Colombini and Spagnolo [6] for general non-periodic cases. Zhikov et al. [37] stud-
ied parabolic operators with almost periodic coefficients and derived convergence
results for the asymptotic homogenization. The homogenization method for the
nonlinear parabolic equations can be found in [24, 30].

Numerous simulation results have shown that the numerical accuracy of the
homogenization methods may not be satisfactory when ε is not small enough (see,
e.g. [3, 32]). So we need to seek the multiscale methods to improve the numerical
accuracy. Bensoussan et al. [2] investigated the first-order multiscale asymptotic
method for the linear parabolic equations with oscillating periodic coefficients. For
the higher-order multiscale method for the linear parabolic equations, we refer
to Allegretto et al. [1]. Huang et al. [15] studied the multiscale method and
obtained the strong convergence results with an explicit rate for a kind of nonlinear
parabolic equations. On the other hand, various multiscale numerical approaches
are also available. Hou [14] and his collaborators first presented the multiscale finite
element method (MsFEM) for elliptic equations in composite materials or in porous
media. Efendiev et al. [4, 5, 9] developed the multiscale finite element methods, for
instance, GMsFEM, CEM-GMsFEM, NLMC and so forth. Ming and Zhang [21]
proposed the heterogeneous multiscale method(HMM) for parabolic problems.

To the best of our knowledge, few results of the multiscale methods for the prob-
lem (1) have been reported. In this paper, we will study the multiscale analysis and
computation for the problem (1). We notice that the classical multiscale asymptotic
method fails in the study of the problem (1), due to the integro-differential term in
the equation. Bensoussan et al. [2] first employed the Laplace transformation to in-
vestigate the homogenized method for an integro-differential equation of hyperbolic
type. Wang et al. [32] combined the Laplace transform method with the multiscale
method to study the coupled thermoelastic system in composite materials and de-
rived the first strong convergence results with an explicit rate of the second-order
multiscale solutions for the coupled thermoelastic system. In our recent work [36],
we used the Laplace transformation to discuss the multiscale analysis and compu-
tation for the dual-phase-lagging equation in composite materials. Inspired by the
above ideas, in this paper we use the Laplace transform method to discuss the mul-
tiscale analysis and algorithm for the problem (1). The procedure of our method is
briefly described. First, we employ the Laplace transform to transfer the original
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problem (1) into a steady state problem. Second, we present the multiscale asymp-
totic expansions of the solution for the steady state problem. Finally, we acquire
the multiscale approximate solutions for the original problem by the numerical in-
version of Laplace transform. It should be emphasized that the problems resulting
from the first step and second step could be solved simultaneously. So our method
is suitable for parallel computation.

The new contributions in this study are threefold: to derive the convergence esti-
mates with an explicit rate of the multiscale approximate solutions for the problem
(1), to define the boundary layer solution and then to present a multiscale finite
element method which is suitable for parallel computation.

The remainder of this paper is organized as follows. In section 2, we first convert
the original problem (1) to a steady state problem by applying Laplace transfor-
mation, meanwhile the stability analysis of the weak solution for the steady state
problem is established. Then we present the multiscale asymptotic expansions of
the solution for the steady state problem with rapidly oscillating coefficients and
derive their convergence analysis. In section 3, we obtain the multiscale approxi-
mate solutions of the original problem (1) by employing the Riemann-sum formula
for the inversion of Laplace transformation. The error estimates of the multiscale
approximate solutions are proved. Furthermore, the boundary layer solution is de-
fined and the convergence results for the multiscale method in a bounded convex
polygonal domain are obtained. Section 4 is devoted to the finite element com-
putations for the related problems and the multiscale finite element algorithm is
proposed for the problem (1) in section 4. Finally, numerical test studies are carried
out to validate the theoretical results.

Throughout the paper, by C we shall denote a positive constant independent
of ε. For each integer m ≥ 0 and real p with 1 ≤ p ≤ ∞, Wm,p(D) denotes the
standard Sobolev space of real scalar functions with their weak derivatives of order
up to m in the Lebesgue space Lp(D), where D is any domain in Rd . When p = 2,
we use Hm(D) to stand for Wm,2(D).

2. Laplace transformation and the multiscale method for the steady s-
tate problem

In this section, we first transfer the original problem (1) into a steady state
problem by means of the Laplace transformation and give the stability analysis of
the weak solution for the steady state problem. Then the multiscale asymptotic
method for the steady state problem and their convergence results are presented.

2.1. Laplace transformation. For any p ∈ C with a positive real part, i.e.
ℜ(p) > 0, we use the Laplace transformation to the problem (1) and have

(2)

 −(1 + β̂(p))
∂

∂xi

(
aij(

x

ε
)
∂ûε(x, p)

∂xj

)
+ pûε(x, p) = F (x, p), x ∈ Ω,

ûε(x, p) = ĝ(x, p), x ∈ ∂Ω,

here F (x, p) = f̂(x, p) + ū0(x) and ûε, β̂, f̂ and ĝ are the Laplace transformations
of uε, β, f and g, respectively.

Applying Propositions 4.1 and 4.3 in [34], one can prove that there exists a
unique solution ûε ∈ H1(Ω) for the problem (2) for p̃ ∈ Σθ, where p̃ = p

1+β̂(p)
and

Σθ = {z ∈ C : z = 0 or |argz| < π − θ} for θ ∈ (0, π/2). For the stability estimate
of the weak solution for the problem (2), we have the following lemma:
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Lemma 2.1. If assumptions (A2)-(A4) are satisfied, there exists a positive constant
C depending on θ, Ω, γ0 and γ1 such that∫

Ω

|ûε|2 dx ≤ C
{∥F∥2L2(Ω)

|p|2
+

(
1 +

|1 + β̂(p)|
|p|

)
∥ĝ∥2

H
1
2 (∂Ω)

}
,(3)

∫
Ω

|∇ûε|2 dx ≤ C
{ ∥F∥2L2(Ω)

|p||1 + β̂(p)|
+
(
1 +

|p|
|1 + β̂(p)|

)
∥ĝ∥2

H
1
2 (∂Ω)

}
,(4)

for all p̃ = p

1+β̂(p)
∈ Σθ \ {0}.

Proof. Suppose that ûε is the solution of (2). From (2), we have

(5)

∫
Ω

aij
∂ûε

∂xj

∂v̄

∂xi
dx+ p̃

∫
Ω

ûεv̄ dx =

∫
Ω

F̃ v̄ dx, ∀v ∈ H1
0 (Ω),

where p̃ = p

1+β̂(p)
, F̃ = F

1+β̂(p)
, and v̄(x) is the conjugate of a complex function

v(x).

Given ĝ ∈ H
1
2 (∂Ω), it follows from the trace theorem that there exists Ĝ ∈ H1(Ω)

such that γ(Ĝ) = ĝ and

(6) ∥Ĝ∥H1(Ω) ≤ C∥ĝ∥
H

1
2 (∂Ω)

.

Let v = ûε − Ĝ ∈ H1
0 (Ω) in (5) and we obtain

(7)

∫
Ω

aij
∂ûε

∂xj

∂ ¯̂uε

∂xi
dx+ p̃

∫
Ω

ûε ¯̂uε dx =

∫
Ω

aij
∂ûε

∂xj

∂
¯̂
G

∂xi
dx+ p̃

∫
Ω

ûε ¯̂Gdx

+

∫
Ω

F̃ ¯̂uε dx−
∫
Ω

F̃ Ḡdx.

We observe that

(8) (1 + 2 cot θ)ℑ(p̃) + ℜ(p̃) ≥ |p̃|, ∀p̃ ∈ Σθ,

and take the imaginary part and the real part of (7), respectively. It follows from
(A2), (6) and (8) that

(9)

∫
Ω

|∇ûε|2 dx+ |p̃|
∫
Ω

|ûε|2 dx ≤ C
{
∥∇ûε∥L2(Ω)∥ĝ∥H 1

2 (∂Ω)

+|p̃|∥ûε∥L2(Ω)∥ĝ∥H 1
2 (∂Ω)

+ ∥ûε∥L2(Ω)∥F̃∥L2(Ω) + ∥F̃∥L2(Ω)∥ĝ∥H 1
2 (∂Ω)

}
.

For p̃ ∈ Σθ \ {0}, using the Young’s inequality, we have

C∥∇ûε∥L2(Ω)∥ĝ∥H 1
2 (∂Ω)

≤ 1

4
∥∇ûε∥2L2(Ω) + C2∥ĝ∥2

H
1
2 (∂Ω)

,(10)

C|p̃|∥ûε∥L2(Ω)∥ĝ∥H 1
2 (∂Ω)

≤ |p̃|
4
∥ûε∥2L2(Ω) + C2|p̃|∥ĝ∥2

H
1
2 (∂Ω)

,(11)

C∥ûε∥L2(Ω)∥F̃∥L2(Ω) ≤ C2 1

|p̃|
∥F̃∥2L2(Ω) +

|p̃|
4
∥ûε∥2L2(Ω),(12)

C∥F̃∥L2(Ω)∥ĝ∥H 1
2 (∂Ω)

≤ C

4|p̃|
∥F̃∥2L2(Ω) + C|p̃|∥ĝ∥2

H
1
2 (∂Ω)

.(13)

Combined with (10)-(13), then (9) gives the following estimate,

(14)

∫
Ω

|∇ûε|2 dx+ |p̃|
∫
Ω

|ûε|2 dx ≤ C
1

|p̃|
∥F̃∥2L2(Ω) + C(|p̃|+ 1)∥ĝ∥2

H
1
2 (∂Ω)

.
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Therefore, substituting p̃ = p

1+β̂(p)
and F̃ = F

1+β̂(p)
into (14), we complete the proof

of Lemma 2.1. �
2.2. Multiscale asymptotic method for the steady state problem. To be-
gin, we define the formal multiscale asymptotic expansions of the solution for the
steady state problem (2) as follows:

ûε
1(x, p) = û0(x, p) + εNα1(ξ)

∂û0(x, p)

∂xα1

,(15)

ûε
2(x, p) = û0(x, p) + εNα1(ξ)

∂û0(x, p)

∂xα1

+ ε2Nα1α2(ξ)
∂2û0(x, p)

∂xα1∂xα2

,(16)

where ξ = ε−1x, cell functions Nα1(ξ), Nα1α2(ξ), α1, α2 = 1, 2, · · · , n are defined
on the reference cell Q = (0, 1)n and satisfy the following equations in turn:

(17)

{
∂
∂ξi

(
aij(ξ)

∂Nα1
(ξ)

∂ξj

)
= − ∂

∂ξi
(aiα1(ξ)), ξ ∈ Q,

Nα1(ξ) = 0, ξ ∈ ∂Q.

(18)


∂
∂ξi

(
aij(ξ)

∂Nα1α2(ξ)
∂ξj

)
= − ∂

∂ξi

(
aiα1(ξ)Nα2(ξ)

)
−aα1j(ξ)

∂Nα2(ξ)
∂ξj

− aα1α2(ξ) + a∗α1α2
, ξ ∈ Q,

Nα1α2(ξ) = 0, ξ ∈ ∂Q.

The homogenized equation associated with equation (2) is as follows:

(19)

 −(1 + β̂(p)) ∂
∂xi

(
a∗ij

∂û0(x, p)
∂xj

)
+ pû0 = F (x, p), x ∈ Ω, ℜ(p) > 0,

û0(x, p) = ĝ(x, p), x ∈ ∂Ω.

Here the homogenized coefficients a∗ij are calculated by

(20) a∗ij =
1

|Q|

∫
Q

[
aij(ξ) + aik(ξ)

∂Nj(ξ)

∂ξk

]
dξ.

Remark 2.2. The existence and uniqueness of the solution û0 ∈ H1(Ω) for the
homogenized steady state problem (19) can be proved for any p

1+β̂(p)
∈ Σθ \{0}(see,

e.g., [34]).

Remark 2.3. As usual, ûε
1(x, p) and ûε

2(x, p) are called the first-order and the
second-order multiscale asymptotic solutions for the steady state problem (2).

Carrying out the inverse Laplace transform gives rise to the homogenized equa-
tion of the problem (2) in a space-time domain as follows:

(21)



∂u0(x, t)

∂t
− ∂

∂xi

(
a∗ij

∂u0(x, t)

∂xj

)
− ∂

∂xi

∫ t

0

a∗ijβ(t− s)
∂u0(x, s)

∂xj
ds

= f(x, t), (x, t) ∈ Ω× (0, T ),

u0(x, t) = g(x, t), (x, t) ∈ ∂Ω× (0, T ),

u0(x, 0) = ū0(x), x ∈ Ω.

Next we give the convergence results of the multiscale asymptotic method for the
problem (2). Note that the boundary conditions of cell functions Nα1(ξ), Nα1α2(ξ)
defined in (17) and (18) are taken as the homogeneous Dirichlet boundary conditions
instead of the periodic conditions. Generally speaking, the normal derivatives of cell
functions with the homogeneous Dirichlet boundary conditions are not continuous
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on the boundary ∂Q of the unit cell Q. To overcome this difficulty, we need to
assume the coefficient matrix (aij) satisfies the following additional conditions:

(B1) aij = 0, i ̸= j, i, j = 1, 2, · · · , n.
(B2) aii, i = 1, 2, · · · , n, are symmetric with respect to the middle superplanes

∆1,∆2, · · · ,∆n of the reference cell Q = (0, 1)n.
Under assumptions (A1)− (A3) and (B1)− (B2), one can verify that the normal

derivatives of cell functions Nα1 , Nα1α2 , α1, α2 = 1, 2, · · · , n are continuous on the
boundary ∂Q. For more details, we refer readers to [1, 3].

Proposition 2.4. Let ûε(x, p) and û0(x, p) be the solutions to the problem (2) and
(19), respectively. Let ûε

2(x, p) be the second-order multiscale asymptotic solution
defined in (16). Under assumptions (A1)-(A4) and (B1)-(B2), if û0 ∈ H4(Ω),

f̂ ∈ H2(Ω) and p̃ = p

1+β̂(p)
∈ Σθ \ {0} for some θ ∈ (0, π/2), we have the following

error estimates:

∥ûε − ûε
2∥L2(Ω) ≤ Cε

1
2

( |1 + β̂(p)|
|p|

+ 1
)
∥û0∥H4(Ω),(22)

∥∇(ûε − ûε
2)∥L2(Ω) ≤ Cε

1
2

( |1 + β̂(p)| 12
|p| 12

+
(|p|+ |1 + β̂(p)|) 1

2

|1 + β̂(p)| 12

)
∥û0∥H4(Ω),(23)

where C is a constant independent of ε and p.

Proof. From (2), (16)-(19), we obtain the following equation which holds in the
sense of distributions:

(24) −(1 + β̂(p))
∂

∂xi

(
aij(

x

ε
)
∂(ûε − ûε

2)

∂xj

)
+ p(ûε − ûε

2) = F ε
2 (x, ξ, p), x ∈ Ω,

where

F ε
2 (x, ξ, p) =ε(1 + β̂(p))

[ ∂

∂ξi
(aijNα1α2)

∂3û0

∂xj∂xα1
∂xα2

+ aijNα1

∂3û0

∂xα1
∂xi∂xj

+ aij
∂Nα1α2

∂ξj

∂3û0

∂xα1∂xα2∂xi
+ εaijNα1α2

∂4û0

∂xα1∂xα2∂xi∂xj

]
− pε

(
Nα1

∂û0

∂xα1

+ εNα1α2

∂2û0

∂xα1∂xα2

)
.

Under assumptions (A1)-(A4), applying Theorem 1.2 of [16] yields

(25) ∥Nα1∥W 1,∞(Q) ≤ C, ∥Nα1α2∥W 1,∞(Q) ≤ C, α1, α2 = 1, · · · , n,

where C is a constant independent of ε. We thus can prove

(26) ∥F ε
2 ∥L2(Ω) ≤ Cε

(
|1 + β̂(p)|+ |p|

)
∥û0∥H4(Ω),

where C is a constant independent of ε and p.
For x ∈ ∂Ω, we have

(27) ûε(x, p)− ûε
2(x, p) = −εNα1

∂û0

∂xα1

− ε2Nα1α2

∂2û0

∂xα1∂xα2

≡ Ψε(x, p).

For any fixed p, following the lines of the proof of Theorem 1.2 ([23],p.124), we
get

(28) ∥Ψε∥
H

1
2 (∂Ω)

≤ Cε
1
2 ∥û0∥H4(Ω),

where C is constant independent of ε and p.
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Using the stability estimates (3) and (4), together with (26) and (28), the esti-
mates (22) and (23) are proved. �

Proposition 2.5. Let ûε(x, p) and û0(x, p) be the solutions of the problem (2)
and the homogenized equation (19), respectively. Suppose that ûε

1(x, p) is the first-
order multiscale asymptotic solution defined in (15). Under the assumptions of
Proposition 2.4, we have the following error estimates:

∥ûε − ûε
1∥L2(Ω) ≤ Cε

1
2

(
|1 + β̂(p)|+ |p|

) 3
2

|p||1 + β̂(p)| 12
∥û0∥H3(Ω),(29)

∥∇(ûε − ûε
1)∥L2(Ω) ≤ Cε

1
2

(
|1 + β̂(p)|+ |p|

) 3
2

|p| 12 |1 + β̂(p)|
∥û0∥H3(Ω),(30)

where C is a constant independent of ε and p.

Proof. On the basis of (2), (15) and (17)-(19), the following equality holds in the
sense of distributions:

(31) −(1 + β̂(p))
∂

∂xi

(
aij(

x

ε
)
∂(ûε − ûε

1)

∂xj

)
+ p(ûε − ûε

1) = F ε
1 (x, ξ, p), x ∈ Ω,

where

F ε
1 (x, ξ, p) =(1 + β̂(p))

[
(aij + aik

∂Nj

∂ξk
+

∂

∂ξk
(akiNj)− a∗ij

] ∂2û0

∂xi∂xj

+ (1 + β̂(p))εaij(ξ)Nα1
(ξ)

∂3û0

∂xi∂xj∂xα1

− pεNα1

∂û0

∂xα1

.

For x ∈ ∂Ω, we have

(32) ûε(x, p)− ûε
1(x, p) = −εNα1

∂û0

∂xα1

≡ φε(x, p), on ∂Ω.

Let wε(x, p) = ûε(x, p)− ûε
1(x, p), following the lines of the proof of Lemma 2.1,

it is not difficult to verify that

(33)

∫
Ω

|∇wε|2 dx+ |p̃|
∫
Ω

|wε|2 dx ≤ C∥∇wε∥L2(Ω)∥φε∥
H

1
2 (∂Ω)

+C|p̃|∥wε∥L2(Ω)∥φε∥
H

1
2 (∂Ω)

+ C
|1+β̂(p)|

∣∣∣ ∫Ω F ε
1w

ε dx
∣∣∣

+ C
|1+β̂(p)|

∣∣∣ ∫Ω F ε
1φε dx

∣∣∣, p̃ = p

1+β̂(p)
.

Similar to (10) and (11), taking into account the estimate of φε on ∂Ω ([23],p.127),
we find

(34) C∥∇wε∥L2(Ω)∥φε∥
H

1
2 (∂Ω)

≤ 1
4∥∇wε∥2L2(Ω) + C2ε∥û0∥2H3(Ω),

(35) C|p̃|∥wε∥L2(Ω)∥φε∥
H

1
2 (∂Ω)

≤ |p̃|
4 ∥wε∥2L2(Ω) + C2|p̃|ε∥û0∥2H3(Ω).

From the definition (2) of a∗ij , it is obvious that∫
Q

(
aij + aik

∂Nj

∂ξk
+

∂

∂ξk
(akiNj)− a∗ij

)
dξ = 0.
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It follows from Lemma 1.6 of [23] and the Young’s inequality that

(36)

1
|1+β̂(p)|

∣∣∣ ∫Ω F ε
1w

ε dx
∣∣∣ ≤ Cε(1 + |p̃|)∥û0∥H3(Ω)∥wε∥H1(Ω)

≤ Cε(1 + |p̃|)∥û0∥H3(Ω)

(
∥wε∥L2(Ω) + ∥∇wε∥L2(Ω)

)
≤ Cε2

(
1+|p̃|

)2

|p̃| ∥û0∥2H3(Ω) +
|p̃|
4 ∥wε∥2L2(Ω)

+Cε2
(
1 + |p̃|

)2∥û0∥2H3(Ω) +
1
4∥∇wε∥2L2(Ω).

Using Lemma 1.6 of [23] and the property of φε on ∂Ω ([23],p.127) again, we
deduce that

(37)
1

|1 + β̂(p)|

∣∣∣ ∫
Ω

F ε
1φε dx

∣∣∣ ≤ Cε
3
2 (1 + |p̃|)∥û0∥2H3(Ω).

This inequality together with (34)- (36) yields

(38)

∫
Ω

|∇wε|2 dx+ |p̃|
∫
Ω

|wε|2 dx ≤ Cε
(1 + |p̃|)2

|p̃|
∥û0∥2H3(Ω).

Since p̃ = p

1+β̂(p)
in (38), we finally acquire (29) and (30), which completes the

proof of Proposition 2.5. �

3. The multiscale asymptotic solutions for the original problem (1)

In this section, we use the inverse transform to ûε
1(x, p) and ûε

2(x, p) defined in
(15) and (16) to give the multiscale asymptotic solutions for the original problem
(1). To begin, we recall that the inverse Laplace transform of a function û(x, p)
given by

(39) u(x, t) = L−1(û(x, p)) =
1

2πi

∫ γ+i∞

γ−i∞
etpû(x, p) dp,

where p = γ + iβ, γ = ℜ(p), β = ℑ(p), ℜ(p) > 0.
Since it is very difficult to obtain the analytical formula of (39), we compute

(39) numerically by the Riemann-sum approximate formula (see, e.g., [31]):

(40) u(x, t) =
eγt

t

[1
2
ûε(x, γ) + ℜ

∞∑
n=1

û(x, γ +
inπ

t
)(−1)n

]
, γ =

4.7

t
.

In the real computation, we take a truncated function for the Riemann-sum
formula as follows:

(41) uN (x, t) =
eγt

t

[1
2
û(x, γ) + ℜ

N∑
n=1

û(x, γ +
inπ

t
)(−1)n

]
.

Hence the first-order and the second-order multiscale approximate solutions for the
original problem (1) are defined as

(42)
uε
1,N (x, t) = eγt

t

{
1
2

[
û0(x, p0) + εNα1(ξ)

∂û0(x,p0)
∂xα1

]
+ℜ

∑N
j=1[û

0(x, pj) + εNα1(ξ)
∂û0(x,pj)

∂xα1
](−1)j

}
,

and

(43)
uε
2,N (x, t) = eγt

t

{
1
2

[
û0(x, p0) + εNα1(ξ)

∂û0(x,p0)
∂xα1

+ ε2Nα1α2(ξ)
∂2û0(x,p0)
∂xα1

∂xα2

]
+ℜ

∑N
j=1[û

0(x, pj) + εNα1(ξ)
∂û0(x,pj)

∂xα1
+ ε2Nα1α2(ξ)

∂2û0(x,pj)
∂xα1∂xα2

](−1)j
}
,

where pj =
4.7
t + i jπt , j = 0, 1, · · · , N .
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Next we derive the convergence results of the first-order and the second-order
multiscale approximate solutions (42) and (43) for the problem (1). To this end,
we first introduce the following lemma:

Lemma 3.1. (see Lemma 3.2 of [36]) If u ∈ Wm,1(0, t∗;Hs(Ω)) and m, s ∈ N,
then it holds

(44) ∥û(x, p)∥Hs(Ω) ≤
C

|ℑ(p)|m
,

where C is a constant independent of p, ℑ(p) ̸= 0.

Theorem 3.2. Let uε(x, t) be the solution of the problem (1), and let û0(x, p) and
u0(x, t) be the solutions of the homogenized equation (19) and (21), respectively.
Suppose that uε

2,N (x, t) is the second-order multiscale asymptotic solution defined

in (43). If u0 ∈ W 2,1(0, t∗;H4(Ω))∩W 1,∞(0, t∗;H1(Ω)), uε ∈ W 2,1(0, t∗;H1(Ω))∩
W 1,∞(0, t∗;H1(Ω)), β ∈ W 1,1(0, t∗) and 1 + β̂(p) ̸= 0 for ℜ(p) > 0, assumptions
(A1)-(A4) and (B1)-(B2) are satisfied, then we have the following estimates:

∥uε(x, t∗)− uε
2,N (x, t∗)∥L2(Ω) ≤ C

(
ε

1
2 +

1

N

)
,(45)

∥∇(uε(x, t∗)− uε
2,N (x, t∗))∥L2(Ω) ≤ C

(
ε

1
2 +

1

N

)
,(46)

where C is a constant independent of ε and N , but dependent on t∗.

Proof. It follows from (40) that

(47) uε(x, t∗) =
eγt

∗

t∗

[1
2
ûε(x, γ) + ℜ

∞∑
n=1

ûε(x, γ +
inπ

t∗
)(−1)n

]
, γ =

4.7

t∗
.

Combining (16) and (43), we have
(48)

uε(x, t∗)− uε
2,N (x, t∗) = eγt∗

t∗

{
1
2 [û

ε(x, γ)− ûε
2(x, γ)] + ℜ

N∑
n=1

[ûε(x, γ + inπ
t∗ )

−ûε
2(x, γ + inπ

t∗ )](−1)n + ℜ
∞∑

n=N+1

ûε(x, γ + inπ
t∗ )(−1)n

}
, γ = 4.7

t∗ .

Given u0 ∈ W 2,1(0, t∗;H4(Ω)), uε ∈ W 2,1(0, t∗;H1(Ω)), β ∈ W 1,1(0, t∗), it
follows from Lemma 3.1 that

(49) ∥û(x, p)∥H4(Ω) ≤ C
|ℑ(p)|2 , ∥ûε(x, p)∥H1(Ω) ≤ C

|ℑ(p)|2 , |β̂(p)| ≤ C
|ℑ(p)| .

Together with (22) of Proposition 2.4, (49) gives

(50)

∥ûε(x, γ)− ûε
2(x, γ)∥L2(Ω) ≤ Cε

1
2 ,∥∥∥∥ℜ N∑

n=1
[ûε(x, γ + inπ

t∗ )− ûε
2(x, γ + inπ

t∗ )](−1)n
∥∥∥∥
L2(Ω)

≤ Cε
1
2 ,∥∥∥∥ℜ ∞∑

n=N+1

ûε(x, γ + inπ
t∗ )(−1)n

∥∥∥∥
L2(Ω)

≤ C
N .

We thus have

∥uε(x, t∗)− uε
2,N (x, t∗)∥L2(Ω) ≤ C

(
ε

1
2 +

1

N

)
.
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(a)

Ω0

(b)

Ω1

Ω0

Figure 1. (a) Interior subdomain Ω0 of a whole domain Ω. (b)
The boundary layer Ω1.

As 1 + β̂(p) ̸= 0 for ℜ(p) > 0, then (1 + β̂(p))−1 is uniformly bounded for
ℜ(p) > 0. It follows from (49) and (23) of Proposition 2.4 that

(51)

∥∇(ûε(x, γ)− ûε
2(x, γ))∥L2(Ω ≤ Cε

1
2 ,∥∥∥∥∇{

ℜ
N∑

n=1
[ûε(x, γ + inπ

t∗ )− ûε
2(x, γ + inπ

t∗ )](−1)n
}∥∥∥∥

L2(Ω)

≤ Cε
1
2 ,∥∥∥∥∇[ℜ

∞∑
n=N

ûε(x, γ + inπ
t∗ )(−1)n]

∥∥∥∥
L2(Ω)

≤ C
N .

Therefore, using (51), we complete the proof of Theorem 3.2. Throughout the
proof, C is a constant independent of ε and N , but may depend on t∗. �

Following the lines of the proof of (45) and (46), we get the following convergence
results for the first-order multiscale approximate solution:

Theorem 3.3. Let uε
1,N (x, t) be the first-order multiscale approximate solution

defined in (42). Under the assumptions of Theorem 3.2, if u0 ∈ W 3,1(0, t∗;H3(Ω))∩
W 1,∞(0, t∗;H1(Ω)), uε ∈ W 2,1(0, t∗;H1(Ω)) ∩W 1,∞(0, t∗;H1(Ω)), we have

(52)
∥uε(x, t∗)− uε

1,N (x, t∗)∥L2(Ω) ≤ C
(
ε

1
2 + 1

N

)
,

∥∇(uε(x, t∗)− uε
1,N (x, t∗))∥L2(Ω) ≤ C

(
ε

1
2 + 1

N

)
,

where C is a constant independent of ε and N , but dependent on t∗.

We have to state that, in order to prove Theorems 3.2 and 3.3, one needs the
assumption û0 ∈ Hs+2(Ω), s = 1, 2, where û0 is the solution of the homogenized
equation (19). However, for a general bounded convex polygonal domain, the con-
dition û0 ∈ Hs+2(Ω), s = 1, 2 may not be satisfied. To overcome this difficulty,
we resort to the boundary layer solutions [1]. To this end, we first introduce some
notations. Let Ω̄0 = ∪z∈Iεε(z + Q̄) ⊂ Ω, where Iε = {z ∈ Zn, ε(z + Q̄) ⊂ Ω},
dist(∂Ω0, ∂Ω) > 2ε, and the boundary layer Ω1 = Ω \ Ω0. They are illustrated in
Figure 1:(a) and (b).
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We define the boundary layer solutions for the problem (1) given by

(53)



∂uε,b
s,N

∂t
− ∂

∂xi

(
aij(

x
ε )

∂uε,b
s,N

∂xj

)
− ∂

∂xi

∫ t

0

β(t− s)aij(
x

ε
)
∂uε,b

s,N

∂xj
ds

= f(x, t), (x, t) ∈ Ω1 × (0, T ),

uε,b
s,N (x, t) = g(x, t), (x, t) ∈ ∂Ω× (0, T ),

uε,b
s,N (x, t) = uε

s,N (x, t), (x, t) ∈ (∂Ω0 ∩ ∂Ω1)× (0, T ),

uε,b
s,N (x, 0) = ū0(x), x ∈ Ω1,

where uε
s,N (x, t), s = 1, 2 are given in (42) and (43), respectively.

Remark 3.4. The existence and uniqueness of the boundary layer solutions can be
established under assumptions (A2)-(A4) (see, e.g.,[10, 12, 27]).

We define the multiscale asymptotic solutions for the problem (1) in the following
way:

(54) Uε
s,N (x, t) =

{
uε
s,N (x, t), x ∈ Ω0,

uε,b
s,N (x, t), x ∈ Ω1.

Next we give the convergence theorem for the multiscale asymptotic solutions
Uε
s,N (x, p)(s = 1, 2) for the problem (1).

Theorem 3.5. Suppose that Ω ⊂ Rn, n ≥ 1 is a bounded convex polygonal domain.
Let uε(x, t) be the weak solution of the problem (1) and let Uε

s,N (x, p) be the multi-

scale asymptotic solutions given in (54). If f ∈ L2(0, T ;L2(Ω))∩H1(0, T ;Hs(Ω)),

g ∈ L∞(0, T ;H
1
2 (∂Ω)), ū0 ∈ Hs+1(Ω), s = 1, 2, where Ω0 ⊂⊂ Ω, Ω1 = Ω \ Ω0,

dist(∂Ω0, ∂Ω) > 2ε, then it holds

(55) ∥uε(x, t∗)− Uε
s,N (x, t∗)∥H1(Ω) ≤ C

(
ε

1
2 +

1

N

)
, s = 1, 2,

where C is a constant independent of ε and N , but dependent on t∗.

Proof. We divide our proof into two parts. First, we derive the error estimates for
the multiscale asymptotic solutions Uε

s,N (x, p), s = 1, 2 in a subdomain Ω0. Second,
we give the error estimates of the boundary layer solutions using the trace theorem
and then get the error estimates of Uε

s,N (x, p), s = 1, 2 in a whole domain Ω. To
begin, we introduce the following subdomains:

Ω′ = {x ∈ Ω : if dist(x, ∂Ω) ≥ ε/2}, Kε = {x ∈ Ω : if dist(x, ∂Ω) ≤ 2ε},
K ′

ε = {x ∈ Ω : if ε ≤ dist(x, ∂Ω) ≤ 2ε}.

Since Ω0 ⊂⊂ Ω′ ⊂⊂ Ω, under the assumptions of this theorem, using the interior
regularity of elliptic equations(see, e.g.,[18]), we deduce that û0 ∈ Hs+2(Ω′), s =
1, 2, where û0 is the solution of the homogenized equation (19). Define the cutoff
function mε(x) as follows:

(56)
mε ∈ D(Ω), mε = 0, if dist (x, ∂Ω) ≤ ε, mε = 1, if dist (x, ∂Ω) ≥ 2ε,

ε|∂mε

∂xi
| ≤ C, i = 1, 2, · · · , n.
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Let

θ̂ε1(x, p) = û0(x, p) + εmε(x)Nα1(ξ)
∂û0(x, p)

∂xα1

,

θ̂ε2(x, p) = û0(x, p) + εmε(x)Nα1(ξ)
∂û0(x, p)

∂xα1

+ ε2mε(x)Nα1α2(ξ)
∂2û0(x, p)

∂xα1∂xα2

.

(57)

Here we only prove Theorem 3.5 for the case s = 1. The case s = 2 can be
proved similarly. From (17)-(19),(56)-(57), we have

(58)

∫
Ω
aij(

x
ε )

∂(ûε(x,p)−θ̂ε
1(x,p))

∂xj

∂v̄(x)
∂xi

dx+ p̃
∫
Ω
(ûε(x, p)− θ̂ε1(x, p))v̄(x) dx

= Ĵε
1 (v), ∀v ∈ H1

0 (Ω),

where v̄(x) denotes the conjugate of the complex function v(x), and

(59)

Ĵε
1 (v) = −

∫
Ω
mε(x)

[
(aij(ξ) + aik(ξ)

∂Nj(ξ)
∂ξk

− a∗ij

]
∂û0(x,p)

∂xj

∂v̄(x)
∂xi

dx

−
∫
Ω
(1−mε(x))

[
(aij(ξ) + aik(ξ)

∂Nj(ξ)
∂ξk

− a∗ij

]
∂û0(x,p)

∂xj

∂v̄(x)
∂xi

dx

−
∫
Ω
(mε(x)− 1)aij(ξ)

∂Nα1 (ξ)

∂ξj

∂û0(x,p)
∂xα1

∂v̄(x)
∂xi

dx

−
∫
Ω
ε∂mε(x)

∂xj
aij(ξ)Nα1(ξ)

∂û0(x,p)
∂xα1

∂v̄(x)
∂xi

dx

−
∫
Ω
εmε(x)aij(ξ)Nα1(ξ)

∂2û0(x,p)
∂xα1∂xj

∂v̄(x)
∂xi

dx

−p̃
∫
Ω
εmε(x)aij(ξ)Nα1(ξ)

∂û0(x,p)
∂xα1

v̄(x) dx, p̃ = p

1+β̂(p)
.

Using (17), (20) and the Green formula, we have

(60)

−
∫
Ω
mε(x)

[
aij(ξ) + aik(ξ)

∂Nj(ξ)
∂ξk

− a∗ij

]
∂û0(x,p)

∂xj

∂v̄(x)
∂xi

dx

=
∫
Ω

∂mε(x)
∂xi

[
aij(ξ) + aik

∂Nj(ξ)
∂ξk

− a∗ij

]
∂û0(x,p)

∂xj
v̄(x) dx

+ε−1
∫
Ω
mε(x)

∂
∂ξi

[
aij(ξ) + aik(ξ)

∂Nj(ξ)
∂ξk

− a∗ij

]
∂û0(x,p)

∂xj
v̄(x) dx

+
∫
Ω
mε(x)

[
aij(ξ) + aik(ξ)

∂Nj(ξ)
∂ξk

− a∗ij

]
∂2û0(x,p)
∂xi∂xj

v̄(x) dx

=
∫
Ω

∂mε(x)
∂xi

[
aij(ξ) + aik(ξ)

∂Nj(ξ)
∂ξk

− a∗ij

]
∂û0(x,p)

∂xj
v̄(x) dx

+
∫
Ω
mε(x)

[
aij(ξ) + aik(ξ)

∂Nj(ξ)
∂ξk

− a∗ij

]
∂2û0(x,p)
∂xi∂xj

v̄(x) dx.

By setting h(x, ξ) = ε∂mε(x)
∂xi

(
aij(ξ) + aik(ξ)

∂Nj(ξ)
∂ξk

− a∗ij

)
, from (20) and (56),

one can verify that h(x, ξ) satisfies all conditions of Lemmas 1.5 and 1.6 of [23]. It
follows from the above Lemmas that

(61)

∣∣∣ε−1
∫
Ω
ε∂mε(x)

∂xi

[
(aij + aik

∂Nj

∂ξk
− a∗ij

]
∂û0

∂xj
v̄ dx

∣∣∣
≤ Cε−1ε∥û0∥H2(K′

ε)
∥v∥H1(K′

ε)
≤ Cε

1
2 ∥û0∥H3(Ω′)∥v∥H1

0 (Ω).

Using Lemma 1.6 of [23] again, we get

(62)

∣∣∣ ∫Ω mε(x)
[
(aij + aik

∂Nj

∂ξk
− a∗ij

]
∂2û0

∂xi∂xj
v̄ dx

∣∣∣
≤ Cε∥û0∥H3(Ω′)∥v∥H1

0 (Ω).

From (25) and (56), applying Lemma 1.5 of [23] gives

(63)

∣∣∣ ∫Ω(1−mε(x))
[
(aij(ξ) + aik(ξ)

∂Nj(ξ)
∂ξk

− a∗ij

]
∂û0(x,p)

∂xj

∂v̄(x)
∂xi

dx
∣∣∣

=
∣∣∣ ∫Kε

(1−mε(x))
[
(aij(ξ) + aik(ξ)

∂Nj(ξ)
∂ξk

− a∗ij

]
∂û0(x,p)

∂xj

∂v̄(x)
∂xi

dx
∣∣∣

≤ C∥û0∥H1(Kε)∥v∥H1(Kε) ≤ Cε
1
2 ∥û0∥H2(Ω)∥v∥H1

0 (Ω),
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(64)

∣∣∣ ∫Ω(mε(x)− 1)aij(ξ)
∂Nα1 (ξ)

∂ξj

∂û0(x,p)
∂xα1

∂v̄(x)
∂xi

dx
∣∣∣

≤ C∥û0∥H1(Kε)∥v∥H1(Kε) ≤ Cε
1
2 ∥û0∥H2(Ω)∥v∥H1

0 (Ω),

and

(65)

∣∣∣ ∫Ω ε∂mε(x)
∂xj

aijNα1

∂û0

∂xα1

∂v̄
∂xi

dx
∣∣∣ ≤ C∥û0∥H1(K′

ε)
∥v∥H1(K′

ε)

≤ Cε
1
2 ∥û0∥H2(Ω′)∥v∥H1

0 (Ω).

Thanks to (25) and (56), we have∣∣∣ ∫
Ω

εmε(x)aij(ξ)Nα1(ξ)
∂2û0(x, p)

∂xα1∂xj

∂v̄(x)

∂xi
dx

∣∣∣ ≤ Cε∥û0∥H2(Ω′)∥v∥H1
0 (Ω),(66)

∣∣∣p̃ ∫
Ω

εmε(x)aij(ξ)Nα1(ξ)
∂û0(x, p)

∂xα1

v̄(x) dx
∣∣∣ ≤ C|p̃|ε∥û0∥H1(Ω′)∥v∥L2(Ω).(67)

It follows from (59) to (67) that

(68) |Ĵε
1 (v)| ≤ C

{
ε

1
2 (∥û0∥H3(Ω′) + ∥û0∥H2(Ω))∥v∥H1

0 (Ω) + |p̃|ε∥û0∥H2(Ω)∥v∥L2(Ω)

}
,

where C is a constant independent of ε and p.

It is obvious that ûε − θ̂ε1 ∈ H1
0 (Ω) thanks to (56) and (57). Setting v = ûε − θ̂ε1

in (58) and following the lines of the proof of (9), we get

(69)

∫
Ω
∇|ûε − θ̂ε1|2 dx+ |p̃|

∫
Ω
|ûε − θ̂ε1|2 dx ≤ |Ĵε

1 (û
ε − θ̂ε1)|

≤ Cε
1
2 (∥û0∥H3(Ω′) + ∥û0∥H2(Ω))∥ûε − θ̂ε1∥H1

0 (Ω)

+C|p̃|ε∥û0∥H2(Ω)∥ûε − θ̂ε1∥L2(Ω), p̃ ∈ Σθ.

Using the Poincaré inequality and the Young’s inequality, we have∫
Ω

|∇(ûε − θ̂ε1)|2 dx+ |p̃|
∫
Ω

|ûε − θ̂ε1|2 dx

≤ C(∥û0∥H3(Ω′) + ∥û0∥H2(Ω))
2(1 + |p̃|)ε.(70)

Furthermore, we use the Sobolev imbedding inequality in (70) and obtain∫
Ω

|∇(ûε − θ̂ε1)|2 dx+ (|p̃|+ 1)

∫
Ω

|ûε − θ̂ε1|2 dx

≤ C(∥û0∥H3(Ω′) + ∥û0∥H2(Ω))
2(1 + |p̃|)ε,(71)

consequently,

∥ûε − θ̂ε1∥L2(Ω) ≤ C(∥û0∥H3(Ω′) + ∥û0∥H2(Ω))ε
1
2 ,(72)

∥∇(ûε − θ̂ε1)∥L2(Ω) ≤ C(∥û0∥H3(Ω′) + ∥û0∥H2(Ω))

(
|1 + β̂(p)|+ |p|

) 1
2

|1 + β̂(p)| 12
ε

1
2 .(73)

Given dist(∂Ω0, ∂Ω) > 2ε, combining (56) and (57) implies

∥ûε − ûε
1∥L2(Ω0) ≤ C(∥û0∥H3(Ω′) + ∥û0∥H2(Ω))ε

1
2 ,(74)

∥∇(ûε − ûε
1)∥L2(Ω0) ≤ C(∥û0∥H3(Ω′) + ∥û0∥H2(Ω))

(
|1 + β̂(p)|+ |p|

) 1
2

|1 + β̂(p)| 12
ε

1
2 .(75)
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Under the assumptions of this theorem, repeating the process of the proof of
Theorem 3.2, we get

∥uε(x, t∗)− uε
1,N (x, t∗)∥L2(Ω0) ≤ C

(
ε

1
2 +

1

N

)
,(76)

∥∇(uε(x, t∗)− uε
1,N (x, t∗))∥L2(Ω0) ≤ C

(
ε

1
2 +

1

N

)
.(77)

Using the trace theorem gives

∥uε(x, t∗)− uε,b
1,N (x, t∗)∥H1(Ω1) ≤ C∥uε(x, t∗)− uε

1,N (x, t∗)∥
H

1
2 (∂Ω0∩∂Ω1)

≤ ∥uε(x, t∗)− uε
1,N (x, t∗)∥H1(Ω0) ≤ C

(
ε

1
2 +

1

N

)
.(78)

This estimate together with (76), (77) and the triangle inequality leads to

(79)
∥uε(x, t∗)− Uε

1,N (x, t∗)∥H1(Ω) ≤ ∥uε(x, t∗)− uε
1,N (x, t∗)∥H1(Ω0)

+∥uε(x, t∗)− uε,b
1,N (x, t∗)∥H1(Ω1) ≤ C(ε

1
2 + 1

N ).

Similar to the proof of (79), we have

∥uε(x, t∗)− Uε
2,N (x, t∗)∥H1(Ω) ≤ C

(
ε

1
2 +

1

N

)
.(80)

Therefore, it completes the proof of Theorem 3.5. Throughout the proof, C is a
constant independent of ε and N , but may depend on t∗. �

Remark 3.6. It should be mentioned that, if we take β(t) = tα−1/Γ(α)(0 < α < 1)
in (1), then the condition β ∈ W 1,1(0, t∗) in Theorem 3.2 is not satisfied. However,

since β̂(p) = 1
pα , we only need to change (49) to |β̂(p)| ≤ 1

|ℑ(p)|α in the proof of

Theorem 3.2. So we can also prove (45) and (46). Furthermore, we can prove
that Theorems 3.2, 3.3, 3.5 are also valid for the integro-differential equation of
fractional order with rapidly oscillating coefficients.

4. The finite element computations for the related problems

4.1. The finite element method for solving the homogenized equation.
In this section, we will give the finite element method for solving the homogenized
equation (19) with complex coefficients. The finite element method of cell func-
tions Nα1(ξ), Nα1α2(ξ), α1, α2 = 1, · · · , n can be found in [1, 3]. Without loss of
generality, we assume that ĝ(x, p) ≡ 0. The variational form of problem (19) is as
follows:

(81) a(û0, v) + p(û0, v) = (F, v), ∀v ∈ H1
0 (Ω),

where a(w, v) =
∫
Ω
a∗ij(1 + β̂(p)) ∂w

∂xj

∂v̄
∂xi

dx and (w, v) =
∫
Ω
wv̄ dx.

Let Sh ⊂ H1
0 (Ω) be the linear Lagrangian finite element space. The finite element

approximation of (81) is to find û0
h ∈ Sh such that:

(82) a(û0
h, vh) + p(û0

h, vh) = (F, vh), ∀vh ∈ Sh.

Let {ϕj}Nh
j=1 be a set of basis of the finite element space Sh and let û0

h =
Nh∑
j=1

αjϕj(x). Then the discrete system for (82) is as follows:

(83)

Nh∑
j=1

αja(ϕj , ϕk) + p

Nh∑
j=1

αj(ϕj , ϕk) = (F, ϕk), k = 1, · · · , Nh.
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Setting p = λ1+λ2i, αj = aj+ibj , a
∗
kl(1+β̂(p)) = γkl+iβkl, k, l = 1, 2, · · · , n, j =

1, 2, · · · , Nh, F (x, p) = f1(x) + if2(x) and i =
√
−1, we get

Nh∑
j=1

(aj + bji)(c(ϕj , ϕk) + id(ϕj , ϕk)) +

Nh∑
j=1

(λ1 + λ2i)(aj + bji)(ϕj , ϕk)

= (f1 + f2i, ϕk), k = 1, 2, · · · , Nh,(84)

where

c(ϕj , ϕk) =
∫
Ω
γlm

∂ϕj

∂xm

∂ϕk

∂xl
dx, d(ϕj , ϕk) =

∫
Ω
βlm

∂ϕj

∂xm

∂ϕk

∂xl
dx,

j, k = 1, 2, · · · , Nh, l,m = 1, 2, · · · , n.

Set

C = (c(ϕj , ϕi))Nh×Nh
, D = (d(ϕj , ϕi))Nh×Nh

, M = ((ϕj , ϕi))Nh×Nh
,

α = (a1, · · · , aNh
)T , β = (b1, · · · , bNh

)T , F1 = ((f1, ϕ1), · · · , (f1, ϕNh
))T ,

F2 = ((f2, ϕ1), · · · , (f2, ϕNh
))T .

Hence we need to solve the following linear discrete system:

(
C + λ1M −D − λ2M
D + λ2M C + λ1M

)(
α
β

)
=

(
F1

F2

)
.

4.2. Multiscale finite element method for the original problem (1). Based
on the above results, we now present the multiscale finite element method for solving
the parabolic integro-differential equation with rapidly oscillating coefficients. It
consists of the following steps:

Step 1. Compute numerically cell functionsNα1(ξ), Nα1α2(ξ), α1, α2 = 1, 2, · · · , n
defined in (17) and (18) on the reference cell Q.

Step 2. For any fixed t∗ ∈ (0, T ), solve numerically a set of homogenized

equations (2) with different constant coefficients pj = 4.7
t∗ + i jπt∗ , j = 0, 1, · · · , N

over a whole domain Ω in a coarse mesh. It should be mentioned that here they
are solved in parallel.

Step 3. Let û0
h be the finite element approximate solution of û0, where h is the

mesh size in a whole domain Ω. Calculate the higher-order derivatives û0
h by using

the finite difference method. For more details, we refer to [3].
Step 4. Based on the multiscale asymptotic expansions (15) and (16) for the

steady state problem (19), we get the first-order and the second-order multiscale
asymptotic solutions ûε

1(x, pj) and ûε
2(x, pj), j = 0, 1, · · · , N , respectively.

Step 5. Using formulas (42) and (43) to compute the first-order and the second-
order multiscale numerical solutions for the original problem (1).

Step 6. Solve numerically the boundary layer equation (53) in a subdomain
Ω1 ⊂ Ω in a fine mesh.
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Except for Step 6, the multiscale finite element scheme is given by

u0,h
N (x, t∗) =

eγt
∗

t∗

[1
2
û0
h(x, p0) + ℜ

N∑
j=1

û0
h(x, pj)

]
,(85)

uε,h0,h
1,N (x, t∗) =

eγt
∗

t∗

{1

2
[û0

h(x, p0) + εNh0
α1

(ξ)δxα1
û0
h(x, p0)]

+ ℜ
N∑
j=1

[û0
h(x, pj) + εNh0

α1
(ξ)δxα1

û0
h(x, pj)](−1)j

}
,(86)

uε,h0,h
2,N (x, t∗) =

eγt
∗

t∗

{1

2
[û0

h(x, p0) + εNh0
α1

(ξ)δxα1
û0
h(x, p0)

+ ε2Nh0
α1α2

(ξ)δxα1xα2
û0
h(x, p0)]

+ ℜ
N∑
j=1

[û0
h(x, pj) + εNh0

α1
(ξ)δxα1

û0
h(x, pj)

+ ε2Nh0
α1α2

(ξ)δxα1xα2
û0
h(x, pj)](−1)j

}
,(87)

where u0,h
N , uε,h0,h

1,N and uε,h0,h
2,N are the homogenized numerical solution, the first-

order and the second-order multiscale numerical solutions, respectively. û0
h(x, pj),

Nh0
α1

(ξ) and Nh0
α1α2

(ξ) are respectively the finite element solutions of problems (19),

(17) and (18) for different pj = 4.7
t∗ + i jπt∗ , j = 0, 1, · · · , N . δxα1

û0
h(x, pj) and

δxα1xα2
û0
h(x, pj) denote the first-order and the second-order finite difference quo-

tients of û0
h(x, pj), respectively. h0 and h denote the mesh sizes of the reference cell

Q and a whole domain Ω, respectively.

Remark 4.1. If Nα1(ξ), Nα1α2(ξ) ∈ H2(Q), the standard finite element methods
give the error estimates of Nh0

α1
(ξ), Nh0

α1α2
(ξ) and û0

h as follows:

(88) ∥Nα1 −Nh0
α1

∥L2(Q) ≤ Ch2
0, ∥∇(Nα1 −Nh0

α1
)∥L2(Q) ≤ Ch0,

(89) ∥Nα1α2 −Nh0
α1α2

∥L2(Q) ≤ Ch2
0, ∥∇(Nα1α2 −Nh0

α1α2
)∥L2(Q) ≤ Ch0,

where C is a constant independent of h0, N
h0
α1

(ξ), Nh0
α1α2

(ξ) ∈ Wh0(Q) and Wh0(Q)

is the linear finite element space. Furthermore, if û0 ∈ Hk+1(Ω) we have

(90) ∥û0 − û0
h∥L2(Ω) ≤ C

(
1 + |p̃|

)
hk+1∥û0∥Hk+1(Ω),

(91) ∥∇(û0 − û0
h)∥L2(Ω) ≤ C

(
1 + |p̃|

)
hk∥û0∥Hk+1(Ω),

where C is a constant independent of h and p, p̃ = p

1+β̂(p)
∈ Σθ \ {0}, û0 ∈ Sh(Ω)

and Sh is the finite element space consisting of kth-degree elements.

5. Numerical Examples

To validate the proposed multiscale algorithm, we do numerical simulations for
the following case studies. We consider the 3-D integro-differential equations with
rapidly oscillating coefficients as follows:

(92)


∂uε(x, t)

∂t
− ∂

∂xi

(
aij(

x
ε )

∂uε(x, t)
∂xj

)
− ∂

∂xi

∫ t

0

β(t− s)aij(
x

ε
)
∂uε(x, s)

∂xj
ds

= f(x, t), (x, t) ∈ Ω× (0, T ),
uε(x, t) = g(x, t), (x, t) ∈ ∂Ω× (0, T ),
uε(x, 0) = ū0(x), x ∈ Ω,
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(a)

x

y

z
(b)

Figure 2. (a) A whole domain Ω. (b) The unit cell Q.

where a whole domain Ω is the union of periodic cells as shown in Figure 2:(a), the
reference cell Q = (0, 1)3 is as shown in Figure 2:(b). Here ε = 1

4 .
In the following numerical example, we choose β(t) = e−t, f(x, t) = e−t, g(x, t) =

0 and ū0(x) = 0. Let aij1 denote the value of aij in the inside sphere of Q, and let
aij0 denote the value of aij in the other part of Q, where δij is a Kronecker symbol,
i, j = 1, 2, 3.

Case 5.1 aij0 = 100δij , aij1 = 10δij , t∗ = 0.5.
Case 5.2 aij0 = 100δij , aij1 = δij , t∗ = 0.5.
To show the numerical accuracy of the proposed method, we need to seek the

exact solution of the problem (92). However, it is extremely difficult to find out the
exact solution of (92). To this end, we replace uε(x, t) with its numerical solution
in a fine mesh and at a small time step. We now implement the tetrahedron par-
tition for Ω in a fine mesh, which is such that the discontinuities of the coefficients
aij(

x
ε ) approximately coincide with faces of tetrahedron, and use linear Lagrangian

elements to solve problem (92). We get the full-discrete system for (92) by using
the backward Euler scheme and choose the time step ∆t = 0.001 in this example.
It should be emphasized that, in real applications, it is not necessary to solve the
original problem in a very fine mesh and at a small time step.

For solving numerically cell problems (17), (18) and the homogenized equation
(19), we implement respectively the tetrahedron partitions for Q and Ω, and use
linear Lagrangian elements. We use the formulas (85),(86) and (87) to compute the
homogenized solution and multiscale approximate solutions for the problem (92)
with N = 100. The computational costs are listed in Table 1.

Table 1. Comparison of the numbers of elements and nodes.

original equation cell problem homogenized equation
number of elements 129002 2006 24576
number of nodes 25044 461 4913

Figure 3-4 show the numerical results for u0(x, t), uε
1(x, t), u

ε
2(x, t) and uε(x, t)

at time t∗ = 0.5 at the intersection z = 0.625 in Cases 5.1 and 5.2.
In Table 1, we can see that the proposed scheme requires much less compu-

tational cost compared to the finite element method. Moreover, since the direct
finite element simulation is advanced step by step in time, the successive values
of the solution have to be stored due to the existence of the integro-differential



MULTISCALE ALGORITHM FOR PARABOLIC INTEGRO-DIFFERENTIAL EQUATION 559

(a)

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

1

2

3

x 10
−4

(b)

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

1

2

3

x 10
−4

(c)

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

1

2

3

x 10
−4

(d)

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

1

2

3

x 10
−4

Figure 3. In Case 5.1: (a) the homogenized solution u0 in a coarse
mesh; (b) the first-order multiscale numerical solution uε

1; (c) the
second-order multiscale numerical solution uε

2; (d) the solution uε

in a fine mesh.
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Figure 4. In Case 5.2: (a) the homogenized solution u0 in a coarse
mesh; (b) the first-order multiscale numerical solution uε

1; (c) the
second-order multiscale numerical solution uε

2; (d) the solution uε

in a fine mesh.
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Table 2. Comparison of the computational errors.

∥e0∥(0)

∥uε∥(0)

∥e1∥(0)

∥uε∥(0)

∥e2∥(0)

∥uε∥(0)

∥e0∥(1)

∥uε∥(1)

∥e1∥(1)

∥uε∥(1)

∥e2∥(1)

∥uε∥(1)

Case 5.1 0.12413 0.12250 0.10922 0.35390 0.29608 0.15661
Case 5.2 0.34468 0.34652 0.10612 0.94608 0.93626 0.19930
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Figure 5. (a) Case 5.1, the evolution of relative errors in the
L2(Ω)-norm; (b) Case 5.1, the evolution of relative errors in the
H1(Ω)-norm.(c) Case 5.2, the evolution of relative errors in the
L2(Ω)-norm; (d) Case 5.2, the evolution of relative errors in the
H1(Ω)-norm.

term. However, the proposed method requires only the solution of a finite set of
independent steady problems, which can be computated in parallel.

Without confusion we continue to use uε(x, t) to denote its numerical solution in a
fine mesh. For simplicity, let u0(x, t) denote the homogenized finite element solution
based on (85) in a coarse mesh, and uε

1(x, t), u
ε
2(x, t) be the first-order and the

second-order multiscale finite element solutions based on (86) and (87) respectively.
Set e0 = uε(x, t) − u0(x, t), e1 = uε(x, t) − uε

1(x, t), e2 = uε(x, t) − uε
2(x, t). For

convenience, we define:

∥u∥(0) =
( t∗∫

0

∥u∥2L2(Ω) dt
)1/2

, ∥u∥(1) =
( t∗∫

0

∥u∥2H1(Ω) dt
)1/2

.

The relative errors of the homogenized numerical solution, the first-order and
the second-order multiscale finite element solutions in L2(0, t∗;L2(Ω))-norm and
L2(0, t∗;H1(Ω))-norm in Cases 5.1 and 5.2 are listed in Table 2. The numerical
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results reported in Table 2 demonstrate that the second-order multiscale finite ele-
ment method yield more high-accuracy numerical results than the homogenization
method and the first-order multiscale finite element method on the same mesh.
Therefore, we conclude that the multiscale method not only save computing re-
sources greatly but also provide satisfactory numerical accuracy for solving 3-D
integro-differential equation with rapidly oscillating coefficients.

Figure 5 shows the evolution of the relative errors of approximate solutions in
L2(Ω)-norm and H1(Ω)-norm with respect to time t in Cases 5.1 and 5.2, where
abscissa axis is variable of time, ordinate axis is the relative error. We observe
Figure 5 and conclude that our method is stable and highly accurate for solving
parabolic integro-differential equations with rapidly oscillating coefficients.
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