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ENERGY STABLE TIME DOMAIN FINITE ELEMENT
METHODS FOR NONLINEAR MODELS IN OPTICS AND
PHOTONICS

ASAD ANEES AND LUTZ ANGERMANN

Abstract. Novel time domain finite element methods are proposed to numerically solve the
system of Maxwell’s equations with a cubic nonlinearity in the spatial 3D case. The effects of linear
and nonlinear electric polarization are precisely modeled in this approach. In order to achieve an
energy stable discretization at the semi-discrete and the fully discrete levels, a novel technique is
developed to handle the discrete nonlinearity, with spatial discretization either using edge and face
elements (Nédélec-Raviart-Thomas) or discontinuous spaces and edge elements (Lee-Madsen). In
particular, the proposed time discretization scheme is unconditionally stable with respect to the
electromagnetic energy and is free of any Courant-Friedrichs-Lewy-type condition. Optimal error
estimates are presented at semi-discrete and fully discrete levels for the nonlinear problem. The
methods are robust and allow for discretization of complicated geometries and nonlinearities of
spatially 3D problems that can be directly derived from the full system of nonlinear Maxwell’s
equations.

Key words. Finite element analysis, nonlinear Maxwell’s equations, energy stability, convergence
analysis, error estimate, time domain analysis.

1. Introduction

In nonlinear Optics and Photonics, the presence, behaviour and application of
light or photons in nonlinear media, in which the polarization density P depends
nonlinearly on the electric field E, are investigated. Nonlinear effects are observed
and used in many real-world applications, e.g., in lasers because of their high light
intensities. Nonlinear optical phenomena, in which the optical fields are not consid-
ered to be too large, e.g., parametric and instantaneous nonlinear optical phenom-
ena (i.e., lossless and dispersion-free materials) are often described mathematically
by means of a power series expansion of the dielectric polarization density P with
respect to the electric field E. Frequently, the behaviour of light waves in a material
is modeled by means of a third-order polarization response, that is the polarization
P = P(E) is a cubic polynomial in the electric field intensity E. The fundamental
concepts of nonlinear Optics can be found in details in [11, 8, 38, 2]. Due to the
wide range of the nonlinear Optics applications, numerous numerical techniques
for approximating the solutions of the mathematical models are employed, for in-
stance slowly-varying envelope approximations (SVEA), beam propagation (BP),
finite difference time domain (FDTD), time domain finite element (TDFE), time
domain discontinuous Galerkin (TDDG) methods, — among them pseudo-spectral-,
finite volume (FV) methods, and many more. The development of efficient and ac-
curate productive numerical techniques plays an essential role for many real-world
applications.

The method of SVEA is normally used for the approximate solution of nonlinear
problems that are close to linear ones, and oscillations that are close to harmonic
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ones [11]. Since it is based on the assumption that the amplitude of the wave changes
slowly in time and space compared to the wave period, it is thus quite restrictive for
many applications. The BP method with second-order indices of refraction was em-
ployed for modeling of nonlinear optical devices exhibiting on-axis behaviour [17].
Classical FDTD methods are considered as robust numerical schemes for linear and
nonlinear models in Optics and Photonics [48, 26, 50, 27, 46, 16, 21, 13, 34, 24].
However, they exhibit considerable limitations in their application, for example
with regard to their applicability to complex geometries, less smooth data (e.g.,
due to material interfaces), etc. In particular, the spatial domain is discretized by
regular, structured (quadrilateral or hexahedral) and staggered grids. The differ-
ence scheme presented in [48] served as the basis for one of the most frequently
used methods for solving the linear Maxwell’s equations. This scheme is of second
order in time and shows a significant numerical spread over long time intervals of
the simulation of wave propagation[13]. FDTD simulations for the full system of
nonlinear Maxwell’s equations have been presented in [27, 50]. Among other things,
interacting waves of different frequencies could be treated directly [27]. The auxil-
iary differential equation (ADE) method along with finite difference time domain
(FDTD) schemes has been originally employed for linear dispersive materials [26],
and for the coupling between the polarization vector and the electric field intensity
[20, 50]. This scheme was applied to second- and third-order nonlinear phenomena
including spatial soliton propagation [20, 25], linear and nonlinear interface scat-
tering [49], and pulse propagation through nonlinear wave guides [51]. In the paper
[9], a higher-order discontinuous Galerkin method for spatial 1D discretization in
conjunction with the ADE approach for the treatment of nonlinearity was investi-
gated, where the energy stability of the proposed methods could be proven. In the
latter respect, this work is very closely related to our results.

A lot of interesting modeling and simulation results for linear and nonlinear
Lorentz dispersion with nonlinear Kerr response in case of 1D, 2D and 3D can
be found in [19, 23, 10, 43, 25, 41, 36]. Among nonstandard difference methods,
pseudospectral spatial domain schemes have been employed for optical carrier shock
[28] and linear Lorentz dispersion with nonlinear response [47] simulation.

In this paper, based on the semi-discrete mixed finite element method [3], [4] and
the fully discrete finite element method [5], [6], we provide the detailed proofs of our
results to the fully time-dependent Maxwell’s equations with cubic nonlinearities
as a supplement to [7].

Let Q be a simply connected domain in R? with Lipschitz boundary I' and
unit outward normal n on I'. Let D = D(x,¢), B = B(x,t) , E = E(x,t) and
H = H(x,t) represent the electric displacement field, magnetic induction, electric
and magnetic field intensities, respectively, where x € ) and the time variable ¢
ranges in some interval (0,7), T > 0. Given an electric current density J = J(x, t),

Maxwell’s curl-equations in SI units read as
) D-VxH=J inQx(0,T),
(1) B+VXE=0 inQx(0,7).

The electric displacement D and magnetic induction B are related to the electric
and magnetic fields, respectively, through the following constitutive laws:
(2) D=¢E+P(E), B=puH.

The vacuum permittivity and permeability are denoted by the constants ¢y > 0
and po > 0, respectively. Often the polarization P = P(E) is approximated by a
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truncated Taylor series [11]. For an inhomogeneous, isotropic material, it takes the
form

(3) P(E) := = (xVE + x*[ELE)

with the susceptibility functions x(* : © — R for i = 1,3, where x(!) takes positive
and x®) nonnegative values. For x(3) = 0, we recover the standard linear Maxwell’s
equations. Thus the nonlinear Maxwell’s problem (1)—(3) can be rewritten as

4) oD-VxH=J inQx(0,7),
(5) o H+VXxE=0 inQx(0,T)
with

(6) 8,D = & ((1 +XD)E + X0, [|E2 E]).

We assume to have a perfect electric conductor (PEC) boundary condition on the
cylindrical surface:

nxE=0 onI x(0,7).

In addition, the following initial conditions are prescribed:

(7) E(x,0) = Eg(x) and H(x,0) =Hp(x) forall x € Q,
where Eo, Hy : © — R? are given, and Hy satisfies
(8) V- (uoHo) =0 inQ, Hy-n=0 onT.

The divergence-free condition in (8) together with (5) implies that
9) V- (oH) =0 in Q x (0,7).

Regarding the notation for function spaces, norms etc., we will follow [6, Section
I1] closely, more detailed explanations can be found in [1], [18], [12], and [33], only
to mention a small selection of literature.

The paper is structured as follows. Sections 2 and 3 describe the weak formu-
lations and aspects of the spatial discretization of the nonlinear problem including
considerations of an energy functional adapted to the nonlinear situation. An error
estimate at the semi-discrete level is demonstrated in Section 4. The time dis-
cretization, energy and error estimates at the fully discrete level are discussed in
Section 5 and Section 6, where in both sections we only discuss the case of the
so-called Lee-Madsen formulation in detail for reasons of space. Error estimates for
the Nédélec-Raviart-Thomas formulation of the linear problem (x©) = 0) can be
found in [6]. Also for reasons of space we do without numerical results and refer to
[7] for some descriptive computational examples.

2. Weak Formulation of the Nonlinear Electromagnetic Problem

We multiply both eqgs. (4), (6) by test functions ¥ € L?(Q) and integrate over €.
Similarly we multiply eq. (5) by a test function ® € H(curl, §2), integrate the result
over () and integrate by parts the second term of eq. (5). We look for a weak solution

(D,E,H) € C'(0,T,L*(Q)) x (CY(0,T,L2 |, ),(2)) N C(0,T, Hy(curl, 2))) x
(CY(0,T,L2(Q)) N C(0,T,H(curl,Q))) of (4)—(6) such that
(10)

(0D, ¥) — (Vx H,¥) = (J, ¥) V¥ e L3(Q),
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(11)

(2D, ®) = (o(1 + x))E, ®) + (cox® 8, (|E E), ¥) V¥ e L3(Q),
(12)

(o0 H, ®) + (E,V x &) =0 V& € H(curl, Q).

Alternatively, the test functions can be chosen as ¥ € Hy(curl, ), ® € H(div, Q),
and integration by parts in eq. (4) leads to a weak solution (D,E,H) € C'(0,T,

Hy(curl, 2)) x (C*(0, T, L2 (145 ()N C(0, T, Ho(curl, Q))) x (C*(0,T,L*(2)) N
C(0,T,H(div,Q))) of (4)—(6) such that
(13)

(8D, ¥) — (H,V x ¥) = (J, ¥) V¥ € Hy(curl, Q),
(14)

(0D, ¥) = (go(1 + xV)E, ®) + (eox V0, (|E*E), ¥) V¥ € Hy(curl, Q),
(15)

(108 H, ®) + (V X E, ®) = 0 V& c H(div, Q).

In both cases, the initial conditions (7)—(8) are to be satisfied.

Remark 1. (i) The first formulation (10)—(12) is often referred to as Lee-Madsen
formaulation [30], while the second (13)—(15) is called Nédélec-Raviart-Thomas
formaulation [37], [42].

(i) As a consequence of the embedding (as sets)
[C5°(2)]2 C [C*(Q) NH(2)]? ¢ [H1(Q)]* € H(div, Q) C L*(Q),
and of the fact that C§°(Q) is dense in L*(Q2) [1], we see that H(div, Q) is
a dense subset of L?(Q). Therefore the test space H(div,Q) in (15) can be
replaced by L2(£2).

(iii) In case if po is a highly variable function p = p(x), it is more appropriate
to use a (D, E,B) formulation instead of (D, E,H) [31]. Then problem (13)-
(15) is substituted by

(0:D,®) — (1 'B,V x ¥) = (J, ¥) VW € Hy(curl, Q),
(0D, ¥) = (go(1 + x)E, ¥) + (eox V0, (|E*E), ¥) V¥ € Hy(curl, Q),
(0B, ®)+ (VX E,®) =0 V& e LA(Q).

In what follows we assume that a unique weak solution to the problem (10)—(12)
and (13)—(15), resp., in the above sense exists. To the authors’ knowledge there
are only a very few theoretical results about existence, uniqueness and regularity of
solution(s) to problems of the type (4)—(8) with nontrivial susceptibility coefficient
x®). We mention [39], [15], [29], [40], the PhD theses [35] as well as [44], and
the paper [45] (including the references cited therein), where in particular [35,
Proposition 4.8] and [44, Theorem 7.23] (or [45, Theorem 7.23]) are closely related
to our situation (but not completely matching).

The Energy of the Nonlinear Problem at the Continuous Level. The en-
ergy of nonlinear electromagnetic systems (10)—(12) and (13)—(15) at time ¢ € [0, T]
can be defined by

3
E(t) = IE@IIZ, 1y + S IEX 12 00 + IHBI,

Next we will prove a stability result of the solution of (13)—(15) w.r.t. this functional.
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Theorem 1. Let J € C(0,T,L? X(l)),l(Q)).

(e0+eo

If (B,H) € (CY0,T, L2 1, () N C(0, T, Hy(cwrl, Q) x (C'(0,T,L3() N

C(0,T,H(div,Q))) is the weak solution of the system (13)~(15), then its nonlinear
electromagnetic energy at any time t € [0,T)] satisfies

1 3 [
£4(t) < (IEol2 14y + SIERIZ o + IHOIZ, ) + / 1965l gy .
Remark 2. An analogous result is valid for the energy of (10)—(12).
Proof. Taking ¥ := E in (13) and (14), we have

(16) (0;D,E) — (H,V x E) = (J,E),

(17) (0:D,E) = (so(1 + X)OE,E) + (e0x¥ 0, (|E[*E), E).
The choice ® := H in (15) leads to

(18) (w00 H,H) + (V x E,H) = 0.

Substituting (17) into (16) and adding the result to (18), we obtain
(201 +X")OE, E) + (cox ¥ 0 (|EI* E), E) + (100 H, H) = (J, E).

This can be written as

(19) %%E(t) = (J,E).

The right-hand side of eq. (19) is estimated by means of the Cauchy-Schwarz in-
equality:

(J,E) = ((c0 +ox™) T, 20(1 + XM)E) < [Tl coreon)—1 [Ellzg(1ax)-
Then we get from eq. (19)

1d 3 1
57 < Wlliegreoxan-t (IBI ) < 1l reqyny—+ E3(0).

This implies, by the chain rule,

[N

d .1 1. d
£52 (t) = 5 E (t) % g(t) < HJ||(80+60X(1))71.

Integrating this inequality from 0 to ¢, we obtain

t
E2(t) —£2(0) < /0 [($) | (zo-+20x) -2 ds,

and the use of the initial conditions (7) completes the proof. d

3. Semi-Discretization in Space

Let W), C L%(Q), U, C H(curl, Q), Ug, € Hy(curl,Q), and V,;, C H(div, ) be
finite dimensional subspaces.

The semi-discrete (in space) problem for the system (10)—(12) consists in finding
elements (Dy,, Ej, Hy,) € C1(0,T, W) x CH(0,T,W},) x C1(0,T,U}) such that
(20)

(0:Dp, ¥p) — (V x Hp, ¥) = (I, ¥p) V), € Wh,
(21)

(0:D, ®) = (c0(1 + XM)OER, ¥1) + (cox PO [|En|* Ep], ¥1) V&), € Wy,
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(22)
(/LoatHh, ‘I>h) + (Eh, V x ‘I)h) =0 V&, € Uy,.

For the equations (13)—(15), the semi-discrete problem involves the determination
of elements (Dy, Ep, Hy) € C*(0,T,Ugy) x CH(0,T, Ugy) x CH(0,T,V},) satisfying

(23)

(8ch, ‘I’h) - (Hh,V X ‘I’h) = (Jh, ‘I’h) V‘I’h S Uoh,
(24)

(0:Dp, ¥) = (co(1 + xV)En, ®1) + (eoxP O [|En|* Ep], ®1) V¥, € Ugy,
(25)

(MoatHh, ‘I)h) + (V x Ep, ‘I)h) =0 V&, € V.

In both cases, the initial conditions read formally as
Eh(X, 0) = EOh(X) and Hh(X70) = HOh(X),

where the particular choice of the discrete initial data (Eop, Hop) € W), x Uj, or
(Eon, Hor) € Ug, x Vi, will be given later.

The Energy of the Nonlinear Problem at the Semi-Discrete Level. The
nonlinear electromagnetic energy of the semi-discrete systems (20)-(22) and (23)—
(25) at time t € [0,7] is defined analogously to the continuous case by

3
En(t) = IBa(DZ 1y + S IBRO1Z e + ITHAD5, -

Since we are in a conforming setting, it is not surprising that the stability result of
Theorem 1 can be transferred to the semi-discretization.

Theorem 2. If J € C(0,T, L?EO+60X(1)),1(Q)) and (Ep, Hy) € CH(0,T,Ugy) x
CY(0,T,V},) is the semi-discrete finite element solution of the system (23)-(25),
then its electromagnetic energy at any time t € [0,T] satisfies

1 3 3 ¢
E2(1) < (IBon2 11y + 5 IERIE, o + I Eon 2, ) + / [EAG] —

The proof of Theorem 2 runs analogously to the proof of Theorem 1. Further-
more, an analogous result can be demonstrated for the system (20)—(22).

The above results show that the semi-discrete system maintains the energy stabil-
ity, either in the implementation of the spatial discretization (20)—(22) or (23)—(25).
In contrast to the linear case, stability estimates for nonlinear problems can only
be seen as an intermediate step in investigating the question of the continuous de-
pendence of the solution on the data in the context of a well-posedness discussion.
Nevertheless, it is important that discretizations have the same or at least similar
stability properties as the original problem.

4. Error Estimates for the Semi-Discrete Problem

To obtain error estimates, more precise information about the properties of the
finite element spaces is required, such as approximation or interpolation properties.
For reasons of space, we will forego the introduction of the finite element spaces
used and only list the required properties. In the paper [6, Sect. IV] we described
the so-called first family of Nédélec edge elements as a concrete implementation; it
can serve as a reference. The references given under the properties relate to this
particular case. For details we refer to [37], [33, Ch. 5], and [31].
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The importance of such semi-discrete estimates is to be seen, among other things,
in the fact that they are the starting point for the investigation of various time
discretizations (and not just Euler-like ones).

We assume that there exist, for (moderate) k € N, interpolation operators ry, :
H*1(Q) — Uy, and wy, : H*(Q) — V, with the following properties:

(26) HU. — rhuHH(CurLQ) < Chk||uHHk+1(Q) [37, Theorem 2],
(27) lv —wpv| < CthVHHk(Q) [37, Theorem 4], [31, eq. (19)],

where C' > 0 are (possibly different) constants independent of the discretization
parameter h > 0 (typically a characteristic mesh width).
Moreover we assume that the spaces Uy, and W, are related via

(28) V xUp C Wy

and the interpolation operators rj and wy, are linked together as follows: V xr,v =
wp,(V x v) for all v such that both the interpolants r,v and wp(V x v) are defined
[33, Lemma 5.40].

Next we introduce the standard L2-projection Py : L2(Q) — W), defined via

(29) Pruw,¥p) = (w,¥,) V¥ W,
and assume that, for w € H*(Q), the following error estimate can be derived:

We will also need a further projection operator I : H(curl, ) — Uy, with the
properties

(31) (V X HLMU,‘I’h) = (V X u, ‘I’h) Yo, € Wy
and, for u € H*1(Q),
(32) Hu - HLMu”H(curl,Q) < C’hk||u||Hk,+1(Q) [32, Theorem 46]

Now we prove an error estimate for the semi-discrete problem without a source term.
The latter is not a substantial restriction but rather reduces the technicalities.

Theorem 3. Assume k € N, x!V), x®) € L>(Q), E; € L>(Q), Hy € H(div, Q)
satisfying (8). Let the weak solution

(E,H) € (C'(0,7,H"(Q) N L>(Q)) N C(0, T, Hy(curl, Q))) x C*(0, T, H*1(Q))
of the system (10)—(12), and the finite element solution
(33) (Ep, Hy,) € CH0,T,L°°(Q)) N C(0, T, W}) x C(0,T,U})

of the system (20)—(22) with Jp, := 0, respectively, exist, where the inclusion in (33)
18 to be understood uniformly w.r.t. the discretization parameter h in the sense that
|Enllcr(0,1,L () is bounded by a constant independent of h. Then the following
error estimate holds with a factor C > 0 independent of h (but dependent on t, in
general):

IEn(t) — E()lleo + [HA() — H()l|, < CA".

Remark 3. An analogous result can be obtained for Nédélec-Raviart-Thomas for-
mulation at the semi-discrete level.



518 A. ANEES AND L. ANGERMANN

Proof. We set W := W), € Wy, in (10)—(11) and ® := &), € Uy, in (12):
(0D, ¥),) — (VxH,¥,) =0,
(0D, ¥) = (so(1+ xM)OE, ¥) + (cox PO [[EP E], ®3,),
(1o0:H, ®p) + (E,V x &) = 0.

By means of the projection operators Py and IIpps defined in (29) and (31),
respectively, from this we get

(34) (0:D,¥y) — (Vx U yH, ¥,) = (Vx (H-TyH), ¥,),
(0D, ¥p,) = (co(1 + xV)QE, ¥y)
+ (€0X(3)at[|E|2 E|,¥,),
(o0l H, @) + (PyE, V x @) = puo(llz 0 H — 0, H, ®4,)
(35) + po (Ol H — Tz 0. H, ®4,)
+ (PLyE —E,V x &),

The right-hand side of (34) vanishes thanks to (31) (see also [32, eq. (2.4)]). The
second term on the right-hand side of (35) can be omitted because of the commuta-
tion property 011y H = 11 3;0;H. The last term on the right-hand side vanishes
thanks to V x U}, C Wy, and the property (29) of Py ,s.

Therefore the equations (34)—(35) simplify to

(36) (0:D,¥),) — (V x I yH,¥,) =0,
(37) (0D, ¥,) = (so(1+ x)OE, ®,) + (c0x D0, [|E* E], ®),),
(38) (o0l pH, @1) + (PLyvE, V X ®3) = po(Ilp v 0:H — 0:H, ®4,).

Now, subtracting (36)—(38) from the system (20)—(22) and taking into consideration
that po is constant, we obtain:

(co(1+ xV)(O:En — OE), ®3) + (20x P8, [|[En|* B, — |E[*E], ¥},)

(39)
— (V X (Hh — HLMH),‘I’h) = 0,

(40)
po(0y(Hy — Iy H), @) + (Ef, — Py E, V X @) = po(0:H — 111y 0. H, ®),).

Now we will deal with the first two terms of (39), where we have in mind the choice
\I’h = Eh — PLMEZ

eo(1+xM) (O Ep — OE) + e0x P 0, [|EL|* Ey — [E[* E]
= eo(1+ X")0(Ep, — E) + 20 x® [|EL|*)En — |E|*0,E]
+2e0x® [ELE O,E, — EET9,E] =: £ [61 + 0 + J3).
The treatment of ¢; is quite obvious. With E, — E =¥, + P,y E — E we get
61 = (1+xM)o®, + (1 4+ xW)0(PLyE — E) =: 611 + 1o
The term 5 is decomposed as follows:
52 = ¥ (BEy + E)(E, — E)O,Ey, + P [E[*0, %), + x¥|E|*0,(PLyE — E)
=: 021 + 022 + da3.
For d3, we use the following decomposition:
b3 = 2 (Ey, — E)E| ,E), + 2xPE(E), — E)"9,E;,



ENERGY STABLE TD-FEM FOR NONLINEAR MODELS 519

+ 2 EET 9,9, + 2y EET9,(PL\E — E)
=: 031 + 032 + 033 + 034.
With these decompositions, eq. (39) takes the form
(c0(1 + X)) (OE, — E), ¥1) + (eoxP O, [|EL|* Ep, — |EPE], ¥,)
—(Vx (Hy -1l yH), ¥y)
=£0 / [011 + 622 + 533]T Wdx + €g / [012 + 621 + 023 + 931 + 032 + 534]T Wy dx
Q Q
— (V X (Hh — HL]V[H), ‘I’h) = 0,

or, after some rearrangement,

50/ [011 + 623 + 033] | Wpdx — (V x (Hj, — I H), ©,)
Q

(41) = *50/ [012 4 621 + 023 + 031 + G32 + 034] " W) dx.
Q
Then:
E0/ (011 + 020 + 053] | Wpdx
Q

3
=2 [ a0 @il + OB + BT O ET 8] dx.
Q

Since
|E[20,|% ;|2 = 0:(|E[*|®4|?) — 0:(|E|*)| ¥ and ET 0, ¥}, = O,(ET¥;,) — O,E" W,
it follows that

50/ [611+522‘*‘533]T W, dx
Q
€
= 50/ [(1+X(l))atN’hP+X(3)5t(\E\2|‘I’h|2)+2X(3)8t|ET\Ilh|2} dx
Q
_%0/X(3)8t(|E|2>|‘I'h|2dX—250/X(3)8tET'IlhET§[;th.
° Q

From the estimates

e
2 [ X OauEr) N ax
Q

50/ P O,ETE|®, |2dx
Q

<Xl @) 1Bl1E (0.7, 00 0y | ¥ 1%,

and, analogously,

< ”X(S)||L°°(Q)||E||201(07T,L°°(Q))”‘I’hHgov

60/ YDOETU,ET ¥, dx
Q

we conclude that

50/ [011 + 022 +533]T W dx
Q
3
> 2 [ [0 X0+ OB ) + 2O BT ] i
Q

= 2P|z () 1B l1Z1 (0.7, 0 (0 | ¥ 1%,

1 €0
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(42) =2/ [0 ) |ENE (0,7, Lo () 182,

For the right-hand side, we have:
— <o / [012 + Go1 + G253 + 031 + 032 + 034] | pdx
Q

= _50/ [(1 + XM, (PLyE - E) ¥,
Q

+Xx®(E, +E) (Ey — E)OE, ¥, + YO [E?0,(PLyE - E) ¥,

+2x® ((Bp — E)EJ0E) | W, +2x® (B(E, —E)TO,E,) ¥,

+2¢®) (BET9,(PLyE — E)) \Ilh] dx
<o [ [+ x4 3B 0 (PLIE - B

Q

+ 33X |EL||0.Es| [Py E — E||®| 4+ 3x P |E||0,EL||PLyE — E|| T,

+ 3X [l [0l @n[? + 33 E||0En €4 dx
< [+ Xz ) + 31X @) 1Bl 0.2 ) | 196 (PLatE = B oo [ @],

+ 31X () [IBallcor, L)) + I Ellco,r,c @)
X [|0:Enllco,1,0 @) P E — Bl | Phls,
+ 31X | L () [IBallcom,=@) + IEllc@.r..o )]
X [|0:Enll e, ) 1 ¥nIZ,
(43)
=: C1)|0y(PLyE — E)||, [®hlle, + C2PLyE — Ellco[|®nllc, + Csl| @412,

where the positive constants C;, Ca, C3 depend on certain norms of (), y&®), E,
and Ep. Combining the estimates (42) and (43) with (41), we get

1 €0
581t||\11h||§0(1+X(1)) + ?at/QX(S) [|E[?|®, % +2(E" ¥, %] dx
= 2XP ) e @ B G (0.1, 10w () 1112, = (V x (H), =TI H), ¥5,)

<z / (G114 692 + 3] T Wpdx — (V x (Hp — T,/ H), ¥5)
Q

= —50/ [012 + 621 + 023 + 631 + 032 + 634] | Wpdx
Q
< C1|0(PLyE — E)|co[[®hllcy + ColPLiE — Ellc, | ®nllc, + Cal| @2,
This finally leads to
1 €0
58t|“1’h||30(1+x(1)) + Eat/gx(?’) [|E|®, % +2|E"®,[%] dx
- (V X (Hh — HLMH),\I’;L)
< [CUOPLAE B, + CollPLarE — Bl %4, + Call 2,
where

Cu = C3+ 2 X P | o @) I3 0.1, 2y
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Now we consider (40) with ®j, := Hj;, — II;yH and get

1
§3t||‘1>h||fw + (Ep = PLvE, V x @) = p1o(0,H — 1 0, H, 2,)
< ||0;H — T as O:H |1 | @5 ] o -

Adding both inequalities and making use of the commutation property of Py, we
arrive at

3t||‘I’hHEO(1+X<1>) + 5t||<1’h|\2 + 3t/ O IEP(®,)? + 2 ET ¥, 7] dx
< [C1|0E = PryoiElle, + C2||E = PryElle,] [[¥alle,
+ |0 H = s O H | || @l o + Call © 2,

The projection errors can be estimated by means of (30) and (32), that is, for
E,0E ¢ H*(Q) and 9;H € H**1(Q), we have that

|E - PLyE|e, < Cveo b | Bl ) < Cveo BBl corm @)
(44)
|0:E — PrayOiElle, < Cv/Eo h¥||0:Ellan ) < Cveo M |0:El|co.r k()
(45)
[0,H — L 0:H] 4y < C/io WP |0 H [ ggs41 0y < Cv/io W [|0:H | ¢ 0 1110+ (0))-

In this way the above estimate can be written as
fat||\1:huso(1+xm) - at||<1>h|\2 - at/ G [|EP|®L)? + 2/ ET ¥, *] dx

< Csh* [[1®nllco + 1 @allue] + Call®alZ,
Setting

1) = /1 @al2, + [ @ll2,,

we get
*atH‘I’hHgo(1+X(1)) + 5t||‘1’h|\2 + at/ O [[EP|®,[* + 2[BT®,[*] dx
< CsV2hFwy (t) + Cal|[ 4|2, < CsvV2hFwh (1) + Cawj (t).
Integrating this inequahty, we obtain
SR, 1 + I 2AOIE, + 2 [ 3O [P0 + 28007 2] dx
< LIZAOZ, 1y + 5 12O,
+ 5 [ [BOPILO)F +20B(0)T %, 0] dx
(46)
+ /Ot [C5\f2hkwh(s) + C’4wi(s)} ds.

By the monotonicity of the weighted norms w.r.t. the weight and the nonnegativity
of the integral term on the left-hand side, we see that

1, 1 1 ,
§wh(t) < §||‘I’h( )||50(1+X<1> §H‘I’h(t)”ug
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€
(47) + 50/Q><@) [[E@) P12 (0] +2B() " 25 (1)[*] dx.
On the other hand, we have the estimates

(48) I A(0)12, (15 ) < I+ XDz @ 1 O)IZ, < 114+ XM [l (0w} (0)

and
0 /Q @ [[EO) 4 (0)2 + 2/B(0) T ®,,(0)[2] dx

(49) < 3IX |z () IE(0) 17 ) |21 (0)12, < Bl ) [E(O) I ) w (0).
Combining (47), (48), (49) with (46), we get
L o

1 3
S0R(0) < I+ XDl 0) + 51011 ) [BO) 3 = 0y 0 (0)

t
+/ [05\/§hkwh(5) + C4w,21(s)} dS,
0
or, equivalently,
t
(50) wi(t) < C2w?(0) +/ [205\/§hkwh(s) +2C w3 (s)| ds,
0

where CF := |1+ x|z () + 3IX® || L= @) IE(0) |7 (-
In the paper [14], a Gronwall-type lemma (Lemma 4.1) is specified which extracts
a bound for the value w(T) if an inequality like (50) is satisfied:

wp(T) < CGeC4Twh(O) + CsV2hFTeCT

From this and the triangle inequality in conjunction with (30) and (32) the state-
ment follows. O

5. Time Discretization for the Nonlinear Maxwell’s Equations

In this section, we investigate the novel fully discrete scheme for the nonlin-
ear Maxwell’s equations presented in [7]. We intend to demonstrate that the time
discretization of the systems (20)—(22) and (23)—(25) by means of the classical
backward Euler-type method satisfies a discrete energy estimate, is unconditional-
ly stable and convergent even in the presence of cubic nonlinearities. Analogous
investigations for the linear case (that is x(*) = 0) have been presented in [6].

The time discretization considered here can be used not only in conjunction with
the Lee-Madsen scheme or the Nédélec-Raviart-Thomas spatial discretizations, but
also with other types of spatial discretizations. The Newton’s method is often
employed to obtain the unknown values E}} and Hj from the nonlinear equations
(51)—(53) or (54)—(56).

We divide the time interval (0,7) into N € N equally spaced subintervals by
using the nodal points " := nAt, n=10,1,2,..., N, with At :=T/N.

Given initial values (E9,HY%) € W}, x Uy, of the approximate electric and
magnetic field intensities, the fully discrete electric and magnetic field intensities
(Ep,HY) € Wy, x Up, n=1,2,..., N, satisfy the system
(51)

<D;; -Dp !
At
(Di =D~ ' w,) = (co(1+x) (B —E, ), @)

W) — (VX H, @) = (37, ®),
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1 - n n—
(52) + 5 (Eox V(B + (B 1) (B ~ B 7). @)
+ (=ox® [B B + B (B ] (B - EpY), w),
(53)
Hy —H} !
(no— i @) + (B}, V x @) = 0

for all (¥, @) € Wy, x Uy. Note that in this scheme the differences D} — sz1
of the displacement approximations only play the role of auxiliary variables.

For the full discretization of the second formulation, we prescribe initial values
(E9,HY) € Ugp, x Vy, of the approximate electric and magnetic field intensities
and determine the fully discrete electric and magnetic field intensities (E}, H}) €
Uon XV, n=1,2,..., N, such that the following system is satisfied:

(54)

(W‘T]F,q;h) (H, V x ®) = (7, @),
(Dy =D~ 1 ) = (eo(1+ XV (B — B ), @
(55) 4_%@@X@Naa) +(EZ’U2MEZ-EZ*57Wh>
+ (cox™ [BR BRI+ B (BT (B - B, ),
(56)

H —H'!
(no—"x @) + (V < EfL, @1) = 0

for all (¥, @) € Ugy, x V). As above, the differences D} — DZ_I play the role
of auxiliary variables.

The Energy of the Nonlinear Problem at the Fully Discrete Level. The
nonlinear electromagnetic energy for the fully discrete approximation (i.e. both in
space and time) of the systems (51)—(53) and (54)—(56) at t", n =0,1,2,..., N, is
defined by

3 n n
(57) &y = ”EhHEO(1+X(1)) ||(Eh)2||gox(3) + =R 15,
In analogy to the boundedness results for the continuous and semi-discrete nonlinear
electromagnetic energy (Theorems 1, 2), in this section we will show that the fully
discrete nonlinear electromagnetic energy of the systems (51)—(53) and (54)—(56)
at the final time step IV is bounded, too.

Theorem 4. Let (E},H}) be the fully discrete solution of (54)—(56). Then, for
sufficiently small At and h, there exists a constant C > 0 independent of At and h
such that

&Y <c.

Remark 4. An analogous result can be obtained for the system (51)—(53).
Proof. Taking ¥}, := 2E7 in eq. (55), we have
(Df; = D~ 2E3) =2 [ (eo(1 + X)) (B — 1), Ef)

+ 2(Eo><(‘°’)((EZ)2 + (B, 7)) (BR — B, ), Ep)
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n n — -1T n - n
(58) + (eox™ [Bp 17" + By (B | (B - B B
Setting ¥y, := 2At E} in the eq. (54), we get
(59) (Dj — D} 2E}) = 2A¢(H}, V x E}) + 2At(J7, E}).

Replacing the left-hand side of eq. (58) by (59), we arrive at
2 (o1 + X M) (B} — B} 71). Ef)
1 n— n n— n
+ 5(50X(3)((1*3Z)2 + (B D?)(Er —E, 7Y, Ep)

+ (eox® [BR B+ B [ (B - By ), B

(60) —2At(H}, V x Ef) = 2A4(J3, ER).
Taking ®), := 2AtH} in eq. (56), we obtain
(61) 20 (F} — H 1), ) + 2A¢ (V x Bj, H}) = 0.

Adding the equations (60) and (61), we get
2| (eo(1+ XV (B — Ep 1) ER) + (o (H}, — ™), HE)
+ 5 (ox @ (B2 + (B )?) (8] — B ), Ef)
+ (eox ™ [BR (BR) + By (BT (B - B ) B
—2At(Hy,V x E}) +2At (V x Ef H}) = 2A¢(J}, ER).
This implies
2 [ (eo(1 + X W) (Bf — B ™) ER) + (uo(H, — H ™), H)
+ 5 Eox D (ER)? + (B )2) (B — B5 ), BR)
(62) + (cox® [EZ EpT + Ep! [Eﬁ‘l]T} (B} — Ez—l),Eg)} = 2AH(IT, ED).

Now we apply a well-known identity from Hilbert space theory (see e.g. [6, Lemma
1, 1)]) to the first and second terms on the left-hand side. Then, the first term from
the left-hand side of eq. (62) can be written and estimated as

2(eo(1+ x") (B} —E; 1), Ep)
= |[Ep|? + | ER - Ep 2 IER 12

go(1+xM) eo(1+x™) go(1+xM)
> ELIZ, i — IEE T -

The second term from the left-hand side of eq. (62) is estimated in a similar way:
2(ju0 (HL} — H;—Y), ) =[G |2, + 1H — E 2, — Hp 2,
> [Hp12, — B2,
The third and the fourth terms from the left-hand side of eq. (62) can be treated
as follows. Writing the test function E} in the form
B, = §(Eh +E;T) + i(Eh ~E;7Y),
we have that

1 — n n— n
(cox @5 (B + (B %) (BR — B} ). E)
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1 - n n— n n—
= 7 (eox @ ((®7)° + (B7Y)%) (BR — B 1) Bf + By Y)
1 - n — n —
+ 5 (X @ ((®R)* + (B 71°) (B, - B ). Bf B )
1o 1 _
> I ED? I o = @I, o

Analogously,
(cox™ [Ex B3 + B~ (B 7)) (Bf - B ), ER)
3 o™ [ B+ [y () )
+ 5 (eox® [BR BT + By ()] (B - By ). By - B )
2 1

1 —
= 7H(E2)2H€ox(3) - §H(E2 1)2”

2
eox®”

So the left-hand side of eq. (62) can be estimated as follows:
& —-&!

n— n 1 é n n— n n— n
<2 [(50(1 +xW)(Ef —Ep ), ER) + 5(50X(5)((Eh)2 + (B, (ER - B, 7). ER)
(63)

n T - -nT n - n n — n
+ (eox® [Eh En" + B (B, } (Bh —E, ™), ER) + (no(Hjy — Hy 1)’Hh)]~

The right-hand side of eq. (62) is estimated by means of Young’s inequality (see
e.g. [6, Lemma 1, 2)]). This results in

DAL (TR, ER) = At (o1 + V)] V2I7, [zo(1+ xD)]1/2E])
< AHTRNE a1+ ALIERIZ 44y
Finally, using this estimate together with (63) in (62), we get
& =&t < A 1T ey -1+ ALIERZ 4y

Summing up from n =1 to N, we arrive at

N N
(64) EN —E <> At TR s ey -1 + > At IERIZ, (1450
n=1 n=1

Therefore, we also have

N N
EN < ALY+ A ST ITRIR, gy ED-

n=1 n=1

Now we employ a discrete Gronwall’s inequality [22, Lemma 5.1] (also cited in [6,
Lemma 2]) with

6 := At >0,

9o = 52:

ayn =&,

b, =0,

co = 0’ Cp = ||JZ||[2€0(1+X(1))]71 Z 0forn e N7 and

Yo:=0,7,:=1>0forneN.
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If we only allow At < %, then the condition 7, < 1 from the cited Gronwall’s

lemma is clearly satisfied, and thus we get

N
gf]zv < (At Z ||JZ||[2€0(1+X(1))]71 "‘5}?) exp(27).
n=1

Since the term At Zgzl ||JZ||[2€0(H_X(1))],1 is an approximation to
T
Jull? _dr = || In)? ,
S} 1t = ey
it is bounded. g

In what follows we will make use of different variants for the representation of
terms like E(t") — E(¢t"~!). To this purpose we remember the Newton-Leibniz
formula:

t

u(t) =u(t" )+ [ dwu(s)ds forallue CH(0, T, X),

tn—1

where X is a Banach space. In particular, for ¢ := ¢™ it holds that

n

(65) u(t"™) —u(t" ) = Atr?  with rl = Ait Oru(s)ds.
tn—1

Furthermore, from Taylor’s formula with integral remainder it follows that
t

u(t) = u(t") + u (")t — ") + / (t — $)duu(s)ds for all u € C2(0,T, X).

t"L
Hence, with ¢t =t~ ! we have:

u(t") —u(t" 1)

(6) Ap =)+ Ry,
where
1 v
(67) Ry = o / (#"1 = §)Byu(s)ds.
tn—l

The remainder terms rj;, Ry, allow the following estimates.

Lemma 1. Let X be a Banach space with the norm ||-||x. The following estimates
hold:

(i) I7%lx < /2 191 ), we CHE 107, X),
(ii) Yoy Il < Azllovullfer oy weC0,T.X),
(iid) 1RGN x < /AL 10uuliznronx),  wE C2Em 17, X),
(iv) Yooy IRGI% < SH10wular x),  we C(0,T,X).
Proof. (i) By the definition (65), we have

n

1

At

Opu(s)ds

tn—1

[[rallx
tn—1

) o 1/2 o 1/2 1
< (/t 1ds> (/t ||8tu(s)|§(ds> _ \/;Hatunm(tnlﬂ,x).

I
cm [ 1oa)sds
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(ii) is a simple consequence of (i) and an elementar integral property:

o 1 & 1
n|2 2 — 2
n§:1 [ralx < A7 7?:1 [0eullLsgn 1 m x) = AL 10ralltz0,7,x)-

(iii) From (67), we have

n 1
IRullx = &

m
A7 /t (t"! — 5)0u(s)ds

n—1

X

1t
S&l‘@—ﬂAW%MﬂH%

n—1

) i /2 ;o 1/2
< At </tn1(5 - tn1)2d5> (/tn1 ||attu(5)||§(d5>

At
= ? ||attu||L2(tn—l)tn7X).

(iv) This proof is analogous to the proof of (ii). O
6. Error Estimates for the Fully Discrete Nonlinear Problem

Before formulating the fully discrete theorem for the Lee-Madsen formulation,
we introduce the error terms for the electric field as

(68) ¢"=E@") - Ej =" —ny,

where

(69) n":=E{") - PLuyEQR"), ny:=E; —PryE({").
Analogously, for the magnetic field we set

(70) £ = H(1") ~ H}, = 0" — 0],

where

(71) 0" :=H(t") - UyH(E™), 6} :=H} — I pH(").

Finally, we denote the discrete time derivative on the sequence (E7') at t™ by

1
(72) OB = 57 [BR - E; .

A
Theorem 5. Assume x), x©®) € L>(Q). Let (E,H) be the solution of (10)—(12)
with J := 0 such that, for some k € N,

E € CY(0,T,L>(Q) NH"(QY)), 0B € L*(0, T, L2 1| 1),(Q)),

He C'(0,7,H"(Q)), 0,H € L*(0,T,L;, (),

and let (E},H}) be the fully discrete solution of (51)—(53) such that there is
a constant C* > 0 independent of At and h such that ||E}||L~q) < C* and
10a¢EL |Le () < C* for alln = 1,2,...,N. Then, for sufficiently small At and
h, the following error estimate holds:

IE(T) = ER N2y x0) + IHT) = Hi |4, < C [0+ At],

where the constant C > 0 does not depend on At and h (the concrete structure of
C will be seen from the proof).
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Proof. Eliminating in the equations (51)—(52) the difference term D} — D}, we

obtain

‘I’h) - (V X HZ7 ‘I’h)

Er —E}!
At

ot 3 (),

1 . —

+ (Geox ™ (BR)? + (B ). @)
E? — Enfl

@) oo™ (B R B 7)) (P ) e =0

Taking ¥ := ¥, and ¢t := " in the equations (10)—(11) and replacing the term

OtE(t") by means of (66), we have

(ot +x ) (BB gy (v wm). )
+ ey (BB g
+ (con®am(e ey (BB o)
= (co(1+ xR, 1) + (cox @ [E(t") "R, ©1)
(74) + (eoxP2E(") [E(t")])" Rig, ©y,).

Subtracting eq. (73) from eq. (74), adding to both sides the two terms

(e [(mp? o+ 7] () ),

E(t") - E(" ")

(con® [ 1m31" + ! ()" ) (B, w),

and remembering the error terms (68), (70), we obtain

(20(1 + X )(Cn Agn )\I:h)—(ngn o))

o [ (w2 + )] (L) w)

n _ /n—1
+ (eox® B [B7T + By [T (S ) w)
= (co(1+ X")RE, ®s) + (coxV|E(") "R, ¥1,)
+ (cox®2E(t")[E(t")]" Ry, ¥5,)

e ® ([ - S + oyt (BB g

(75)

ny __ n—1
— (2B — (o g+ )] (UL )]

Next we take ® := ®; and t := ¢" in eq. (12), subtract the (53) from the result,
and make use of (67). In terms of the quantities defined in (68) and (70), we obtain

n _ ¢n—1
(76) (0™ ) + (17 x 1) = (u0Rfy, B0,
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Using the decompositions (" = n™ —np, " = 6™ — 6} from (69) and (71), after a
little rearrangement in the equations (75)—(76) we arrive at

(50(1 + X(l))((nn — nn_l)A_t(nh 772 1)>7‘I’h) _ (V > (en _ 9}?)7 ‘I’h)
(e @ [ g2+ ()| (W) TR g
nfl) n—1

—(my =m0
At " )"Ph)

+ (eox™ [Bp B7)" + By [ ] (L
= (co(1+ X" )RE, ©p) + (cox®|E(")"Rig, ¥),)
+ (coxP2E(™)[E(t")]” Ry, ¥5,)

— (eox® 1B — i + (g7 (B

ny _ n—1
— (eox® [2m() ()T — (g ()T + oy [y ")) (B )

and

o — 9"_1 — (" — 9"*1
(MO( )At( h h )7‘I)h> + (" =),V x @) = (LoRiy, Ph).

Setting W), := 2At 7 and Py, := 2At0} in the above equations, we have
2 (eo(1+ x") (g = mp~ ) My) — 284V x 05, i)
1 — n
+2 (e0x® [5( + (B h)? )](77"—772 k)
+2 (cox® [Ep [ER) + By BT ) (o — Y, mp)
=2 (eo(L+ X)) (" = 0" 1), mpt) — 2A4(V x 0", 1)
— 2At(eo(1 + xRy, 1)
1
+2 (eox® [ 5 (B2 + (BF) [ 6" = 0" ~)mk)
+92 (on(?)) [En [En]T + Enfl [Ezfl}T] (nn N nn—l)’ n;LL)
— 2t (eox P |B(t™) PR, 7 ) — 24t (cox P 2E()[E(t™)] Rig, np)
+2(eox® [[B(™)? — SIBRY? + (B 7)]] (BG) — BG)), nf)
(77)
+2(0x@ [2E() B — (B [ER)” + By [EYT) (B — B ), 08)

and

2 (uo(0F — 0771), 07) + 28t (13, V < 07)
(78) =2 (o (0" — 0" 1),05) + 2At(n", V x 07) — (uoRiy, 2At67).

The second terms from the left-hand sides of equations (77) and (78) vanish due to
(31) and (28)—(29), respectively. Adding the equations (77) and (78), we obtain

2(e0(L+ X" 0rt = mi ™) mit) + 2 (no (65 — 0171, 67)
1 n— n n— n
+2 (eox® [ 5 (B2 + (BF) [ O = m ™)k

+2 (eox® [Ep BT + B [B ) (o = Y)mp)
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= 2(co(L+ XY (" — 0", mi) + 2(uo (6" — 6771, 67)
1 n n— n n— n

+2 (€0X(3) [5((Eh)2 + (Ej 1)2)] (" =n""1), 77h)

+2 (cox™ (B [B7]7 + By [BR]T ] 0 =0 ) up)

= 28t(eo(1+ XV)RE, 1) — 24t (uoRig, 07)

— 28t (2ox Y |B(") *Rig, 0y} — 2t (20X * 2B (") [E(")]" R, 7))
n 1 n - n n— n
+2(eox® [IBOMI — 18R + (® 7] (BG™) ~ B ), 7p)
(79)

T n— n— T T n—
+ (REE)EE]T - (B B + B [E])] (B — B ), 07)].

An Estimate of the Left-Hand Side at Level n. A well-known identity from
Hilbert space theory (see e.g. [6, Lemma 1, 1)]) allows us to rewrite and estimate
the first four terms on the left-hand side of (79) in the following way:

&

2(o(1+ XMk = mi™)smi) = 12, ey = 1 12 (e

and
2 (po(05 — 0;71),65) > N16n112, — 6117,

In order to simplify the treatment of the third and fourth terms, we introduce the
abbreviations

-3 1 — _l n n n— n—
(80)  CYF =SB+ (B 5T =By BT 4 B (BT
Then we have that
2 (cox® 5 (B + (B ™)) 6t — =), 7h)

> (eox®C 2 ) — (eox PO Tpt Y,

and
2 (ox ™ [B5 [B7]7 + B B2 ] (o — o ).p)
> (cox®Cy g — (cox O Cy Ep ).
Here we have used the fact that the matrices Cgfé, n=12 ..., N, are positively

semidefinite. In summary, the left-hand side of eq. (79) can be estimated from
below as follows:

_1
IR, iy = M2, ey + IORI20 = 16712, + (2o €3 2, )
n—1 2 n—1 _n—1

— (eox@CT T ) + (e @y R ) — (e Cy R
< 2(eo(1 +X(1)>(nh_77h i) +2 (no(6 — 0,71),0%)

+2(sox(3)[ ((BR)? + EH?) (i — ") i)

+2 (=ox® (B (B + B (BTt - o) ).
So from eq. (79) we get the inequality
2, oy = I 2, gy + NORI2, — 622,

n—1  n—1

+ (cox®CI 22 1) — (oxPCT T TgpL gt



ENERGY STABLE TD-FEM FOR NONLINEAR MODELS 531

+ (cox®Cy Enp ) — (cox Oy B )
< 2oL+ X)W =071 mp) + 2(no(60" = 6771), 67)
+2 (eox® [ (B + ® ) | — "))
+2 (ox® [Ef [BR)T + E7 " (B3] ] (0 =)
— 28¢(eo(1+ xV)RE, 1) — 2A¢ (o R}y, 0F)
— 20t (ox P [E() PR, ;) — 24 (sox D 2B () [E()]) Ris, 77
+2(cox® [IBI? — 18R + (B (BG™) — B ), 75
+ ([2E@)EE) - (B B + B~ [E)] (B B )00 |.

In order to simplify the further presentation, we denote the ten summands of the
right-hand side in the specified order by 5;’, j=1,...,10 (the detailed definitions
will be repeated later).

Now we sum up these inequalities from n = 1 to N:

||77h ||50 1+X(1) ||nh||50(1+x(1) + HGIIXHZO - H92||;24,0

s [(cox® et Ha,n) = (eox @y H o= )]

n=1

N o 10
+ 3 [ e R i) - (eoxCy S A ES I

n=1 j=1

where

N
(81) Z =1,...,10.

Rewriting the two sums on the left-hand side (“discrete partial integration”) we
obtain

N—
I 12,y — T2 o + 1N 12, — 16312, + (cox Ty 2 i)
N—-1
1

1 n nal 1
— (eox®Cind,nd) + 3 (eox®[CTTF = CT ] ) + (2P Cy Y )
n=1

,_.

10

1 1 n+l ~
— (eox®C3up, i) + Z (cox®[Cy 2 = Cy 2 i, mp) <05
n=1 j=1
Setting
n n—%1 n n n n+3 n—%1 n n
07 = (€0X(3) [C - C, z]nh,nh), 0y i= (€0X(3) [Cz R O 2]%)%)7
we get
N—1
12, 1y = IR N2, 1y + NN, = 162115, + (20X CL 20 )
(1+x (1+x
N-1 N
(82)  — (cox®CE ) + (eox Oy F 0l ) — (e CFag ) < 35,

where 011, 12 are defined in analogy to (81).
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An Estimate of the Right-Hand Side. The first to fourth terms on the right-
hand side of the inequality (82) are treated by means of the formula (65). Replacing
there u by (I — Prp)E and (I — Iz )H, respectively, we obtain for the the first
term

07 = 2(eo(L+ XY (" =" 1)) = 24t (eo (1 + X)X~ Prar)ris, np)
= 2At(e0(1 + X _p,,m )
< At e e ) I )
< |0 (T=PLan)E) [ (pn-r o 12 RENCY) + A2, 1)
€0 X
(by Lemma 1(i))
< Ceol|1 4+ XM oo () W2F|OE|Z 2y + At ||Inp||?
< 0 X L= (Q) tB|lp2 (gn-1 g0 HE(Q)) s co(1+x(1)

(cf. (44)).
Thus we get
~ N ~
(83) 1= 07 < CeollL+xVllze (o) B |HEITa o pae ) + ALY,
n=1
where

N
N ._ 2
Sy = Z ||772||50(1+X(1>)~
n=1

Analogously, the second term on the right-hand side of the (82) can be written and
estimated as

52 = 2(s0 (07 — 071, 67) = 288 (juo(1 — Ty, 67)
< Cpoh® [0 [Tz (pn-1 n g1e1 () + AIOR I,
where we have used (65), Lemma 1(i) and (45). Hence
(84) dy < Cu0h2kHatH||]2;2(07T7Hk+1(Q)) + AL Sy,

where
N
Se = 16712,
n=1

The third term from the right-hand side of the inequality (82) is estimated as
Sg _ (EOX(S) [(E’Z)2 + (E271)2:| (77" . 77”_1)777}7;)

< AUER) o2, ) [I765-p a8 2 + IR 2 o
where we have used the notation

I lle 0,110y = max [[ER|Le (o).

PR PN

Since
1
n 2 2

Hr(IfPLM)EHE()X@) = EH@((I - PLM)E) ”LQ(W_l’t"’LZo<1+x<1>)(Q))

C
< ool @ @) P IOE Tz 1 on war (),
ni2 _ 3),,n ,,n\ _ 1 (1) X(S) no,n
i lzgxcony = (Eox i mis) = { @0+ X 7=y i



ENERGY STABLE TD-FEM FOR NONLINEAR MODELS 533

< X e @) 112, 1 g )
we arrive at
05 < CeollxX® | oo (@ | B 17 (0,710 (2 WX NOENF 2 41 g gk
X 2w ) B o (0,7, () AL IR 12, (100
This leads to
33 < Ceoll x| Lo @) B 7= 0.7, (2)) P NOENZ 20 1 110 (0
(85) + X e ) | B 7oe (0.17, 00 (02 AL S
The fourth term from the right-hand side of (82) is treated in a similar manner:
58 = 2(cox @ [Bp (B3] + Ep L [ERT ] (7 — 0", mp)
< 2 (B} 0,71 @) [IE—panymlyeer + 112, )]
and, as in the estimation for &3, this results in
o1 < C€0||X(3)HLOO(Q)||(EZ)||500(0,T,L°c(Q)) h2k||atE||i2(0,T,Hk(Q))
(86) + 2/ oo (@) I ER) 1o (0.7 1 () AL S -

Now we turn to the consideration of the terms 5}} to 5§ containing the remainders
RE, Ry For 67 we have:

00 = —2At(go(1 + xWRE, n) < At ||R7EH?O(1+X<1>) + At ”77}7”30(1+x<1>>'
Then Lemma 1(iv) implies that
N (At)2 2 N
(87) (55 S 3 ‘|6ttE||L2(O’T’L§O(1+X(1))(Q)) + At Sn .

A completely analogous argument shows that

(At)®
3

(88) 06 < ||<9ttHH%2(o,T,LgO(Q)) + At S

The estimate of 62 runs as follows:
6f = =2t (cox P |E(t") "Rz, 1)
< I oo @) IBR .00 0 [AtHR%H?O(HX(s)) + AR 112, 1y | -

Then we get, using Lemma 1(iv) again, that

PSCULNG E} OBl
7 < 5 X e @) I(ER) lle= 0,710 (@) 106 Ellp2 0,712
0

@)y D)
(89) + I e (@) 1B o= 0,7, () AL S
For 07 = —4At (eoxPE™)[E(t™)]T R, np), it is easy to see that
(A0

0g < 2THX(B)HLM(Q)||(EZ)||eo<>(o,:r,Loo(Q))||3tt]53||iz(o,T,Lz (@)
eo(1+x'))

(90) + 203 || o (o Il (B eoe (0,7, 1.2 (02)) At Sy
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holds. The estimation technique for 67 and 7, is similar to that for 0% and 8} in

the sense that it is based on the remainders rg, rf;. Namely, for 53 we have, by
(65), that

35 = 2(eox® [[BI? — 115 + (8)7]] (B() — BE™), )
— At (eox™ [2IB(") — [(B7)? + (B2 xh, 7).
Next we consider the term in the big square brackets (cf. (68)):
SB[ — [(BR)? + (B 1)?)
= [B() + By — () + BT+ At[E() + B el
+ B + BTt - B + BT

These five summands generate in a straightforward way a decomposition of 5{;:
5
0y =83
j=1

The subsequent steps are devoted to the estimation of the five terms ng. We have
that
05y = At (cox @ [B(") + Ef] 0" v, 17)
< At XP ) oo () [IBE) Lo @) + [ER Lo ()]
X [T oo (@) 17" e (145 1R e (1450 -

Since

[E@ ) L~ @) + ERllLe @) < [1Ellco,rne @) + 1ER) e 0,7,L= )

" 1
(91) IrEllLee () <4/ Al 10:E||L2(¢n -1 4n oo ()) < IEllcr (0,70 9))
we obtain

oy < CAtR?* |1+ XV £ (@) lIX® || e o) [HEHC(O,T,LOQ(Q))
+ ||(EZ)||EOC(0,T,LOO(Q))] IEll e 0.7.00 @) IElE (0.7, 5125 (2))

+ 2 IOl i (Bl om0 + | e 0.2
X | Elloro.2,L0 @) 117112, (1450
(cf. (44)).
The treatment of 532 is quite similar to 531:
05y = —At (coxP[E") + E) njix, nfy)
< At ||X(3)HLOO(Q) [||E||C(0,T,L°°(Q)) + ||(EZ)||€°°(0,T7L°°(Q))}
* [ Ellero,r, e o I 12, (1 x0)
(by (91)).
Next we see that
055 = (A1) (eox PV [EE") + B~ v, n)
< (At)2||X(3)HL°°(Q) IEllc(o,1,Le @) + [I(ER) e 0,7, (2))]
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X I oo @) TR lleo (1430 1 o (14x000) -

Hence it remains to observe that
IrgllLe@) < |Ellcio,rLe) (by Lemma 1(i)) and
1 1
Hr%Hso(l+x(1))||77}7LL||60(1+X(1)) < iAt ||r%||§0(1+x<1>) + AL ||77i7f|\§0(1+x<1>)
(by Young’s inequality with o := At)
1 2 1 n|2
< 5||8tE||L2(tn—1,tn,Lio(HX(l))(Q)) +oag IR, )
(by Lemma 1(i)).

So we get
NG 1 n
Og3 < g(At)QHX(B)IILw(m Ellco,rLe= () + IER)lle= 0,712 (2))]

X ”E”Cl(O,T,LOC(Q))||atE||i2(tnf1’tn,L2 @)

0(1+x(™)
+ %”X(S)”LOO(Q) [IEllc 0,71 2) + (B le (0,7, @)
X | Ellero,mnee @) AL ITRIZ, 140y
The term
05y = At (eox P [E(") + B 0" rg,mp)
can be estimated as 6§, (with 7 replaced by "~1), thus
5y < CAtE?* o1+ XD oo (@) IX P || o (@) [”E”C(O,T,LOO(Q))

o+ ICER) e 0.1, @) | IE 0 07,15 () B 0,0k s

At . .
t5 X 2o ) [1Elleo,rn= @) + Bl 0.7,L= @)
X | Ellor 0,100 @) 1712, (14509

Similarly
o5 = —At (eox P [E(™) + B " g, i)

is estimated as 0g, (with one of the terms 7} replaced by 7/ '):

n 1 n n
dgs < iAt X @) [IEE™) Lo (0 + I1E L (9)] 1Bl 0,19
X I 02 iy + IRDZ, o)

Summarizing the estimates of 6%, to &3, we conclude that

05 < CLALR™ + Co(A?|OE | (n 1 go 12 o, )
=) X

+ oAt (M2, gy + IR i

where the constant C; > 0 depends on eo, ||1 + XM=, [IX® =@
(B} o= 0,7, (2))> 1Ellcro,1,1=9)s [Ellco,r,m @), the constant Cy > 0 de-
pends on ||X(3)||LOO(Q)7 (B g0 (0,7, (2))> 1 BEllcr0,7,L(02)), and the constant
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Cs > 0 depends on [|X®) || e (0, [|(E)|le(0,7,L2(2))s IEllc1(0,7,L2(0))- 1t follows
that

N
=8 < OTH + GADIOE s orre e
eo(1+x'/)

n=1

(92) + G At InpI2, (14 + 20588 ST
The term
IS n [(E@n n— -7 no.n
0ty = 24t (ox @ [2E(™) ()] — (B [BR]" + B [ER '] )] vk, op)
does not allow such a symmetric estimation argument as 53 Here we start with
n n n n n— n— T n n n
2E(")[E(")]" — (Bf [B;]" +Ep ' [Ep '] ) = E(¢")[E(") — Ej)”
n n n n n n— n n— n— T
+[B(") - Ef] [ER]" + E()EQ) - EpT + [EB(@") - By B
From
E(@") — By =" -,
E{t") - E ' =E(") -E(t" H+E ) -E} = Atrg +n -t
we obtain:
n— n—11T
2E(t")[E@)]" - (B [BR] + By B ) = BO)W" —p)” + 0" — i) (B
+AEE)[rg]" + EE) " -y T+ Atleg] (BT 00 - T (BT

This decomposition generates a decomposition of 07 into ten terms in a natural

way:
= 0t
j=1
where
6101 = 24t (cox B [1")" v, 17

< 19T
10 = =24t (eox P [ERT]T xR p).
All these terms can be estimated similar to the terms ng so that we get an analogous

estimate:

010 < 2C1Th** + 205 (AL)* OB 20 1 2 i, )
eo(1+x

(93) +2C5At ||77h|| (y +4C3At Sy

eo(1+x
Finally we have to deal with the terms 67, and 67,. Due to (80) it holds that
Ep - E;! N | DU D
At At '

By means of the discrete time derivative (72) this relation can be written as

i n—1 1 n—
C?h -C = §At( n+Ej, 2) (

n+3 n—% 1 n— n n—
CI% —C1 7% = JAHE] + B °) (0arEf + 0aER ),
and it follows that
nt3 n—— n— n—
Icy e — ? L) < At||EZ +E} 7 lue (o) |10aER + 0aiEr e (0
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< 2At[(ER) [less (0, 7,1o () 1(OatER) [l 22 (0,7, 1.5 ()
Thus we get
n nt3 -51.n .n
oy = (50X(3) [Cf ‘- C;L Q]Wh»nh)

n—+

nJrl 1 n
<X Le@)ICT 2 = CF 2l @ lIni 12, (1)
< 208 X | oo () 1B e (0.7 () | OnBR) e 0.7, () 175125 (10

The summation over n from 1 to N — 1 gives
(94)

N—-1
o011 = > 071 < 2| Lo o BRI (0,71 () | OarER) e 0,71 () AL Sy
n=1

The estimate of
s = (cox W [C5 7 — C3 g )
runs in the same way. By (80) we have that
57y < AAL X | Lo () | (BR) e 0.7, (2) 1 OarER e 0,700 () 17712, (14010
So we get
(95)

N-1
012 = Z Oty < AP | oo () B e (0,71 () | (Oat B ) e (0,71 () At S
n=1

Now we are ready to summarize the right-hand side of the inequality (82):
12
> 85 < 3CsAt 70112, (14 g0y + Cah®* 4 Cs5(At)?

j=1
+ CeAt S) +2At Sy,
where the constant Cy > 0 depends on T, €, ||1 + X(l)”Loo(Q), ||X(3)|\Loo(m,

[(Ee=0rr=@):  10ElLz0rm: @) IElcrori=@), [Elcormr @)
10:H]|L2(0, 7, +1(0)), the constant Cs > 0 depends on ||X(3)|\Loo(ﬂ),
I (ER) |les< 0,7,Lo (92)) 5 ||atE||L2(O,T,L§U(1+X(1))(Q))v H8ttE||L2(0,T7L§0(1+X(1))(Q))a

IE[|c10,7,L () ||attH||L2(07T7LﬁO(Q)), and the constant Cs > 0 depends on

X Lo @) 1ER e 0,710 @) (OaER) lese (0,7100 02))s [Ellet 0,1 0)-
So we get from the inequality (82):

I 12, iy + (X @O ) + (cox® 2 ) + 116N 12,
< B2, 1wy + IRIZ, 1 ycny + (C0X P C )
(96) 4 (zox®C2nd,m0) + 63112, + Cuh® + Cs(At)? + Coirt SN + 24t SY.
Making use of the facts that
(cox @) F ) > 0,
(aox(3)Cfn27n2) < j||X(3)HLW(Q)||(EZ)||§°°(O,T,L°°(Q))||772||§0(1+X(1))7 Jj=12
(cf. the estimates of 67, and 47,), we finally conclude from (96) that

Hﬁijlv||§0(1+xu>) + ||9;LVH,%O



538 A. ANEES AND L. ANGERMANN

< 3C3At H77h||50(1+x(1)) + ||772||§0(1+X<1>)

+ 3] x| e Q)H(En)Heoo(o TLoo(Q))H’?h||go(1+X<1>) +6nl2,
+ C4h®F + C5(At)? + CsAL S + 24t S))

7)< CrIMNZ oy + 10R117, + C4h®F + C5(At)® + CeAL S) + 2AL 5,

where C7 :=3C5 + 1+ 3||x 3)|\Loo(9)||(EZ)||?OO(O7T7LOQ(Q)). Here we have used that
At can be bounded by 1, for instance, without loss of generality.

It remains to apply Gronwall’s inequality [22, Lemma 5.1] (also cited in [6,
Lemma 2]) with

0 := At >0,

g0 = Callmpl12 1wy + IORII7, + C4h2k +C5(At)? >
an = 3112 q ey T 1R 1Z, >

by, = c, =0,

Y0 :=0, v, := v := max{Cs;2} > 0 for n € N.
Then the condition v < 1 gives some (uniform) restriction to At. If we even
require that At < (2max{Cs;2})~!, then Gronwall’s inequality leads to

[ ||60 140y T ||9fjlv||io

N
< G2, 1y + 8112, + Cali®* + C5(A1)?] exp (w > —vAtrl)

n=1
< oI ) + 601, + Cuh® + C5(AD?] exp (2T).
If we take E?L = PLME(O) =PryEq and H% = HLI\/[H(O) =1l Hy, we obtain
170 Wl (1450 + 108 [l < C [B* + At] exp (vT)

where the constant C' > 0 involves all the dependencies of the above constants Cy
to C7. Finally, by the triangle inequality, we see that

IEEY) = B o100 + HEY) = H 4
< @ = Pran)EE) g1y + 10 leg ey + 1@ = Lan) BEY) o + 167 1o
so the estimates (30) and (32) imply that
IEEY) = B [z 120y + HEY) = B 4
< C/zo WF||Ellc om0 () + Cvio ¥ |[HI| oo+ (0)
+C [h* + At] exp (7T)..
([l

This theorem shows that the fully discrete (backward Euler-type) method for
the nonlinear Maxwell’s equations is unconditionally stable in the sense that there
is no restriction to the relation between time step size and spatial grid size.

7. Conclusion

The paper summarizes investigations of time domain finite element methods
which extend our results for the linear Maxwell’s equations [6], [4], [3] and [5] to
the case of a Kerr-type nonlinearity. Under reasonable assumptions, we could prove
that the semi-discrete and the fully discrete finite element approximations possess
bounded energies and converge to the weak solution of the system of nonlinear
Maxwell’s equations.
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