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CONVERGENCE ANALYSIS OF NITSCHE EXTENDED FINITE

ELEMENT METHODS FOR H(CURL)-ELLIPTIC

INTERFACE PROBLEMS

NAN WANG AND JINRU CHEN*

Abstract. An H(curl)-conforming Nitsche extended finite element method is proposed for

H(curl)-elliptic interface problems in three dimensional Lipschitz domains with smooth interfaces.
Under interface-unfitted meshes, the continuous problems are discretized by an H(curl)-conforming
extended finite element space, which is constructed based on the the lowest order of second family
Nédélec edge elements (Whitney elements). A stabilization term defined on transmission faces

is added to the standard discrete bilinear form. Stability results and the optimal error estimate
in the parameter-dependent H(curl)-norm are derived, which are both uniform with respect to
not only the mesh size and the interface position but also the physical parameters. Numerical

experiments are carried out to validate theoretical results.

Key words. Nitsche extended finite element method, H(curl)-elliptic interface problems, interface-
unfitted meshes, the lowest order of second family Nédélec edge elements.

1. Introduction

A motivation for considering H(curl)-elliptic interface problems comes from the
modeling of electromagnetic fields. In some electric machine applications, engineers
need to solve an H(curl)-elliptic interface problem at each time step. Due to the
large variety of applications in scientific computing and engineering, there have
been a lot of work about the numerical approximations and convergence analyses
for time-dependent Maxwell interface equations, stationary Maxwell interface equa-
tions and also other related models, such as [10], [13], [11], [33], [26], [28], [14], [30],
[29], [19], [34], [3], [4], [22] and so on.

Among these papers, there are fitted-mesh methods ([28], [30], [29]), extended
finite element methods with unfitted-meshes ([33]), adaptive immersed finite ele-
ment methods with unfitted-meshes ([13]), Lagrange multiplier methods ([11], [3],
[4] )and so on. The optimal error estimates were obtained under interface-fitted
meshes in [28], [30], [29]. Unfortunately, it is usually a time-consuming and non-
trivial task to construct a good fitted-mesh for problems with moving interface
or geometrically complicated interface. To avoid the expensive remeshing require-
ments, researchers pay more attention to unfitted-mesh methods. In this paper, we
focus on one kind of interface-unfitted mesh methods−the extended finite element
method.

The extended finite element method (XFEM) was first proposed by T. Belytschko
and T. Black in [1] to deal with elastic equations in a cracked domain. In [23], A.
Hansbo and P. Hansbo combined this method with Nitsche’s method together,
introduced a new method named Nitsche-XFEM. They successfully applied this
new method to elliptic interface problems and obtained optimal error estimates
independently of the interface position with respect to the mesh. Later, Nitsche-
XFEM was taken to solve other elasticity and Stokes interface problems, such as

Received by the editors March 21, 2020 and, in revised form, December 9, 2021.
2000 Mathematics Subject Classification. 65N30, 65N12.
*Corresponding author.

487



488 N. WANG AND J. CHEN

[24], [31], [15], [32] and so on. As for the time-harmonic Maxwell equations, authors
([33]) study XFEM in two dimensional domains.

In this paper, we propose an H(curl)-conforming Nitsche extended finite element
method for the H(curl)-elliptic interface problems in three dimensions. The ex-
tended finite element space is based on the lowest order of second family Nédélec
edge elements. The discrete approximation scheme is formed by the standard bi-
linear formulation and a stabilization term defined on the transmission faces. By
the help of the stabilization term, stable results and the optimal convergent order
are derived, independent of not only the mesh size but also the interface position.
Harmonic weights (see [41]) are applied in this paper, which make sure that all
results are robust with respect to the physical parameters. In addition, comparing
with the Lagrange multiplier method, we also have fewer degrees of freedom.

The layout of this paper is organized as follows. In Section 2, we define some
notations, give the weak form of the original H(curl)-elliptic interface problem and
construct its discrete formulation. Section 3 introduces some necessary assumptions
and auxiliary lemmas. The stability properties containing the continuity and the
coercivity are analyzed in Section 4. Section 5 shows the optimal error estimation
under a parameter-dependent H(curl)-norm. Numerical experiments are present-
ed in Section 6 to validate the theoretical results. Section 7 discusses the final
conclusion.

Throughout this paper, we use bold typefaces to distinguish vectors from scalars,
such as E and H2(Ω), denoting a vector function E = (E1, E2, E3) and a vector
space H2(Ω) = [H2(Ω)]3, respectively. x = (x1, x2, x3) ∈ R3 denotes the position
of one point in the three dimensional space. Constants c or C with or without
subscripts will be used to denote different positive constants which are independent
of the mesh size, the physical parameters, and the interface location relative to the
mesh.

2. H(curl)-elliptic interface problem

2.1. Weak formulation. Consider the following H(curl)-elliptic interface prob-
lem in the domain Ω ⊆ R3

curl(αcurl u) + βu = f in Ω1 ∪ Ω2,

[nΓ × u] = 0 on Γ,

[nΓ × (αcurl u)] = 0 on Γ,

n× u = 0 on ∂Ω,

(1)

where Γ is a C2-smooth boundary of a simple connected Lipschitz polyhedral do-
main Ω1 with Ω1 ⊆ Ω and Ω2 = Ω \ Ω1, vectors nΓ, n represent the unit normal
vector on Γ pointing from Ω1 to Ω2 and the unit outward normal vector of ∂Ω
respectively, see Figure 1. For a suitable scalar function v, its jump across the
interface is defined by [v] = v|Ω1 − v|Ω2 , and a component-wise application to
a vector function. α, β are related physical parameters. For simplicity, we only
concern about the case with β being a strictly positive constant and α being a
piecewise constant in the domain Ω, namely

α =

{
α1 in Ω1,
α2 in Ω2.
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Figure 1. The sketch of a domain with interface.

We introduce the following Sobolev spaces

H(curl; Ω) = {v ∈ L2(Ω); curl v ∈ L2(Ω)},

H0(curl; Ω) = {v ∈ H(curl; Ω);n× v = 0 on ∂Ω},

H1(curl; Ω) = {v ∈ H1(Ω); curl v ∈ H1(Ω)},

H1(curl; Ω1 ∪ Ω2) = {v ∈ L2(Ω);v|Ωi ∈ H1(curl; Ωi), i = 1, 2},

H2(Ω1 ∪ Ω2) = {v ∈ L2(Ω);v|Ωi ∈ H2(Ωi), i = 1, 2}.
The spaces H(curl; Ω), H1(curl; Ω), H1(curl; Ω1 ∪ Ω2) and H2(Ω1 ∪ Ω2) are e-
quipped with the following norms respectively

||v||H(curl;Ω) = (||v||20,Ω + ||curl v||20,Ω)
1
2 ,

||v||H1(curl;Ω) = (||v||21,Ω + ||curl v||21,Ω)
1
2 ,

||v||H1(curl;Ω1∪Ω2) = (||v||2H1(curl;Ω1)
+ ||v||2H1(curl;Ω2)

)
1
2 ,

||v||H2(Ω1∪Ω2) = (||v||22,Ω1
+ ||v||22,Ω2

)
1
2 ,

where the norm notations ||v||0,Ω, ||v||1,Ω and ||v||2,Ω used in this paper are all
standard, refer to [2] for their precise definitions.

The weak formulation of the problem (1) is: find u ∈ H0(curl; Ω) , V such
that (throughout this paper, we use (·, ·)ω to denote the L2-inner product in the
domain ω)

(2) a(u,v) = (f ,v)Ω, ∀ v ∈ V,

where

a(u,v) = (αcurl u, curl v)Ω + (βu,v)Ω.

Define a parameter-dependent norm for any v ∈ V,

(3) ||v||α,β,curl,Ω = (||β 1
2v||20,Ω + ||α 1

2 curl v||20,Ω)
1
2 .

By Cauchy-Schwarz inequality, for any u,v ∈ V, we derive

(4) a(u,v) ≤ ||u||α,β,curl,Ω||v||α,β,curl,Ω
and

(5) a(v,v) = ||v||2α,β,curl,Ω.

According to the Lax-Milgram theorem, the weak formulation (2) admits a unique
solution.
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2.2. Notation. Let Th be a quasi-uniform tetrahedral mesh of Ω. For any element
K ∈ Th, hK = diam(K) denotes the diameter of K, and the maximum value of
all diameters h = max

K∈Th

hK is called mesh size. Notice the quasi-uniformity of the

mesh, there always holds h ≃ hK . Note that any element K ∈ Th is considered as
closed. Define the set of interface elements by T Γ

h = {K ∈ Th : K ∩ Γ ̸= ∅}, see
Figure 2, in a two dimensional setting for an illustration. For any interface element
K ∈ T Γ

h , Ki = K∩Ωi means the part of K located in Ωi (i = 1, 2) and ΓK = Γ∩K
represents the restriction of the interface Γ in K.

Figure 2. Left panel: Ω1 (the dark color area) and Ω2; Right
panel: T Γ

h (the set of dark color triangles).

For i = 1, 2, denote the non-interface domain by ωh,i = ∪
K∈T −

h,i

K and the extend-

ed domain containing interface by Ωh,i = ∪
K∈T +

h,i

K, where T −
h,i = {K ∈ Th;K ⊆ Ωi}

and T +
h,i = {K ∈ Th;K ⊆ Ωi or K ∈ T Γ

h }, see Figure 3 (in a two dimensional set-

ting) for an illustration. For a scalar function φ, we define its weighted average on

the interface {φ} = κ1φ1 +κ2φ2, where κi =
1/αi

1/α1 + 1/α2
and φi = φ|Ωi , i = 1, 2.

For a vector function, the weighted average definition holds for every component.
To ensure the uniformity of our results with respect to the interface position, we
need to introduce a stabilization term defined on transmission faces. The trans-
mission face sets are noted as FΓ,i

h = {f ⊆ ∂K;K ∈ T Γ
h and f * ∂Ωh,i}, i = 1, 2,

see Figure 4 (in a two dimensional setting) for an illustration. Define the jump

across the transmission face f ∈ FΓ,i
h : [v]f = v|Kl

−v|Kr , where Kl and Kr denote
different tetrahedral elements located at the different sides of the transmission face
f .

Figure 3. Left panel: Ωh,1 (the dark color area); Right panel:
Ωh,2 (the dark color area).
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Figure 4. Left panel: FΓ,1
h (the set of bold edges); Right panel:

FΓ,2
h (the set of bold edges).

2.3. Discrete formulation. Let Vh,i denote the lowest order of second family
Nédélec edge element space defined in the extended domain Ωh,i, i = 1, 2, i.e.,

Vh,i ={vh ∈ H(curl; Ωh,i);vh|K ∈ [P1(K)]3, ∀ K ∈ T +
h,i,

n× vh = 0 on ∂Ω} for i = 1, 2.

The extended finite element space is given by

(6) Vh = {vh = vh,1χ1 + vh,2χ2; vh,i ∈ Vh,i, i = 1, 2}

with characteristic functions χi (i = 1, 2) being

χi(x) =

{
1 in Ωi,
0 else.

The discrete approximation of the problem (1) is: find uh ∈ Vh such that

(7) ah(uh,vh) = (f ,vh)Ω, ∀vh ∈ Vh,

where ah(uh,vh) is a bilinear form defined by

ah(uh,vh) =
2∑

i=1

(αicurl uh,i, curl vh,i)Ωi +
2∑

i=1

(βuh,i,vh,i)Ωi

+ ({nΓ × (αcurl uh)}, [nΓ × (vh × nΓ)])Γ

+ ({nΓ × (αcurl vh)}, [nΓ × (uh × nΓ)])Γ

+ γ1
∑

K∈T Γ
h

h−1{α}([uh × nΓ], [vh × nΓ])ΓK

+ γ2

2∑
i=1

∑
f∈FΓ,i

h

hαi([curl uh,i]f , [curl vh,i]f )f .(8)

Remark 2.1. In the bilinear form (8), the last two terms are added to ensure
the coercivity of the system (7). The last one, a stabilization term defined on
transmission faces, guarantees the uniformity of results with respect to the interface
position. Both terms vanish in the continuous case. Constants γ1 and γ2 are called
stabilization parameters, which are independent of the mesh size h, the physical
parameters α, β and the position of the interface with respect to the mesh.
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3. Preliminary lemma

Assumption 3.1. The tetrahedral triangulation Th is shape-regular, i.e., for any
element K ∈ Th, there exists a positive constant C such that

(9)
hK

ρK
≤ C,

where ρK denotes the diameter of the biggest ball contained in K.

Assumption 3.2. For all K ∈ T Γ
h , there exists Ki ∈ T −

h,i such that K ∩Ki ̸= ∅
for i = 1, 2.

In the error estimation, the trace inequality on the interface segment ΓK is
crucial. We state the trace inequality in three dimensions in the following (see
[24]).

Lemma 3.3. For any interface element K ∈ T Γ
h , there exists a positive constant

C, depending on the interface Γ but independent of its position with respect to the
mesh, such that for any v ∈ [H1(K)]3, there holds

(10) ||v||0,ΓK
≤ C(h

− 1
2

K ||v||0,K + h
1
2

K ||∇v||0,K).

Further, for any vh ∈ [P1(K)]3, by an inverse inequality ||∇vh||0,K ≤ h−1
K ||vh||0,K ,

(11) ||vh||0,ΓK ≤ Ch
− 1

2

K ||vh||0,K .

We need the following technical lemma.

Lemma 3.4. There exists a positive constant C such that∑
K∈T +

h,i

||α
1
2
i curl vh,i||20,K ≤ C(

∑
K∈T −

h,i

||α
1
2
i curl vh,i||20,K

+
∑

f∈FΓ,i
h

hαi||[curl vh,i]f ||20,f ), i = 1, 2.(12)

Proof. Note that∑
K∈T +

h,i

||α
1
2
i curl vh,i||20,K =

∑
K∈T −

h,i

||α
1
2
i curl vh,i||20,K

+
∑

K∈T Γ
h

||α
1
2
i curl vh,i||20,K , i = 1, 2.(13)

We just show

(14)
∑

K∈T Γ
h

||curl vh,1||20,K ≤ C(
∑

K⊆Ω1

||curl vh,1||20,K +
∑

f∈FΓ,1
h

h||[curl vh,1]f ||20,f ).

According to Assumption 3.2, for all K ∈ T Γ
h , there exists K1 ∈ T−

h,1 satisfying

K ∩K1 ̸= ∅. Denote FK,K1 the set of faces passing from K to K1, the number of
faces belonging to FK,K1 is uniformly upper bounded by the shape regularity. We
use the same idea as in [8], and write that

(15) curl vh,1|K = curl vh,1|K1 +
∑

f∈FK,K1

δf [curl vh,1]f ,

with δf = 1 or − 1 denoting the modification of the direction of the jump across
the transmission face f .
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Since the subdivision of the domain is shape-regular, we have the fact that
|K| ≃ |K1|, |f | ≃ O(h2). There holds

(16) ||curl vh,1||20,K ≤ C(||curl vh,1||20,K1 +
∑

f∈FK,K1

h||[curl vh,1]f ||20,f ).

Summing over all interface elements on the left, we obtain the following result

(17)
∑

K∈T Γ
h

||curl vh,1||20,K ≤ C(
∑

K∈T −
h,1

||curl vh,1||20,K+
∑

f∈FΓ,1
h

h||[curl vh,1]f ||20,f ).

Similarly, we have

(18)
∑

K∈T Γ
h

||curl vh,2||20,K ≤ C(
∑

K∈T −
h,2

||curl vh,2||20,K+
∑

f∈FΓ,2
h

h||[curl vh,2]f ||20,f ).

The desired result follows from (13), (17) and (18). �

To obtain the extended finite element error estimates, we need to introduce
an extension theorem. The standard extension theorem is for scalar functions,
extension properties for vector fields H1(curl) are firstly proposed in [28]. For the
need in the error estimate, we make a slight modification and the results are stated
in the following. The proof of first two inequalities can be found in [28], here we
only prove the last inequality.

Theorem 3.5. Assume that U ⊆ R3 is a connected bounded domain with C2-
smooth boundary ∂U . Then there exists a bounded linear extension operator

(19) E : H2(U) → H2(R3)

such that for any v ∈ H2(U) there hold

• Ev = v a.e. in U ;
• ||Ev||H1(curl;R3) ≤ C||v||H1(curl;U) with C only depending on U ;
• ||Ev||H2(R3) ≤ C||v||H2(U) with C only depending on U.

Proof. For a fixed point x0 ∈ ∂U , we first suppose that ∂U is flat near x0 which is
lying in the plane {x ∈ R3;x3 = 0}. Let B = {x ∈ R3; |x−x0| < r} denote an open
ball with center x0 and radius r > 0 such that the upper and lower hemispheres
satisfy

B+ = B ∩ {x ∈ R3;x3 > 0} ⊆ U,(20)

B− = B ∩ {x ∈ R3;x3 < 0} ⊆ R3 \ U(21)

respectively.
Suppose a vectorw(x) = (w1(x), w2(x), w3(x))⊤ ∈ C∞(B+) and its correspond-

ing extension formula is

w̃(x) =



w(x), in B+,

3∑
j=1

λjw
1(x1, x2,−

1

j
x3)

3∑
j=1

λjw
2(x1, x2,−

1

j
x3)

3∑
j=1

(−1

j
)λjw

3(x1, x2,−
1

j
x3)


, in B−,
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where parameters (λ1, λ2, λ3) = (6,−32, 27) satisfy
3∑

j=1

(−1

j
)kλj = 1, k = 0, 1, 2

uniquely. This uniquely determines w̃(x) ∈ C1(B). Moreover, since w̃(x) ∈
H2(B+ ∪B−), there holds w̃(x) ∈ H2(B).

Now we show the extension from H2(B+) to H2(B) is continuous. By a simi-
lar mirror reflection technique used in (3.7) of [28] applied on very component of

Dθw̃(x), we have∫
B

∑
|θ|=2

|Dθw̃(x)|2dx ≤ C

∫
B+

∑
|θ|=2

|Dθw(x)|2dx(22)

with θ = (θ1, θ2, θ3), |θ| =
3∑

i=1

θi = 2 and Dθφ(x) denoting all second derivative

terms of the vector function φ(x). The constant C is related to at most the second
order in terms of λi, i = 1, 2, 3.

When ∂U is not flat near x0, one can use the flattening technique and partition
of unity localization in order to reduce this situation to the flat one. �

Since that the interface Γ is C2-smooth, we can get the following corollary. Note
that the assumption of a C2 smooth interface Γ limits, in principle, the applicability
of our results to “bubble-like” subdomains as illustrated on Figures 1 and 6.

Corollary 3.6. There exist two bounded linear extension operators for i = 1, 2,

(23) Ei : H2(Ωi) → H2(Ω)

such that for any v ∈ H2(Ωi) with Ωi a subdomain, there hold

• Eiv = v a.e. in Ωi;
• ||Eiv||H1(curl;Ω) ≤ C||v||H1(curl;Ωi);

• ||Eiv||H2(Ω) ≤ C||v||H2(Ωi).

To ensure the curl conserving of transformations between different geometric
domains, we should introduce a special transformation known as the Piola’s trans-
formation (refer to [36], [7])

(24) FK : K̂ → K

which is a continuously differentiable, invertible and surjective mapping.
Let BK , dFK denote the corresponding Jacobian matrix of FK, the transfor-

mation û ∈ H(curl; K̂) to u ∈ H(curl;K) is via

(25) u ◦ FK = B−⊤
K û,

then the transformation from ĉurl û to curl u is by

(26) curl u =
1

det(BK)
BKĉurl û.

Let τ̂ be a unit vector in the direction of an edge ê of the tetrahedron K̂. Then the
vector “τ” given by

(27) τ =
BKτ̂

|BKτ̂ |
.

is the unit tangent vector to the edge e of K.
Refer to [36], through transformation (25), there holds the following result.



XFEM FOR H(CURL)-ELLIPTIC INTERFACE PROBLEMS 495

Lemma 3.7. Suppose the mesh Th is regular and s ≥ 0. The vector v̂ ∈ Hs(curl; K̂)
is transformed to v ∈ Hs(curl;K) by (25). Then there hold the following equivalent
relations.

(28) |v̂|Hs(K̂) w h
s−1/2
K |v|Hs(K),

(29) |ĉurl v̂|Hs(K̂) w h
s+1/2
K |curl v|Hs(K).

4. Stability analysis

For any vh ∈ Vh, define the parameter-dependent norm

||vh||h,curl = (

2∑
i=1

||α
1
2
i curl vh,i||20,Ωi

+
∑

K∈T Γ
h

{α}
h

||[vh × nΓ]||20,ΓK

+
2∑

i=1

||β 1
2vh,i||20,Ωi

+
2∑

i=1

∑
f∈FΓ,i

h

hαi||[curl vh,i]f ||20,f )
1
2 .(30)

For any v ∈ V +Vh, define the norm

(31) ||v||∗,curl = (||v||2h,curl +
∑

K∈T Γ
h

h

{α}
||{nΓ × (αcurl v)}||20,ΓK

)
1
2 .

The following lemma shows that two norms || · ||h,curl and || · ||∗,curl are equivalent in
the discrete space Vh, and the equivalence constants are independent of the mesh
size h and physical parameters.

Lemma 4.1. For any vh ∈ Vh, there holds∑
K∈T Γ

h

h

{α}
||{nΓ × (αcurl vh)}||20,ΓK

≤C1(
∑
i=1,2

||α
1
2
i curl vh,i||20,Ωi

+
2∑

i=1

∑
f∈FΓ,i

h

hαi||[curl vh,i]f ||20,f ).(32)

Proof. Since curlvh,i is a piecewise constant in Ωi, κi =
1/αi

1/α1 + 1/α2
, i = 1, 2.

∑
K∈T Γ

h

h

{α}
||{nΓ × (αcurl vh)}||20,ΓK

≤ 2
2∑

i=1

∑
K∈T Γ

h

h

{α}
||κiαicurl vh,i||20,ΓK

= 2
2∑

i=1

∑
K∈T Γ

h

h

{α}
|κiαicurl vh,i|2|ΓK |

≤ 2
2∑

i=1

∑
K∈T Γ

h

h
κiαi

{α}
|α

1
2
i curl vh,i|2|ΓK |

≤ 2

2∑
i=1

∑
K∈T Γ

h

h|ΓK |
|K|

|α
1
2
i curl vh,i|2|K|

≤ C
2∑

i=1

∑
K∈T Γ

h

||α
1
2
i curl vh,i||20,K .(33)
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In the last step, we use the fact that |ΓK | ≤ h2
K and |K| = O(h3

K).
Further, by Lemma 3.4, we get the result (32). The proof is completed. �

From the norm definitions (30), (31) and Lemma 4.1, we immediately obtain the
norm equivalence corollary.

Corollary 4.2. For any vh ∈ Vh, there exist two positive constants c and C such
that

(34) c||vh||h,curl ≤ ||vh||∗,curl ≤ C||vh||h,curl.

Then we give the properties of the bilinear discretization form ah(·, ·). First,
there holds the continuity property.

Theorem 4.3. For any w, v ∈ V +Vh, there holds

(35) ah(w,v) ≤ C||w||∗,curl||v||∗,curl.

Proof. By Cauchy-Schwarz inequality,

ah(w,v) =
2∑

i=1

(αicurl wi, curl vi)Ωi + ({nΓ × (αcurl w)}, [nΓ × (v × nΓ)])Γ

+
2∑

i=1

(βwi,vi)Ωi + ({nΓ × (αcurl v)}, [nΓ × (w × nΓ)])Γ

+ γ1
∑

K∈T Γ
h

h−1{α}([w × nΓ], [v × nΓ])ΓK

+ γ2

2∑
i=1

∑
f∈FΓ,i

h

hαi([curl wi]f , [curl vi]f )f

≤
2∑

i=1

||α
1
2
i curl wi||0,Ωi ||α

1
2
i curl vi||0,Ωi +

2∑
i=1

||β 1
2wi||0,Ωi ||β

1
2vi||0,Ωi

+
∑

K∈T Γ
h

(
h

{α}
)

1
2 ||{nΓ × (αcurl w)}||0,ΓK (

{α}
h

)
1
2 ||[nΓ × (v × nΓ)]||0,ΓK

+
∑

K∈T Γ
h

(
h

{α}
)

1
2 ||{nΓ × (αcurl v)}||0,ΓK

(
{α}
h

)
1
2 ||[nΓ × (w × nΓ)]||0,ΓK

+ γ1
∑

K∈T Γ
h

(
{α}
h

)
1
2 ||[w × nΓ]||0,ΓK

(
{α}
h

)
1
2 ||[v × nΓ]||0,ΓK

+ γ2

2∑
i=1

∑
f∈FΓ,i

h

(hαi)
1
2 ||[curl wi]f ||0,f (hαi)

1
2 ||[curl vi]f ||0,f
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≤(
2∑

i=1

||α
1
2
i curl wi||20,Ωi

+
2∑

i=1

||β 1
2wi||20,Ωi

+
∑

K∈T Γ
h

h

{α}
||{nΓ × (αcurl w)}||20,ΓK

+ (1 + γ1)
∑

K∈T Γ
h

{α}
h

||[w × nΓ]||20,ΓK
+ γ2

2∑
i=1

∑
f∈FΓ,i

h

(hαi)
1
2 ||[curl wi]f ||20,f )

1
2

·(
2∑

i=1

||α
1
2
i curl vi||20,Ωi

+
2∑

i=1

||β 1
2vi||20,Ωi

+
∑

K∈T Γ
h

h

{α}
||{nΓ × (αcurl v)}||20,ΓK

+ (1 + γ1)
∑

K∈T Γ
h

{α}
h

||[v × nΓ]||20,ΓK
+ γ2

2∑
i=1

∑
f∈FΓ,i

h

(hαi)
1
2 ||[curl vi]f ||20,f )

1
2

≤max {1 + γ1, γ2}||w||∗,curl||v||∗,curl.

Choose C = max {1 + γ1, γ2}, the proof is completed. �

Then the following result shows that the coercivity holds for a weaker norm than
the one that is used in the final a priori bound.

Theorem 4.4. For any vh ∈ Vh, there holds

(36) ah(vh,vh) ≥ C||vh||2h,curl.

Proof. By Cauchy-Schwarz inequality and Young inequality with ϵ,

({nΓ × (αcurl vh)}, [nΓ × (vh × nΓ)])Γ

≤
∑

K∈T Γ
h

(
h

{α}
)

1
2 ||{nΓ × (αcurl vh)}||0,ΓK (

{α}
h

)
1
2 ||[nΓ × (vh × nΓ)]||0,ΓK

≤ ϵ

2

∑
K∈T Γ

h

h

{α}
||{nΓ × (αcurl vh)}||20,ΓK

+
1

2ϵ

∑
K∈T Γ

h

{α}
h

||[vh × nΓ]||20,ΓK
.(37)

Then according to Lemma 4.1, there is

ah(vh,vh) =
2∑

i=1

||α
1
2
i curl vh,i||20,Ωi

+ γ1
∑

K∈T Γ
h

{α}
h

||[vh × nΓ]||20,ΓK

+
2∑

i=1

||β 1
2vh,i||20,Ωi

+ γ2

2∑
i=1

∑
f∈FΓ,i

h

hαi||[curl vh,i]f ||20,f

+ 2({nΓ × (αcurl vh)}, [nΓ × (vh × nΓ)])Γ

≥
2∑

i=1

||α
1
2
i curl vh,i||20,Ωi

+
2∑

i=1

||β 1
2vh,i||20,Ωi

+ γ1
∑

K∈T Γ
h

{α}
h

||[vh × nΓ]||20,ΓK

− ϵ
∑

K∈T Γ
h

h

{α}
||{nΓ × (αcurl vh)}||20,ΓK

− 1

ϵ

∑
K∈T Γ

h

{α}
h

||[vh × nΓ]||20,ΓK

+ γ2

2∑
i=1

∑
f∈FΓ,i

h

hαi||[curl vh,i]f ||20,f
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≥1

2

2∑
i=1

||α
1
2
i curl vh,i||20,Ωi

+ (
1

2
− C1ϵ)

2∑
i=1

||α
1
2
i curl vh,i||20,Ωi

+
2∑

i=1

||β 1
2vh,i||20,Ωi

+ (γ1 −
1

ϵ
)

∑
K∈T Γ

h

{α}
h

||[vh × nΓ]||20,ΓK

+ (γ2 − C1ϵ)

2∑
i=1

∑
f∈FΓ,i

h

hαi||[curl vh,i]f ||20,f

≥C||vh||2h,curl.

In the last step, choose ϵ =
1

2C1
, γ1 ≥ 2C1 and γ2 ≥ 1, then the proof is

completed with

C = min {1
2
, γ1 −

1

ϵ
, γ2 − C1ϵ}.

�

According to Theorems 4.3-4.4 and Lax-Milgram Theorem, we obtain that the
discrete formulation (7) has a unique solution.

5. Error estimation

The main result of this section is formulated in the following theorem.

Theorem 5.1. Let u ∈ H0(curl; Ω) ∩H2(Ω1 ∪Ω2) be the solution of the problem
(1) and uh ∈ Vh be the solution of the discrete problem (7). There exists a positive
constant C such that

(38) ||u− uh||∗,curl ≤ Ch
2∑

i=1

(α
1
2
i ||u||H2(Ωi) + β

1
2 ||u||H1(Ωi)).

In order to get the above finite element error estimate, we need to analyse the
consistency and interpolation error estimates. With the definition of bilinear form,
we have the following consistency relation firstly.

Lemma 5.2. Let u ∈ H0(curl; Ω)∩H2(Ω1∪Ω2) be the solution of the problem (1)
and uh ∈ Vh be the solution of the discrete problem (7). Then for any vh ∈ Vh,
there holds

(39) ah(u− uh,vh) = 0.

Proof. According to the definition of the bilinear form (8),

ah(u,vh) =

2∑
i=1

(αicurl ui, curl vh,i)Ωi +

2∑
i=1

(βui,vh,i)Ωi

+ ({nΓ × (αcurl u)}, [nΓ × (vh × nΓ)])Γ.(40)

Using Green’s formula,

2∑
i=1

(αicurl ui, curl vh,i)Ωi

=

2∑
i=1

(curl(αicurl ui),vh,i)Ωi +

2∑
i=1

(αicurl ui,n× vh,i)∂Ωi(41)
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=
2∑

i=1

(curl(αicurl ui),vh,i)Ωi −
2∑

i=1

(n× (αicurl ui),vh,i)∂Ωi

=
2∑

i=1

(curl(αicurl ui),vh,i)Ωi −
2∑

i=1

(n× (αicurl ui),n× (vh,i × n))∂Ωi

=
2∑

i=1

(curl(αicurl ui),vh,i)Ωi − ({nΓ × (αcurl u)}, [nΓ × (vh × nΓ)])Γ

−([nΓ×(αcurl u)], {nΓ×(vh×nΓ)})Γ − (nΓ×(αcurl u),nΓ×(vh×nΓ))∂Ω

=
2∑

i=1

(curl(αicurl ui),vh,i)Ωi − ({nΓ × (αcurl u)}, [nΓ × (vh × nΓ)])Γ.

Combining (40) with (41),

(42) ah(u,vh) =

2∑
i=1

(curl(αicurl ui),vh,i)Ωi +

2∑
i=1

(βui,vh,i)Ωi = (f ,vh)Ω,

which implies ah(u− uh,vh) = 0. The proof is completed. �

Then we have the following Céa-type lemma.

Lemma 5.3. Let u ∈ H0(curl; Ω) ∩ H2(Ω1 ∪ Ω2) be the solution of the problem
(1) and uh ∈ Vh be the solution of the discrete problem (7). There holds

(43) ||u− uh||∗,curl ≤ C inf
∀vh∈Vh

||u− vh||∗,curl.

Proof. Using the triangular inequality and Corollary 4.2, for any vh ∈ Vh,

||u− uh||∗,curl ≤||u− vh||∗,curl + ||vh − uh||∗,curl
≤||u− vh||∗,curl + C||vh − uh||h,curl.(44)

For the second term in (44), by Theorem 4.4, Lemma 5.2 and Theorem 4.3,

||vh − uh||h,curl ≤C
ah(vh − uh,vh − uh)

||vh − uh||h,curl

≤C
ah(vh − u,vh − uh)

||vh − uh||h,curl
≤C ||u− vh||∗,curl.(45)

Combining (44) and (45), the result (43) is derived. �

From Lemma 5.3, we know that the finite element error can be controlled by
one proper interpolation error. We introduce such an interpolation operator in the
following.

Let Ih be the interpolation operator introduced in [38] and define a new inter-
polation operator I∗h on the extended finite element space Vh by

(46) I∗hu = (I∗h,1u1, I
∗
h,2u2) = ((IhE

1u1)|Ω1 , (IhE
2u2)|Ω2),

where u ∈ H0(curl; Ω)∩H2(Ω1∪Ω2),u1 = u|Ω1 ,u2 = u|Ω2 and Ei is the extension
operator in Corollary 3.6.

Refer to the Proposition 3 in [38], based on the Piola’s transformation (25)
and Bramble-Hilbert Lemma, the standard approximation properties for the lowest
order of second family Nédélec edge elements are derived as follows.
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Lemma 5.4. For any u ∈ H2(Ω), there holds

(47) ||u− Ihu||L2(Ω) ≤ Ch2|u|H2(Ω),

(48) ||u− Ihu||L2(Ω) ≤ Ch|u|H1(Ω),

(49) ||∇(u− Ihu)||L2(Ω) ≤ Ch|u|H2(Ω),

(50) ||curl(u− Ihu)||L2(Ω) ≤ Ch|curl u|H1(Ω).

Then the following theorem is valid.

Theorem 5.5. Let u ∈ H0(curl;Ω)∩H2(Ω1∪Ω2) be the solution of the problem (1).
The interpolation operator I∗h is defined as (46). There exists a positive constant C
such that

(51) ||u− I∗hu||∗,curl ≤ Ch

2∑
i=1

(α
1
2
i ||u||H2(Ωi) + β

1
2 ||u||H1(Ωi)).

Proof. By the definition (31),

||u− I∗hu||2∗,curl =
2∑

i=1

||α
1
2
i curl(ui − I∗h,iui)||20,Ωi

+

2∑
i=1

||β 1
2 (ui − I∗h,iui)||20,Ωi

+
∑

K∈T Γ
h

{α}
h

||[(u− I∗hu)× nΓ]||20,ΓK

+
∑

K∈T Γ
h

h

{α}
||{nΓ × (αcurl(u− I∗hu))}||20,ΓK

+
2∑

i=1

∑
f∈FΓ,i

h

hαi||[curl(ui − I∗h,iui)]f ||20,f .(52)

First, using Corollary 3.6 and Lemma 5.4, we have

2∑
i=1

||α
1
2
i curl(ui − I∗h,iui)||20,Ωi

=

2∑
i=1

||α
1
2
i curl(E

iui − IhE
iui)||20,Ωi

≤
2∑

i=1

||α
1
2
i curl(E

iui − IhE
iui)||20,Ω

≤ C

2∑
i=1

h2|α
1
2
i curl(E

iui)|21,Ω

≤ C

2∑
i=1

h2||α
1
2
i curl ui||21,Ωi

,(53)
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and

2∑
i=1

||β 1
2 (ui − I∗h,iui)||20,Ωi

=

2∑
i=1

||β 1
2 (Eiui − IhE

iui)||20,Ωi

≤
2∑

i=1

||β 1
2 (Eiui − IhE

iui)||20,Ω

≤ C

2∑
i=1

h2|β 1
2Eiui|21,Ω

≤ C

2∑
i=1

h2||β 1
2ui||21,Ωi

.(54)

For the interface terms, using the trace inequality (10),

∑
K∈T Γ

h

{α}
h

||[(u− I∗hu)× nΓ]||20,ΓK

≤2
2∑

i=1

∑
K∈T Γ

h

{α}
h

||Eiui − IhE
iui||20,ΓK

≤C
2∑

i=1

∑
K∈T Γ

h

{α}
h

(h−1
K ||Eiui − IhE

iui||20,K + hK ||∇(Eiui − IhE
iui)||20,K)

≤C

2∑
i=1

∑
K∈T Γ

h

{α}(h2
K |Eiui|22,K + h2

K |Eiui|22,K)

≤Ch2
2∑

i=1

||α
1
2
i ui||22,Ωi

,(55)

and

∑
K∈T Γ

h

h

{α}
||{nΓ × (αcurl(u− I∗hu))}||20,ΓK

≤2
2∑

i=1

∑
K∈T Γ

h

h

{α}
||κiαicurl(ui − I∗h,iui)||20,ΓK

≤C

2∑
i=1

∑
K∈T Γ

h

κiαi

{α}
h||α

1
2
i curl(E

iui − IhE
iui)||20,ΓK

≤C
2∑

i=1

∑
K∈T Γ

h

h(h−1
K ||α

1
2
i curl(E

iui − IhE
iui)||20,K

+ hK |α
1
2
i curl(E

iui − IhE
iui)|21,K)(56)
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≤C
2∑

i=1

∑
K∈T Γ

h

h2
K |α

1
2
i curl(E

iui)|21,K

≤Ch2
2∑

i=1

||α
1
2
i curl ui||21,Ωi

.

In the last step of (55), we use the following property

{α} = κ1α1 + κ2α2 =
2α1α2

α1 + α2
≤ 2αi, i = 1, 2.

For the transmission terms, assuming the elements located on the different sides of
the transmission face f are denoted by Kl and Kr respectively, then there holds

2∑
i=1

∑
f∈FΓ,i

h

hαi||[curl(ui − I∗h,iui)]f ||20,f

≤2
2∑

i=1

∑
f∈FΓ,i

h

r∑
j=l

h||α
1
2
i curl(E

iui − IhE
iui)|Kj ||20,f

≤C
2∑

i=1

∑
f∈FΓ,i

h

r∑
j=l

h(h−1
Kj

||α
1
2
i curl(E

iui − IhE
iui)||20,Kj

+ hKj |α
1
2
i curl(E

iui − IhE
iui)|21,Kj

)

≤C
2∑

i=1

∑
f∈FΓ,i

h

r∑
j=l

h2
Kj

|α
1
2
i curl(E

iui)|21,Kj

≤C
2∑

i=1

∑
K∈Th

h2|α
1
2
i curl(E

iui)|21,K

≤Ch2
2∑

i=1

||α
1
2
i curl ui||21,Ωi

.(57)

Combining the inequalities (53)-(57), the result (51) is derived, and the proof is
completed. �

Remark 5.6. Note that the major problem originates from the term (55). When
dealing with (55), in order to obtain an optimal convergence order, we have to draw
support from the H1-based trace inequality (10), which leads to the high regularity
assumption based on H2(Ω1 ∪ Ω2) not usual H

1(curl; Ω1 ∪ Ω2).

According to Lemma 5.3 and Theorem 5.5, we can obtain our main result The-
orem 5.1.

6. Numerical examples

In this section, refer to the iFEM package [12], we present three three-dimensional
numerical examples for verification by using the extended lowest order of second
family Nédélec edge elements. In the following, we will check the optimality of
convergence orders and the robustness of results with respect to the mesh size,
physical parameters and the interface position both under the norm (31). Define a
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relative error re as follows

(58) re =
||u− uh||∗,curl

||u||∗

with ||u||∗ =
2∑

i=1

(α
1
2
i ||u||H2(Ωi) + β

1
2 ||u||H1(Ωi)).

Figure 5. Illustration of the coarsest tetrahedral mesh.
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(c) α1 = 1, α2 = 0.001.

Figure 6. Illustrations of convergence order under different coef-
ficient pairs.
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6.1. Numerical example with curved interface. The computational domain

Ω is (−1, 1)3 and the interface Γ is a sphere surface {(x, y, z) : x2 + y2 + z2 =
1

3
}.

Set Ω1 = {(x, y, z) ∈ Ω : x2 + y2 + z2 <
1

3
} and Ω2 = Ω \ Ω1. Corresponding

coarsest subdivision area with the mesh size h = 0.5 is as shown in Figure 5. Refine
the mesh in a regular way which divides a coarse element into eight smaller ones.

Give the exact solution as follows

(59) u =

{
ψ(x, y, z)/α1, in Ω1,
ψ(x, y, z)/α2, in Ω2,

where ψ(x, y, z) = [(x2 − 1)(y2 − 1)(z2 − 1)(x2 + y2 + z2 − 1

3
)2, 0, 0]⊤.

We choose β = 1, γ1 = 100000, γ2 = 10 and derive the source function f through
(1). It is easy to verify that the construction of u satisfies the homogeneous bound-
ary condition and the jump conditions in (1). By the refinement process, we can see
the optimal first order of the convergence rate under different physical parameter
pairs, see Figures 6.

In addition, refer to numerical experiments in [28], we check relation between the
relative error re and different physical coefficient pairs in the following table. Table
1 shows that the optimal error estimate is independent of the physical coefficients.
If we choose γ1 = 100, γ2 = 10, the result of the optimal convergence order can

Table 1. Relative errors re under different physical coefficients
and refinement levels.

(α1, α2) 1 2 3 4
(1, 10) 0.1009 0.0832 0.0619 0.0303
(1, 100) 0.2086 0.1644 0.1234 0.0549
(1, 1000) 0.3051 0.2335 0.1734 0.0752
(1, 10000) 0.3254 0.2473 0.1831 0.0791
(1, 100000) 0.3277 0.2489 0.1842 0.0795
(1, 1000000) 0.3279 0.2490 0.1843 0.0795

be seen in Figure 7. And relative errors re under different physical coefficients and
refinement levels can be seen in Table 2. From Figure 7, we know that the choice
of γ1 and γ2 do not affect the optimal convergence order, Table 2 shows that the
relative errors produced under γ1 = 100 and γ2 = 10 are slightly larger than ones
in the case with γ1 = 100000 and γ2 = 10.

Table 2. Relative errors re under different physical coefficients
and refinement levels.

(α1, α2) 1 2 3 4
(1, 10) 0.1041 0.0846 0.0932 0.0613
(1, 100) 0.2188 0.1786 0.2110 0.1414
(1, 1000) 0.3211 0.2543 0.3029 0.2018
(1, 10000) 0.3426 0.2644 0.3208 0.2133
(1, 100000) 0.3450 0.2711 0.3228 0.2146
(1, 1000000) 0.3452 0.2712 0.3230 0.2147
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-2.8 -2.6 -2.4 -2.2 -2 -1.8 -1.6 -1.4 -1.2

Log(h)

-3

-2

-1

0

1

2

3

4

5

Lo
g(

er
ro

r)

slope=1

||.||
*,curl

O(h)

(c) α1 = 1, α2 = 0.001.

Figure 7. Illustrations of convergence order under different coef-
ficient pairs.

In addition, to study the relationship between the error estimate and the interface
location, we fix the mesh size h = 0.0625, move the centre of circle interface Γ
from (x0, y0, z0) = (0, 0, 0) to (0.0625,0,0) along the direction of X-axis, and keep
the radius of circle unchanged. Then the relative errors re under different interface
positions can be seen in Table 6, which shows that the error estimate is independent
of the interface position relative to the mesh.

Table 3. Relative error values re under different interface positions.

x0 y0 z0 re
0 0 0 0.0241

0.00625 0 0 0.0239
0.00625*2 0 0 0.0237
0.00625*3 0 0 0.0240
0.00625*4 0 0 0.0237
0.00625*5 0 0 0.0237
0.00625*6 0 0 0.0237
0.00625*7 0 0 0.0238
0.00625*8 0 0 0.0235
0.00625*9 0 0 0.0235
0.00625*10 0 0 0.0238
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6.2. Numerical example with moving direct interface. Choose the compu-

tational domain Ω = (−1, 1)3 and the interface face y =
π

5
, let Ω1 = {(x, y, z) ∈

Ω : y <
π

5
} and Ω2 = Ω \ Ω1, see Figure 8. The exact solution u is given by

(60) u =

{
ψ(x, y, z)/α1, in Ω1,
ψ(x, y, z)/α2, in Ω2,

where ψ(x, y, z) = [sin(πx) sin(πy) sin(πz)(y − π

5
)2, 0, 0]⊤.

Figure 8. Illustration of the coarsest tetrahedral mesh.

In this case, we choose the mesh size h = 0.0625 and move the interface from

y =
π

5
to y =

π

5
+ 0.0625. Then the relative error re under different interface

locations are calculated as follows, see Table 4. From Table 4, we see that the error
estimate is independent of the interface location with respect to the mesh.

Table 4. Relative error values re under different interface positions.

y re
π
5 0.0371

π
5 + 0.00625 0.0373

π
5 + 0.00625 ∗ 2 0.0375
π
5 + 0.00625 ∗ 3 0.0377
π
5 + 0.00625 ∗ 4 0.0379
π
5 + 0.00625 ∗ 5 0.0381
π
5 + 0.00625 ∗ 6 0.0383
π
5 + 0.00625 ∗ 7 0.0384
π
5 + 0.00625 ∗ 8 0.0385
π
5 + 0.00625 ∗ 9 0.0385
π
5 + 0.00625 ∗ 10 0.0385

6.3. Numerical example with curved interface. We provide an authentic
H(curl)-interface problem in this section, whose solution satisfies merely the tan-
gential continuity but violating the normal continuity.
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Let the domain be Ω = (−1, 1)3 and the interface be Γ = {(x, y, z) : x2+y2+z2 =
1/3}. Set Ω1 = {(x, y, z) : x2 + y2 + z2 < 1/3} and Ω2 = Ω\Ω1. The exact solution
u is given by

(61) u =

{
ψ(x, y, z)/α1, in Ω1,
ψ(x, y, z)/α2, in Ω2,

where ψ(x, y, z) = π cos(πx) sin(πy) sin(πz)(x2 + y2 + z2 − 1/3) + 2x sin(πx) sin(πy) sin(πz)
π cos(πy) sin(πx) sin(πz)(x2 + y2 + z2 − 1/3) + 2y sin(πx) sin(πy) sin(πz)
π cos(πz) sin(πx) sin(πy)(x2 + y2 + z2 − 1/3) + 2z sin(πx) sin(πy) sin(πz)

 .

Choose β = 1 and derive the source function f through the equation (1) using
the exact solution (61). Set γ1 = 1000, γ2 = 1, by the refinement, the optimal
convergence order is obtained, see Figure 9. Increase the relative jump of coeffi-
cients from 10−3 to 103, record the corresponding relative errors re under different
physical coefficients and refinement levels in Table 5. Table 5 shows that the op-
timal convergence order is independent of the physical parameters. Then, fixing
α1 = 1, α2 = 0.1 and h = 0.0625, moving the centre of Γ from (x0, y0, z0) = (0, 0, 0)
to (x0, y0, z0) = (0.0625, 0, 0) along the direction of X-axis, and keeping the radius
of Γ unchanged, we get the relative errors as Table 6. And Table 6 tells us that the
optimal convergence order is uniform with the interface location.
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(b) α1 = 1, α2 = 0.01.
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(c) α1 = 1, α2 = 0.001.

Figure 9. Illustrations of convergence order under different coef-
ficient pairs.



508 N. WANG AND J. CHEN

Table 5. Relative errors re under different physical coefficients
and refinement levels.

(α1, α2) 1 2 3 4
(1, 10−3) 0.6017 0.3316 0.0867 0.0332
(1, 10−2) 0.2091 0.1180 0.0358 0.0152
(1, 10−1) 0.0948 0.0547 0.0132 0.0057
(1, 1) 0.0716 0.0388 0.0042 0.0018
(1, 101) 0.0651 0.0339 0.0022 0.0016
(1, 102) 0.0483 0.0224 0.0041 0.0032
(1, 103) 0.0223 0.0105 0.0050 0.0039

Table 6. Relative error values re under different interface positions.

x0 y0 z0 re
0 0 0 0.0057

0.00625 0 0 0.0056
0.00625*2 0 0 0.0055
0.00625*3 0 0 0.0060
0.00625*4 0 0 0.0060
0.00625*5 0 0 0.0061
0.00625*6 0 0 0.0061
0.00625*7 0 0 0.0062
0.00625*8 0 0 0.0061
0.00625*9 0 0 0.0062
0.00625*10 0 0 0.0063

7. Conclusions

For H(curl)-elliptic interface problems in three dimensions, we propose an H(curl)-
conforming Nitsche extended finite element method, based on the lowest order of
second family Nédélec edge elements. A stabilization term defined on the trans-
mission faces and harmonic weights are introduced in the approximation scheme.
Stable results and the optimal convergent order are derived, which are both inde-
pendent of not only the mesh size and the interface position with respect to the
mesh but also the physical parameters.
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