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BOUNDARY ELEMENT METHOD WITH HIGH ORDER
IMPEDANCE BOUNDARY CONDITIONS IN
ELECTROMAGNETICS

CHRISTIAN DAVEAU, ABIL AUBKIROV, AND PAUL SOUDAIS

Abstract. In this paper, we study boundary element method with high order impedance bound-
ary conditions (HOIBC) to solve Maxwell’s equations. The unknowns are electric and magnetic
currents J and M. We propose several formulations and study the existence and uniqueness of the
solution. Then, we discretize these formulations with a finite element method based on Lagrange
elements. We give numerical tests of the HOIBC solution.
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1. Introduction

Radar and antenna system designers are interested in the theoretical study of the
scattering of electromagnetic waves. Interest in this topic has prompted intensive
research in this area long time ago. However rigorous analysis was not performed
until recently. The development of the computing technology improves modeling
possibility and it increases the interest in the scattering problem of electromagnetic
waves. The difficulties of numerical methods include the necessity of using a large
number of unknowns in the description of high frequency electromagnetic fields.
The scattering problem is being studied for conducting bodies and for a perfect
conducting body covered by a complex layer. The complex layer is considered
as a homogeneous surface, as a chiral surface or as a frequency selective surface.
Presently, the frequency selective surface is important for design artificial coatings
of antenna.

There are many methods for solving the Maxwell’s equations in harmonic regime.
The first method is the volume method. It locates their computations all over the
volume internal and external objects. It uses a domain containing the obstacles
bounded by an artificial border. It considers the physical characteristics of the
media, in particular the effects of anisotropy, but it requires a large number of
unknowns and the management of explicit boundary conditions. Another method
is the discontinuous Galerkin method, [12] that we used to solve elasticity problem
[13].

Here, we choose the method of moments. It places unknowns on the boundaries
of the object and it takes into account the boundary conditions. It allows reducing
the exterior problem to a system of integral equations defined on the surface of
the obstacle and we calculate equivalent magnetic and electric currents M and J
which produce the true scattered fields in the exterior region. However, they can
only be applied to homogeneous bodies. Here, we choose this method to solve
time-harmonic scattering problem for a coated body.
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In order to ensure a unique solution to this boundary value problem it is necessary
to apply boundary condition. Generally, we add impedance boundary condition on
the surface of the object where impedance operator is a constant. It is known as
standard impedance boundary conditions or Leontovith condition. But this ap-
proximation does not depend on incident angle at all. In this paper, we deal with
higher order impedance boundary conditions to take account incidence angle. Re-
cently, the higher order impedance boundary conditions have been studied in [2, 3].
This list is not exhaustive. These conditions take into account the incident angle
at each point of the surface and include derivatives of tangential components of
the fields that are equivalent to transverse wave numbers. The authors give several
numerical results for body of revolution.

Later, the higher order impedance boundary conditions is applied to study the
scattering problem from a finite planar or curved infinitesimally thin frequency
selective surface embedded in a dielectric layer [8, 4, 5, 6]. The author introduces
differential operators to express higher order impedance boundary conditions.

The organization of this paper is as follows. In section 2, we present the physical
model. Then, in section 3, we give the high order approximation of the impedance
boundary condition. In section 4, we establish formulations and we study exis-
tence and uniqueness of the solutions. In section 5, we give a discretization of this
formulation and in section 6 we give several numerical tests.

2. Mathematical model of physical problem

We consider the scattering problem of electromagnetic waves (E, H) by a perfect
conducting body with a complex coating. We denote 2 an open domain in R? with
a Lipschitz-continuous boundary I' = 0f2, which can be equipped with an exterior
unit normal vector field n, (see Figure 1). Electromagnetic waves propagate in Q+ =
R2\Q. We illuminate this system by incident electromagnetic waves. Scattering
waves occur when incident waves bounce off an object in a variety of directions.
The amount of scattering waves that take place depends on the wavelength of the
incident waves and structure of the object. We determine total electromagnetic
fields (E,H) in Q7 as:

E = Einc + ESC,
(1) {

H= Hinc + Hsc.

‘\ r

— Esc Hsc
Escl Hse 4
PR

\

Q+

A\

Eincl Hinc

FIGURE 1. Scattering problem.

Superscripts inc and sc characterize incident and scattered fields, respectively.
Waves propagation medium is described by two values € (electrical permittivity)
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and p (magnetic permeability), where we have € = ¢y and u = po for free space.
We are interested in the time-harmonic electromagnetic fields that are defined as

E(:L‘,t) = %(E(I)eiwf)v
H(z,t) = R(H(z)e™?),
where w denotes the pulsation. The fields outside the body are governed by

Maxwell’s equations for a free space. The harmonic solution verifies following e-
quations:

(2)

(3)

rotE + iwpH = 0,
rotH — iweE = 0.

The fields inside the coating are governed by a set of equations that take into ac-
count the detailed electromagnetic properties of the coating. We consider bound-
ary condition that binds the tangent electric and magnetic fields. For two vectors
U = Ugl + UyJ et v = vy7 + vy in a cartesian coordinate repere with ¢ and j are
unitaire vectors in the plane, we have u x v = (ugvy — Vzuy )k with (4, j, k) a direct
repere in R?. The medium characteristics give an impedance at each point of the
surface I':

4) E,y—Z(nxH)=0, onT,

where Z is impedance operator that depends on incident angle, medium thickness
and characteristics € and p. Subscript tg denotes tangent component on the surface
I" defined as:
E;; =n x (E x n).

The boundary condition (4) is called impedance boundary condition (IBC). The
simplest form of which is known as Leontovich IBC or standard IBC (SIBC), where
7Z = constant. The IBC can be partially constant (if the object is formed by
different materials) or more different. For the correct formulation of the problem,
we should introduce asymptotic behavior of the fields (E,H), the Silver-Miiller
radiation condition:

(5) lim 7(E x n, + H) =0,

T—00

where r = |x| and n, = ﬁ7 x € R?.
x

Then, we have the next problem:

Problem 2.1. Find (E, H) such that

rotE + ikouH=0 in QF
rotH — ikpeE=0 in QF
Eyz—-Z(nxH)=0 onT
lim, oo 7(E X n,. + H) = 0.

(6)

In the first time, we obtain the following result.

Theorem 2.1. The problem 2.1 admits a unique solution, if following relations are

verified:
(1) <0,
( ) <0,
R(ko [ E* - (n x H)ds) > 0.

Q? &

(7)
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where E* is the adjoint of E.

Proof 1. It suffies to apply Rellich’s lemma to obtain the result with the conditions
7.

In the next section, we give the approximation of the impedance operator Z with

integral operators to derive a variational formulation for the scattering problem (6).

3. Approximation of impedance operator

3.1. High order impedance boundary condition. We assume that the plane-
wave fields are written in the following forms:

E(I‘7 t) = elEoe_ik'rH“’t,

H(I‘, t) — eZHoefikTJriwt,

where e;, ey are two constant real unit vectors; Fy, Hy are complex amplitudes
which are constant in space and time.

E(I‘) :Eoefi(k:zfc+ky$'+kzi)~r7
0, E(r) = —ik;E(r),
O2E(r) = — K2E(r).

So we can replace partial derivatives by k, and k, components

(8) 0y = —iky and 0, = —ik,
or
9) 92 =—k2, 92, = —kuky and 0] = k.

In [R-S] the impedance boundary conditions are written using the spectral do-
main approach and are approximated as a ratio of second order polynomials for a
coating, invariant under rotation. Those approximation equations could be written
as

(].O) (1+b16§+b28§)Er+ (bl 7b2)a§yEy = (a1 7@2)3§yHm — (ao +a183+a28§)Hy
and
(].].) (b17b2)azyEz+(1+b26§+b18§)E‘y = (a0+a285+a16§)Hm+(a27a1)6§yHy.

Note that n x H = —H,x + H,y. And the high order impedance condition is
written in matrix form

1+ blag + b28§ (bl — bg)agy E,
(b1 —b2)02, 1+ by07 40103 E,

(12) o ap + alaﬁ + (1285 (a1 - ag)ﬁﬁy 7Hy
B (a1 — ag)azy ao —+ agé)g —+ alag Hm ’

In the next, we give high order impedance boundary condition.
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3.2. Approximation of higher order impedance boundary condition. Here,
we need to consider two different situations. In the first case, we consider case when
the electric field is perpendicular to the incident plane, as shown on figure (2 a).
Incident, scattered and transverse electric fields are directed toward the viewer.
The direction of magnetic field was chosen such that energy current has positive
direction, i.e. direction of wave propagation. We call this case, transverse-electric
(TE) polarization. In the second case, electric fields are parallel to incident plane, as
shown in figure (2 b). In this case we call it transverse-magnetic (TM) polarization.

n n
kse Hse Hinc kse
Hse Hinc
sc Einc sc i
BN [0y £ o [by”  NET
kinc Kkinc
ty ty
Htr
¢'2 Htr ¢2
kr / ET ktr
Etr
(a) (b)

FIGURE 2. Reflection and refraction with (a) TE and (b) TM polarizations.

We assume that the incident fields propagate perpendicular to the cylinder axis,
so that 0/0y = 0. And fields are polarized either with the electric field in the y
direction (E polarization or TM), or with the magnetic field in the y direction (H
polarization or TE). Then, we have that d, = 0 and we obtain:

(13) 1 +b18§ 0 E, _ ag —|—a18§ 0 —Hy
0 1 + bgai Ey o 0 Qg + a23§ HT ’

So we get that in two dimensional TE polarization, we have
(1+0,02)E, = —(ap + a102)H,
and in TM polarization, we have
(1+b202)E, = (ag + a202)H,.

Then, for a plane wave the first order IBC (13) can be written as

(14) 1-— blk‘z 0 Ex o ag — aﬂi‘ﬁ 0 —Hy
0 1-— bgki Ey - 0 ag — agki HT ’

According to (9), we get first order approximation of impedance in two dimen-
sional cases for each polarization

(15) Zopj: (14 b;02)Ey = (ap +a;02)n x H
and the impedance Zsp; is the following rational function of k2
2
apg — ajkz .
16 Zapj = ———=, j=12.
(16) iT T Rz Y

The coefficients indicated by 7 = 1,2 correspond to polarizations TE and TM
respectively. These coefficients (ao, a;, and b;) are determined by equating this
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first order impedance Z;p; and the exact impedance. Besides, we can express
exact impedance for TE and TM polarization as follows:
(17)

k ko \? ko \?
Z5 = | === tan (k.d) = 204/ prer — [ ~— ) tan prer — | = | kod | /e,
€ k k() k()
P\ 2
Zo by tan L€ — (k—z) kod

k
(18) ™ = \/gk tan (k.d) = 2
z ky
M€ — (E)

If @ = 0, we get that ag = Z(0) = Z°*(0), for a normally incident wave, which is
known as the Leontovich boundary condition and we get

[ o
agp = lz 5T tan (w+/to - €o€rd).
0€r

We calculate other coeflicients a; and b;, using two arbitrary angles 6; and 6 by:

() =[ o iz ] (o).

The indices correspond to TE and TM polarizations, as in (16). The arbitrary
angles 0; and 0, should be in the angle range )0, 7/2[. Here we take k2 = k2 sin®(6)
as [8].

The equation (15) can be extended to second order polynomials in §%:

(19) | Eig + b;07Ey + 150, Eyg = ag(n x H) + a;0;(n x H) + a0, (n x H)

or it can be reduced to constant:
(20) E;y = ao(n x H).

We will call the equation (19) second order IBC (IBC2), the equation (20) zeroth
order IBC (IBCO), which is also known as Leontovich IBC. And we will call the
equation (15) as first order IBC (IBC1). Note that (19) with a} = b, = 0 derives
to (15). As well as with a; = b; = 0, the equation (15) derives to (20).

In the following, we explain the process to calculate the coefficients of HOIBC.
In this case, we determine two coefficients for IBC1 and five coefficients for IBC2
by matching the impedances exactly for normal incidence resulting in Eq; (17) and
(18) as well as two or five values of 6}, resulting in linear equations for the remaining
coeflicients.

3.3. Calculus of coefficients of the approximation of the HOIBC. The
simplest IBC is Leontovich IBC, as were already mentioned several times Z = const.
Usually, it is taken for incident wave perpendicular to plane

Zy = Zy = Z7%5(0 = 0),

ap = 204 /? tan (y/prérkod). (LIBC)
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We take an arbitrary angle value in permitted range [0, 7/2]. If the angle is not
zero, then impedance are different to each other
Z1 = Zf”(O) and ZQ = Z§x<9>’

in different polarizations.
For IBC1, we solve the system for different 65 €]0,7/2[, k =1,2

-1
< a; ) _ [ & —&Zzi (&) } ( Z5(&1) — ao >
b; §2 —&Z5%(&2) Z5%(&2) — ao
and for IBC2 condition, the coefficients are calculated by solving system for different
0, €0, 7/2[, k=1,2,3,4

o 6 & —azee) —gzee)r 1 [ ATE)
) led ez —azrer ]\ e,

Then, in the next part, we give numerical tests that validate our approximation.

3.4. Numerical tests for the approximation of the HOIBC. In order to
illustrate the relative accuracy of approximated boundary conditions compared to
the exact IBC, we present here some examples. And we will see that HOIBC
consider the incident angle parameter. We will see the difference between IBCO
and exact IBC.

140 138 T T
RS T ———F——f-—————L-—J-——-—-Ff--4
- ot — = — — —— — =~ = ————— b —— S —— ]
*‘*\\ 138 T
. Ui SORUOTE SOOI J i
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FicUrRE 3. Comparison of the exact impedance, Leontovich
impedance, first-order and second-order IBC in TE polarisation
(left) and TM polarisation (right).

Let us consider a mono-layer dielectric coating with characteristics &, = 4.0,
ur = 1.0 and d = 0.005). Figure 3 shows values exact IBC, SIBC, first order
and second order impedance boundary conditions, in TE polarization where the
angle of incidence of the plane wave ¢ has angle range |0, 7[. The IBCO was taken
as an impedance of a perpendicular incidence wave. To calculate first-order IBC
approximation we used ¢ = 0 ,7/6 ,7/3 and to calculate second-order IBC we used
¢»=0,7/8 ,7/6 ,m/4 ,7/3. On the figure 3, we can easily see that the difference
between IBCO and exact IBC increases. While the difference between exact IBC
and IBC1 is very small, as the difference between exact IBC and IBC2.

But we can see the error of IBC1 and IBC2 approximations on the figure 4. As
the angle of incidence increases the error of first-order IBC approximation reaches
0.3992.
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FIGURE 4. Errors of first-order (IBC1) and second-order (IBC2)
IBC in TE polarisation (left) and TM polarisation (right).

With our approximation of impedance boundary condition, we derive variational
formulation to solve the scattering problem with boundary element method. The
higher order boundary conditions of the scattering problem begins by defining two
equivalent problems, one for the exterior region, and another for interior region. For
the exterior region the material are replaced by equivalent magnetic and electric
currents J and M. We use stratton-Chu formulae to obtain variational formula-
tions.

4. Variational Formulations of Problem 2.1

The higher order impedance boundary conditions solution of the scattering prob-
lem begins by defining two equivalent problems. For the exterior region, we intro-
duce equivalent magnetic and electric on I' defined by:

M=[Exn]f J=[nxH,

where [ ] denotes difference between upper (+) and lower (-) values of interface, n
is the exterior normal vector to the surface. We use the following integral operators.

Definition 4.1. We introduce the integral operators (B—S), (P+Q) and I defined
by:

(21) (B—5)A, ) = z// KGA -4 — %Gvy LAV, - pdyds,
I
(22)  (P+Q)A, ) = %/Fdz (nx A)dz + //F(q,z; « A) - V,Gdydz,

(23) (1a.) = [ A-spa

and G(z,y) is the Green kernel giving the outgoing solutions to the scalar Helmholtz
equation:

H (kjlz — y))(x — y)-

T @) ___ Tk
(24) G(a,y) == —Hy (klz —yl), ViG(a,y): R

We give the following results about these operators.

Theorem 4.1. The operator Q is continuous from H—/?(div,T') to H=/?(rot,T)
and we have that:

I _ .
(25) |(nx Q+ §)M\_1/2,divr < OM|_y 940, VM € H™Y2(div, ).
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And we have, in [11](Chapter II, p.61) :

Theorem 4.2. The operator (B — S) is an isomorphisme from H~/2(div,T) to
H='Y2(rot,T') and it verifies the inequality:

(26) (B = 8)@ll-1/2,50t0 < Cll@ll-1/2,aivr
and the coercivity relation Y¢ € H~/?(div,T):
(27) R(< ¢, (B = 8)d >) = Cllol21 2,iv,-

4.1. Integral method-EFTE-MFIE and HOIBC. Here we apply the first and
second order HOIBC for two dimensional problem that were defined in the last
section. The problems for TE and TM polarizations will be presented separately.

Two dimensional case system is invariant in one direction, so object surface I'
becomes a curved contour, that we will call C. We have the curvilinear abscissa [
along C' and normal to the contour unit vector n. We set the local frame (7, v, n),
where 7 is a unit vector tangent to the contour C in ! direction, and v can be de-
fined as v = n x 7. We suppose that our two dimensional system does not depend
on v parameter, however variable ¥ component is depend on [.

In the first time, we can write that if F and H are solutions of problem (2.1)
then J and M verify the EFIE and the MFIE:

(28) < Zo(B=8)J,¥; >+ < (P+QM,¥; >=< [E"™ ¥ ; >,
1 ,

(29) —<(P+Q)J,WM>+<?(B—S)M,@M >S=<ITH"™ WUy > .
0

Now, we give a variational formulation of the impedance boundary condition and
we insert it in the below equations.

We said that impedance boundary conditions are described by the following
E,y =Z(n x H).
According to the definition of electromagnetic current densities, we have
Eiy=nx(Exn)=nxM onT;
nxH=J onl.
So we rewrite impedance boundary condition as follows
(30) nxM=27J.

And we approximate the operator Z, as a ratio of polynomials of differential oper-
ators. So, we recall first order IBC

(31) (1+b;d7)(n x M) = (aq + a;d7)3
and the second order IBC
(32) (1+bjd} +bid})(n x M) = (ag + a;d} + d;d})J

where j = 1, 2 correspond to TE and TM polarizations, respectively. The invariance
in one direction for two dimensional model allow us to simplify the Hodge operator
as the second partial derivative on the contour where the electromagnetic current
densities n x M and J have 7 direction for TE polarization, and v direction for
TM polarization such as:

o TE: 923 = 702J, = 7d?J; and 8%(n x M) = —792M,, = —7d?M,;
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o TM: 023 = v9d2J, = vd?J, and 9%(n x M) = vd:M, = vd} M,.

Then, we establish two integral formulations in TE and two in TM polariza-
tion with ibcl and ibc2. In these formulations, the principal variables are electric
and magnetic densities J end M. Here, we only present the formulations in TE
polarization since we obtain the formulations with the same way in TM polarization.

In the next, we establish formulations on a contour C since we suppose that 2
has an invariance in one direction.

4.1.1. Variational formulations with IBC1. Employing the standard method
of moments technique to solve the boundary condition equation and using a function
U, for testing the equation (31) along the contour C' the following equation is
obtained:

/(1+bjdl2)(nxM).\Iljdz:/(a0+ajdl2)J-\I:sz.
c C

Therefore, we have:
/ (nx M) - W,dl = / (ap + a;d})J - W ;dl —/ b;d7 (n x M) - ¥ ;dl.
c c c
We put it in the operator P and obtain:

1
< PM, ¥ ; >:§/(HXM)~‘I’JCH
C

(33) =% J W dl+ %ﬂ/ d?J - ydl — 53/ d?(n x M) - W sdl.
C C C

Now, we take (n x ¥j) a function for testing the equation (31) in another form,
and we have:

/ (1 + b]d?)(n X M) . (1’1 X ‘I’]\{)dl = / (ao + Cl]dIQ)J . (Il X ‘I’]\/j)dl.
C C

We take the first part of right side

/ J - (nx Wy)dl 1 / (1+b;d})(n x M) - (n x ¥y)dl
c ao Jc

1
— — [ a;d7J - (n x Wy)dl.
ao Jo

And using the formula of vector analysis
‘I’]\/[-(HXJ)Z—J-(HX‘I’M),
we put it in P operator with weakly form of IBC1

1 1
< PJ, ¥y, >:§/(HXJ)“I’]\4dl:7§/J'(HX‘I’]\{)CN

C C
1
:7% C(nXM)(nX‘I’]y])dl
(34) - b—J/ d>(n x M) - (n x ¥y)dl + a—J/ d2J - (n x W y)dl.
2a0 C 2&0 C

First, we observe TE polarization, where P operator becomes:

/PMV U, dl = @/ J, q/Jle+ﬂ/ a2, \IJJTde—l/ A2 M, U . dl
c 2 Jo 2 Jo 2 Je
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and
1
/ PJ. Uydl =— — M \I'Ml,dl—— / d? M, U y,dl
c 2ao
/ d?J,; Uyp,dl
2(10

for EFIE and MFIE, respectively.
We put them in the variational equations (28) and (29) and get:

1
iZ / /C KGLT) T 1) Wgr () 7(0)] = T GOT) AT (V) di s (1) dl'd
+ / / U, (1) M) [r(0) % v()] - ViG, 1) dld]
C
+ @/ Jr W ydl + ﬂ/ d2J, Uydl+ ﬁ/ A2 M, U;,dl
2 C 2 C 2 C

(35) = / Eme W . dl
C

and
- / / Uan (1) Jo () (@) x ()] - ViG(L U)dldl
/ / G ) My (') Uar, (O (l) - v()]dl'd]
an/ M, \IfMVdH—/ d? M, foMVdH—/ d?J,; Wyp,dl
(36) =/ Hf/”c W dl,
C

for EFIE and MFIE, respectively.

In the equations (35) and (36) we have scalar products [7(I")-7(I)] = 1 and [v(I)-
v(l")] = 1, and vector products [7(1) xv(I')] = n(l) and [v(I) x 7(I")] = —n(l’). The
operator S contains surface divergence operator that becomes differential operator

divpJ =divp(7J;) = d;J;
divrM =divr(vM,) = d, M, =0,
because the model is invariance in v parameter.

By doing integration by parts, we have
by
2

d2Ml,(l)\I/JT(l)dl b | diM, () dy U - (D)dl.

(37) 5

Finally we combine two equations (35)-(36) to present next variational problem:

Problem 4.1. Find U = (J,, M,) € [H}(C))? such that:

(38) AU, ) = / E™ ;. dl + / H Wy, dl |,
C C

for all U = (U, Wypr,) € [HY(C))?, where the bilinear form A is defined as:
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AU, W) =iZ, // kG U)T ()W, [7(1) - 7(1)] — %G(Z,l’)dQJT(l’)dl\I/JT(l)dl’dl
+ / /C U, ()M, () n(l) - VG, 1)dldl
+ / / Uar J n(l) - ViG (1, U)dl'dl

/ kG, 1) M, (1) pr, (1)dl'dl
+ ? JV o dl+ 7/ M,V dl
— ? dyJ dyV pdl — %1 diM 4V ;-dl
(39) ;20 diM dy g, dl — % diJ ¥ pdl.

We present similar variational problem for TM polarization:

Problem 4.2. Find U = (J,, M,) € [H'(C)]? such that:

(40) A(U, ) = / Eme 5, dl + / H"™ Wy, dl
C C

for all U = (U, Uy, ) € [HY(C))?, where the bilinear form A is defined as:

AU, W) =iZ / kG, 1) (1) dldl
C
_ / / U, ()M, (') n(l') - VG, U)dl'dl
C
_ / / Uarndy n(l) - VG, V)l dl
g O L ARUICURET D)
— %G(l,l V) M, (1) dy 0 pr- (1)l dl
290 [ w2 / M, Wy dl
2 C 2@0 C
- %/ dJ dquhdwbﬁ/ A, M dy0 ;,dl

by
(41) + dlM diUprrdl — — [ diJ dy¥arrdl.
20,0 2(10 C

4.1.2. Variational formulations with IBC2. The equation (32) passes the
same way as IBC1 to become weak. The weak formulations replace operator P
in EFIE and MFIE equations. Finally, we assemble them to define the bilinear
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form:
AU, ) =iZ, // kG U)T-(I) g [7(1) - 7(1)]
- EG(Z,l’)d;.]T(l’)dl\I/JT(l)dl’dl
+ / /C W, ()M, (') n(l) - V,G(1, 1) dl'dl
+ / / U dy n(l') -V, G(1,1)dl dl

// kG, 1) M, (") pr, (1)dl' dl

+ 2 JTszJle+—/ M,y dl
2 Je 2a0 Jo
b
+% d%JT\pJsz+§1/ 42 M,V ;. dl
C C
b
L / M,y dl + 2 / 20,0, dl
ao C 2@0 e}

ah b
+51/ diM, \pJTdHEl/ diM, U,
/ I

b}
+ — d4M quydl + — d;lJ‘r \I}]Vfudlv
2a 2C’/O

for TE polarization. And with mtegratlon by parts, we get for TM polarization

AU, W) =iZ, // kG, U)W, [r(1) - T(1)] — %G(l,l’)d;JT(l’)dl\I/JT(l)dl’dl
+ //C U ()M, (1) n(l) - V,G(1,1)dl'dl
+ / / UarJr n(l') - VG )l dl

/ / kG, 1) M, (1) pr, (1)dl' dl

= Tl £ / My Wyl
73 dJ, dyW . dl — 7/ A, M, dU,.dl

/dlM dl\I/M,,dl——/le AW dl
2a0

+ 31/ M, &2 ;.dl+ 51/ d?M, &2,
b/ /
+ = d2M 2y, dl + / d?J, d2Wy,dl.
2a 2aq
We can write varlatlonal formulation for TE and TM polarization as:

Problem 4.3. Find U = (J,;,M,) € [H}(C))? such that

A(U,\If):/ E;'"C\I:Jle+/ H W, dl,
C C
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for all U = (¥, U,y,) € [HY(O)?.

4.2. Existence and uniqueness theorem for problem 4.1. In the next, we
are going to show that our variational problem in TE has a unique solution using
the Fredholm alternative. Here we do not study the existence and uniqueness For
TM problem 4.2 because the procedure is the same.

In the first time, it is necessary to determine the continuity and the coercivity
of the bilinear form A(U, ¥). Then we consider the operator A(U, ¥) as a sum of
three bilinear operators:

Al(U,\If):// ZO(B—S)JT\I/Jle’dl+// Zi(B—S)M,,\I/Mde’dz
C C 40
n / / QM ,.dl'dl + / QJ, s, dl'dl
C C
+“—°/ JTxI/JTdHi/ MU aydl
2 C 2a0 C

b
Ao (U, T) = — % dyJ 0 5pdl — ﬁ/ A M dyWa,dl
C C

and

b
A3(U,0) = — 21 M dl\IfJle—T‘O dJ U y,dl,

where
A=A +Ay+ As.
4.2.1. Continuity of the bilinear form A.
Lemma 4.1. The bilinear form A(U, V) (89) is continuous on [H*(C)]?.
Proof. : We are going to show that exists 8 > 0 such that
(42) AU, O)| < BIUN o)1 ¥ 110y,

for all U, ¥ € H'(C). In the first time, we have from [11] a constant 3; > 0 such
that:

|A1 (U, ¥)| < BillU[ o) 1Y 10y -
Besides, using Cauchy-Schwarz inequality, we get:

[A2(U, ) + A3(U, V)| <

%/ diJ dl\I/Jsz’Jr

b1
2a0

b
i/ M dl\I/Jle’
2 C

+

/ diM dl\IJMydl‘

a“ /le dl\I!M,,dl‘
2(10

H i 2l 52 + I

+

§ﬁ2\|U||H1(c)H‘I’HH1(C) , where 52 > 0.
Finally, we take 8 = 81 + 82 > 0. O
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4.2.2. Coercivity of the bilinear form A. We give a coercivity result for A to
apply Fredholm alternative.

Lemma 4.2. The bilinear form A(U, V) is coercive on HY(C); i.e., there exists
v >0 and v such that

RIAWU, U] 2 WU o) = VU122 ey YU € [HYO)],
if coefficients satisfy

|aol|b1 + a1 /ag|
2
Proof. We take firstly ¥ = U* and get

(43) R(a1) + =0 and R(a1) = R(b1af).

1
A(U,U*) =iZ // KRG (l) - ()] = i ()T ()l
C
+ / / JEMyn(l) - V,Gdl'dl + / M J(l) - V,Gdl'dl
C C
+— / / KGM, M v (') - v(1)|dl'dl
Zo JJe
ago
+3 JJdH——/MMdl
—? dyJ, le*dl—E /M, dyJ*dl
by

(44) |y dpazat = o | dg
2(10 2(10
From [11], we have v, > 0 such as:
a1 < R(ao) R(ao)
RALU U] 2= e llz2 (o) + TNE 1M 72

+m <||Jr||%11(0) + ||MV||H1(C)> :

Next for operator Ay, we have
b
Ay = —ﬂ/ A Jy dpJrdl — —1/ d; M, ;M dl,
2 c 2ag c

where real part is

R(4) = ~ 2]

b
i T+ 122y — ?R(Tm)HdzMuH?m(cy
And it gets
by

Az =— dlM le*dl—— le diMdl,
2 2@0

where real part is

b
R(A3) =R (—1/ diM, dzJ:dZ—ﬂ/ diJy dledl)
2 C 2@0 C
bl CLTCLO /
=-R|(= A M, dyJ*dl
[(2 +2|ao|2) o e @
claglz \ 2 2laol? It 2 2aol? LR

=—%R
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We denote ¢ = by|ag| + afao/|ag|, then we obtain

lq|
4lag|?

_ldl

R(A3) > 1

ldi T2 1172 — ldi My |17 -

If we have R(a; — bjag) = 0 or R(a1) = R(b1ag). Finally, the sum of operators A,
and Az verifies

1
RAa) + R(Aa) 2 - 3 (Ran) + D) [

1
2|aol?

q
(e + ) 0t e

Then, if R(ay) + % =0, we get that
R(A) = R(A1) + R(A2) + R(A43) > 'YlHUH%{l(C) - C||U||i2(0)-

That gives us coercivity of A(U, V). O

We give the main result.

Theorem 4.3. The problem (38) admits a unique solution U € [H*(C)]? for any
U e [HY(C)]?, if coefficients satisfy

n lao|b1 + a7 /ag|

=0 and R(a1) = N(b1ag).

Proof. With lemmas 4.1-4.2 we can apply the Fredholm alternative to show that
problem (38) admits a unique solution U € [H!(C)]?. O

4.3. Second variational formulation for problem 4.1. We use auxiliary vari-
ables X,Y as in [8] to avoid integration by parts. Then, we obtain variational
formulation such as:

Problem 4.4. Find U = (J,,M,,X,Y) € [HY(C)? x L?>(C)?] such that:

(46) AU, T) = / Emey 5 dl + / H" W r,dl |,
c C
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for all (U, Wy, X', Y') € [HY(C)? x L?(C)?], where the bilinear form A is
defined as:

A(U, W) =iZ, / /C KRG T (1) gy (1) - 7(1)]
- %G(l,l’) &g (') 5, ()dl'dl
n //C U, (1) M, (') n(l) - ViG(,U)dl'dl
+//C U Jr n(l') - VG 1) dldl

+ - / / KG(L, 1) My (I') Wary (dl'dl
Zo JJe

1
L2 g, dl+ —/ M, W p,dl
2 C 2&0 C

b
+ 8 ax vd+ 2 qy v,Ld
2 C 2 C

b
2% ay Uy dl+ 2 / X Uydl
2a0 Jo 2a0 Jo

(47) +c1/ X X'dl - 01/ dyJ, X'dl+d1/ Y Y'dl —dl/ M, Y'dl
C C C C
for all U = (U, Uy, X', Y") € [HY(C)? x L2(C)?).

In the next section, we explain the discretization of this formulation by a finite
element method with Lagrange elements.

5. Discretization of the formulation (46)

We approximate the unknowns J and M by a finite element method based on
Lagrange elements. We approximate the curve C' by means of N straight line
segments C;. We denote nodes from 1 to N and we consider V}, a finite dimensional
subspace defined by

Vi, = {vn: C" - R, v, € H(C"), vplc, € P, Viel,..,N} c HY(C"),

where P is the space of first degree polynomials, and
Wy, = {wp, : C" = R, wy, € HY(C"), wylc, € Py, Vi€ 1,..,N} C L*(CM),

where P, is the space of constant functions.
We discretize the unknowns with basis functions defined by:

N

(48) Tem JH1) = Tridi(l) € Vi,
1,]:\]1

(49) M, ~ MP(1) =" Mypi(l) € W,
=1

N
(50) X~ XMl) =) Xabi(l) € Wy,
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and
N
(51) Y=Yl =) Yiti(l) € Wh.

where ¢; € Vj, and ¢; € Wy,
Then, the discretization of the bilinear form A(U, ¥) in (46) is

AU, O =iz, i (/

KG 63 61 [5(1) (0] = 16 dios duos dUl) S

ij*l Ch
1,7=1
N
+ (/ ¢j i ;- V,Gdl dl>
i,j=1

N
Uzl (/[ 56 w5 v avar) ot
iv: </ %3 (bldl) T2 +7 Z ( (0 widl) M
2 1,j=1 ! 1] | oh J
"y EN: </ d¢'¢’dZ)X}L+Ih ENS (/ dww-dz)yh
2 i,7=1 Ch Y5 @i J 2ij:1 o 15 @i i
b1 ol R N h
+ %UZA (/Ch d1; %Z’idl) Y+ g ”ZZI </Ch di; widl> X!
+ 21 (/ P; wzdl) xh - Zl (/ d; %dl)
! 21,)=
N
I — . . h‘.
"‘ZJZI (/ 1/& ’(/}zdl) Y ZZ (/Ch dl’(/ij ’Lpzdl) Mz/]

We then obtain the following matrices:
(B —8)iy =i //Ch kG(LT) ¢;(1) @5 [T Ti] = %G(l,l') dip; (') digi(l) dl'dl,
:/ ¢z(l) Lfij(l/) n; - VlG(l,l/) dl/dl,
Ch,
Pia = // KRG () il dl'dl,
Ch

1 = [ o) o0

12 :/Ch Yi(l) ¥;(1) dl,
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D1 :/ (1) dypy (1) dl,
ch
D3y = [ i) dus (0
ch
D5ij :/ 1/11(l) dld)j(l) dl.
Ch,

We can write the linear system in IBC1 case:

Zo[B — 8] + P I1] (@] Y1y Ypy o ="

(52) (@ % (Bl + 5121 FLps] 3k (D3) | |
—[D5] 0 (I2] 0 X 0
0 —[D3] 0 [r2] vh 0

where right-side vectors Eh, H" are defined as follows:

El = / E . ¢,dl;
Ch

H} = . H" - apdl.

Then, we are going to eliminate the vectors 7h and M". From the last two lines in
(60), we get
D5 T+ [12) X" =0 » X" =1[12]"" [D5] T,
D3 M+ (12 Y =0 — V" =[12]" D3] M".
We obtain final system:

[A1] [A2] 7" B
9) hm1m4]<Mh>—<Hh>
where matrices are defined as

[A1] = Zo[B - 8]+ (1] + S [D1) [12] 7 [D3),

142] = [@] + 2 1D1] (2] [D3),

143 = [Q" + 5 [D3] (12" [D5)
ag
A4 = 2B+ 12+ 2 (D3 (127" (D3]
Z() 20,0 2&0
In the next part, we brievely explain the calculation of matrices for (B-S) and Q
operators and the matrices for integral operators IBC1 and IBC2.

5.1. Calculation of matrices for the approximation of the impedance in
IBC1. Here, we use basis functions ¢; and 1; defined by:

% xT € [xi,l,:vi]
(54) ¢i(r) = TE= v € 30, @]
0 T ¢ [xio1, Tit1)

(55) ¥i(z) =

1
{ Tnos O € [ 2]
z ¢ (), z541]
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We observe that the derivative of a P; function is a function of class FPy. Thus we
can express d;¢; with the basis functions ;. Whereas the derivative of functions
1, we express as difference of Dirac functions in breaking points:

(56) dipi(1) = i1 (1) — Pi(l);
(57) dihi (1) = 65 — bj41-

The element of the matrix (B — S) are calculated on segments associated to
functions ¢; and ¢/:

(B - 8); -—z/ G 1) (k) il 7 - 7] — dgqﬁ;dlqbi)dl’dl

. 1
i Gkl - 7 = £ (W) y = ) Wiy — )l
Ci+Ci—1 C'-‘rCJ' |
For the sake of simplification, we want to show calculation of the simple part

Int;; = Z/ G(l l)(k;(b ¢Z[T T — w;zpi)dl’dl,
cicy

where 1; = x_ﬂ{ﬂ is a constant on the element C; and 1/13 = — +11 — on C’
7 K2 J
According to features of Green’s function G(I,1’), we separate calculatlon into

two cases. First case when arguments [ and I’ are apart from each other.

e Apart elements: if the elements have enough big distance from each other,

we can be sure in convergence of integral and we use Gaussian quadrature
to calculate the integral:

1

Intz] ~ ZZ Z p‘]pq kp!]f] ) k¢]q ¢“}[T Tl] kh/h
1l

g=1g'=1

e Closed elements: if the elements are close to each other, we should expand
Green function:

(58) G = TH{? (kp) = T H? (kp) + 21n(p) — 21n(p) .
2 ] N——
—>G|1 —>G‘2

When p — 0, we have
™ T k
(59) Gl = ?Hém(kp) ~21n(p) = = —2(y+1In(3)).

So for the calculation of double integral Int;;|1 we can use Gauss points
approach:

1
Intzj|1~z{—27—|—ln }ZZpgpg lkng]g (bzg[T Tz}_kh/'h‘]
] (3

g=1lg'=1

and to calculate the remaining part, we integrate over I' with help of Gauss
points and we obtain:

1
Int;jlo ~ —2i Zpg/ In(p(ly,1 lkng d)zg[T 7] — B ] dr'.
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5.2. Calculation of the matrix Q. Here, we explain the calculation of the ma-
trix for the operator Q. The elements of matrix @ are calculated on segments
associated to functions ¢; and ¢§~

Qij = —i / /C o (1) - VG0, 1Yl dl,

where function w; is defined only on a segment C; and gradient of Green function
V(@ is expressed

k
\ZelN o - H(2)(k ).

So we can write

k
Q=i [ awuTHton 5

As in (B — S) matrix, for apart elements we use Gauss points approach.

On the another hand if elements are closed, according to the property of H 52) (kp)
for p—0

% [H{z)(k:p) 2 ;kpln(p)] . _ka In(k/2) + k2 ( + o= m)

wkp 2m
k. % i 2
LY = -5 @) — 25 Yol F— |2 k21 7
VG(L1) = - T [ HP k) - S+ homio)] 5| 5 - 1 mnie)] 5

*)GG‘l *)GG‘Q
For p small enough, we can write

. T 1 4 o
GGl = —i [kln(k‘/2) - ?kQ (2 7 (1-2y )] Z Zpgpg@g%gfnz Pyg’

g=1lg'=1
and
GGla ~ ZZ Z PoPyPigVjg [ — k2 In(pgg )} n; - Pggr-
g=lg'=1

In the next, we give linear system in IBC2.

5.3. Matrix form in IBC2. We introduce basis matrices,

1 i=j—1
Eij = { 1 i=j } s
1 .
Mij =< ’lpja’l/)i >= {hi 7’:]}7
where [M] is an invertible diagonal matrix.

1 i=j
o L~ hj
SZJ <dl1/}jv¢z> { _% Z:j+1 }7

sz _<dlea¢z>_2{ _h,ilhj Z:j+1 }7
where basis functions ¢ and v are defined earlier in (54)-(57). Here matrices [M],
[S] and [P] correspond to matrices [12], [D1] and [D3] respectively.
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Now we define matrix [T] that corresponds to matrix [D5] :

Tij =< dipj, i >=<j_1 — ;,; >= (ME);;.
And matrices:

—1 . .
Mij - {hi v = J}’

1 = i=j—1
-1py. . _ = h;
Py 2{—; i—j+1}'

We need to find next matrices from (53):

<.

[D1)[12]~[D5] = [S][M] ™' [M][E] = [S][E],
© i=j—1

(SE)ij =1 (5 +57) =] 7
— i=j+1

[D1][12] 71 [D3] = [S][M] '[P,
1

1 — =]
M™'P);; = = Pigphs
(S >” 2 _ﬁlhj i=7+1
hi_llhf i=7+2
[D3][12)~'[D5] = [P][M]~![M][E] = [P][E],
hihljl,l i=j—2
1] —— i=j—1
(PE);; = 5 hl1h i — )
hihy_1 =1J
h}h i=j+1

[D3][12]71 (D3] = [P][M]~'[P),

1 -
B 1 | R i=J- 2
(PM P)” = i _7hih]‘ (7]1]‘11 hj+1) . 1 :]
D= i=j+2
For IBC2 we have next matrix of a problem:
(60)
Zo[B - S] + “£11] @l Gy o o 0 D]
@7 & (Bl + 5121 FLpsl (D3] o 0 5as (D3]
—[D5 0 12 0 0 0 0
[0 : — (D3] [0] [12] 0 0 0
0 0 —[D3] 0 [12] 0 0
0 0 0 —[D3] 0 [12] 0
0 0 0 0 —[D3] 0 [12]
0 0 0 0 0 — [D3] 0

with auxiliary unkowns Xs, Y5, X3,

Y3, such that

< d} T >=< d} X1, >=< di Xo,v; >=< d; X3,90; > .

We have next equations form

479

“ipy

b
1
205 [D3]

~
e oeocoo

< Xg,’(/Jj >=< leQ,wj > = [IQ]EZ [D?)]E = E: [12]_1[D3]72,
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< XQ,?/)J >= lelan > = [IQ]XQ [D3]X1 = X2 [.[2] [D?)]Yl,

< Xy, >=<diJ,p; > = [12]X; = [D3]T = X; = [12]'[D3]7.

The same equations for Y3, Y5,Y; and M. Finally, we need to find next matrices

[D1] (12171 [D3))* [12] 71 [D5] = 8] ([M]) 1 [P])? [M]~[M][E] = [S] ((M]~*[P))* [E],

1 - .
hihipihj—1 1=75-3

1 1h ihit1 }le hi_1 L ' :
1 1F(h{11 1+hhz+1_hi_11hi+1)1 Z:J—]_

_1 2 . .
(SMTIPYE); = 1§ i (s T )+hh@11+mﬂ) i=j \

hi— 1(]7‘1 1h112+hh11:hihi—2) Z:J"‘]-
_mgﬁ+hj_l i=j+2
T ahs Ty i=j+3

[D1] ([12]71[D3])* [12] (D3] = [S] ([M]~[P])* [M]7H[P] = [S] ([M]7'[P])°,

1

1 1_m 1 o J o
*hf,hj (hjhf,l il + hj,lliLj,z) t f] - 1

(S(M~1P)%); = : S e i P+ i P thi-2 . ' B ’ ;
8 vhlj(hjhj—ll + ’lj’lj+11 + hj+1hjl+2) Z.: j +1
" hizth; (hjhj—l T hl'jhj+1 T hj+1hj+2) L :j_+ 2
TR Rt i=j+3
P hihy iR e i=j+d

(D3] ([12]1[D3))* [12] 71 [D5] = [P] ((M]~'[P])? [M]~[M][E] = [P] ([M]~'[P))* [E],

(O ey ey} i=j-4
G
_hlihi+1 (hlhlJrl + g ihs + hihf,l) v= J -2

(P(M~'P)’E),;; = : Pl (hihf“ i e N hihf’l) ' ) ii ! )

8 Rahi 1 (hlhl+1 t s T Ea) t=J

T h hl . (hlhllﬂ + i 11h] i hihli,l) i=7+1
e et 1=g+3

(D3] ([12)71[D3])? [12)7'[D3] = [P] (IM]7'[P])* [M]7'[P) = [P] ([M]~'[P])?,

h,thl+1h]h] 1h 2 i=j—4 )
I S i =i —2
) 1+1h > <h 1* h]+1) Raihg 1R S Gty T i) =
¥ +
P(M-1P)3).. — — T (thJ n h]hJ+1 - lh —)
* + Grrs—y + + 5 ) =g
16 . hlhz+11h RiRj—1 h7h1+11 7+1’l7+2 .
S R b SR O S =42
hihi_1hjh; (hJ Tt hj+1) i thJ+1hJ+2(hL Tt hi+1) i=J+
1 i=45+4

hihi_1hjhjti1hjyo
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6. Numerical results

6.1. Radar cross section. Radiation theory teaches us that the energy is inter-
cepted by an object can be reflected, absorbed or transmitted through the target.
We can assume that most of the energy is reflected. The spatial distribution of
this energy depends on the size, shape and composition of the target, and on the
frequency and nature of the incident wave. This distribution of energy is called
scattering, and the target itself is often referred to as a scatterer. The radar cross
section (RCS) of the body is a measure of the energy scattered in a particular
direction for a given illumination [2].

Bistatic scattering is the name given to the situation when the scattering direc-
tion is not back toward the source of the radiation. If E and H represent fields
scattered by an object illuminated by incident plane wave E™¢ traveling in the
direction of the unit vector k, the bistatic radar cross section in the observation
direction r is

E 2
o(r,k) = lim 477> [E|

00 |Einc|2 '

This cross section is defined as the area through which an incident plane wave carries
sufficient power to produce, by omnidirectional radiation, the same scattered power
density as that observed in a given far field direction. The monostatic radar cross
section is defined as the radar cross section observed in the back scattering direction,
o(—k, k).

In two dimensions, the bistatic radar cross section for scattering by a cylindrical
object illuminated by an incident plane wave E"¢ traveling in the direction of the
unit vector k normal to the cylinder axis is

. Ef?
o(p, k) = plgr;o 27Tp|E|m|C|2.
This cross section is the equivalent width across which an incident plane wave carries
sufficient power to produce, by omnidirectional radiation, the same scattered power
density as that observed in a given far field direction. The monostatic radar cross
section is o(—k, k). That is defined for cylinders as the ratio of the total scattered
power per unit length to the power density of the incident wave.

The units for RCS are square meters. As RCS can span a wide range of values,

a logarithmic decibel scale is also used with a typical reference value o,y equal to

1m?2:

(61) oaBm2 = 10 logyo(

).

Oref

FIGURE 5. Cylinder (left) and plate with thin layer (right).
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Gylinder d = 1.5mm; f = 6.8GHz; ¢, = 10-5j: = 1 TE.

20

° 4 .
i

=

8

60 80 100
AZIO (degr)

FI1GURE 6. Bistatic RCS for a coated circular cylinder, when d =
1.5mm, e, = 10 — 55, p, = 1.0, and f = 6.8GHz with TE polar-

ization.

Gylinder d = 1.5mm: f = 6.8GHz: € = 10-5j; 1, = 1 TM

20

T~

3
2

SER

5 i i
0 60 80 100 120
AZIO (degr)

FI1GURE 7. Bistatic RCS for a coated circular cylinder, when d =
1.5mm, ¢, = 10 — 55, p, = 1.0, and f = 6.8GHz with TM polar-

ization.

6.2. Numerical tests. Let us consider conducting circular cylinder depicted in
The radius of the inner conductor is

figure 5 coated with thin dielectric layer.
r = 50mm and the thickness of the coating is d. It is assumed that the incident

field is propagating normal to the axis of the cylinder. And we consider both TE
and TM polarizations. In order to illustrate several key points the case of a simple

dielectric coating will be considered.
An exact solution of the scattering problem depicted in figure 5 is obtained by

expanding the incident field, the scattered field outside the cylinder, and the total
field inside the cylinder coating in terms of a series of cylindrical wave functions

and applying the appropriate boundary conditions at each interface.
Since the coefficients appearing in the HOIBC were derived by considering the

planar canonical problem it is expected that the solution should be most accurate
for cylinders with large radius of curvature and thin coating, where the geometrical
approximation is a good one.

In order to illustrate these points scattering by three typical coated cylinders will
be considered next. Figures 8-9 show the monostatic RCS for a coated conducting
cylinder with inner radius g, coating thickness d = 0.1y, and coating parameters



BEM WITH HIGH ORDER IMPEDANCE BOUNDARY CONDITIONS

Cylindre SOmm ep=5mm ¢ =4-0.5]
T T

SER (dB.m3)

cyizd r50epsmu eps
cyizel r50noz! fin eps
..... e cylzd r502 fin epS

Freq (GHz)

FIGURE 8. Monostatic RCS for a coated circular cylinder, when
d=0.1\g, €, = 4.0 — j0.5 and u, = 1.0, with TE polarization.
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FIGURE 9. Monostatic RCS for a coated circular cylinder, when
d=0.1\g, €, = 4.0 — j0.5 and u, = 1.0, with TM polarization.
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F1cure 10. Bistatic RCS for a coated circular cylinder, when d =
0.1\, €, =4 — 0.57, u, = 1 with TE polarization.
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€, = 4.0 —0.5¢ and p,, = 1.0. The exact series solution is presented along with the
HOIBC and SIBC solutions. We computed monostatic RCS for different frequencies
to see how do results depend on frequency. In TE-polarization we can see that
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results of SIBC jumps in range between 6GH z and 8GHz (see fig. 8). Much bigger
difference, we can see in TM-polarization between 7GH z and 9GHz (see fig. 9).

Cylinder d = 3mm; 1 = 34GHZ; &, = 10 - 5,1, = 1 TE

SER

\
|
1

20 40 60 80 100 120 140 160 180
AZIO (degr)

FIGURE 11. Bistatic RCS for a coated circular cylinder, when d =
3mm, €. = 10 — 55, pu, = 1.0, and f = 3.4GHz with TE polariza-
tion.

Gylinder d = 3mm; f =3.4GHz; £ = 10- 51, = 1 TM
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FI1GURE 12. Bistatic RCS for a coated circular cylinder, when d =
3mm, €, =10 — 57, p, = 1.0, and f = 3.4GHz with TM polariza-
tion.

Next we consider bistatic RCS for different scattering angles. Figures 6-7 show
the bistatic radar cross section for a coated conducting cylinder with inner radius Ag,
coating thickness d = 1.5mm, and coating parameters €, = 10 — 5 and u, = 1, for
fixed frequency f = 6.8GHz in TE and TM polarizations. The exact series solution
is presented along with the SIBC and HOIBC order 1 and order 2 solutions.

After we increase thickness of a boundary and decrease frequency, so we consid-
ered bistatic RCS for different scattering angles. Figures 11-12 shows the bistatic
radar cross section for a coated conducting cylinder with inner radius A\g, coating
thickness d = 3mm and frequency f = 3.4GHz, coating parameters ¢, = 10 — 5i
and p, = 1.0, in TE and TM polarizations. The exact series solution is presented
along with the SIBC and HOIBC order 1 and order 2 solutions.

Here we comput bistatic RCS for coated circular cylinder with parameters, d =
0.1)\g, €, = 4—0.5¢ and pu, = 1. And we compare to Rahmat-Samii results for same
test. The backscatter direction is ¢ = 180°. Results for exact formulation, SIBC or



BEM WITH HIGH ORDER IMPEDANCE BOUNDARY CONDITIONS 485
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FI1GURE 13. Bistatic RCS for a coated 2D plate, when d = 4mm,
€ =10 —5j, u, = 1.0, and f = 6.8GHz with TE polarization.
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FIGURE 14. Bistatic RCS for a coated 2D plate, when d = 4mm,
€ =10 — 57, pr = 1.0, and f = 6.8G Hz with TM polarization.

Leontovich IBC formulation and the formulation based on the planar higher order
IBC are presented in the figure 10. As can be seen in the figure, the results using
the planar HOIBC are in excellent agreement with the exact solution over most
of the angular range, while SIBC solutions give only the average behavior of the
scattered field.

Next we consider conducting plate with open boundary thin dielectric layer (see
fig. 5). Figures 13-14 show the bistatic RCS for layer thickness d = 4mm and
frequency f = 6.8GHz. This example is interesting because it shows that method
works even for open boundaries. And we can see that it solves problem much better
than with Leontovich IBC. But it is difficult to see difference between first order
and second order IBCs.

7. Conclusion

In this paper, we give integral formulations with high order impedance boundary
condition to solve Maxwell’s equations. We study existence and uniqueness of
the solution for the formulations. Then, we give several numerical tests of the
solution HOIBC over SIBC using a method of moments. The figures clearly show
the increased accuracy of the HOIBC solution relative to the SIBC solution.
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