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A FINITE DIFFERENCE METHOD FOR ELLIPTIC PROBLEMS

WITH IMPLICIT JUMP CONDITION

FUJUN CAO, DONGFANG YUAN, ZHIQIANG SHENG, GUANGWEI YUAN∗, AND LIMIN
HE

Abstract. In this paper linear elliptic problems with imperfect contact interface are considered,
and a second order finite difference method is presented for linear problems, in which implicit
jump condition are imposed on the interface. Then, the stability and convergence analysis of the

FD scheme are given for the one-dimensional elliptic interface problem. Numerical examples are
carried out for the elliptic problems with imperfect contact interfaces, and the results demon-
strate that the scheme has second order accuracy for elliptic interface problems of implicit jump
conditions with single and multiple imperfect interfaces.
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1. Introduction

Interface problems occur in many multi-physics and multi-phase applications in
science and engineering, particularly for free boundary/moving interface problems,
for examples, the modeling of the Stefan problem of solidification process and crys-
tal growth, composite materials, multi-phase flows, cell and bubble deformation,
and many others. To be simple to expression, we consider the interface problems in
multi-material heat transfer process. According to the different jump conditions,
the interface problems can be divided into two main categories: (1) Perfect con-
tact, that is, the contact between the two objects is perfect, which means that the
temperature and normal heat flux are continuous on the interface. (2) Imperfect
contact, for example, there are weakly conductive thin films or interlayers between
the two objects, so that temperature or normal heat flux is discontinuous across the
interface. In practice, an equivalent boundary condition is often presented on the
thin layer, namely the interface jump (or connection) condition. When the contact
interface is not perfect, the jump condition on the interface can be roughly divided
into the following classes.

(1) The first class of imperfect interface condition is that jump sizes are given
[15, 16, 17, 21, 22], which can be named as explicit jump condition for the sake of
convenience and are shown as follows:[u] = u+ − u− = h1(x), on Γ,

[κ ∂u
∂n⃗ ] = κ+ ∂u+

∂n⃗ − κ− ∂u−

∂n⃗ = h2(x), on Γ,
(1)

where h1(x) and h2(x) are given functions.
(2) The second class of imperfect interface condition is that the jump size of

temperature is proportioned to flux, which can be named as implicit jump condition
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and be written in the following form [1, 2, 3, 9, 11, 12, 36, 58][u] = u+ − u− = λκ− ∂u−

∂n⃗ , on Γ,

[κ ∂u

∂⃗n
] = κ+ ∂u+

∂n⃗ − κ− ∂u−

∂n⃗ = 0, on Γ,
(2)

where Γ is a curve which divides the region Ω into two non-intersected subregions
Ω+ and Ω−, Ω = Ω− ∪ Ω+ ∪ Γ. n⃗ is the outer unit normal vector of the interface
Γ in Ω−. κ− and κ+ represent the material conduction coefficients on Ω− and Ω+,
respectively.

In this paper we consider the problems with the interface conditions, where the
jumps of temperature are related to the normal heat fluxes. The second class
implicit connection condition of the imperfect interface can be used to describe the
heat conduction problem of two objects with imperfect contact [1]. If there is a
interlayer with thickness δ and the thermal conductivity is ϵ between two objects,
and when δ → 0, ϵ/δ → const = λ, then the interlayer is degenerated into a sharp
interface. In the implicit jump conditions, the jumps of physical quantities are
unknown and proportional to the flux across the interface. The implicit connection
condition has a clear physical meaning. Moreover, it can be used to describe the
problem of temperature discontinuity between gas and cooling solid surface [4]. In
addition, it is appeared in some other applications, such as the effective thermal
conductivity of composite materials [5], the dielectric heat conduction problem of
solid spherical particles dispersed in the continuous phase [6], the interface problem
with thermal resistance between the composite and the discrete components [7].
In the problem of steady thermal diffusion in a two component nonhomogeneous
conductor with contact resistance, the flow of heat through the material interface is
also considered to be proportional to the jump of the temperature field [9, 10, 13].
The solution to an imperfect interface problem, therefore, typically is non-smooth
or even discontinuous across the interfaces. It is necessary to study accurate and
robust numerical methods for these elliptic interface problems.

When the jump sizes along the interface are known explicitly, (say [u] = h1,
[κ∂u/∂n⃗] = h2, with given h1 and h2), there are various numerical approaches,
such as immersed interface method (IIM) [15, 16, 17, 19, 20, 23], immersed finite
volume method (IFVM) [24, 25, 26] and immersed finite element (IFE) methods
[27, 28, 30, 31, 34, 37, 38, 45, 56], and they are presented to effectively handle the
explicit jump conditions. Since the pioneer work by [15], the immersed interface
method (IIM) has becoming increasingly popular for elliptic interface problems.
The original IIM achieve uniformly second order accuracy, and a key feature is that
computational stencils for irregular points are modified such that the information on
the boundary is used exactly where grid lines intersect the immersed boundary. Re-
cently, there have been many further developments and analysis in various aspects
of the immersed interface methods [16, 17, 19, 21, 22]. Among these developments,
Li and Ito [17] constructed a fourth-order accurate finite difference method for
interface problems which produces a large sparse linear system with M-matrix in
several-dimensions and is coupled with a multigrid solver achieving fast convergence
of the linear solver. Wiegmann and Bube [21] developed an explicit-jump immersed
interface method for some special cases, where the explicit jump conditions of phys-
ical quantity and its derivatives ([u], [ux], [uxx], etc.) are known. Mittal et al. [23]
use standard finite difference formulas at grid points near the interface using inter-
facial points also as one of the nodes and the Lagrange polynomial interpolation is
then used to find the unknown values at interfacial points. The proposed scheme
is derived for general elliptic interface problems with explicitly known functions
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of the solution and its normal flux at interface. Cao et al. [24] introduced and
proved some superconvergence results for immersed finite volume methods(IFVM)
for one dimensional interface problems with discontinuous diffusion coefficient and
the connection conditions on interface being [u] = 0 ,[κ∂u/∂n⃗] = 0. Wang [25]
presented IFVM for solving second-order elliptic problems with discontinuous d-
iffusion coefficient on a Cartesian mesh. The recently developed immersed finite
element (IFE) methods [28, 30, 35, 37, 38, 39, 40, 41, 42, 43, 44, 47, 52, 53, 56]
employ an alternative idea to handle interface problems, such as the elasticity in-
terface problems [42, 43, 53], the planar elasticity interface problems [44, 45], the
parabolic equations with moving interface [28, 29], the Helmholtz equation [47],
the elliptic interface inverse problems [38, 39], and three-dimensional second order
elliptic interface problem [40, 41, 56]. He [27] analyzed the error in both the bilinear
and linear IFE solutions for second-order elliptic boundary problems with discon-
tinuous coefficients, the jump condition on interface are [u] = 0 ,[κ∂u/∂n⃗] = 0. In
[28, 29] IFE methods for solving parabolic equations with discontinuous diffusion
coefficientis across a time dependent interface are presented. He et al. [30] pro-
posed a selective immersed discontinuous Galerkin method based on bilinear IFE
for solving second-order elliptic interface problems. The selective feature of this
method can be used to reduce the computational cost and/or incorporate desir-
able features in the numerical solver. Feng et al. [31] combined IFE and algebraic
multigrid solver to solve the linear systems of the bilinear and linear IFE methods
for both stationary and moving interface problems with discontinuous coefficien-
t. Guo [32, 33] developed a nonconforming IFE method for second-order elliptic
problems with discontinuous diffusion coefficient and [u] = 0, [κ∂u/∂n⃗] = 0. He
et. al [34] developed IFE functions for solving second order elliptic boundary value
problems with discontinuous coefficients and non-homogeneous jump conditions.
Lin et al. [35] proposed IFE methods for solving boundary value problems of 4-
th order differential equations with discontinuous coefficients and for sovling the
interface problems of the Helmholtz equation [47] , where the interface jump condi-
tions for the bi-harmonic equation are [u]Γ = 0, [ ∂u∂n⃗ ]Γ = 0, [κ(x, y)△u(x, y)]Γ = 0,

[∂κ(x,y)△u(x,y)
∂n⃗ ]Γ = 0. Guo [37] developed and analyzed a p-th degree IFE method

for solving the elliptic interface problems with discontinuous coefficient. In [40, 41]
an IFE method for solving the typical three-dimensional second order elliptic in-
terface problem with discontinous coefficient are presented. Lin et. al [46] derived
a priori error estimates for a class of interior penalty discontinuous Galerkin (DG)
methods using IFE functions for a classic second-order elliptic interface problem.
Adjerid et al. [55] presented and analyzed a p-th degree IFE method for elliptic
interface problems with nonhomogeneous jump conditions, which is based on a dis-
continuous Galerkin formulation on interface elements and a continuous Galerkin
formulation on non-interface elements and proved to converge optimally under mesh
refinement. Han et al. [56] presented a three-dimensional (3D) linear IFE method
with non-homogeneous flux jump conditions for solving electrostatic field involving
complex boundary conditions using structured meshes independent of the interface.
Lin et al. proposed partially penalized immersed finite element (PPIFE) method-
s for elliptic interface problems [49] and parabolic interface problems [50]. Yang
et al. [51] proved a approximation of second-order hyperbolic interface problems
by partially penalized immersed finite element methods have optimal O(h) conver-
gence in an energy norm under a sub-optimal piecewise H3 regularity assumption.
Guo [52] proved the partially penalized immersed finite element (PPIFE) methods
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developed in [49, 50] converge optimally under the standard piecewise H2 regular-
ity assumption for the exact solution. Adjerid et al. [54] proved optimal a-priori
error bounds for this PPIFE method not only in the energy norm but also in L2

norm under the standard piecewise H2 regularity assumption in the space variable
of the exact solution. Guo et al. [38] presented a IFE method for solving a class
of interface inverse problems for the typical elliptic interface problems and solving
a group of inverse geometric problems for recovering the material interface of a
linear elasticity system [39]. These interface inverse problems are formulated as
shape optimization for recovering the interface which is reduced to a constrained
optimization problem.

However, when the jumps are implicit along the interface problems, numerically
solving the resulting problem becomes more challenging. The elliptic problems
with imperfect contact are discussed in [1, 2, 3], where interface are aligned with
grid points and the grid is orthogonal. A second order difference scheme for the
elliptic problems with imperfect contact condition (2) is derived and studied in
[57], where the condition that the flux κux is two-times continuously differentiable
on the interface. Lin et al. [48] derived the error estimates for a class of IFE
methods for elliptic interface problems with both perfect and imperfect interface
jump conditions. It is worth pointing out that the coefficients of the scheme of
linear element space in [48] is the same as those in this paper at regular points,
but they are different at irregular points. The scheme of quadratic finite element
and cubic finite element space is completely different from that in this paper. Cao
et al. [58] presented a monotone finite volume scheme for the diffusion equation
with imperfect interface which can obtain second order accuracy solution on the
body fitted quadrilateral and triangular meshes. Zhou et al. [59] proposed a finite
volume scheme preserving discrete maximum principle (DMP) for the diffusion
equation with imperfect interface. Wang et al. [36] proposed a finite element
method for solving parabolic interface problems with nonhomogeneous flux jump
condition and nonlinear jump condition. Gwanghyun Jo et al. [12] enriched usual
P1-conforming finite element space and proposed a numerical methods for elliptic
interface problems with implicit jump conditions, where the jumps are related to

the normal fluxes and some known functions, i.e., [u] = α ∂u+

∂n⃗+ + h1, [β
∂u
∂n⃗ ] = h2.

The objective of the present paper is to introduce a finite difference method with
second order for solving elliptic imperfect interface equations with implicit jump
conditions. The original second-order immersed interface method of LeVeque and
Li [15] focuses on the elliptic imperfect interface problems with explicit jump con-
ditions. In this paper the elliptic equations with imperfect interface is considered,
in which the jumps of physical quantities are unknown and proportional to the flux
across the interface. This kind of interface connection condition has clear physical
meaning. A finite difference method is constructed for the one dimensional elliptic
equations with the imperfect contact and implicit jump conditions. The stabili-
ty and convergence analysis are provided for the scheme. Numerical results show
that the presented scheme has second order accuracy for linear elliptic imperfect
interface problems with single or multiple interfaces.

The rest of this paper is organized as follows. In Section 2, we first formulate
the scheme for 1D elliptic equations with imperfect interfaces. Sections 3 and 4
are devoted to analyze the stability and convergent rate of the scheme. Numerical
examples are carried out in Section 5 to demonstrate the accuracy and stability of
the presented scheme. A conclusion remark is given in Section 6.
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Figure 1. The stencil for 1D problem.

2. Construction of Difference Scheme

Consider the following elliptic boundary value problem

− (β(x)ux)x + k(x)u = f(x), x ∈ (0, α) ∪ (α, 1),(3)

u(0) = u0, u(1) = u1,(4)

where 0 < α < 1. And on the interface x = α, consider the following imperfect
contact condition

(5)

[u] = λβ+u+
x ,

[βux] = 0,

where g± denote the right and left limits of the function g at the point α, and
[u] = u+ − u−, [βux] = β+u+

x − β−u−
x .

We assume that β(x) is piecewise smooth function with a jump at interface
x = α, and β(x) is bounded from below and above

(6) 0 < βmin ≤ β(x) ≤ βmax,

where βmin and βmax are two constants. The function k(x) ≥ 0, and the source
term f(x), are piecewise smooth.

By introducing the interface condition in the elliptic equation, we have

(7) −(β(x)ux)x + k(x)u = f(x) +
β+ + β−

2
λβ(α)ux(α)δ

′(x− α), x ∈ (0, 1).

Introduce a uniform grid xi = ih, i = 0, 1, · · · , n with h = 1
n . The finite difference

scheme can be written as

(8) Lhuh(xi) = γi,1uh(xi−1) + γi,2uh(xi) + γi,3uh(xi+1) + k(xi)uh(xi) = Fi,

for i = 1, 2, · · · , n− 1. Assume xj ≤ α ≤ xj+1. The stencil is shown in Fig. 1.
At a regular point, i.e., i ̸= j, j + 1, Lh is the usual central difference approxi-

mation

(9) γi,1 = −
β(xi− 1

2
)

h2
, γi,2 = −(γi,1 + γi,3), γi,3 = −

β(xi+ 1
2
)

h2
,

and

(10) Fi = f(xi),

where xi− 1
2
= (xi + xi−1)/2 for i = 1, 2, · · · , n.

The local truncation error is O(h2):

(11) Ti = γi,1u(xi−1)+γi,2u(xi)+γi,3u(xi+1)+k(xi)u(xi)−Fi = O(h2), i ̸= j, j+1.
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At the irregular points xj , xj+1, the coefficients in (8) are determined as follows.
Expand uj−1, uj , uj+1 in Taylor series about the point x = α

u(xj−1) = u− + (xj−1 − α)u−
x +

(xj−1 − α)2

2
u−
xx +O(h3),(12)

u(xj) = u− + (xj − α)u−
x +

(xj − α)2

2
u−
xx +O(h3),(13)

u(xj+1) = u+ + (xj+1 − α)u+
x +

(xj+1 − α)2

2
u+
xx +O(h3),(14)

Let Fj = f−(α) +Rj , and note that

k(xj)u(xj) = k−(α)u−(α) +O(h).

According to the interface connection condition (5), we have

u+ = u− + λβ−u−
x , u+

x = β−u−
x /β

+.

Since

−β+u+
xx − β+

x u+
x + k+u+ − f+ = −β−u−

xx − β−
x u−

x + k−u− − f−,

it follows

u+
xx =

1

β+
(β−u−

xx + (k+λβ− − β+
x β− − β−

x β+

β+
)u−

x + [k]u− − [f ]).

So

u(xj+1) = u−(1 +
(xj+1 − α)2[k]

2β+
) +

(xj+1 − α)2β−

2β+
u−
xx − (xj+1 − α)2

2β+
[f ]

+

(
λβ− +

β−

β+
(xj+1 − α) + (

k+λβ−

β+
− β+

x β− − β−
x β+

β+2 )
(xj+1 − α)2

2

)
u−
x .(15)

Then

Tj = γj,1u(xj−1) + γj,2u(xj) + γj,3u(xj+1) + k(xj)u(xj)− Fj

= γj,1u(xj−1) + γj,2u(xj) + γj,3u(xj+1) + k−(α)u−(α)

−(−β−u−
xx − β−

x u−
x + k−u−)−Rj +O(h).(16)

Substituting (13),(14) and (15) into the above equation (16) and rearranging, there
is

Tj =

(
γj,1 + γj,2 + γj,3(1 +

(xj+1 − α)2[k]

2β+
)

)
u− +

{
(xj−1 − α)γj,1 + (xj − α)γj,2

+

(
λβ− +

β−

β+
(xj+1 − α) + (

k+λβ−

β+
− β+

x β− − β−
x β+

β+2 )
(xj+1 − α)2

2

)
γj,3 + β−

x

}
u−
x

+
1

2

{
(xj−1 − α)2γj,1 + (xj − α)2γj,2 + (xj+1 − α)2

β−

β+
γj,3 + 2β−

}
u−
xx

−γj,3
(xj+1 − α)2[f ]

2β+
−Rj +O(h).
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Require γ′s and Rj to satisfy

(17)



γj,1 + γj,2 + γj,3(1 +
(xj+1−α)2[k]

2β+ ) = 0,

γj,1(xj−1 − α) + γj,2(xj − α) + γj,3

{
λβ− + β−

β+ (xj+1 − α)

+(λk
+β−

β+ − β−β+
x −β−

x β+

β+2 )
(xj+1−α)2

2

}
= −β−

x ,

γj,1(xj−1 − α)2 + γj,2(xj − α)2 + γj,3(xj+1 − α)2 β−

β+ = −2β−,

and

Rj = −γj,3
(xj+1 − α)2[f ]

2β+
.

Similarly, the coefficients of the scheme at xj+1 are determined by the following
system

(18)



γj+1,1(1− (xj−α)2[k]
2β− ) + γj+1,2 + γj+1,3 = 0,

γj+1,1

{
− λβ+ + β+

β− (xj − α)− (
β−
x β+−β+

x β−

β−2 + λκ−β+

β− )
(xj−α)2

2

}
+γj+1,2(xj+1 − α) + γj+1,3(xj+2 − α) = −β+

x ,

γj+1,1(xj − α)2 β+

β− + γj+1,2(xj+1 − α)2 + γj+1,3(xj+2 − α)2 = −2β+,

and

Rj+1 = γj+1,1
(xj − α)2[f ]

2β− .

If β+
x = β−

x = 0 and k(x) is continuous for x ∈ (0, α) ∪ (α, 1), then

γj,1 =
β−

β+ (−2λβ+β−−2β−(xj+1−α)−λκ(α)β−(xj+1−α)2+2β+(xj−α))

Dj
,

γj,2 =
− β−

β+ (−2λβ+β−−2β−(xj+1−α)−λκ(α)β−(xj+1−α)2+2β+(xj−1−α))

Dj
,

γj,3 = −2β−h
Dj

,

where

Dj =
h

β+

{
−
(
λβ+β− + λκ(α)β− (xj+1 − α)2

2

)
(xj−1 + xj − 2α)

+ 2β−h2 + [β](xj−1 − α)(xj − α)
}
.

And 

γj+1,1 = −2β+h
Dj+1

,

γj+1,2 =
β+

β− (2λβ+β−+2β−(xj+2−α)+λκ(α)β+(xj−α)2−2β+(xj−α))

Dj+1
,

γj+1,3 =
− β+

β− (λβ+β−+2β−(xj+1−α)+λκ(α)β+(xj−α)2−2β+(xj−α))

Dj+1
,

where

Dj+1 =
h

β−

{(
λβ+β− + λκ(α)β+ (xj − α)2

2

)
(xj+1 + xj+2 − 2α)

− 2β+h2 − [β](xj+1 − α)(xj+2 − α)
}
.
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3. Stability

From the expression obtained above, we can get the following lemma.
Lemma 1 Assume β+

x = β−
x = 0 and k(x) ≡ 0 for x ∈ (0, α) ∪ (α, 1). Then for

h small
(1) there are positive constants C1 and C2 such that

C1

h
≤ |γj,3| ≤

C2

h
,

C1

h
≤ |γj+1,1| ≤

C2

h
,

and for all other γ′s
C1

h2
≤ |γi,k| ≤

C2

h2
;

(2) the conditions of the maximum principle are satisfied, that is

γi,1 < 0, γi,3 < 0, γi,2 > 0, and |γi,1|+ |γi,3| ≤ γi,2.

Remark In the case of β±
x ̸= 0 and [k] ̸= 0, the conclusion of lemma still holds

except replacing the inequality in (2) by

|γi,1|+ |γi,3| ≤ γi,2 − k(xi).

The following lemma can be found in [19] and [60].
Lemma 2 For a difference scheme Lh defined on a discrete set of interior points

JΩ, we assume

(1) JΩ is partitioned into a number of disjoint regions

JΩ = J1 ∪ J2 ∪ · · · ∪ Js, Ji ∩ Jk = ∅, for i ̸= k;

(2) The truncation error of the difference scheme at a grid point p satisfies

|Tp| ≤ Ti, ∀p ∈ Ji, i = 1, 2, · · · , s;
(3) There exists a non-negative mesh function ϕ defined on ∪s

i=1Ji satisfying

Lhϕp ≥ Ci > 0, ∀p ∈ Ji, i = 1, 2, · · · , s;
Then

∥Eh∥∞ ≤
(

max
A∈J∂Ω

ϕA

)
max
1≤i≤s

{ Ti

Ci

}
,

where Eh(xi) = u(xi)− uh(xi) and J∂Ω is the set of boundary points.
The usual stability result can be obtained by letting Ci = 1 for i = 1, 2, · · · , and

ϕp =
β−

2
(x− α)2, x < α; ϕp =

β+

2
(x− α)2, x > α;

The convergence rate of at least first-order follows immediately from Ti = O(h).

4. Convergent analysis

4.1. Comparison Function. Consider the special case of β+
x = β−

x = 0 and
k(x) ≡ 0.
Let

ϕ(x) =


(x−α)2

2β− + ξ1(α− x) + ξ2(xj − x), for x ≤ α,

(x−α)2

2β+ + ξ3(α− x) + ξ4(x− xj+1), for x > α.

Here ξk(k = 1, 2, 3, 4) are positive constants satisfying ξ1 + ξ2 ≥ 4
β− , ξ3 + ξ4 ≥ 4

β+ .

Direct calculation gives

Lhϕi = 1, i = 1, 2, · · · , j − 1, j + 2, · · · , n− 1,
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Lhϕj >
1

h
, Lhϕj+1 >

1

h
, when h is small enough.

The local truncation error of the difference scheme (8) constructed in section 1 is
bounded by

|Ti| ≤
βmaxMxxxx

12
h2, i = 1, 2, · · · , j − 1, j + 2, · · · , n− 1,

|Tj | ≤
3γmaxMxxx

2
h, |Tj+1| ≤

3γmaxMxxx

2
h,

where

γmax = max
1≤j≤n−1

max
1≤k≤3

|γj,k|h2,

Mxxx = max
{
max
x<α

|u
′′′
(x)|,max

x>α
|u

′′′
(x)|

}
,

Mxxxx = max
{
max
x<α

|u
′′′′
(x)|,max

x>α
|u

′′′′
(x)|

}
.

By using the Lemma 2 we obtain the following convergence result.

Theorem 3 Under the same condition as lemma 1, there holds

∥u(xi)− uh(xi)∥∞ ≤ 3

2
γmaxMϕmaxh

2,

where

ϕmax = max(ϕ(0), ϕ(1)), M = max(Mxxx,Mxxxx).

4.2. Asymptotic Error Expansion. Lemma 4 There exists a piecewise smooth
function Û satisfying Û(0) = u0, Û(1) = u1 and

LhÛ(xi)− Fi = O(h2), i = 1, 2, · · · , n− 1,

moreover, it is an order O(h2) perturbation of u

Û = u+

q−1∑
p=2

hpu(p),

where u(p) and their derivatives depend on u and its derivatives, provided that
q ≥ 4 and the original solution u is sufficiently smooth in each sub-domain.

Proof Without loss of generality, we assume [k] = 0 and [f ] = 0. For i ̸= j, j+1,

Û is smooth. Note that

LhÛ(xi)− Fi = γi,1Û(xi−1) + γi,2Û(xi) + γi,3Û(xi+1) + k(xi)Û(xi)− f(xi)

= (γi,1 + γi,2 + γi,3)Û(xi) + h(−γi,1 + γi,3)Ûx(xi)

+
h2

2
(γi,1 + γi,3)Ûxx(xi) +

h2

6
(−γi,1 + γi,3)Ûxxx(xi)

+ k(xi)Û(xi)− f(xi) +O(h4γ).

Substituting Û =
∑q−1

p=0 h
pu(p) into above equality and picking up the terms in the

same order of h gives

h0 : (βu(0)
x )x + ku(0) − f = 0;

h1 : (βu(1)
x )x + ku(1) = 0;

h2 : (βu(2)
x )x + ku(2) = − 1

12
u(0)
xxxx.
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At the boundary points x = 0 and x = 1, by requiring Û(x0) = u(x0) and Û(xn) =
u(xn), we get

h0 : u(0)(x0) = u(x0), u(0)(xn) = u(xn);

h1 : u(1)(x0) = 0, u(1)(xn) = 0;

h2 : u(2)(x0) = 0, u(2)(xn) = 0.

For i = j, we hope LhÛ(xj)− Fj = O(h2). There holds

LhÛ(xj)− Fj = γj,1Û(xj−1) + γj,2Û(xj) + γj,3Û(xj+1) + k(α)Û(α−)− f(α)

= (γj,1 + γj,2 + γj,3)Û(α−)

+

(
(xj−1 − α)γj,1 + (xj − α)γj,2 +

β−(xj+1 − α)

β+
γj,3

)
Ûx(α

−)

+
1

2

(
(xj−1 − α)2γj,1 + (xj − α)2γj,2 + (xj+1 − α)2

β−

β+
γj,3

)
Ûxx(α

−)

+
1

6

(
(xj−1 − α)3γj,1 + (xj − α)3γj,2 + (xj+1 − α)3

β−

β+
γj,3

)
Ûxxx(α

−)

+γj,3[Û ] + (xj+1 − α)γj,3
[βÛx]

β+
+ (xj+1 − α)2γj,3

[βÛxx]

2β+

+(xj+1 − α)3γj,3
[βÛxxx]

6β+
+ k(α)Û(α−)− f(α) +O(h4γ).

From (17) it follows

LhÛ(xj)− Fj = γj,3([Û ]− λβ−Ûx(α
−)) + (xj+1 − α)γj,3

[βÛx]

β+

+(xj+1 − α)2γj,3
1

2β+

(
[βÛxx]−

(
β−
x − β−β+

x

β+
− λkβ−

)
Ûx(α

−)

)
+β−

x Ûx(α
−) + β−Ûxx(α

−) + k(α)Û(α−)− f(α)

+
1

6

(
(xj−1 − α)3γj,1 + (xj − α)3γj,2 + (xj+1 − α)3γj,3

β−

β+

)
Ûxxx(α

−)

+(xj+1 − α)3γj,3
1

6β+
[βÛxxx] +O(h4γ).

Substituting Û =
∑q−1

p=0 h
pu(p) into above equality and picking up the terms in the

same order of h we get

h0 : γj,3([u
(0)]− λβ−u(0)

x (α−)) = 0;

h1 : γj,3h([u
(1)]− λβ−u(1)

x (α−)) + (xj+1 − α)γj,3
[βu

(0)
x ]

β+
= 0;

h2 : γj,3h
2([u(2)]− λβ−u(2)

x (α−)) + (xj+1 − α)γj,3
h[βu

(1)
x ]

β+

+(xj+1 − α)2γj,3
1

2β+

{
[βu(0)

xx ]−
(
β−
x − β−β+

x

β+
− λκβ−

)
u(0)
x (α−)

}
+
1

6
((xj−1 − α)3γj,1 + (xj − α)3γj,2)Ûxxx(α

−) = 0;
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h3 : γj,3h
3([u(3)]− λβ−u(3)

x (α−) + (xj+1 − α)γj,3
h2

β+
[βu(2)

x ]

+(xj+1 − α)2γj,3
h

2β+

{
[βu(1)

xx ]− (β−
x − β−β+

x

β+
− λκβ−)u(1)

x (α−)
}

+(xj+1 − α)3γj,3
β−

6β+
u(0)
xxx(α

−) + (xj+1 − α)3γj,3
1

6β+
[βu(0)

xxx]

+
1

6
((xj−1 − α)3γj,1 + (xj − α)3γj,2)hu

(1)
xxx(α

−) = 0.

Similarly for i = j + 1 we can obtain

h0 : γj+1,1([u
(0)]− λβ+u(0)

x (α+) = 0;

h1 : γj+1,1h([u
(1)]− λβ+u(1)

x (α+)) + (xj − α)γj+1,1
1

β− [βu(0)
x ] = 0;

h2 : γj+1,1h
2([u(2)]− λβ+u(2)

x (α+)) + (xj − α)γj,3
h

β− [βu(1)
x ]

+(xj − α)2γj+1,1
1

2β−

{
[βu(0)

xx ] + (β+
x − β−

x β+

β− − λκβ+)u(0)
x (α+)

}
−1

6
((xj+1 − α)3γj+1,2 + (xj+2 − α)3γj+1,3)Ûxxx(α

+) = 0;

h3 : −γj+1,1h
3([u(3)]− λβ+u(3)

x (α+)− (xj − α)γj+1,1
h2

β− [βu(2)
x ]

−(xj − α)2γj+1,1
h

2β−

{
[βu(1)

xx ] + (β+
x − β−

x β+

β− − λκβ+)u(1)
x (α−)

}
+
1

6
((xj+1 − α)3γj+1,2 + (xj+2 − α)3γj+1,3)u

(1)
xxx(α

+)

+(xj − α)3γj+1,1
1

6

β+

β−u(0)
xxx(α

+)− (xj − α)3γj+1,1
1

6

[βu
(0)
xxx]

β− = 0.

From the above equations it follows

[u(0)] = λβ+u(0)
x (α−), [βu(0)

x ] = 0,

[u(1)] = λβ+u(1)
x (α−), [βu(1)

x ] = 0.

From the uniqueness of the solution to (3) - (5), we get

u(0) ≡ u, u(1) ≡ 0.

Also the jump condition for u(2) can be derived. Then the equations with boundary
and interface conditions can be solved, and the solutions are piecewise smooth and
bounded. So Û = u+O(h2). The proof of the lemma is completed.

Denote Êh = Û − uh. By applying the Lemma 2 for Êh we obtain
Lemma 5 Under the same conditions of Lemma 2, there holds

∥Êh∥∞ ≤ Ch2,

where C is a constant.
Finally the following error estimate is derived.
Theorem 6 Let u be the solutions of (3)-(5) and uh be the solution of difference

scheme (8) constructed in section 2. Then

∥u(xi)− uh(xi)∥∞ ≤ Ch2,
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Table 1. The L2 and L∞ errors for Example 1, k = 100.

PPPPPPPPMesh
Error

Lu
2 rate Lu

∞ rate

128 7.58e-3 1.74e-2
256 3.82e-3 1.01 9.19e-3 0.95
512 9.44e-4 2.03 2.27e-3 2.01
1204 2.31e-4 2.01 5.56e-4 2.03
2048 5.54e-5 2.04 1.33e-4 2.06

Table 2. The L2 and L∞ errors for Example 1, k = 1000.

PPPPPPPPMesh
Error

Lu
2 rate Lu

∞ rate

128 7.57e-2 1.74e-1
256 3.82e-2 0.98 9.19e-2 0.92
512 9.44e-3 2.01 2.27e-2 2.01
1204 2.31e-3 2.03 5.56e-3 2.03
2048 5.54e-4 2.06 1.33e-3 2.06

where C = ∥u(2)∥∞ +O(1).

Proof Obviously, by Lemmas 3 and 4

∥u(xi) − uh(xi)∥∞ ≤ ∥u(xi)− Ûh(xi)∥∞ + ∥Û(xi)− uh(xi)∥∞

≤ ∥
q−1∑
2

hpu(p)∥∞ +O(h2) ≤ (∥u(2)∥∞ +O(1))h2.

5. Numerical experiments

In this section, we use several numerical experiments to demonstrate the perfor-
mance of the discrete schemes.

Example 1 Consider the computational domain Ω = [0, 1], and the solution
is separated into two parts by the interface at x = α, α = 0.543. The analytical
solution of this problem is given by

u(x, y) =

{
x2, x ∈ (0, α),

κex
2

, x ∈ (α, 1),

The diffusion coefficient is defined as follows

β =

{
κex

2

, x ∈ (0, α),

1, x ∈ (α, 1),

The conservation of the flux on interface is satisfied

[β
∂u

∂x
] = β+ ∂u+

∂x
− β− ∂u−

∂x
= 2κxex

2

− 2κxex
2

= 0, at x = α.

The coefficient λ is given as

λ =
κeα

2 − α2

2καeα2 .

Tables 1 and 2 show the L2 and L∞ norms and convergent rate of unknowns at
the ratio of diffusion coefficient being k = 100 and k = 1000, respectively. From
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Figure 2. The comparison of exact and numerical solutions for
Problem 1.
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Figure 3. The comparison of errors at different mesh numbers
for Problem 1).

these tables, we can see that this method obtains the second order convergent rate
in L2 and L∞ norms of unknowns. It can be concluded that as the ratio of diffusion
coefficient on both side of interface is increase, the convergent rate of unknowns and
discrete flux remains almost same.

Fig. 2 displays the comparison of the numerical solution and exact solution
at k = 100 on the mesh with the number of intervals is 32. It is shown that
the numerical solutions are well matched with the exact solutions, in spite of the
amount of physical jumps on both sides of the interface is much larger. Fig. 3
compares the errors under different mesh size. It can be seen that the errors are
decreasing as the number of mesh point is increasing.

Example 2 Consider the linear problem which solution is separated into three
parts by two interfaces at α1 = 0.3 and α2 = 0.7, respectively. The analytical
solution of this problem is given by

u(x, y) =


κex

2

, x ∈ (0, α1),

x2, x ∈ (α1, α2),

κex
2

, x ∈ (α2, 1),

The diffusion coefficient is defined as follows

β =


1, x ∈ (0, α1),

κex
2

, x ∈ (α1, α2),

1, x ∈ (α2, 1),

Then, the flux on interface is conservative and satisfied the connective condition on
each interface [β ∂u

∂x ]|x=αi = 0, i = 1, 2.
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Table 3. The L2 and L∞ errors for Example 1, k = 100.

PPPPPPPPMesh
Error

Lu
2 rate Lu

∞ rate

128 7.58e-3 1.74e-2
256 3.82e-3 1.01 9.19e-3 0.95
512 9.44e-4 2.03 2.27e-3 2.01
1204 2.31e-4 2.01 5.56e-4 2.03
2048 5.54e-5 2.04 1.33e-4 2.06
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Figure 4. The comparison of exact and numerical solutions at
κ = 100 with different mesh numbers for example 2.
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Figure 5. The comparison of errors at different mesh numbers
for example 2.

Table 3 displays the L2 and L∞ norms and convergent rate of unknowns at
the ratio of diffusion coefficient being k = 100. It can be seen that the numerical
solution achieves second order convergent rate in L2 and L∞ norms.

Fig. 4 displays the comparison of the numerical solution and exact solution
at k = 100 on the mesh with the number of intervals is 64. It is shown that the
presented method is able to capture the discontinuities of the solution and efficiently
fit with the exact solution. Fig. 5 compares the errors under different mesh size.

Example 3 Further, in order to test the efficiency of the presented numerical
method the linear problem with four interfaces is considered. Location of four
interfaces are α1 = 0.1 , α2 = 0.4, α3 = 0.6, and α4 = 0.9, respectively. The
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Table 4. The L2 and L∞ errors for Example 3, κ = 10.

PPPPPPPPMesh
Error

Lu
2 rate Lu

∞ rate

64 5.54e-2 8.44e-2
128 1.48e-2 1.90 2.15e-2 1.97
256 3.63e-3 2.02 4.99e-3 2.10
512 8.99e-4 2.01 1.36e-3 1.87
1024 2.37e-4 1.93 2.85e-4 2.02

Table 5. The L2 and L∞ errors for Example 3, κ = 100.

PPPPPPPPMesh
Error

Lu
2 rate Lu

∞ rate

128 1.07e-1 1.74e-1
256 1.84e-2 2.53 4.91e-2 1.82
512 4.41e-3 2.06 1.45e-2 1.76
1024 1.01e-3 2.12 2.65e-3 2.45
2048 2.44e-4 2.04 6.86e-4 1.95

analytical solution of this problem is given by

u(x, y) =



ex
2

, x ∈ (0, α1),

κex
2

, x ∈ (α1, α2),

x2, x ∈ (α2, α3),

κex
2

, x ∈ (α3, α4),

ex
2

, x ∈ (α4, 1),

The diffusion coefficient is defined as follows

β =



κ, x ∈ (0, α1),

1, x ∈ (α1, α2),

κex
2

, x ∈ (α2, α3),

1, x ∈ (α3, α4),

κ, x ∈ (α4, 1).

Then, the flux on interface is conservative and satisfied the connective condition on
each interface [β ∂u

∂x ]|x=αi
= 0, i = 1, 2, 3, 4.

From Tables 4 and 5, we can see that the presented scheme is able to obtain
almost second order convergent rate in L2 and L∞ norms, even when there are four
interfaces and the ratio of diffusion coefficient varies from 10 to 100.

Fig. 4 compares the numerical solution and exact solution for example 3 at
N = 64 and κ = 100. It is shown that the presented scheme is strong enough to
capture the jump condition on the solution and fit well with the exact solution.
The L2 norm errors under different mesh size are displayed in Fig. 7.

6. Conclusion

A finite difference scheme for elliptic equations with imperfect contact and im-
plicit jump conditions is presented. The key feature of the implicit connection
condition is that the jump qualities of the solution is unknown and related with the
flux across the interface. The second-order difference schemes are constructed for
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Figure 6. The comparison of exact and numerical solutions for
example 3, at N = 64 and κ = 100.
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Figure 7. The comparison of errors at different mesh numbers
for example 3, κ = 100.

one-dimensional elliptic interface problems. The stability and convergence proper-
ty is analyzed for the schemes. Numerical results show that the presented scheme
achieves second-order accuracy for the elliptic interface problems with implicit jump
conditions for both single and multiple interfaces.
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