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REDUCED APPROACH FOR STOCHASTIC OPTIMAL
CONTROL PROBLEMS

LIUHONG CHEN, MEIXIN XIONG, AND JU MING∗

Abstract. In this paper, we develop and analyze the reduced approach for solving optimal
control problems constrained by stochastic partial differential equations (SPDEs). Compared
to the classical approaches based on Monte Carlo method to the solution of stochastic optimal
control and optimization problems, e.g. Lagrange multiplier method, optimization methods based
on sensitivity equations or adjoint equations, our strategy can take best advantage of all sorts of
gradient descent algorithms used to deal with the unconstrained optimization problems but with
less computational cost. Specifically, we represent the sample solutions for the constrained SPDEs
or the state equations by their associated inverse-operators and plug them into the objective
functional to explicitly eliminate the constrains, the constrained optimal control problems are
then converted into the equivalent unconstrained ones, which implies the computational cost for
solving the adjoint equations of the derived Lagrange system is avoided and faster convergent rate
is expected. The stochastic Burgers’ equation with additive white noise is used to illustrate the
performance of our reduced approach. It no doubt has great potential application in stochastic
optimization problems.

Key words. SPDEs-constrained optimization problems, Lagrange multiplier method, the re-
duced approach, Monte Carlo finite element method.

1. Introduction

Over the past decades, the computational community has shown a growing in-
terest in designing fast solution methods for optimal control problems constrained
by stochastic partial differential equations [21,23,24,46,53]. In this case, the Monte
Carlo methods are typically used in conjunction with the associated Galerkin finite
element approximation in space [10,22,28] to overcome the curse of dimensionality,
i.e., the situation in which the volume of the sample space increases exponentially
with the dimension, and obtain a reliable model. However, Monte Carlo simulation
typically requires a large number of sample solutions which may lead to formidable
computational cost. Therefore, effective algorithms are urgently desired to solve
these large-scale SPDE-constrained optimization problems in practice.

In this work, we consider a stochastic optimal control problem with tracking
type objective functional. The control goal is to determine a state variable u and
a deterministic control variable f to minimize

(1) J (u, f) := E

[
1

2

∫ T

0

∥u− U∥2L2(D) dt

]
+

β

2

∫ T

0

∥f∥2L2(D) dt

over a convex, bounded and polygonal spatial domain D ⊂ Rd (d = 2, 3), where
U is a given expected state and usually assumed to be deterministic, E denotes an
expected value, which is defined as the Lebesque integral in a complete probability
space (Ω,F ,P) described in section 2, β is a regularization parameter. u is the
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solution to a given SPDE, i.e., the state equation, which can be written in the
abstract form

(2) A(u, f) = 0,

where the operator A denotes a SPDE equipped with appropriate boundary and
initial conditions. (2) is usually used to model many physical, biological and eco-
nomic systems subject to the influence of randomness. In brief, the constrained
optimization problem we consider is then to find states u and controls f such that
the functional given in (1) is minimized subject to (2).

the minimization in (1) is constrained by (2).
In the study of turbulence phenomena, the Burgers’ equations can be viewed

as a simplified version of the Navier-Stokes equations. Analysis and numerical ap-
proximation of optimal control problems constrained by the Burgers’ equation are
thus important to a variety of more complicated optimization problems in fluid
dynamics. Control problems of the deterministic Burgers’ equation have been s-
tudied by many authors [7,25,27,30,42,48,50–52], and stochastic control problems
in [2, 12, 13, 29]. Here we focus on the case of stochastic Burgers’ equation with
additive white Gaussian noise.

To solve the large-scale optimization problems resulted from the Monte Car-
lo finite element (MC-FE) discretization, the classical approaches, e.g. Lagrange
multiplier method, optimization method based sensitivity equations or adjoint e-
quations [4, 17, 19, 40, 44] require the update of gradient over the samples, thus
demanding repeated and costly sample solutions of the state and adjoint equations
or sensitivity equations. In practice, they are typically not feasible for large-scale
optimization problems due to the unaffordable computational cost for the resulted
optimization system .

In this paper, we proposed the reduced approach to the stochastic optimal con-
trol problems. The reduced approach has been used to solve PDE-constrained
optimization in inverse problems [31], but there are very rare literatures exploring
the application of reduced approach to the stochastic optimization problems. For
the solvability of the optimal control problems, in literature, there are two different
strategies: Discretize-then-Optimize approach [32, 35, 39, 40] and Optimize-then-
Discretize approach [32, 36, 37, 41, 45, 46], the former approach is to discretize the
continuous problem and then accordingly derive for the optimality conditions, while
the latter one refers to optimality condition on the continuous level is formulated
first and then discretized. In our reduced approach, the Discretize-then-Optimize
strategy will be adopted. Specifically, we first discretize the objective functional
and the state equations, then we represent the sample solutions for the constrained
SPDEs by their associated inverse-operators G and plug them into the discrete ob-
jective functional to explicitly eliminate the constrains. This elimination leads to a
reduced objective functional Ĵ (G(f), f). The derived reduced system no longer has
to solve the adjoint equations, but directly obtains the gradient direction through
the chain rule. From the optimization point of view, the reduced approach can
make full use of various gradient descent algorithms for unconstrained optimization
problems and has low computational cost. Numerical experiments also show that
the new technique works well. Moreover, much of our results and computations can
be readily extended to to other optimization control problems. Figure 1 presents
the outline of our optimization algorithm.

The remainder of this paper is organized as follows. In Section 2.1, we give
a brief overview of some function spaces and notations. And the approximation
of Brownian white noise via piecewise constant functions are discussed in Section
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Figure 1. The outline of the reduced approach, where J is the
cost functional, Jh,K its MC-FE approximation with mesh spacing
h and sample size K, and f∗

h the numerical approximation using a
specific optimization algorithm.

2.2. The stochastic control problem constrained by Burgers’ equation with additive
white noise is introduced in Section 3, as well as its the optimality system is derived
by using the Lagrange multiplier method. Next, in Section 4, the reduced approach
for solving the large-scale SPDE-constrained optimization problems is illustrated.
In Section 4.1, we introduce the MC-FE approximation by sampling white noise
for the constrained SPDE and the cost functional. The analyses of the reduced
approach including algorithm implementation and complexity estimation are pre-
sented in Section 4.2 and 4.3. Numerical experiments are presented to illustrate the
efficiency of the reduced approach in Section 5. Finally, in Section 6, we provide
some concluding remarks.

2. Preliminaries

2.1. Function spaces and notation. We begin by recalling some function spaces
and notations. Throughout this paper, we use the standard notations for Sobolev
spaces ( see e.g., [1] ). Let Lp (D) , 1 ≤ p ≤ ∞, denote usual Lebesgue space; ∥·∥ =
∥·∥L2(D) denote the L2 (D)-norm induced by the inner product ⟨f, g⟩ =

∫
D fgdD,

∀f, g ∈ L2 (D). Hr (D) is a Sobolev space for all real numbers r with norms
∥y∥Hr(D) and semi-norm |y|Hr(D), where

∥u∥2Hr(D) =
∑
|α|≤r

∥∥∥∥∂|α|u

∂xα

∥∥∥∥2
L2(D)

and

|u|2Hr(D) =
∑
|α|=r

∥∥∥∥∂|α|u

∂xα

∥∥∥∥2
L2(D)

.

Sobolev spaces

H1 (D) =
{
y ∈ L2 (D) , ∂xiy ∈ L2 (D) , i = 1, · · ·n

}
and

H1
0 (D) =

{
y ∈ H1 (D) , y |∂D= 0

}
.

Clearly, H1
0 (D) ⊂ H1 (D).
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We define the Hilbert space

L2 (0, T ;Hr(D)) =

{
y(t) ∈ Hr(D),

∫ T

0

∥y∥Hr(D)dt < ∞

}
,

equipped with the norm

∥y∥L2(0,T ;Hr(D)) =

(∫ T

0

∥y(t)∥2Hr(D) dt

) 1
2

.

The mathematical formulation of a probability space denotes by (Ω,F ,P), where
Ω, F and P are a set of random events, the minimal σ-algebra of subsets of Ω and
the probability measure, respectively.

If X is a real random variable in (Ω,F ,P), we denote its expected value by

E(X) =

∫
Ω

X(ξ)P(dξ) =
∫
Rn

xp(dx).

Here p is the distribution probability measure for X, defined on the Borel set B of
R, given by p(B) = P(X−1(B)).

Define the stochastic Sobolev space as

L2
(
Ω;L2 (0, T ;Hr(D))

)
=
{
y : Ω → L2 (0, T ;Hr(D)) ,E

[
∥y∥2L2(0,T ;Hr(D))

]
< ∞

}
with the norm ∥y∥L2(Ω;L2(0,T ;Hr(D))) = E

[
∥y∥2L2(0,T ;Hr(D))

]
. The stochastic Sobolev

space L2
(
Ω;L2 (0, T ;Hr(D))

)
is a Hilbert space and is isomorphic to the tensor

product space L2(Ω) ⊗ L2 (0, T ;Hr(D)) [?]. We define the space-time cylinder
Q = (0, T ]×D for given T > 0. For simplicity, we set

Hr (Q) = L2
(
Ω;L2 (0, T ;Hr(D))

)
, Hr

0 (Q) = L2
(
Ω;L2 (0, T ;Hr

0 (D))
)
.

2.2. The approximation of Brownian white noise. Following [3, 15, 49], we
regularize the noise through discretization. For simplicity, we divide the time inter-
val [0, T ] into Nt subintervals of duration ∆t = T/Nt, where tm = m∆t, 0 = t0 <

t1 < · · · < tNt = T . For the representation of the white noise Ẇ (t) = dW (t)/dt we
employ the piecewise constant approximation [15] defined as

(3)
dŴNt(t; ξ)

dt
=

1√
∆t

Nt−1∑
n=0

χn(t)ηn(ξ),

where the independent and identically distributed (i.i.d.) ηn satisfies the standard
normal distribution N (0, 1) and the characteristic function χn is given by

√
∆tηn =

∫ tn+1

tn

dW (t) and χn(t) =

{
1 if t ∈ [tn, tn+1),
0 otherwise.

W (t) is the standard one-parameter family Brownian white noise that satisfies
E
(

dW (t)
dt · dW (t′)

dt′

)
= δ(t− t′) where δ denote the usual Dirac δ-function. Then, for

the piecewise constant approximation dŴNt

dt to is given by

E

(
dŴNt(t)

dt
· dŴNt(t

′)

dt′

)
=

{
1/∆t if t, t′ ∈ [tn, tn+1),
0 otherwise.

Hence,

lim
Nt→∞

E

(
dŴNt(t)

dt
· dŴNt(t

′)

dt′

)
= δ(t− t′).
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Therefore, the representation (3) provides a numerical approximation of Brownian
white noise.

In addition, for a deterministic function f , we can show (see [6]) that if

|f(t)− f(s)|
|t− s|

≤ κ,

then there exists a constant C(T, κ) depending on T and κ such that

(4) E

[∫ T

0

f(t)dW (t)−
∫ T

0

f(t)dŴNt(t)

]2
≤ C(T, κ)∆t2.

3. The distributed control problem

In this work, we consider a stochastic optimal control problem where the objec-
tive functional is of a velocity tracking type, the stochasticity arises from governing
system defined by the stochastic Burgers’ equations with additive white noise.

3.1. Formulation of the distributed control problem. The control problem
for the viscous Burgers’ equations with additive white noise can be stated as follows:

(5) minJ (u, f) := E

[
1

2

∫ T

0

∥u− U∥2 dt

]
+

β

2

∫ T

0

∥f∥2 dt,

subject to (s.t.)

(6)


ut − ν∆u+ uux = f + ϕ(t,x)Ẇ (t; ξ), (t,x) ∈ Q, ξ ∈ Ω,

u(t,x; ξ) = 0, (t,x) ∈ Σ, ξ ∈ Ω,

u(0,x; ξ) = u0(x), x ∈ D, ξ ∈ Ω.

Where u and U denote the state variable and the desired state, respectively, ν the
constant kinematic viscosity, u0 a given initial condition. D ⊂ R2 is a bounded
spatial domain and ∂D denotes its boundary. We define x = (x, y), Q = (0, T ]×D
and Σ = (0, T ] × ∂D for given T > 0. For the state variable u, we note that
ux = ux + uy, Here ux and uy denote the derivatives of x and y, respectively.
We allow the force term to contain a stochastic perturbation that is modeled by
Brownian white noise Ẇ (t). ϕ(t,x) is an amplification factor of Brownian white
noise. f is a deterministic control which is assumed measurable with respect to the
σ-algebras B([0, T ])× B(D). The nonempty admissible set S is given by

(7) S =
{
f ∈ L2(0, T ;L2(D)) : f(t,x) ≥ 0, ∀(t,x) ∈ [0, T ]×D

}
.

The optimization problem we consider is to find an optimal state u and an
optimal control f such that the functional J (u, f) defined in (5) is minimized
subject to u, f satisfying the stochastic Burgers’ equation (6). In this paper, we
assume U is deterministic.

Generally, when discussing the stochastic process u(t,x; ξ), we will omit the
explicit dependence on the probability space, treating each realization as a deter-
ministic PDE. For almost every (a.e.) ξ ∈ Ω, a given initial condition u0 ∈ H1

0 (D)
and for the control f ∈ L2(L2(0, T ;L2(D))), the existence and uniqueness condi-
tions for the weak solution of the unsteady Burgers equations have already been
studied, see [48] for more details.
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3.2. Stochastic optimality system. The constrained problem (5) and (6) may
be recast as unconstrained optimization problems through the Lagrange Multiplier
method [4, 38, 47]. The first-order necessary conditions result in an the optimality
system from which optimal states and controls can be determined.

In the following, we will take the state space Y = H1
0 (Q) and the control space

Z = L2(0, T ;L2(D)). By defining two bilinear forms

b [u, v] = E
[∫

D
ν∇u · ∇vdD

]
and [f, v] = E

[∫
D
fvdD

]
and the trilinear form

c [u, v, w] = E
[∫

D
u · vx · wdD

]
,

for any u, v, w ∈ Y and f ∈ Z. We note that vx = vx + vy.
Then, a weak formulation of (6) reads: find u ∈ Y such that

(8) [ut, v] + b [u, v] + c [u, u, v] = [f, v] +
[
ϕẆ , v

]
, ∀v ∈ Y, t ∈ (0, T ].

Our problem now can be described, in short, as

(9) seek (u, f) ∈ Uad such that J (u, f) is satisfied s.t. A(u, f) = 0,

where the admissibility set for the state and control variables is defined by

(10) Uad = {(u, f) ∈ Y ⊗ S such that (8) is satisfied and J (u, f) < ∞} .
J (u, f) and A(u, f) = 0 are given by (5) and (6) respectively.

Lemma 3.1. It follows from Lions [34] and Fursikov [16] that the distributed op-
timal control problem (9) has a unique solution pair (u, f) ∈ Uad. By defining the
Lagrangian functional

L(u, f, λ) := J (u, f)−
∫ T

0

{
[ut, λ] + b [u, λ] + c [u, u, λ]− [f, λ]−

[
ϕẆ , λ

]}
dt

for any (u, f, λ) = Y ⊗S⊗Y . A pair (u, f) is the solution of (9) if and only if there
is a co-state variable λ ∈ Y , such that the triplet (u, λ, f) satisfies the following
optimality system:

[ut, v] + b [u, v] + c [u, u, v] = [f, v] +
[
ϕẆ , v

]
, ∀v ∈ Y, t ∈ (0, T ].(11)

[λt, ζ]− b [λ, ζ] + c [u, λ, ζ] = [U − u, ζ] , ∀ζ ∈ Y, t ∈ (0, T ].(12) ∫ T

0

[βf + λ, ϑ− f ] dt ≥ 0, ∀ϑ ∈ S.(13)

u|t=0 = u0;λ|t=T = 0.(14)

Further, the directional derivative of Ĵ (f) = J (u(f), f) at f ∈ S along the
direction δf is

(15) Ĵ
′
(f)(δf) =

∫ T

0

[βf + λ, δf ] dt.

The optimality system (11)-(14) is a system of coupled partial differential e-
quations whose solution yields the optimal control f , the optimal state u and the
optimal adjoint λ. For the optimality system (11)-(13), the simplest form of this
iteration is to

• guess values for the control f ;
• solve the state system (11) for the state u;
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• solve the adjoint system (12) for the adjoint λ;
• find new value of the control from the optimality condition (13).
This process is repeated until satisfactory convergence we hope is achieved. It

can be shown (see, e.g., [20]) that this simple iterative method is equivalent to a
steepest descent algorithm with a fixed step size. Clearly, such method requires the
repeated solution of state and adjoint equations in the iterative stages. They are
typically not feasible for large-scale problems since we cannot afford to solve a large
number of state and adjoint equations.

Obviously, it is desirable to explore better ways that can provide the gradient
computation with relatively few equations being performed per iteration, so as to
achieve the purpose of significantly lessening the computational time.

4. Reduced Approach

In this section, we develop and analyze the reduced approach for solving sto-
chastic optimal control problems constrained by SPDEs. Compared to the popular
approaches based on Monte Carlo method to the sample solution of stochastic op-
timal control problems, e.g. Lagrange multiplier method introduced in section 3.2,
our approach makes full use of the advantages of various gradient descent algorithms
for unconstrained optimization problems and has less computational cost.

4.1. The Monte Carlo finite element method. In our approach, the strategy
we adopt is Discretize-then-Optimize. We begin by discretizing the optimal control
problem given in (5) and (6). (4) implies that if the interval ∆t is sufficiently small,

then dŴNt (t;ξ)

dt is a good approximation to Ẇ (t). Therefore, a large time interval
subdivision Nt may be required for the accurate representation of the white noise,
which would result in a high-dimensional problem. As such, the Monte Carlo finite
element method ( [22]) is a natural choice for numerical implementation to lessen the
curse of dimensionality. We would try to approximate the integral E(·) numerically
by sample averages of realizations corresponding to i.i.d. random inputs, which
in our case refer to the additive temporal white noise in equation (6). On the
other hand, the standard finite element method is used to effect discretization with
respect to (w.r.t.) the spatial variable x ∈ D.

Now let us investigate the structure of the algebraic system to the discretized
stochastic optimal control problem. We consider a shape regular mesh Th of D with
maximum mesh size h > 0. u is approximated in the finite element space Vh ⊂
H1

0 (D). Let {φj(x)}Ns

j=1 are the basis functions of the space Vh. We approximate
the state u and the control f by functions uh(t,x; ξ) and fh(t,x), respectively.
Then we have

uh(t,x; ξ) =

Ns∑
j=1

uj(t; ξ)φj(x) and fh(t,x) =

Ns∑
j=1

fj(t)φj(x),

and (6) may be expressed as
Ns∑
j=1

duj

dt

∫
D
φjφidD + ν

Ns∑
j=1

uj

∫
D
∇φj · ∇φidD

+

∫
D

(
Ns∑
k=1

uk
∂φk

∂x

) Ns∑
j=1

ujφj

φidD =

∫
D

 Ns∑
j=1

fj(t) + ϕ(t,x)Ẇ (t)

φidD,

for i = 1, · · · , Ns. Here we set ∂φk

∂x = ∂φk

∂x + ∂φk

∂y .
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Equivalently, the semi-discrete system resulting from a finite element discretiza-
tion of the Burgers’ equations constitutes a nonlinear system of algebraic equations:

(16) G
d

dt
u(t; ξ) + νKu(t; ξ) + N(u(t; ξ)) = Gf(t) +W, t ∈ (0, T ],

where the Gram matrix G ∈ RNs×Ns , stiffness matrix K ∈ RNs×Ns and nonlinear
vector function N(u(t; ξ)) ∈ RNs and W ∈ RNs are respectively given by

Gij =

∫
D
φjφidD, Kij =

∫
D
∇φj · ∇φidD,

Ni =

∫
D

∂φj

∂x
φkφidDuk(t)uj(t), Wi =

∫
D
(ϕẆ (t))φidD,

u(t; ξ) = (u1(t; ξ), · · · , uNs(t; ξ))
T and f(t) = (f1(t), · · · , fNs(t))

T .

The objective functional can be also discretized by the piecewise quadratic finite
elements as:

Jh(u,f) = E

[∫ T

0

1

2
(u(t; ξ)−U(t))

T G (u(t; ξ)−U(t)) dt

]
+

∫ T

0

β

2
fTGfdt,

where (U(t))i =
∫
D U(x, t)φi(x)dD.

Given the K i.i.d. sample realizations of the white noise function dŴNt (t;ξk)

dt , k =

1, · · · ,K, we denote uk
m = u(tm; ξk), Um = U(tm) and fm = f(tm) at the different

time-step m = 0, 1, · · · , Nt. The nonlinear convective term may be linearized by
Newton’s method [18] at each time iteration step of the evolution process to handle
the nonlinearity. This scheme is a semi-implicit method if we perform only one
Newton iteration at each time step (see [18], Chapter 10). Stability and convergence
of the semi-implicit scheme for the Burgers’ equation in [5]. Moreover, using the
rectangle rule in time leads to the following discrete objective functional
(17)

Jh,K

(
u⃗, f⃗

)
=

1

K

K∑
k=1

Nt∑
m=1

∆t

2

(
uk
m −Um

)T G
(
uk
m −Um

)
+

Nt∑
m=1

β∆t

2
fT
mGfm.

We set f⃗ = (f1, · · · ,fNt) and u⃗ = (u1, · · · ,uNt).
(
uk
1 , · · · ,uk

Nt

)T are the solution
of the backward Euler difference discretized approximation form for the Burgers’
equations:

(18)


(
G+ ν∆tK+∆tB(uk

m) + ∆tC(uk
m)
)
uk
m+1 −

(
G+∆tC(uk

m)
)
uk
m

−∆tŴm+1 = ∆tGfm+1,
u(0; ξk) = u0,

for m = 0, 1, · · · , Nt, k = 1, · · · ,K, u0 = (u0(x1), · · · , u0(xNs))
T and

Ŵm =

∫
D
(ϕ

dŴNt(tm)

dt
)φidD, (B)ij =

∫
D
u
∂φi

∂x
φjdD, (C)ij =

∫
D
uxφiφjdD.

The discretized optimal control problem is then given as follows: minimize Jh,K

subject to the K realizations (18) of the constrained equations. After having derived
the discreted system corresponding to the optimal control problem, we need to
discuss how to solve this system efficiently.



REDUCED APPROACH FOR STOCHASTIC OPTIMAL CONTROL PROBLEMS 245

4.2. Reduced approach. To solve the coupled optimality system by the La-
grange Multiplier method requires solving a large number of constrained SPDEs or
state equations and adjoint equations at each update, which forces us to expect an
effective method with lower computational cost and faster convergence speed. Most
widely applied optimization algorithms use the gradient of the objective function-
al w.r.t. the controls to determine the descent direction. A typical optimization
algorithm proceeds as follows.

Algorithm 1 Gradient-based algorithm

Input: initial guess f⃗ (0) for the control variable
Output: optimal control f⃗ (∗)

1: For ℓ = 0, 1, 2, ..., until satisfactory convergence is achieved;
2: Solve (18) to obtain the corresponding state u⃗k,(ℓ) = u(f⃗ (ℓ)) for k = 1, · · · ,K;
3: Compute the gradient of the functional ∇J (ℓ)

h,K ;
4: Use the results of step 3 to compute a step δf⃗ (ℓ);
5: Set f⃗ (ℓ+1) = f⃗ (ℓ) + δf⃗ (ℓ);
6: return f⃗ (ℓ)

Here, we focus on Step 3. It will be important to investigate the possibilities of
computing the derivative of the reduced objective function Ĵh,K . After having de-
rived the discrete system (17) and (18), the so-called reduced approach we propose
is based on a elimination of the constraints to formulate an unconstrained opti-
mization problem. We represent the sample solutions for the constrained SPDEs
or the state equations by their associated inverse-operators. For mth time step of
the kth realization, we rewrite the discrete system (18) as

uk
m+1 :=

[
G+ ν∆tK+∆tB(uk

m) + ∆tC(uk
m)
]−1[(

G+∆tC(uk
m)
)
uk
m +∆tGfm+1 +∆tŴm+1

]
.

(19)

Accordingly, we denote the inverse-operator

(20) Gk
m :=

[
G+ ν∆tK+∆tB(uk

m) + ∆tC(uk
m)
]−1

.

In order to emphasize the dependence of uk
m+1 and fm+1, we will omit the other

terms in (19). Let uk
m+1 := Gk

m(fm+1) denote the dependence. In this case there
exists a unique vector uk

m+1 for any fm+1. We plug it into the objective functional
to explicitly eliminate the constrains, the constrained optimal control problem is
then converted into the equivalent unconstrained problem. The discretized, reduced
optimal control problem is as follows:

Ĵh,K

(
f⃗
)
=

1

K

K∑
k=1

Nt∑
m=1

∆t

2

(
Gk
m−1(fm)−Um

)T G
(
Gk
m−1(fm)−Um

)
+

Nt∑
m=1

β∆t

2
fT
mGfm.(21)

Assume that when we are going to update the control fm of the current instant
tm, the control at the previous m− 1 instant has been updated, that is, the update
of the control variable at tm is independent of the previous m − 1 instant. Based
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on the chain rule, we can find the gradient directly of the unconstrained reduced
objective functional at each time step tm,m = 0, 1, · · · , Nt

(22) ∇Ĵh,K(fm) =
DĴh,K

Dfm
=

1

K

K∑
k=1

(
duk

m

dfm

)T
∂Ĵh,K

∂uk
m

+
∂Ĵh,K

∂fm
.

The terms ∂Ĵh,K/∂uk
m and ∂Ĵh,K/∂fm are usually easy to determine. The terms

∂Ĵh,K/∂uk
m and ∂Ĵh,K/∂fm of the unconstrained optimization problem (21) are:

(23)
∂Ĵh,K

∂uk
m

= ∆tG
(
Gk
m−1(fm)−Um

)
,

∂Ĵh,K

∂fm
= β∆tGfm.

By direct differentiation of the state discrete algebraic systems (19) w.r.t the control
fm, the sensitivities duk

m/dfm can be directly written as

(24)
duk

m

dfm
=
[(
G+ ν∆tK+∆tB(uk

m−1) + ∆tC(uk
m−1)

)]−1
∆tG.

Substitute (23) and (24) into (22), the forms of the gradient of Ĵh,K are given by

∇Ĵh,K(fm) =
1

K

K∑
k=1

{[(
G+ ν∆tK+∆tB(uk

m−1) + ∆tC(uk
m−1)

)]−1
∆tG

}T

∆tG
(
uk
m −Um

)
+ β∆tGfm,

(25)

for the m = 1, 2, · · · , Nt. Moreover, it should be noted that gradient computation
depends on the selection of time discrete scheme for time-dependent optimization
problems.

Formulation (25) implies that via the reduced approach, the gradient of the
reduced objective functional could be obtained directly and the computational cost
for solving the adjoint equations of the derived Lagrange system is saved. Moreover,
the reduced objective functional satisfies the constraint condition in each iteration
in the reduced approach.

A basis Steepest descent method algorithm for minimizing Ĵh,K via the reduced
approach is given in Algorithm 2. If the algorithm terminates successfully, the final

iterates additionally satisfy
∣∣∣Ĵ (ℓ)

h,K−Ĵ (ℓ+1)
h,K

∣∣∣∣∣∣Ĵ (ℓ)
h,K

∣∣∣ ≤ ϵ or
∥∥∥∇Ĵ (ℓ)

h,K

∥∥∥ ≤ ϵ.

For Step 9 of Algorithm 2, one can use one’s favorite optimization method [43]
for δf

(ℓ)
m , e.g., Newton method [11, 33], quasi-Newton method [8, 9], trust region

method [14,26], etc. Since it is not the focus in our work, we will not go into details
here. For the numerical experiment in Section 5, we will give the optimization
results of few optimization method.

4.3. Computational complexity estimates. From Section (4.2), we know that
the computational cost for solving the adjoint equations of the derived Lagrange
system is avoided for the reduced approach, but directly solves the gradient of the
reduced objective functional. A summary of the computational costs per iteration
of Lagrange Multiplier method (LMM) and the reduced approach (RA) is given in
Table 1. The symmetric, positive definite coefficient matrix G,M does not change
from time step to time step, so that it needs to be factored only once for the
numerical implementation. In addition, it is also noted that both methods adopt
the steepest gradient descent method, so the number of optimization iterations of
reduced approach is not more than that of Lagrange multiplier method. We can
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Algorithm 2 Steepest descent method algorithm for minimizing Ĵh,K via the
reduced approach.
Input: A tessellation Th of D, time step ∆t, interval size Nt.
Output: Numerical optimal control f⃗ (∗).
I. Initialization.
1: Construct Vh ⊂ H1

0 (D), initial control guess f (0), step size γ, tolerance ϵ, ℓ = 0.

2: Sample the piecewise constant white noise dŴNt (t,ξk)

dt , k = 1, · · · ,K.

3: Solve u
k,(ℓ)
m := Gk

m−1

(
f
(ℓ)
m

)
for k = 1, · · · ,K; m = 1, · · · , Nt.

II. Optimization loop.

4: while

∣∣∣Ĵ (ℓ)
h,K−Ĵ (ℓ+1)

h,K

∣∣∣∣∣∣Ĵ (ℓ)
h,K

∣∣∣ ≤ ϵ or
∥∥gk,(ℓ)

∥∥ ≤ ϵ do

5: for k = 1, · · · ,K do
6: Compute the reduced gradient g

k,(ℓ)
m by (25) of Ĵ (ℓ)

h,K

gk,(ℓ)
m =

{[(
G+ ν∆tK+∆tB(uk,(ℓ)

m−1) + ∆tC(uk,(ℓ)
m−1)

)]−1

G
}T

∆tG
(
uk,(ℓ)
m −Um

)
+ β∆tGf (ℓ)

m , for m = 1, · · · , Nt.

7: end for
8: g

(ℓ)
m = 1

K

∑K
k=1 g

k,(ℓ)
m , use g

(ℓ)
m to compute a step δf

(ℓ)
m for m = 1, · · · , Nt.

9: Choose δf
(ℓ)
m = −γg

(ℓ)
m with step size γ,

f (ℓ+1)
m = f (ℓ)

m + δf (ℓ)
m for m = 1, · · · , Nt.

10: Solve u
k,(ℓ+1)
m := Gk

m−1

(
f
(ℓ+1)
m

)
for k = 1, · · · ,K; m = 1, · · · , Nt.

11: ℓ = ℓ+ 1.
12: end while
13: return f

(∗)
m := f

(ℓ)
m ,m = 1, · · · , Nt.

Table 1. Computational and storage costs per iteration of differ-
ent methods; K denotes the number of realizations and Ns denotes
the spatial dimension and Nt denotes the number of parameters.

Method # PDE’s # Storage

Lagrange Multiplier method 2K (2KNs + 1)Nt

Reduced approach K (KNs + 1)Nt

also view that the number of iterations of the reduced approach (TRA) is much
smaller than that of the Lagrangian multiplier method (TLMM) from the numerical
experiment results in Section 5. We have

(26) O (KTRA)) ≪ O (2KTLMM) .

5. Numerical experiments

In this section, numerical experiments on the stochastic control problem (9) are
presented to validate the effectiveness of our proposed reduced approach. We carry
out simulations by using MATLAB R2017a software on an Intel Xeon W machine
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with 256GB of memory. The examples demonstrate that the reduced approach
does a very good job of stochastic optimal control problems.

The numerical examples are tested for the above algorithm with following setting.
Our model problem has the desired state

U(x, t) = (1 + t2) sin(2πx) sin(2πy).

The Figure 2 shows the desired state at t = 0.2, 0.5, 0.8.

t=0.2

0  0.5 1  
0

1

-1

0

1
t=0.5

0  0.5 1  
0

1

-1

0

1
t=0.8

0  0.5 1  
0

1

-1

0

1

Figure 2. Desired state at t = 0.2, 0.5, 0.8.

We choose the domain D = [0, 1] × [0, 1], x = (x, y). The initial control guess
can be chosen arbitrarily as long as the boundary conditions on u are not violated,
here we let f = 0. The initial state is chosen as

u0(x) = sin(πx) sin(πy).

We choose the viscosity constant ν = 0.01, regularization parameter β = 1× 10−4

and the time step ∆t = 0.005 for the computation. The Taylor-Hood elements
are utilized to effect discretization w.r.t. the spatial variable x. In addition, the
tolerance parameter ϵ = 1× 10−3.

For t ∈ [0, T ], the temporal white noise dW (t; ξ)/dt can be approximated by

dŴNt(t; ξ)

dt
=

σ√
∆t

Nt−1∑
i=0

χi(t)ηi(ξ).

Figure 3 shows the average values of dW (t; ξ)/dt by taking K = 100 realizations,
where we set σ = 0.1 and ϕ(x) = 10 cos(x1) sin(x2). Specifically, we plot the
approximation

EK (dW (t; ξ)/dt) =
1

K

K∑
k=1

dŴNt(t; ξk)

dt

of the expect value E (dW (t; ξ)/dt) of dW (t; ξ)/dt.
The computational results obtained by implementing Algorithm 2 with the above

data are presented in graphical form. The effect of the above optimization algorithm
is presented in Figure 4 and 5. In Figure 6 we show the optimal control obtained
when the stopping criterion was met.

We present the comparison results of the Lagrangian multiplier method and the
reduced approach. In order to demonstrate and isolate the stochastic effects, we first
consider the two methods with constant step sizes. The step size is related to the
derived gradient scheme (25). The gradient scheme contains ∆t2. In our numerical
experiment,∆t taken as 1/200, which leads to the small value. In addition, this
is also different from the gradient scheme on the whole time integral derived by
Lagrange multiplier method. In order to eliminate the stochastic effects, we set
that the increment in the control variable δf⃗ of the two methods are on the same
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Figure 3. The red dotted lines present the realizations of the
white noise dW (t; ξ)/dt. The blue line presents the approximation
of expected value EK (dW (t; ξ)/dt).
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Figure 4. Row 1 is the sample of the initial state u(0) without
control at t=0.2, 0.5, 0.8, respectively. Row 2 is the sample of the
controlled stochastic state at t=0.2, 0.5, 0.8, respectively.

order of magnitude at the initial iteration ℓ = 0. Hence, the step size of the reduced
approach at the initial iteration ℓ = 0 reached the order of 107 in our experiment.
Both of them choose the steepest descent direction of the move to the next iterate.
The control results including step size, iterations, CPU times, time per iteration,
the initial objective functional Ĵ (0)

h,K , the final objective functional Ĵ (∗)
h,K and the

ratio Ĵ (∗)
h,K/Ĵ (0)

h,K are shown in Table 2.
In this case, We can clearly see that the advantages of our method are further

magnified in Table 2. The CPU time per iteration has been reduced by more than
60 seconds! In addition, the number of iterations of the reduced approach satisfying
the same termination condition is much less than that of the Lagrange multiplier
method. We know that with the increase in the number of iterations, the computer
performance will decline, resulting in a longer execution time. The CPU time of the
LMM simulation is 7.9×104 seconds, and the CPU time of RA is 2.1×104 seconds.
The RA reduces the computational cost by about 73%. Since the optimality system
derived by the Lagrangian multiplier method needs to solve the state equations and
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Figure 5. Row 1 is the mean of the initial state u(0) without
control at t=0.2, 0.5, 0.8, respectively. Row 2 is the mean of the
controlled stochastic state at t=0.2, 0.5, 0.8, respectively.
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Figure 6. Optimized control f at t=0.2, 0.5, 0.8, respectively.

adjoint equations of K samples at each iteration, the high computational cost is
unaffordable for large-scale problem!

Table 2. Simulation results of Lagrange multiplier method and
the reduced approach.

step
size

iteration
CPU
times

time per
iteration

Ĵ (0)
h,K Ĵ (∗)

h,K Ĵ (∗)
h,K/Ĵ (0)

h,K

LMM 1 413 79335s 192.1s 0.3436 0.0070 0.0203
RA 107 164 21328s 130.0s 0.3436 0.0064 0.0186

The remarkable thing is that the reduced approach does not need to calculate
the adjoint equations, which is equivalent to decoupling the adjoint variables and
the state variables. In the implementation of the algorithm, we can pre-store the
state variables of Nt instants (possibly increase the storage), and then compute the
gradient of each time step in parallel. Such processing may further speed up the
algorithm’s execution time. This makes the approach more attractive for large-scale
problems from a computational point-of-view.

We present the convergence history of the online iteration with objective func-
tional. As observed from the Figure 7, the reduced approach converge faster than
the Lagrange Multiplier method.
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Figure 7. (a) The convergence history of the objective functional
during the iteration. (b) The objective functional for the first 20
steps of iteration.

Clearly, our approach can directly apply all types of gradient descent algorithms
designed for the unconstrained optimization problems. We now use several widely
used optimization algorithms to illustrate the advantages of the our method. New-
ton and quasi-newton methods take the constant step sizes. For the line search
methods, we employ the Weak Wolf condition. As can be observed from Table 3,
the optimization algorithm based on the reduced approach do a good job for solv-
ing the stochastic control problem proposed in this work. Obviously, the numerical
results fully prove the effectiveness and advantages of our proposed algorithm.

Table 3. Simulation results for other unconstrained optimization
algorithms with the reduced approach.

step
size

iteration
CPU
times

time per
iteration

Ĵ (0)
h,K Ĵ (∗)

h,K Ĵ (∗)
h,K/Ĵ (0)

h,K

Newton 10−2 69 22774s 330.1s 0.3436 0.0063 0.0183
Line search 107 61 32386s 530.9s 0.3436 0.0059 0.0172

BFGS 10−2 89 17818s 200.2s 0.3436 0.0067 0.0195

6. Conclusions

In this paper, we show how the reduced approach is used to efficiently obtain
accurate approximations of the solutions of optimal control problems for stochas-
tic Burgers’ equation with additive white noise. The method is based on the so-
called Discretize-then-Optimize strategy. For numerical discretization, the MC-FE
method is adopted to overcome the curse of dimensionality. For the solution of such
a large-scale SPDEs-constrained optimization problem, we present the reduced ap-
proach. Unlike the classical approaches, Lagrange multiplier method, optimization
method based sensitivity equations or adjoint equations, the proposed reduced ap-
proach directly plug the sample solutions of the constraints (18) into the discretize
objective functional (17) to explicitly eliminate the constrains. This reformulation
results in an equivalent unconstrained optimization problem. The reduced approach
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does not require the computational cost of solving the adjoint equations of the La-
grange system, and it can also take great advantage of all types of gradient descent
algorithms. This makes the approach more attractive for large-scale problems from
a computational point-of-view. Numerical results on optimal control problems for
stochastic Burgers’ equation with additive white noise validate the feasibility and
the effectiveness of the proposed methods.

However, there are still many open questions to be answered, for examples,
although the reduced approach shows significant improvement, theoretical analysis
is still absent. In addition, although the reduced approach has been proposed a
long time ago, there may be two reasons why it has not been widely studied and
applied. One is that for a given control f , when the state equation A(u, f) = 0 does
not have a solution or it has infinitely many solutions, it is not always clear that it
can be used. For example, the Navier-Stokes equation is only guaranteed to have a
unique solution if µ is large (Reynolds number is small) relative to control f . The
other is that the reduced approach leads to perform large-scale matrix operations.
For higher-dimensional problems, this may increase the computational cost. The
effectiveness of the reduced approach needs to be studied. We hope that in the near
future, we will be able to find answers to these questions.
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