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APPROXIMATE SOLUTION OF A NONLINEAR

FRACTIONAL-ORDER HIV MODEL USING HOMOTOPY

ANALYSIS METHOD

PARVAIZ AHMAD NAIK, MOHAMMAD GHOREISHI, AND JIAN ZU∗

Abstract. In the present paper, we propose and analyze a nonlinear fractional-order SEIR

(susceptible-exposed-infected-recovered) epidemic model to transmit HIV. The fixed points of the
model and their stability results are obtained. Using the fractional derivatives, we relied on the
Caputo fractional derivative. Further, we employed the homotopy analysis method (HAM) to
get an approximate solution of the dynamic fractional derivatives of the model. The purpose of

using HAM as a solution technique is its reliability, easy to handle, that utilizes a simple process
to adjust and control the convergence region of the obtained infinite series solution. It uses
an auxiliary parameter and allows to obtain a one-parametric family of explicit series solutions.

Firstly, several ~-curves are plotted to demonstrate the regions of convergence, then the residual
and square residual errors are obtained for different values of these regions. In the end, numerical
solutions are presented for various iterations to show the accuracy of the HAM. Besides, the
convergence theorem of HAM is also proved. The obtained results show the effectiveness and

strength of the applied HAM on the proposed fractional-order SEIR model. Also, from the
sensitivity analysis results, it is seen that the parameters µ and σ are more sensitive than ϵ and
ρ in disease transmission.

Key words. SEIR epidemic model, Caputo fractional derivative, Homotopy analysis method,

Stability analysis, Basic reproduction number R0.

1. Introduction

The increased logicality of modern computer capability has enhanced the prospec-
t of mathematical modeling extraordinarily makes it possible to study very complex
systems in a better way. Epidemiology in medicine deals with infectious and non-
infectious diseases for their incidence, distribution, and possible control, and other
factors relating to health. Initially, the branch was limited to infectious diseases,
but nowadays, it finds applications to other diseases. HIV is the virus that causes
destruction of the immune system by lowering down the CD4+ T-cells that fight
infection and makes the person host for many diseases that causes death. HIV has
become the first global pandemic incurable due to the nonavailability of possible
vaccines and is one of the major public health problems in the world today [1, 2, 3].
HIV will not survive outside the body, so the infection cannot be transmitted
through daily activities like hugging an infected person, greeting by shaking hand-
s, or kissing. This disease is transmitted via contaminated body fluids, including
blood, semen, and vaginal secretions and through sexual intercourse (anal, vaginal,
or oral) or by the use of the same needles among drug addicts [4, 5, 6, 7, 8, 9, 10].
Thus, HIV has very different characteristics. It is important to refine the basic
ideas and extend the available literature models for a better understanding of this
virus.

Infectious disease modeling has become an area of much attentiveness in recent
years. Such accomplishments are useful to biomedical scientists for the prevention
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and control of disease outbreaks. In recent years, many fractional-order epidemic
models have been proposed to describe the dynamics of various infectious diseases.
Kumar and Kumar [11] introduced a fractional-order SIR model with a constant
vaccination rate. By their analysis, they have shown that the model has two e-
quilibria, namely disease-free equilibrium and the endemic equilibrium. They have
analyzed their model for local stability. Obtained results showed the effectiveness
and reliability of their applied method through the numerical procedure. Wiah et
al. [12] developed a fractional SIRC model, in which they presented a detailed anal-
ysis of the two existing equilibrium points. Firstly, they have shown the positive
solution of their model in fractional order. They used the multi-step generalized d-
ifferential transform method to obtain the approximate numerical solution. Finally,
they compared their numerical results with a nonstandard numerical method and
fourth-order Runge-Kutta method for accuracy. Kheiri and Jafari [13] formulated
a multi-patch HIV/AIDS epidemic model with fractional order derivative to inves-
tigate the effect of human movement on the spread of HIV/AIDS among patches.
They derived the basic reproduction number R0 and proved that if R0 < 1, the
disease-free equilibrium (DFE) is locally and globally asymptotically stable. In
the case of R0 > 1, they obtained sufficient conditions under which the endemic
equilibrium is unique and globally asymptotically stable. They also formulated a
fractional optimal control problem, in which the state and co-state equations were
given in terms of the left fractional derivatives. The necessary conditions for frac-
tional optimal control of the disease were obtained. Their numerical results show
that implementing all the control efforts decreases HIV-infected and AIDS people
in both patches significantly. Silva and Torres [14], in their paper, proposed and
studied the local and uniform stability of a fractional HIV/AIDS model. They
also carried out numerical simulations to illustrate their theoretical results. Naik
et al. [15] proposed and analyzed a nonlinear fractional-order epidemic model for
HIV transmission with two infectious stages. In their study, they took the Caputo
type fractional derivative and generalized Adams-Bashforth-Moulton method for
the numerical solution of the model. They also determined the model equilibria
and studied their stability results. They also formulated a fractional optimality
condition for their proposed model. The effectiveness of the used control strate-
gies is shown through numerical simulations, which suggested the adopted control
measures efficiently increase the life cycle of the HIV patients.

Recently, Ali et al. [16], in their manuscript, proposed a SIATR compartmen-
tal model for HIV/AIDS epidemics under fractal-fractional-order derivative. They
constructed the existence theory utilizing Schaefer- and Banach-type fixed point
theorems to solve their considered model. Besides, Ulam-Hyers and generalized
Ulam-Hyers stability conditions via nonlinear functional analysis were established.
A fractional Adams-Bashforth method based on two-step Lagrange polynomial is
employed for numerical simulation of the considered model. They tested their simu-
lated results for various fractal-fractional orders on some existing real data of disease
spread in South Africa and shows that the values of compartments SIAT decrease
as the treatment starts. Tamilalagan et al. [17] proposed an article in which they
extended a classical HIV infection model to the fractional-order case under the in-
fluence of antibody and cytotoxic T-Lymphocyte (CTL) immune responses. They
studied the effectiveness of antiretroviral therapy drugs, namely, protease inhibitors
and reverse transcriptase, in suppressing HIV infection. They first discussed the
dynamical behavior of their model through stationary states’ linear stability and
then figured out the stable regions of the infectious and infection-free steady states.
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They compared the results of integer order and fractional order of their model for
better understanding the role played by fractional-order derivatives in HIV infec-
tion.

Leibniz was the first who introduced fractional calculus or fractional derivative
in 1695, represents a calculus that extends the classical operators of differentiation
and integration to non-integer and complex order. Many epidemic models with
fractional derivatives have been used to deal with some epidemic behaviors [18, 19,
20, 21, 22, 23]. The main advantage of the fractional-order differential equation
is the involvement of memory and hereditary properties which are absent in the
integer-order models, where such effects are neglected or difficult to incorporate.
Also, it helps to reduce errors arising from the neglected parameters in modeling
real-life problems. The fractional calculus is not limited to any particular branch
but finds applications in several fields [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
35, 36, 37]. However, development still needs to be achieved before the ordinary
derivatives could be interpreted as a subset of the fractional derivatives.

HAM as a solution technique has been used in recent years to solve various
nonlinear system of differential equations in mathematics as well as in sciences [38,
39, 40, 41, 42, 43, 44] and nonlinear fractional-order equations [45, 46]. The HAM
was first developed by Liao [47, 48]. It allows for fine-tuning of convergence region
and rate of convergence by allowing an auxiliary parameter to vary. Compared
to the homotopy perturbation method [49], the homotopy series solution will be
convergent by considering two factors: the auxiliary linear operator and the initial
guess. This paper aims to introduce and apply an effective method, so-called HAM,
to obtain a convergent series solution of a nonlinear fractional-order HIV epidemic
model. The fractional-order models possess memory, gives us a more realistic way
to model HIV/AIDS epidemics. The memory property of the fractional models
allows the integration of more information from the past, which translates into
more accurate predictions for the model. With respect to the HIV epidemics,
this memory property may be used to devise adequate therapeutics directed to
each individual since distinct patients present different disease progression routes.
The latter is associated with age, the status of the immune system, and genetic
profile. Clinicians can, thus, use the information (in terms of behavior predictions)
of fractional-order systems to fit patients’ data with the most appropriate non-
integer-order index. The purpose of considering such a study in fractional-order
derivatives is that there is no such HIV model with fractional-order derivatives
solved by HAM, as this method contains an auxiliary parameter ~ that can be
used to adjust the convergence region of the obtained series solutions. Besides this,
the convergence theorem of HAM is also proved in the paper that provides the
HAM solutions are convergent, which differs the current paper from the available
literature on HIV and increases the novelty of the paper.

The rest of the paper is decorated as follows. After the introduction in Section 1,
Section 2 presents some preliminary results required to formulate the mathematical
model. Section 3 gives the formulation of the model and its well-posedness. In
Section 4, we discuss the mathematical analysis of the proposed fractional-order
HIV epidemic model along with equilibrium points and the stability of equilibrium
points. Also, in Section 4, Routh-Hurwitz stability conditions for the fractional
system are discussed. In Section 5, a sensitivity analysis of the parameters involved
in the threshold parameter is discussed. Furthermore, in Section 6, the HAM
application is performed on the proposed fractional-order HIV epidemic model,
and the numerical simulations are done to validate the analytical studies. In this
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section, we also prove the convergence theorem of HAM. In Section 7, numerical
results are given to illustrate the capability of HAM. In Section 8, we discuss the
solution obtained by using HAM. In this Section, we also improve the solution
obtained by applying the least-squares method. Finally, Section 9 concludes all the
major findings of the present research study.

2. Some Preliminaries

Mathematicians have continuously modified the definitions of fractional-order
derivatives and appeared with the derivatives of the type Riemann-Liouville, the
Caputo, Caputo-Fabrizio, Atangana-Baleanu, the Grunwald-Letnikov, the Weyl,
the Marchand, the Riesz, and the Miller and Ross, some with nonsingular kernel
and without singular kernel [50, 51, 52, 53, 54, 55, 56, 57, 58, 59].

2.1. Definition. A real function ξ(x), x > 0 is said to be in the space Cµ, µ ∈ R,
if there exists a real number q > µ, such that ξ(x) = xqξ1(x), where ξ1(x) ∈ C[0,∞)
and it is said to be in the space Cn

µ , if and only if ξn(x) ∈ Cµ, n ∈ N

2.2. Definition. The Riemann-Liouville form of fractional integral operator RL
0 D−α

t

of order α > 0 for a function ξ : R+ → R is defined as

RL
0 D−α

t ξ(t) =
1

Γ(α)

∫ t

0

(t− x)α−1ξ(x)dx, t > 0

or

RL
0 Iαt ξ(t) =

1

Γ(α)

∫ t

0

(t− x)α−1ξ(x)dx, t > 0

where α > 0 and Γ is a well-known Gamma function.

2.3. Definition. The Riemann-Liouville form of fractional derivative of ξ(x) order
α > 0 is defined as

RL
0 Dα

t ξ(t) =


1

Γ(n−α) (
d
dt )

n
∫ t

0
ξ(x)

(t−x)α−n+1 dx, 0 ≤ n− 1 < α < n, n = [α], n ∈ N,

( d
dt )

nξ(t), α = n, n ∈ N

2.4. Definition. The Caputo fractional derivative of ξ(x) order α is defined as

C
0 D

α
t ξ(t) =


1

Γ(n−α)

∫ t

0

( d
dx )nξ(x)

(t−x)α−n+1 dx, 0 ≤ n− 1 < α < n, n = [α], n ∈ N,

( d
dt )

nξ(t), α = n, n ∈ N

where the operator C
0 D

α
t satisfies the following two basic properties:

C
0 D

α
t
RL
0 Iαt ξ(t) = ξ(t) and RL

0 Iαt
C
0 D

α
t ξ(t) = ξ(t)−

∑n−1
k=0

ξ(k)(a)
k! (t− a)k, t > a.

The definition 2.3 and definition 2.4 are not equivalent to each other, and their
difference is expressed by

C
0 D

α
t ξ(t) =

RL
0 Dα

t ξ(t)−
n−1∑
y=0

rαy (t)ξ
(y)(0), rαy (t) =

ty−α

Γ(y + 1− α)
.
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The Caputo operator C
0 D

α
t , has advantages for differential equations with initial

values. In the case of Riemann-Liouville and Caputo derivatives, respectively, the
initial values are usually given as [59]

RL
0 Dα

t ξ(0) = bν ,
C
0 D

α
t ξ(0) = bν , ν = 1, 2, 3, . . . , n.

A direct definition of the fractional derivative Dα
t ξ(t), is based on finite differences

of an equidistant grid in [0, t]. Assume that the function Dα
t ξ(τ), satisfies some

smoothness conditions in every finite interval (0, t), t ≤ T . Choosing the grid

0 = τ0 < τ1 < . . . < t = τn+1 = (n+ 1)u, τn+1 − τn = u

and using the classical notation of finite differences,

1

uα
∆α

uξ(t) =
1

uα

(
ξ(τn+1)−

n+1∑
ν=1

cαν ξ(τn+1−ν)

)
where

cαν = (−1)ν−1

(
α
ν

)
.

3. Model formulation

To describe the transmission dynamics of HIV/AIDS, we formulate a determin-
istic compartmental mathematical model consists of a system of four first-order
nonlinear ordinary differential equations for the four independent functions (sus-
ceptible population ξS(t), exposed population ξE(t), infected population ξI(t) and
recovered population ξR(t)) that takes the following form

(1)


dξS(t)

dt = Λ− µξS(t)ξI(t)− λξS(t),
dξE(t)

dt = µξS(t)ξI(t)− (λ+ ϵ+ σ)ξE(t),
dξI(t)
dt = σξE(t)− (ρ+ λ)ξI(t),

dξR(t)
dt = ρξI(t) + ϵξE(t)− λξR(t).

The total population N(t) is divided into four sub-population compartments
namely susceptible, exposed, infected and recovered such that N(t) = ξS(t) +
ξE(t)+ξI(t)+ξR(t) for all t. The proposed model is considered as the generalization
of the original Kermack-Mckendrick model [2], where only three compartments
were considered, but here the exposed compartment is included contains those
susceptibles in the population who have sexual intercourse with the sex workers
(male/female) without knowing their disease status who themselves don’t know
but are infectious as a result by having sexual contact they are exposed to the
infection. The following description is associated with the above classical model.
The susceptibles ξS(t) in the population becomes infected at a rate µ on contact
with infected individuals, recruited at a rate Λ and decreased by a natural death
at a rate λ. The exposed individuals ξE(t) generated through contact with infected
individuals at rate µ, which is breakthrough into infected class at a rate σ, decreased
by testing or HIV therapy at a rate ϵ and removed at a rate λ. The class of
infected individuals ξI(t) is generated from exposed individuals at a rate ϵ, which
is decreased by recovery at a rate ρ from infection and diminished at a rate λ.
This generates a completely protected class ξR(t) against the disease of individuals.
The natural death at a rate λ is diminished by ξI(t) recovered individual. It may

further be noted that N(t) = ξ
′

S(t)+ ξ
′

E(t)+ ξ
′

I(t)+ ξ
′

R(t) = 0 reveals that the total
population is bounded.
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Figure 1. Schematic diagram of the proposed fractional-order
SEIR epidemic model.

Following the derivation techniques applied in Podlubany [60], Kilbas et al. [61],
Atangana and Owolabi [62], we derive the proposed model in fractional-order case
by replacing each standard order derivative in time Caputo fractional operator.
The advantage of this replacement is the involvement of the memory effect in the
present work. Also, considering a fractional-order system helps reduce the errors
arising from the neglected parameters in real-life modeling phenomena. Thus, the
proposed fractional-order SEIR model for HIV transmission has the following form
[18, 20, 23, 60, 61, 62]

(2)


C
0 D

α
t ξS(t) = Λ− µξS(t)ξI(t)− λξS(t),

C
0 D

α
t ξE(t) = µξS(t)ξI(t)− (λ+ ϵ+ σ)ξE(t),

C
0 D

α
t ξI(t) = σξE(t)− (ρ+ λ)ξI(t),

C
0 D

α
t ξR(t) = ρξI(t) + ϵξE(t)− λξR(t).

Usually, the second set of dependent variables, representing the fraction of the total

population in each of the four categories, ξs(t) =
ξS(t)
N , ξe(t) =

ξE(t)
N , ξi(t) =

ξI(t)
N ,

and ξr(t) =
ξR(t)
N is considered. In this case, model (2) becomes

(3)


C
0 D

α
t ξs(t) = Λ− µξs(t)ξi(t)− λξs(t),

C
0 D

α
t ξe(t) = µξs(t)ξi(t)− (λ+ ϵ+ σ)ξe(t),

C
0 D

α
t ξi(t) = σξe(t)− (ρ+ λ)ξi(t),

C
0 D

α
t ξr(t) = ρξi(t) + ϵξe(t)− λξr(t).

subject to the initial conditions

(4) ξs(0) = ξs,0, ξe(0) = ξe,0, ξi(0) = ξi,0, ξr(0) = ξr,0,

where 0 < α ≤ 1, N(t) = ξs(t)+ξe(t)+ξi(t)+ξr(t), (ξs, ξe, ξi, ξr) ∈ R4
+. We assume

that the functions ξs(t), ξe(t), ξi(t), ξr(t) and their Caputo fractional derivatives are
continuous at t ≥ 0. To start, the existence, uniqueness, and non-negativity of the
solution of system (3) are analyzed.
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Table 1. Parameter values for the simulation of the proposed
fractional-order SEIR epidemic model.

Parameter Meaning Values Source

Λ Recruitment rate 0.32 [15, 63]
µ Infection rate 0.05 [20]
λ Death rate 0.2 [15, 63]
σ Infected class rate 0.01 [15, 63]
ϵ Testing rate 0.25 [15, 63]
ρ Recovery rate 0.03 [18, 22]
ξs,0 Initially susceptible individuals 20 [22, 64]
ξe,0 Initially exposed individuals 0.01 [20]
ξi,0 Initially infected individuals 0.02 [20]
ξr,0 Initially recovered individuals 0.00 [20, 22]

4. Mathematical analysis of the model

4.1. Positivity and boundedness. Positivity implies that the population sur-
vives, and boundedness may be interpreted as a natural restriction to growth
due to limited resources. Let us denote R4

+ = {ξ(t) ∈ R4 : ξ(t) ≥ 0} and let

ξ(t) = [ξs(t), ξe(t), ξi(t), ξr(t)]
T . For the proof of the main theorem about the non-

negativity of the solutions, we recall the following lemma [2, 20, 65, 66].
Lemma 4.1.1. (Generalized Mean Value Theorem [2, 20, 65]). Let ξ(x) ∈

C[a, b] and Caputo fractional derivative C
0 D

α
t ξ(x) ∈ C(a, b] for 0 < α ≤ 1, then we

have

ξ(x) = ξ(a) +
1

Γ(α)
C
0 D

α
t ξ(γ)(x− a)α,

with 0 ≤ γ ≤ x, ∀x ∈ (a, b].
Remark 4.1.1. If ξ(x) ∈ C[0, b] and Caputo fractional derivative C

0 D
α
t ξ(x) ∈

(0, b] for 0 < α ≤ 1 . It is clear from the lemma 4.1.1 that if C0 D
α
t ξ(x) ≥ 0 ∀x ∈ (0, b],

then the function ξ(x) is non-decreasing and if C
0 D

α
t ξ(x) ≤ 0 ∀x ∈ (0, b], then the

function ξ(x) is non-increasing for all x ∈ [0, b].
Theorem 4.1.2. There is a unique solution ξ(t) = [ξs(t), ξe(t), ξi(t), ξr(t)]

T for
the initial value problem given by (3) and initial condition (4) on t ≥ 0 in (0, α)
and the solution will remain in R4

+. Furthermore, the solutions are all bounded.
Proof: According to Lin [66] from Theorem 3.2 [66] and Remark 3.2 [66], we

can determine the solution on (0,∞) by solving the model (3) along with initial
conditions (4), which is not only existent but also unique. Subsequently, we have to
explain the non-negative domain R4

+, is a positively invariant region. From model
(3), we find

C
0 D

α
t ξs(t)

∣∣
ξs=0

= Λ > 0, C
0 D

α
t ξe(t)

∣∣
ξe=0

= µξs(t)ξi(t) ≥ 0,

C
0 D

α
t ξi(t)

∣∣
ξi=0

= σξe(t) ≥ 0, C
0 D

α
t ξr(t)

∣∣
ξr=0

= ρξi(t) + ϵξe(t) ≥ 0.

On each hyperplane bounding the non-negative orthant, the vector field points into
R4

+. Furthermore, from the system (3)

C
0 D

α
t N(t) + λN(t) ≤ Λ.

Thus, by Lemma 4.1.1, in the case of HIV infection, the total population N(t), i.e.,
the subpopulations ξs(t), ξe(t), ξi(t) and ξr(t) are bounded.�
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Therefore, the biologically feasible region for the system (3) is

Υ =
{
(ξs(t), ξe(t), ξi(t), ξr(t)) ∈ R4

+

∣∣0 < ξs(t) + ξe(t) + ξi(t) + ξr(t) ≤
Λ

λ

}
.

4.2. Routh-Hurwitz stability conditions for fractional system. Consider
the following general form of a fractional nonlinear dynamical system [67]

(5) Dαηj(t) = gj(η1, η2, η3, η4), j = 1, 2, 3, 4, 0 < α ≤ 1,

with the initial conditions η1(0) = η1,0, η2(0) = η2,0, η3(0) = η3,0, η4(0) = η4,0.
To evaluate equilibrium points of Eq. (5), consider Dαηj(t) = 0, this implies

that gj(η
∗
1 , η

∗
2 , η

∗
3 , η

∗
4) = 0. Let χ∗(η∗1 , η

∗
2 , η

∗
3 , η

∗
4) be an equilibrium point of system

(5) and perturb the equilibrium point by adding a positive term ϵj(t) that is ηj(t) =
η∗j (t) + ϵj(t), then

Dα
(
η∗j (t) + ϵj(t)

)
= gj(η

∗
1 + ϵ1, η

∗
2 + ϵ2, η

∗
3 + ϵ3, η

∗
4 + ϵ4).

This implies

Dα (ϵj(t)) = gj(η
∗
1 + ϵ1, η

∗
2 + ϵ2, η

∗
3 + ϵ3, η

∗
4 + ϵ4).

Using the Taylor series expansion, we get

Dα (ϵj(t)) =gj(η
∗
1 , η

∗
2 , η

∗
3 , η

∗
4) +

∂gj
∂η1

∣∣
eqϵ1

+
∂gj
∂η2

∣∣
eqϵ2

+
∂gj
∂η3

∣∣
eqϵ3

+
∂gj
∂η4

∣∣
eqϵ4

+ higher order terms

Since gj(η
∗
1 , η

∗
2 , η

∗
3 , η

∗
4) = 0, then

(6) Dα (ϵj(t)) ∼=
∂gj
∂η1

∣∣
eqϵ1

+
∂gj
∂η2

∣∣
eqϵ2

+
∂gj
∂η3

∣∣
eqϵ3

+
∂gj
∂η4

∣∣
eqϵ4

.

We can write the system of Eq. (6) in the following matrix form

(7) Dα (ϵ(t)) = Jϵ(t), ϵ(t) = (ϵ1(t), ϵ2(t), ϵ3(t), ϵ4(t))
T
,

where

J(χ∗) =


∂g1
∂η1

∂g1
∂η2

∂g1
∂η3

∂g1
∂η4

∂g2
∂η1

∂g2
∂η2

∂g2
∂η3

∂g2
∂η4

∂g3
∂η1

∂g3
∂η2

∂g3
∂η3

∂g3
∂η4

∂g4
∂η1

∂g4
∂η2

∂g4
∂η3

∂g4
∂η4

 ,

is the Jacobian matrix evaluated at the equilibrium point χ∗ and satisfies the fol-
lowing relation

(8) Φ−1JΦ = Π, Π = Diagonal matrix(λ1, λ2, λ3, λ4),

where λ1, λ2, λ3 and λ4 are the eigenvalues of J and Φ is the eigenvectors of J .
System (5) has the initial conditions:

ϵ1(0) = η1(0)− η∗1 , ϵ2(0) = η2(0)− η∗2 , ϵ3(0) = η3(0)− η∗3 , ϵ4(0) = η4(0)− η∗4 .

Using (7) and (8), we obtain

Dαϵ(t) = (ΦΠΦ−1)ϵ(t).

This implies

Dα(Φ−1ϵ(t)) = Π(Φ−1ϵ(t)),

and hence

(9) Dαψ(t) = Πψ(t), ψ(t) = Φ−1ϵ(t), ψ(t) =
(
ψ1(t), ψ2(t), ψ3(t), ψ4(t)

)T
.
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Therefore
(10)
Dαψ1(t) = λ1ψ1(t), Dαψ2(t) = λ2ψ2(t), Dαψ3(t) = λ3ψ3(t), Dαψ4(t) = λ4ψ4(t).

The solution of Eq. (10) is given by

ψj(t) = Eα

(
λjt

α
)
ψj(0), j = 1, 2, 3, 4,

where Eα

(
λtα
)
= Σ∞

n=0
λntnα

Γ(nα+1) is the Mittag-Leffler function. Then, ψ1(t), ψ2(t),

ψ3(t) and ψ4(t) are decreasing, and thus, ϵ1, ϵ2, ϵ3, and ϵ4,are decreasing. Therefore,
the equilibrium point χ∗ is locally asymptotically stable if the Matignon’s conditions
[68] given by

∣∣arg(λj)∣∣ > απ
2 , j = 1, 2, 3, 4 are satisfied.

4.3. Equilibirium points and their stability. To evaluate the equilibrium
points, setting the right-hand side of the system (3) equal to zero, we obtain e-
quilibrium points as

(11)


C
0 D

α
t ξs(t) = 0,

C
0 D

α
t ξe(t) = 0,

C
0 D

α
t ξi(t) = 0,

C
0 D

α
t ξr(t) = 0.

Then the equilibrium points are E0 = (1, 0, 0, 0) and E∗ = (ξ∗s , ξ
∗
e , ξ

∗
i , ξ

∗
r ) where

ξ∗s =
(λ+ ϵ+ σ)(ρ+ λ)

µσ
, ξ∗e =

(ρ+ λ)

σ
ξ∗i ,

ξ∗i =
(Λ− λξ∗s )

µξ∗s
, ξ∗r =

(σρ+ ϵ(ρ+ λ))

λσ
ξ∗i .

If ξ∗s , ξ
∗
e , ξ

∗
i , ξ

∗
r are between 0 and 1.

Thus, the proposed nonlinear fractional-order HIV epidemic model has two equi-
libria, namely disease-free equilibrium and endemic equilibrium.

Disease-free equilibrium (E0): The equilibrium state with the absence of
infection is known as disease-free equilibrium or zero equilibrium. The disease-free
equilibrium has always been feasible, as in this equilibrium, the infection dies out
from the population. The disease-free equilibrium is given by E0 = (1, 0, 0, 0).

Endemic equilibrium (E∗): The positive endemic equilibrium is that state
of the system where the infection spreads throughout the population and caus-
es the disease persistence. For system (3), the endemic equilibrium is considered
as E∗ = (ξ∗s , ξ

∗
e , ξ

∗
i , ξ

∗
r ). i.e., the state in which infection spreads in the susceptible

population.

To study the disease-free equilibrium’s local stability, we compute the basic re-
production number by using the next-generation matrix method [69, 70, 71].

Basic reproduction number ℜ0: The basic reproduction number ℜ0 is defined
as the number of secondary cases produced by a typical infected individual during
its entire period of infectiousness in a completely susceptible population. We find
ℜ0 using the next-generation matrix [69, 70, 71]. Therefore

ℜ0 =
µσ

(λ+ ϵ+ σ)(ρ+ λ)
.



APPROXIMATE SOLUTION OF A NONLINEAR FRACTIONAL-ORDER HIV MODEL 61

It shows that if ℜ0 < 1, then the disease/infection does not spread, and the infection
dies. On the other hand, if ℜ0 > 1, then the disease persists in the whole population.
From the definition of ℜ0 , we conclude that for the endemic equilibrium point
E∗ = (ξ∗s , ξ

∗
e , ξ

∗
i , ξ

∗
r ), we have the following relations

E∗ =

(
1

ℜ0
,
λ(ρ+ λ)

σµ
(ℜ0 − 1),

λ

µ
(ℜ0 − 1),

(σρ+ ϵ(ρ+ λ))

σµ
(ℜ0 − 1)

)
,

and so, it exists only if ℜ0 > 1.

Local stability of equilibria
Now, we will discuss the local stability of the equilibrium points. For this, we

state the results in the form of theorems and prove them.

Theorem 4.2.1: The disease-free equilibrium E0 of proposed fractional-order HIV
epidemic model is asymptotically stable if R0 < 1 i.e., if µσ

(λ+ϵ+σ)(ρ+λ) < 1 and is

unstable if R0 > 1.
Proof: In an epidemiological sense, the above result depicts that small inflow of
infected individuals will not be able to spread infection if R0 < 1. In this case, the
spread of infection is dependent on the initial sizes of the sub-population. To prove
the above theorem 4.2.1, the general Jacobian matrix and the matrices correspond-
ing to each equilibrium point will be obtained. Therefore, the Jacobian matrix is
given by

Ω =


−µξi − λ 0 −µξs 0
µξi −λ− ϵ− σ µξs 0
0 σ −ρ− λ 0
0 ϵ ρ −λ

 .
Now at the disease-free equilibrium E0,

Ω =


−λ 0 −µ 0
0 −λ− ϵ− σ µ 0
0 σ −ρ− λ 0
0 ϵ ρ −λ

 .
Therefore, the Routh-Hurwitz stability conditions for fractional-order systems dis-
cussed in subsection 4.2 describes that the necessary and sufficient condition

(12) |arg(eig(Ω))| = |arg(δi)| > α
π

2
,

for various fractional-order models. Therefore, the disease-free equilibrium of sys-
tem (3) is asymptotically stable if all of the eigenvalues, δj , j = 1, 2, 3, 4 of Ω(E0)
satisfy the condition (12). Hence, a sufficient condition for the local asymptotic
stability of the equilibrium points is that the eigenvalues δj , j = 1, 2, 3, 4 of the
Jacobian matrix Ω(E0) satisfy the condition |arg(δj)| > απ

2 . This confirms that
fractional-order differential equations are, at least, as stable as their integer order
counterpart. By solving the characteristic equation, the eigenvalues can be obtained
as

|Ω(E0)− δI| = 0.

The simplification allows us to get the following algebraic equation

(λ+ δ)2(δ2 + (θ1 + θ2)δ + θ1θ2 − θ3) = 0,
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where θ1 = λ+ ϵ+ σ, θ2 = ρ+ λ and θ3 = µσ.
Therefore, the roots of the characteristic equation are

δ1,2 = −λ,

δ3,4 =
−(θ1 + θ2)±

√
(θ1 + θ2)2 − 4(θ1θ2 − θ3)

2
,

and because θ1 + θ2 > 0, then if θ1θ2 > θ3, all of the eigenvalues δj , j = 1, 2, 3, 4,
satisfy the condition given by (12). Therefore, all the eigenvalues have negative real
parts if µσ

(λ+ϵ+σ)(ρ+λ) < 1 i.e., if R0 < 1.�
In the next theorem 4.2.2, we discuss the asymptotic stability of the endemic

equilibrium of the system given by (3).
Theorem 4.2.2.: The endemic equilibrium E∗ is asymptotically stable when-

ever R0 > 1 and unstable otherwise.
Proof: The characteristic equation of the endemic equilibrium point is expressed
as the following polynomial:

P (δ) = −(λ+ δ)Φ(δ),

where

(13) Φ(δ) = δ3 + γ1δ
2 + γ2δ + γ3 = 0.

Now, expressing the discriminant of Φ(δ) as

(14) D(δ) = 18γ1γ2γ2 + (γ1γ2)
2 − 4γ3γ

2
1 − 4γ22 − 27γ23 ,

and using the construction of results by Ahmed et al. [72], the following fractional
Routh-Hurwitz conditions associated with are observed:

(1) If D(δ) > 0, then the necessary and sufficient condition for the equilibrium
point to be locally asymptotically stable is γ1 > 0, γ3 > 0, γ1γ2 > γ3.

(2) If D(δ) < 0, γ1 ≥ 0, γ2 ≥ 0, γ3 > 0, then the equilibrium point is locally
asymptotically stable if α < 2

3 .

(3) If D(δ) < 0, γ1 < 0, γ2 < 0, and α > 2
3 , then all roots of the Eq. (13)

satisfy the condition then |arg(δj)| < απ
2 , j = 1, 2, 3, 4.

To discuss the local stability of the endemic equilibrium point, we have from the
model constraints ξs(t) + ξe(t) + ξi(t) + ξr(t) = 1, let us consider the Jacobian
matrix of the system (3) evaluated at endemic equilibrium E∗ as

Ω(E∗) =


−µξi − λ 0 −µξs 0
µξi −λ− ϵ− σ µξs 0
0 σ −ρ− λ 0
0 ϵ ρ −λ

 .
This further implies that

Ω(E∗) =


−µR0 0 − µ

R0
0

µ(R0 − 1) −λ− ϵ− σ µ
R0

0

0 σ −ρ− λ 0
0 ϵ ρ −λ

 ,
and so the eigenvalues are

δj =
−R0(θ1 + θ2)±

√
(θ2 − θ1R0)2R2

0 + 4θ3R0

2
, j = 1, 2, 3, 4

It is apparent from the above result that the eigenvalues of the system (3) at
endemic equilibrium are all real and negative if R0 > 1, i.e., the basic reproduction
number R0 is greater than one.�
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Global stability of equilibria
The global existence of the solution of the fractional differential equation always

becomes a most important concern, which is carried out in the following section.
Theorem 4.2.3: Assume that the function Ψ : R+ × R4 → R4 satisfies the
following conditions in the global space[19, 66]

(1) The function Ψ(t, ξ(t)) is Lebesgue measurable for t on R.
(2) The function Ψ(t, ξ(t)) is continuous for ξ(t) on R4.

(3) The function ∂Ψ(t,ξ(t))
∂ξ is continuous for ξ(t) on R4.

(4) ∥Ψ(t, ξ(t))∥ ≤ β1 + β2∥ξ(t)∥, for all most every t ∈ R and all ξ(t) ∈ R4.

Here β1, β2 are two positive constants and ξ(t) = [ξs(t), ξe(t), ξi(t), ξr(t)]
T . Then,

the initial value problem

(15)

{
C
0 D

α
t ξ(t) = Ψ(t, ξ(t)), α ∈ (0, 1],

ξ(t0) = ξ0,

has a unique solution.
Theorem 4.2.4: The system (3) has a unique solution, and the solution remains

in R4
+.

Proof: From Theorem 4.2.3, we obtain the unique solution on (0,∞) by solving the
system (3). Firstly, Lin [66] discussed the proof of the theorem and shows that the
solution exists and unique. In Theorem 4.1.2, we already proved that the solution
of model (3) would remain in R4

+.�

The stability region of the fractional-order HIV epidemic model (3) with order α
is illustrated in Fig.2. Re refers to the real and Im refers to the imaginary parts of
the eigenvalues, respectively. From Fig.2, it is easy to show that the stability region
of the fractional-order case is greater than the stability region of the integer-order
case.

Figure 2. Stability region of the fractional-order HIV epidemic system.

5. Sensitivity analysis

This section is devoted to the sensitivity analysis of the basic reproduction num-
ber R0. Because of the uncertainties associated with certain parameter values, it
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is necessary to determine the model robustness as the parameter values changes.
Here it should be noted that the positive sign of the index means the parameter
contributes to the increasing value of R0, while the negative sign indicates the de-
crease in R0. Using the approach in Chitnis et al. [73] and Makinde et al. [74], we
analyze the reproduction number to determine which parameter is more sensitive
towards disease dynamics.

Definition 5.1
The normalized forward sensitivity index of a variable, V that depends differentially
on a parameter p is denoted by ΠV

p and defined as:

ΠV
p =

p

V
× ∂V

∂p
.

5.1. Sensitivity indices of R0. We derive the sensitivity of R0 to each of the
different parameters µ, σ, ϵ and ρ . The sensitivity index of R0 for µ is presented
by

ΠR0
µ =

µ

R0
× ∂R0

∂µ
=
µ(λ+ ϵ+ σ)(ρ+ λ)

µσ
× σ

(λ+ ϵ+ σ)(ρ+ λ)
> 0.

Again, the sensitivity indices of R0 resulting from the evaluation of the other pa-
rameters of the model are shown below.

ΠR0
σ =

σ

R0
× ∂R0

∂σ
=
σ(λ+ ϵ+ σ)(ρ+ λ)

µσ
× µ

(λ+ ϵ+ σ)(ρ+ λ)
> 0,

=
λ+ ϵ

λ+ ϵ+ σ
> 0.

Similarly,

ΠR0
ϵ =

ϵ

R0
× ∂R0

∂ϵ
=
ϵ(λ+ ϵ+ σ)(ρ+ λ)

µσ
× µ

(λ+ ϵ+ σ)(ρ+ λ)
< 0,

= − ϵ

λ+ ϵ+ σ
< 0.

Again

ΠR0
ρ =

ρ

R0
× ∂R0

∂ρ
=
ρ(λ+ ϵ+ σ)(ρ+ λ)

µσ
× µ

(λ+ ϵ+ σ)(ρ+ λ)
> 0,

= − ρ

λ+ ρ
< 0.

From the above-obtained sensitivity indices, it is seen that R0 is increasing with
µ and σ while decreasing with ϵ and ρ that means µ, σ are more sensitive in disease
transmission than ϵ and ρ.

6. Methodology for the solution

In this section, an approximate solution for the proposed fractional-order HIV
epidemic model is presented. Because there are no general methods to obtain an
analytical solution of the nonlinear fractional system (3), further, the fractional
case is more difficult to handle even numerically [65]. So, we use the so-called
technique HAM to obtain the series solution of the system (3), as it is a flexible
method that contains the auxiliary parameters and functions that make to adjust
the convergence region of the obtained series solution.
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6.1. Application of HAM to the fractional-order SEIR epidemic model.
Here we apply the algorithm of HAM to find an approximate solution in terms
of convergent series for the equations of the nonlinear fractional-order system (3),
which gives an accurate solution over a longer time frame.

To construction the homotopy series solution for the proposed nonlinear fractional-
order HIV epidemic model (3), let q ∈ [0, 1] be the so-called embedding parameter.
The HAM is based on a kind of continuous mappings

ξs(t) → ψS(t; q), ξe(t) → ψE(t; q), ξi(t) → ψI(t; q), ξr(t) → ψR(t; q).

Due to governing equations, we choose the auxiliary linear operators

(16)


L1[ψS(t; q)] =

C
0 D

α
t ,

L2[ψE(t; q)] =
C
0 D

α
t ,

L3[ψI(t; q)] =
C
0 D

α
t ,

L4[ψR(t; q)] =
C
0 D

α
t .

We define the homotopy maps as [27, 38, 39, 41]

ΨS (ψS(t; q), ψE(t; q), ψI(t; q), ψR(t; q))

=(1− q)L1[ψS(t; q)− ξs,0]− q~H1(t)NS [ψS(t; q), ψE(t; q), ψI(t; q), ψR(t; q)],

ΨE (ψS(t; q), ψE(t; q), ψI(t; q), ψR(t; q))

=(1− q)L2[ψE(t; q)− ξe,0]− q~H2(t)NE [ψS(t; q), ψE(t; q), ψI(t; q), ψR(t; q)],

ΨI (ψS(t; q), ψE(t; q), ψI(t; q), ψR(t; q))

=(1− q)L3[ψI(t; q)− ξi,0]− q~H3(t)NI [ψS(t; q), ψE(t; q), ψI(t; q), ψR(t; q)],

ΨR (ψS(t; q), ψE(t; q), ψI(t; q), ψR(t; q))

=(1− q)L4[ψR(t; q)− ξr,0]− q~H4(t)NR[ψS(t; q), ψE(t; q), ψI(t; q), ψR(t; q)],

where ~ ̸= 0 and Hj(t) ̸= 0, j = 1, 2, 3, 4 denote the so-called auxiliary parameter
and auxiliary function, respectively, and NS , NE , NI , NR are nonlinear operators
that define as

NS [ψS(t; q), ψE(t; q), ψI(t; q), ψR(t; q)]

=C
0 D

α
t [ψS(t; q)]− Λ + µψS(t; q)ψI(t; q) + λψS(t; q),

NE [ψS(t; q), ψE(t; q), ψI(t; q), ψR(t; q)]

=C
0 D

α
t [ψE(t; q)]− µψS(t; q)ψI(t; q) + (λ+ ϵ+ σ)ψE(t; q),

NI [ψS(t; q), ψE(t; q), ψI(t; q), ψR(t; q)]

=C
0 D

α
t [ψI(t; q)]− σψE(t; q) + (ρ+ λ)ψI(t; q),

NR[ψS(t; q), ψE(t; q), ψI(t; q), ψR(t; q)]

=C
0 D

α
t [ψR(t; q)]− ρψI(t; q)− ϵψE(t; q) + λψR(t; q).

When q = 0, we have the homotopy maps as

ΨS [ψS(t; 0), ψE(t; 0), ψI(t; 0), ψR(t; 0)] = L1[ψS(t; 0)− ξs,0],

ΨE [ψS(t; 0), ψE(t; 0), ψI(t; 0), ψR(t; 0)] = L2[ψE(t; 0)− ξe,0],

ΨI [ψS(t; 0), ψE(t; 0), ψI(t; 0), ψR(t; 0)] = L3[ψI(t; 0)− ξi,0],

ΨR[ψS(t; 0), ψE(t; 0), ψI(t; 0), ψR(t; 0)] = L4[ψR(t; 0)− ξr,0],
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and when q = 1, will be

ΨS (ψS(t; 1), ψE(t; 1), ψI(t; 1), ψR(t; 1))

=− ~H1(t)NS [ψS(t; 1), ψE(t; 1), ψI(t; 1), ψR(t; 1)],

ΨE (ψS(t; 1), ψE(t; 1), ψI(t; 1), ψR(t; 1))

=− ~H2(t)NE [ψS(t; 1), ψE(t; 1), ψI(t; 1), ψR(t; 1)],

ΨI (ψS(t; 1), ψE(t; 1), ψI(t; 1), ψR(t; 1))

=− ~H3(t)NI [ψS(t; 1), ψE(t; 1), ψI(t; 1), ψR(t; 1)],

ΨR (ψS(t; 1), ψE(t; 1), ψI(t; 1), ψR(t; 1))

=− ~H4(t)NR[ψS(t; 1), ψE(t; 1), ψI(t; 1), ψR(t; 1)].

Thus, by requiring

ΨS (ψS(t; q), ψE(t; q), ψI(t; q), ψR(t; q))

=ΨE (ψS(t; q), ψE(t; q), ψI(t; q), ψR(t; q)) = 0,

ΨI (ψS(t; q), ψE(t; q), ψI(t; q), ψR(t; q))

=ΨR (ψS(t; q), ψE(t; q), ψI(t; q), ψR(t; q)) = 0,

and using the embedding parameter q, we construct a family of equations the
zeroth-order deformation equations in the following form
(17)

(1− q)L1[ψS(t; q)− ξs,0] = q~H1(t)NS [ψS(t; q), ψE(t; q), ψI(t; q), ψR(t; q)],

(1− q)L2[ψE(t; q)− ξe,0] = q~H2(t)NE [ψS(t; q), ψE(t; q), ψI(t; q), ψR(t; q)],

(1− q)L3[ψI(t; q)− ξi,0] = q~H3(t)NI [ψS(t; q), ψE(t; q), ψI(t; q), ψR(t; q)],

(1− q)L4[ψR(t; q)− ξr,0] = q~H4(t)NR[ψS(t; q), ψE(t; q), ψI(t; q), ψR(t; q)],

subject to the initial conditions

(18) ψS(0; q) = ξs,0, ψE(0; q) = ξe,0, ψI(0; q) = ξi,0, ψR(0; q) = ξr,0.

For q = 0 and q = 1, the above zeroth-order Eq. (17) has the solutions

(19) ψS(t; 0) = ξs,0(t), ψE(t; 0) = ξe,0(t), ψI(t; 0) = ξi,0(t), ψR(t; 0) = ξr,0(t),

and

(20) ψS(t; 1) = ξs(t), ψE(t; 1) = ξe(t), ψI(t) = ξi(t), ψR(t; 1) = ξr(t),

Therefore, as the embedding parameter q increases from 0 to 1 , the functions
ψS(t; q), ψE(t; q), ψI(t; q) and ψR(t; q) vary from the initial values ξs,0, ξe,0, ξi,0 and
ξr,0 to the exact solution ξs(t), ξe(t), ξi(t), and ξr(t), respectively. This is the basic
idea of homotopy, and this kind of variation is called deformations in topology.
Expanding ψS(t; q), ψE(t; q), ψI(t; q) and ψR(t; q) in Taylor series for q, we have the
homotopy-Maclaurin series as follows

(21)


ψS(t; q) = ξs,0(t) +

∑∞
m=1 ξs,m(t)qm,

ψE(t; q) = ξe,0(t) +
∑∞

m=1 ξe,m(t)qm,

ψI(t; q) = ξi,0(t) +
∑∞

m=1 ξi,m(t)qm,

ψR(t; q) = ξr,0(t) +
∑∞

m=1 ξr,m(t)qm,

where

ξs,m(t) =
1

m!

∂mψS(t; q)

∂qm

∣∣∣∣
q=0

, ξe,m(t) =
1

m!

∂mψE(t; q)

∂qm

∣∣∣∣
q=0
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ξi,m(t) =
1

m!

∂mψI(t; q)

∂qm

∣∣∣∣
q=0

, ξr,m(t) =
1

m!

∂mψR(t; q)

∂qm

∣∣∣∣
q=0

where ~ is chosen in such a way that these series are convergent at q = 1. Thus, at
q = 1, the homotopy series solutions become

(22)


ψS(t; 1) = ξs(t) = ξs,0(t) +

∑∞
m=1 ξs,m(t),

ψE(t; 1) = ξe(t) = ξe,0(t) +
∑∞

m=1 ξe,m(t),

ψI(t; 1) = ξi(t) = ξi,0(t) +
∑∞

m=1 ξi,m(t),

ψR(t; 1) = ξr(t) = ξr,0(t) +
∑∞

m=1 ξr,m(t).

Now, the equation so-called mth-order deformation equation is obtained as

(23)



L1[ξs,m(t)− χmξs,m−1(t)] = ~H1(t)Rξs,m

(
ξ⃗s,m−1(t)

)
, m = 1, 2, ..., n

L2[ξe,m(t)− χmξe,m−1(t)] = ~H2(t)Rξe,m

(
ξ⃗e,m−1(t)

)
, m = 1, 2, ..., n

L3[ξi,m(t)− χmξi,m−1(t)] = ~H3(t)Rξi,m

(
ξ⃗i,m−1(t)

)
, m = 1, 2, ..., n

L4[ξr,m(t)− χmξr,m−1(t)] = ~H4(t)Rξr,m

(
ξ⃗r,m−1(t)

)
, m = 1, 2, ..., n

where

χm =

{
0 m ≤ 1

1 m > 1

with initial conditions

(24) ξs,m(0) = 0, ξe,m(0) = 0, ξi,m(0) = 0, ξr,m(0) = 0.

Defining the vector

ξ⃗m−1 = {ξs,m−1(t), ξe,m−1(t), ξi,m−1(t), ξr,m−1(t)},
we derive

Rξs,m

(
ξ⃗s,m−1(t)

)
=C

0 D
α
t ξs,m−1(t)− (1− χm)Λ

+ µ
m−1∑
k=1

ξs,k(t)ξi,m−1−k(t) + λξs,m−1(t),(25)

Rξe,m

(
ξ⃗e,m−1(t)

)
=C

0 D
α
t ξe,m−1(t)− µ

m−1∑
k=1

ξs,k(t)ξi,m−1−k(t)

+ (λ+ ϵ+ σ)ξe,m−1(t),(26)

Rξi,m

(
ξ⃗i,m−1(t)

)
=C

0 D
α
t ξi,m−1(t)− σξe,m−1(t) + (λ+ ρ)ξi,m−1(t),(27)

Rξr,m

(
ξ⃗r,m−1(t)

)
=C

0 D
α
t ξr,m−1(t)− ρξi,m−1(t)− ϵξe,m−1(t) + λξr,m−1(t).(28)

For simplicity, we can choose the auxiliary functions Hj(t) = 1, j = 1, 2, 3, 4 and
take Lj =

C
0 D

α
t , j = 1, 2, 3, 4, then the right inverse of C0 D

α
t will be Iαt , the Riemann-

Liouville fractional integral operator. Hence, the mth-order deformation Eq. (23)
for m ≥ 1 becomes

(29)



ξs,m(t) = χmξs,m−1(t) + ~Iαt
(
Rξs,m

(
ξ⃗s,m−1(t)

))
,

ξe,m(t) = χmξe,m−1(t) + ~Iαt
(
Rξe,m

(
ξ⃗e,m−1(t)

))
,

ξi,m(t) = χmξi,m−1(t) + ~Iαt
(
Rξi,m

(
ξ⃗i,m−1(t)

))
,

ξr,m(t) = χmξr,m−1(t) + ~Iαt
(
Rξr,m

(
ξ⃗r,m−1(t)

))
.
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If we choose ξs(t) = ξs(0) = ξs,0, ξe(t) = ξe(0) = ξe,0, ξi(t) = ξi(0) = ξi,0 and
ξr(t) = ξr(0) = ξr,0, as initial guess approximations of ξs(t), ξe(t), ξi(t) and ξr(t)
respectively, then two terms approximations for ξs(t), ξe(t), ξi(t) and ξr(t) are cal-
culated and presented below

ξs,1(t) =
3.7

αΓ(α)
~tα,(30)

ξe,1(t) =
0.0154

αΓ(α)
~tα,(31)

ξi,1(t) =
0.0045

αΓ(α)
~tα,(32)

ξr,1(t) =
0.0031

αΓ(α)
~tα,(33)

and

ξs,2(t) =
3.7

αΓ(α)
~tα +

3.7

αΓ(α)
~2tα +

1.326149971247507

αΓ(α)Γ( 12 + α)
4−α~2t2α,(34)

ξe,2(t) =
0.0154

αΓ(α)
~tα − 0.0154

αΓ(α)
~2tα − 0.027090184657239905

αΓ(α)Γ( 12 + α)
4−α~2t2α,(35)

ξi,2(t) =
0.0045

αΓ(α)
~tα +

0.0045

αΓ(α)
~2tα +

0.002107447628726658

αΓ(α)Γ( 12 + α)
4−α~2t2α,(36)

ξr,2(t) =
0.0031

αΓ(α)
~tα +

0.0031

αΓ(α)
~2tα +

0.005485744668552572

αΓ(α)Γ( 12 + α)
4−α~2t2α.(37)

Finally, we approximate the solution ξs(t), ξe(t), ξi(t) and ξr(t) of the model (3) by
the jth truncated series

(38)


ϕξs,j(t) =

∑j−1
m=0 ξs,m(t),

ϕξe,j(t) =
∑j−1

m=0 ξe,m(t),

ϕξi,j(t) =
∑j−1

m=0 ξi,m(t),

ϕξr,j(t) =
∑j−1

m=0 ξr,m(t).

We mention here that if we set the auxiliary parameter ~ = −1 and α = 1, then
the HAM solution is the same as the Adomian decomposition solution obtained in
[75] and the homotopy perturbation solution obtained in [40, 47, 48].

6.2. Convergence theorem of HAM.
Theorem: As long as the series ξs(t) = ξs,0(t) +

∑∞
m=1 ξs,m, ξe(t) = ξe,0(t) +∑∞

m=1 ξe,m, ξi(t) = ξi,0(t) +
∑∞

m=1 ξi,m, ξr(t) = ξr,0(t) +
∑∞

m=1 ξr,m, or governed
by (23) under definitions (25)-(28) are convergent, then ξs(t), ξe(t), ξi(t) and ξr(t)
) must be the solutions of the system (3).
Proof: If the series

∑∞
m=0 ξs,m,

∑∞
m=0 ξe,m,

∑∞
m=0 ξi,m and

∑∞
m=0 ξr,m are con-

vergent, we can write

ξ̂S =
∞∑

m=0

ξs,m, ξ̂E =
∞∑

m=0

ξe,m, ξ̂I =
∞∑

m=0

ξi,m, ξ̂R =
∞∑

m=1

ξr,m,

and it holds

lim
m→∞

ξs,m(t) = lim
m→∞

ξe,m(t) = lim
m→∞

ξi,m = lim
m→∞

ξr,m = 0.
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From (23) and using definitions of L1, L2, L3 and L4, we have [41]

~
∞∑

m=1

Rξs,m(t) =

∞∑
m=1

C
0 D

α
t (ξs,m(t)− χmξs,m−1(t)) ,

= lim
n→∞

n∑
m=1

C
0 D

α
t (ξs,m(t)− χmξs,m−1(t)) ,

= C
0 D

α
t

(
lim
n→∞

n∑
m=1

ξs,m(t)− χmξs,m−1(t)

)
,

= C
0 D

α
t

(
lim
n→∞

ξs,n(t)
)
= 0.

By repeating this procedure, it can be easily shown

~
∞∑

m=1

Rξe,m(t) = ~
∞∑

m=1

Rξi,m(t) = ~
∞∑

m=1

Rξr,m(t) = 0.

Since ~ ̸= 0, then

∞∑
m=1

Rξs,m(t) = 0,(39)

∞∑
m=1

Rξe,m(t) = 0,(40)

∞∑
m=1

Rξi,m(t) = 0,(41)

∞∑
m=1

Rξr,m(t) = 0.(42)

Substituting (25) into (39) and simplifying it, we obtain [43]

Rξs,m(t) =
∞∑

m=1

(
C
0 D

α
t ξs,m−1(t)− (1− χm)Λ

+µ

m−1∑
k=1

ξs,k(t)ξi,m−1−k(t) + λξs,m−1(t)

)

=C
0 D

α
t

∞∑
m=1

ξs,m−1(t)− (1−
∞∑

m=1

χm)Λ

+ µ
∞∑

m=1

m−1∑
k=0

ξs,k(t)ξi,m−1−k(t) + λ
∞∑

m=1

ξs,m−1(t)

=C
0 D

α
t

∞∑
m=1

ξs,m−1(t)− Λ

+ µ

∞∑
k=0

∞∑
m=k+1

ξs,k(t)ξi,m−1−k(t) + λ

∞∑
m=1

ξs,m−1(t)(43)
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=C
0 D

α
t

( ∞∑
m=0

ξs,m(t)

)
− Λ

+ µ

( ∞∑
k=0

ξs,k(t)

) ∞∑
j=0

ξi,j(t)

+ λ
∞∑

m=0

ξs,m(t)

=C
0 D

α
t ξ̂S(t)− Λ + µξ̂S(t)ξ̂I(t) + λξ̂S(t).

By repeating the above procedure and substituting (26)-(28) into (40)-(42), respec-
tively, and simplifying those, we obtain

Rξe,m(t) =

∞∑
m=1

(
C
0 D

α
t ξe,m−1(t)− µ

m−1∑
k=0

ξs,k(t)ξi,m−1−k(t) + (λ+ ϵ+ σ)ξe,m−1(t)

)

=C
0 D

α
t

∞∑
m=1

ξe,m−1(t)− µ
∞∑

m=1

m−1∑
k=0

ξs,k(t)ξi,m−1−k(t)

+ (λ+ ϵ+ σ)
∞∑

m=1

ξe,m−1(t)

=C
0 D

α
t

( ∞∑
m=0

ξe,m(t)

)
− µ

( ∞∑
k=0

ξs,k(t)

) ∞∑
j=0

ξi,j(t)


+ (λ+ ϵ+ σ)

∞∑
m=0

ξe,m(t)(44)

=C
0 D

α
t ξ̂E(t)− µξ̂S(t)ξ̂I(t) + (λ+ ϵ+ σ)ξ̂E(t).

Similarly,

Rξi,m(t) =
∞∑

m=1

(
C
0 D

α
t ξi,m−1(t)− σξe,m−1(t) + (λ+ ρ)ξi,m−1(t)

)
= C

0 D
α
t

∞∑
m=1

ξi,m−1(t)− σ

∞∑
m=1

ξe,m−1(t) + (λ+ ρ)

∞∑
m=1

ξi,m−1(t)

= C
0 D

α
t

∞∑
m=0

ξi,m(t)− σ

∞∑
m=0

ξe,m(t) + (λ+ ρ)

∞∑
m=0

ξi,m(t)(45)

= C
0 D

α
t ξ̂I(t)− σξ̂E(t) + (ρ+ λ)ξ̂I(t),

and

Rξr,m(t) =
∞∑

m=1

(
C
0 D

α
t ξr,m−1(t)− ρξi,m−1(t)− ϵξe,m−1(t) + λξr,m−1(t)

)
=C

0 D
α
t

∞∑
m=1

ξr,m−1(t)− ρ
∞∑

m=1

ξi,m−1(t)

− ϵ

∞∑
m=1

ξe,m−1(t) + λ

∞∑
m=1

ξr,m−1(t)(46)
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=C
0 D

α
t

∞∑
m=0

ξr,m(t)− ρ
∞∑

m=0

ξi,m(t)− ϵ
∞∑

m=0

ξe,m(t) + λ
∞∑

m=0

ξr,m(t)

=C
0 D

α
t ξ̂R(t)− ρξ̂I(t)− ϵξ̂E(t) + λξ̂R(t).

Thus,

∞∑
m=1

Rξs,m(t) = C
0 D

α
t ξ̂S(t)− Λ + µξ̂S(t)ξ̂I(t) + λξ̂S(t) = 0,(47)

∞∑
m=1

Rξe,m(t) = C
0 D

α
t ξ̂E(t)− µξ̂S(t)ξ̂I(t) + (λ+ ϵ+ σ)ξ̂E(t) = 0,(48)

∞∑
m=1

Rξi,m(t) = C
0 D

α
t ξ̂I(t)− σξ̂E(t) + (ρ+ λ)ξ̂I(t) = 0,(49)

∞∑
m=1

Rξr,m(t) = C
0 D

α
t ξ̂R(t)− ρξ̂I(t)− ϵξ̂E(t) + λξ̂R(t) = 0.(50)

From (4) and (24), it holds that

ξ̂S,0 =
∞∑

m=0

ξs,m(0) = ξs,0 +
∞∑

m=1

ξs,m(0) = 20,(51)

ξ̂E,0 =

∞∑
m=0

ξe,m(0) = ξe,0 +

∞∑
m=1

ξe,m(0) = 0.01,(52)

ξ̂I,0 =
∞∑

m=0

ξi,m(0) = ξi,0 +
∞∑

m=1

ξi,m(0) = 0.02,(53)

ξ̂R,0 =
∞∑

m=0

ξr,m(0) = ξr,0 +
∞∑

m=1

ξr,m(0) = 0.(54)

Thus ξ̂S(t), ξ̂E(t), ξ̂I(t) and ξ̂R(t) satisfy system (3), and it must be the exact solu-
tion for system (3) with initial conditions (4).

7. Numerical results

As stated, the HAM provides an approximate analytical solution in terms of
convergent power series. There is a practical need to evaluate this solution and
obtain numerical values from the convergent power series. The consequent series
truncation and the practical procedure are conducted to accomplish this task. The
values for parameters as discussed in table 1 are considered.

To consider the behavior of solution for susceptible ξs(t), exposed ξe(t), infected
ξi(t) and recovered ξr(t) for different values of α, 0 < α ≤ 1, the numerical results
are presented for the model (38) with Mathematica software for the homotopy
analysis method. In the appendix, the 7th-order approximations for susceptible
ξs(t), exposed ξe(t), infected ξi(t) and recovered ξr(t), respectively were calculated
for α = 1 and α = 0.9 .

8. Discussion

HAM provides an approximate solution in the form of convergent series by using
a few iterations. The solution terms depend on time t and the auxiliary parameter
~ that can be freely chosen to adjust and control the interval of convergence. This
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concept plays a key role in the HAM and is generally used to gain sufficiently accu-
rate approximations with the smallest number of homotopy terms in the homotopy
series (22). According to the convergence theorem in section 6.2, the homotopy
series solution contains the auxiliary parameter ~, which provides a simple way
to adjust and control the convergence of the series (22). It is imperative to en-
sure that the series (22) is convergent. To this end, we have plotted ~-curves of

ξ
′

s(0), ξ
′

e(0), ξ
′

i(0) and ξ
′

r(0) under 7th-order approximation of the HAM in Fig.3,
respectively, for α = 0.7, α = 0.8, α = 0.9 and α = 1.

Figure 3. Samples of ~-curves for ξs(t), ξe(t), ξi(t), andξr(t) under
7th-order approximations for various α. In these figures, dotted
small line corresponds to α = 0.7, dotted medium line corresponds
to α = 0.8, dotted large line corresponds to α = 0.9 and solid black
line corresponds to α = 1.

According to these ~-curves, it is easy to gain the valid region the interval of
convergence and optimum value for parameter ~ which corresponds to the line
segment nearly parallel to the horizontal axis. For better presentation, these valid
regions have been listed in table 2. We exhibit the interval of convergence of ~ and
the respective optimum value ~∗ corresponding to the dynamical regime presented
in Fig. 3. It is to be noted that these valid regions ensure the convergence of the
obtained series.

Table 2. The admissible values of ~ derived from Fig. 3 under
7th-order approximation.

α/~ ~∗1 ~∗2 ~∗3 ~∗4
0.7 (-1.3,-0.4) (-1.3,-0.5) (-1.2,-0.65) (-1.15,-0.4)
0.8 (-1.3,-0.5) (-1.3,-0.6) (-1.25,-0.65) (-1.2,-0.4)
0.9 (-1.4,-0.5) (-1.35,-0.6) (-1.3,-0.7) (-1.3,-0.4)
1 (-1.4,-0.5) (-1.35,-0.6) (-1.3,-0.7) (-1.3,-0.4)
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Table 3. The minimum values of ∆ξs(~∗1), ∆ξe(~∗2), ∆ξi(~∗3),
∆ξr(~∗4) for α = 0.7.

m 6
~∗1 −0.93074

∆ξs(~∗1) 1.91847×10−12

~∗2 −0.90235
∆ξe(~∗2) 6.66134×10−16

~∗3 −0.90043
∆ξi(~∗3) 3.46945×10−18

~∗4 −0.91830
∆ξr(~∗4) 1.17961×10−18

Table 4. The minimum values of ∆ξs(~∗1), ∆ξe(~∗2), ∆ξi(~∗3),
∆ξr(~∗4) for α = 0.8.

m 6
~∗1 −0.94381

∆ξs(~∗1) 8.181907×10−12

~∗2 −0.90262
∆ξe(~∗2) 5.55112×10−16

~∗3 −0.89652
∆ξi(~∗3) 8.67362×10−18

~∗4 −0.93694
∆ξr(~∗4) 3.46985×10−17

To determine the optimal values of ~ in an interval, [t0, t1] an error analysis is
performed. A procedure to check the convergence of a homotopy-series solution is
to substitute this series into the original governing equations and initial conditions,
and then to evaluate the corresponding squared residual errors-the more quick-
ly the residual error decays to zero, the faster the homotopy-series converges. In
this context, an error analysis is performed in the following lines. We substitute the
approximations ϕξs,7, ϕξe,7, ϕξi,7 and ϕξr,7 into the model (3) and obtain the residu-
al functions ERξs(ξs, ξe, ξi, ξr; ~1), ERξe(ξs, ξe, ξi, ξr; ~2), ERξi(ξs, ξe, ξi, ξr; ~3) and
ERξr (ξs, ξe, ξi, ξr; ~4) as follows

ERξs,m(ξs, ξe, ξi, ξr; ~1) = C
0 D

α
t ϕξs,m − Λ + µϕξs,mϕξi,m + λϕξs,m,(55)

ERξe,m(ξs, ξe, ξi, ξr; ~1) = C
0 D

α
t ϕξe,m − µϕξs,mϕξi,m + (λ+ ϵ+ σ)ϕξe,m,(56)

ERξi,m(ξs, ξe, ξi, ξr; ~1) = C
0 D

α
t ϕξi,m − σϕξe,m + (λ+ ρ)ϕξi,m,(57)

ERξr,m(ξs, ξe, ξi, ξr; ~1) = C
0 D

α
t ϕξr,m − ρϕξi,m − ϵϕξe,m + λϕξr,m.(58)

Yabushita et al. [76] in 2007 and Niu and Wang [77] in 2010 suggested an opti-
mization method for convergence control parameters. Their work is based on the
squared residual error. Inspired by their approach and following the studies carried
out in [40, 41], we define the square residual error for the mth-order approximation
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Table 5. The minimum values of ∆ξs(~∗1), ∆ξe(~∗2), ∆ξi(~∗3),
∆ξr(~∗4) for α = 0.9.

m 6
~∗1 −0.90068

∆ξs(~∗1) 1.12443×10−12

~∗2 −0.94457
∆ξe(~∗2) 1.11022×10−16

~∗3 −0.89362
∆ξi(~∗3) 1.73472×10−18

~∗4 −0.95145
∆ξr(~∗4) 3.81639×10−17

Table 6. The minimum values of ∆ξs(~∗1), ∆ξe(~∗2), ∆ξi(~∗3),
∆ξr(~∗4) for α = 1.0.

m 6
~∗1 −0.91350

∆ξs(~∗1) 2.51532×10−12

~∗2 −0.86684
∆ξe(~∗2) 5.68434×10−14

~∗3 −0.91145
∆ξi(~∗3) 6.93889×10−18

~∗4 −0.95873
∆ξr(~∗4) 8.67362×10−18

to be

∆ξs,m(~1) =
∫ t1

t0

(ERξs,m(ξs, ξe, ξi, ξr))
2
dt,(59)

∆ξe,m(~2) =
∫ t1

t0

(ERξe,m(ξs, ξe, ξi, ξr))
2dt,(60)

∆ξi,m(~3) =
∫ t1

t0

(ERξi,m(ξs, ξe, ξi, ξr))
2dt,(61)

∆ξr,m(~4) =
∫ t1

t0

(ERξr,m(ξs, ξe, ξi, ξr))
2dt.(62)

Values of ~1, ~2, ~3 and ~4 can be obtained for which ∆ξs,m(~1),∆ξe,m(~2),
∆ξi,m(~3) and ∆ξr,m(~4) are minimum. We can quickly determine the optimal
values of ~1, ~2, ~3 and ~4 by using the first derivative test, i.e.,

d∆ξs,m(~∗1)
dt

= 0,
d∆ξe,m(~∗2)

dt
= 0,

d∆ξi,m(~∗3)
dt

= 0,
d∆ξr,m(~∗4)

dt
= 0,

respectively. The optimal values for all of these considered cases are ~∗1, ~∗2, ~∗3
and ~∗4. The residual errors ERξs,7, ERξe,7, ERξi,7 and ERξr,7 verses t ∈ (0, 1)
are demonstrated in Fig. 4. The curves of square residual errors for ∆ξs,m(~1),
∆ξe,m(~2), ∆ξi,m(~3) and ∆ξr,m(~4) under 7th-order of approximation are shown
in Fig. 5. For the central information regarding the order of approximation, in
tables 3-6, the minimum values of ∆ξs,m(~1),∆ξe,m(~2),∆ξi,m(~3) and ∆ξr,m(~4)
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have been given with the optimal values of ~∗1, ~∗2, ~∗3 and ~∗4 for 7th-order of ap-
proximation at different α.

In tables 7-10, the absolute error functions ERξs(ξs, ξe, ξi, ξr; ~∗1), ERξe(ξs, ξe, ξi,
ξr; ~∗2), ERξi(ξs, ξe, ξi, ξr; ~∗3) and ERξr (ξs, ξe, ξi, ξr; ~4) have been calculated for
various t ∈ (0, 1) under 7th-order approximation of homotopy series solution are
considered. From the tables, it can be seen that the HAM provides us the accurate
approximate solution for the nonlinear fractional-order HIV epidemic model (3).

Table 7. The absolute errors ERξs , ERξe , ERξi , ERξr under 7th-
order approximation for various t ∈ (0, 1) at α = 0.7.

t/ER ERξs ERξe ERξi ERξr

0.1 -9.21903×10−8 -1.33562×10−8 -5.36981×10−10 2.74151×10−9

0.2 -2.83365×10−9 -9.59958×10−9 -9.55992×10−10 -5.94027×10−9

0.3 6.40088×10−8 -6.61458×10−8 -9.75765×10−10 -7.73039×10−9

0.4 7.00496×10−8 1.10682×10−8 -4.05091×10−10 1.25109×10−9

0.5 3.21200×10−8 1.86496×10−8 6.97648×10−10 1.36856×10−8

0.6 -2.17360×10−8 1.04504×10−8 1.96632×10−9 1.97737×10−8

0.7 -6.18548×10−8 -6.47373×10−9 2.89522×10−9 1.38468×10−8

0.8 -5.855658×10−8 -2.03042×10−8 3.02225×10−9 -4.99411×10−10

0.9 1.86520×10−8 -7.87222×10−9 2.09473×10−9 -6.27057×10−9

1.0 2.02632×10−7 9.17981×10−9 2.14961×10−10 3.03610×10−8

Table 8. The absolute errors ERξs , ERξe , ERξi , ERξr under 7th-
order approximation for various t ∈ (0, 1) at α = 0.8.

t/ER ERξs ERξe ERξi ERξr

0.1 -3.71178×10−7 -1.76670×10−9 -5.02209×10−10 8.80147×10−10

0.2 -3.57502×10−9 -1.74768×10−8 -1.19780×10−9 -1.69860×10−9

0.3 2.98221×10−8 -6.29334×10−9 -1.46631×10−9 -2.62406×10−9

0.4 3.56682×10−8 1.63788×10−8 -1.58270×10−9 9.45837×10−10

0.5 1.64586×10−8 3.25153×10−8 -1.26821×10−9 6.52463×10−9

0.6 -1.51608×10−8 3.18092×10−8 -2.97747×10−10 9.02485×10−9

0.7 -4.24430×10−8 1.31467×10−8 1.33463×10−9 4.57266×10−9

0.8 -4.61313×10−8 -1.70081×10−8 3.39769×10−9 -5.32229×10−9

0.9 -4.14500×10−8 -4.75924×10−8 5.46980×10−9 -9.47353×10−9

1.0 1.09675×10−7 -6.66007×10−8 7.01876×10−9 1.73069×10−8

We have also shown a comparison between the solution obtained by using HAM
for classical and proposed fractional-order SEIR epidemic model in Fig. 6. The
solid black line corresponds to the classical SEIR model (1), i.e., for α = 1.0, and
the small dotted line corresponds to the proposed fractional-order SEIR epidemic
model (3) with order α = 0.85. From Fig. 6, it is clearly visible that the fractional-
order model gives better results as compared to the integer-order model.

9. Conclusion

In this paper, a nonlinear fractional-order mathematical model for HIV epidemics
is formulated. The stability analysis was examined, i.e., the local and global dy-
namics of the system, by analyzing the basic reproduction number R0. We found
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Figure 4. Residual errors ERξs,7, ERξe,7, ERξi,7 and ERξr,7 un-
der 7th-order approximations for various α at t ∈ (0, 1). In these
figures, dotted small line corresponds to α = 0.7, dotted medi-
um line corresponds to α = 0.8, dotted large line corresponds to
α = 0.9 and solid black line corresponds to α = 1.

Figure 5. Square residual error functions for ξs(t), ξe(t), ξi(t), and
ξr(t) under 7

th-order approximations versus auxiliary parameter ~
for various α. In these figures, dotted small line corresponds to
α = 0.7, dotted medium line corresponds to α = 0.8, dotted large
line corresponds to α = 0.9 and solid black line corresponds to
α = 1.
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Table 9. The absolute errors ERξs , ERξe , ERξi , ERξr under 7th-
order approximation for various t ∈ (0, 1) at α = 0.9.

t/ER ERξs ERξe ERξi ERξr

0.1 -5.71914×10−8 -5.15891×10−10 -1.20423×10−10 2.53209×10−10

0.2 -1.30749×10−6 -3.55203×10−10 -1.57129×10−9 -4.28203×10−10

0.3 -1.46270×10−6 1.51138×10−9 -1.83535×10−9 -8.70701×10−10

0.4 -1.04325×10−6 1.84559×10−9 -1.97975×10−9 3.34607×10−10

0.5 -3.66098×10−7 -6.30759×10−10 -2.15118×10−9 2.61440×10−9

0.6 3.63659×10−7 -4.20502×10−9 -2.12308×10−9 3.74704×10−9

0.7 1.01348×10−6 -5.56791×10−9 -1.57511×10−9 1.48867×10−9

0.8 1.50155×10−6 -2.76920×10−9 -2.52957×10−10 -3.90001×10−9

0.9 1.78300×10−6 6.73209×10−10 1.94204×10−9 -6.42382×10−9

1.0 1.84047×10−6 9.25178×10−9 4.91113×10−9 9.46007×10−9

Table 10. The absolute errors ERξs , ERξe , ERξi , ERξr under
7th-order approximation for various t ∈ (0, 1) at α = 1.0.

t/ER ERξs ERξe ERξi ERξr

0.1 -5.01256×10−8 1.10702×10−7 -5.92502×10−11 1.12652×10−10

0.2 -6.63270×10−7 3.90990×10−8 -6.86895×10−10 -7.43561×10−11

0.3 -8.31066×10−7 -6.58486×10−8 -7.42272×10−10 -4.71510×10−11

0.4 -6.48510×10−7 -1.07999×10−7 -7.26137×10−10 -2.65197×10−11

0.5 -2.71119×10−7 -9.48755×10−8 -7.76508×10−10 8.69662×10−11

0.6 1.80148×10−7 -7.19609×10−8 -8.10260×10−10 2.27310×10−9

0.7 6.14076×10−7 -8.09412×10−8 -6.42003×10−10 2.50437×10−9

0.8 9.65024×10−7 -1.37563×10−7 -8.02285×10−11 2.47102×10−9

0.9 1.18921×10−6 -2.24988×10−7 9.99257×10−10 -4.08486×10−9

1.0 1.26148×10−6 -2.98728×10−7 2.60263×10−9 -6.04070×10−9

that system (3) exhibits two equilibria, namely disease-free equilibrium (E0) and
endemic equilibrium (E∗). The stability analysis, i.e., local and global stability of
disease-free equilibrium (E0) and endemic equilibrium (E∗) were studied and found
that persistence or eradication of infection is independent of the initial status of
the subpopulation. Sufficient conditions for the local stability of the disease-free
equilibrium (E0) point were given in terms of the basic reproduction number R0

of the model. The disease-free equilibrium (E0) has been shown to be stable for
R0 < 1, i.e., the disease dies out for R0 < 1 and for R0 > 1, it becomes unsta-
ble, and the endemic equilibrium exists. The sufficient conditions that guarantee
the asymptotic stability of the endemic equilibrium(E∗) point were given. Besides
this sensitivity analysis of the parameters involved in threshold parameter R0 was
discussed. The main goal of analyzing such techniques for the fractional-order HIV
epidemic model is to help the researchers, policymakers in targeting, prevention,
and treatment resources for maximum effectiveness.

Furthermore, HAM was applied to obtain an approximate analytical solution of
the proposed fractional-order HIV epidemic model. It is important to note that in
this method, we have some auxiliary parameters and functions. Thus, by plotting
several ~-curves and finding the regions of convergence, we showed the advantages
and abilities of the method. The residual and absolute errors were applied to show
the efficiency and accuracy of the method. The results obtained show that the
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Figure 6. HAM solutions comparing the classical model (1) and
the fractional-order model (3) with order α = 0.85. The solid black
line corresponds to the classical model (1), and the small dotted
line corresponds to the fractional-order model (3).

HAM is an accurate and useful technique for getting the approximate solution of the
proposed nonlinear fractional-order SEIR epidemic model. The results presented
in this article are likely to inspire applications of the HAM analytical procedure for
solving highly nonlinear fractional-order problems describing biological phenomena.
Also, the convergence theorem of HAM to the HIV epidemic model was proved in
the present paper to demonstrate the efficiency of the method.

Moreover, from the theory of fractional calculus, by considering the Caputo
fractional derivatives, we realize that we have stabilized a more competent real-
istic model. The use of fractional calculus opens new paradigms in the area of
mathematical modeling. Although the applied Caputo fractional derivative gives
better results for the proposed fractional-order HIV epidemic model in the current
paper, there is room for fractional-order derivatives with the operators known as
Atangana-Gomez, Atangana-Baleanu, Caputo-Fabrizio, fractal-fractional, and oth-
ers discovering more causative factors that are not covered in this paper, such is
left for future research direction
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Appendix A

The 7th-order approximations for susceptible ξs(t), exposed ξe(t), infected ξi(t)
and recovered ξr(t), respectively were calculated for α = 1 and α = 0.9.

Case 1: By using Mathematica software, we will examine the classical HIV
epidemic model (3) along with (4) by setting α = 1. The partial sums (38) are de-
termined and in particular 7th-order approximations for susceptibles ξs(t), exposed
ξe(t), infected ξi(t) and recovered ξr(t), respectively were calculated, and they are
presented below

ϕξs,7(t) =
6∑

m=0

ξs,m(t)

=20 + 22.2~t+ 55.5~2t+ 74.~3t+ 55.5~4t+ 22.2~5t+ 3.7~6t
+ 5.6115~2t2 + 14.964~3t2 + 16.8345~4t2 + 8.9784~5t2 + 1.8705~6t2

+ 0.510807~3t3 + 1.149321~4t3 + 0.919453~5t3 + 0.255404~6t3

+ 0.0202456~4t4 + 0.0323929~5t4 + 0.0134971~6t4

+ 0.000371781~5t5 + 0.000309818~6t5 + 2.89445× 10−5~6t6,

ϕξe,7(t) =
6∑

m=0

ξe,m(t)

=0.01− 0.0924~t− 0.23~2t− 0.308~3t− 0.23~4t− 0.0924~5t
− 0.0154~6t− 0.11463~2t2 − 0.30568~3t2 − 0.34389~4t2

− 0.183408~5t2 − 0.03821~6t2 − 0.0354428~3t3 − 0.0797463~4t3

− 0.063797~5t3 − 0.0177214~6t3 − 0.00414724~4t4

− 0.00663559~5t4 − 0.00276483~6t4 − 0.000200471~5t5

− 0.000167059~6t5 − 3.39057× 10−6~6t6,

ϕξi,7(t) =
6∑

m=0

ξi,m(t)

=0.02 + 0.027~t+ 0.0675~2t+ 0.09~3t+ 0.0675~4t+ 0.0267~5t
+ 0.0045~6t+ 0.00891~2t2 + 0.02378~3t2 + 0.0267525~4t2

+ 0.014268~5t2 + 0.0029725~6t2 + 0.00142103~3t3 + 0.00319732~4t3
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+ 0.002557865~5t3 + 0.000710517~6t3 + 0.000127737~4t4

+ 0.00020438~5t4 + 0.0000852~6t4 + 5.66816× 10−5~5t5

+ 4.72347× 10−6~6t5 + 9.18996× 10−8~6t6,

ϕξr,7(t) =
6∑

m=0

ξr,m(t)

=− 0.0186~t− 0.0465~2t− 0.062~3t− 0.0465~4t− 0.0186~5t
− 0.0031~6t+ 0.0232125~2t2 + 0.0619~3t2

+ 0.0696375~4t2 + 0.03714~5t2 + 0.0077375~6t2 + 0.0146811~3t3

+ 0.0330325~4t3 + 0.026426~5t3 + 0.00734055~6t3 + 0.00220393~4t4

+ 0.003526294~5t4 + 0.001469297~6t4 + 0.000117901~5t5

+ 0.000098251~6t5 + 2.04244× 10−6~6t6.

Case 2: By using Mathematica software, we will examine the fractional-order
HIV epidemic model (3) along with (4) by setting α = 0.9, and similar results are
obtained for α = 0.8, 0.7 . The partial sums (38) are determined and in particular
7th-order approximations for susceptibles ξs(t), exposed ξe(t), infected ξi(t) and
recovered ξr(t), respectively were calculated, and they are presented below

ϕξs,7(t) =
6∑

m=0

ξs,m(t)

=20 + 23.0825~t0.9 + 57.7064~2t0.9 + 76.9418~3t0.9 + 57.7064~4t0.9

+ 23.0825~5t0.9 + 3.84709~6t0.9 + 6.69434~2t1.8 + 17.8516~3t1.8

+ 20.283~4t1.8 + 10.7109~5t1.8 + 2.23145~6t1.8 + 0.734111~3t2.7

+ 1.65175~4t2.7 + 1.3214~5t2.7 + 0.367055~6t2.7 + 0.0360963~4t3.6

+ 0.0577541~5t3.6 + 0.0240642~6t3.6 + 0.0008327~5t4.5

+ 0.000693983~6t4.5 + 8.05757× 10−6~6t5.4,

ϕξe,7(t) =

6∑
m=0

ξe,m(t)

=0.01− 0.0960733~t0.9 − 0.240183~2t0.9 − 0.320244~3t0.9

− 0.240183~4t0.9 − 0.0960733~5t0.9 − 0.0160122~6t0.9 − 0.13675~2t1.8

− 0.364666~3t1.8 − 0.41025~4t1.8 − 0.2188~5t1.8 − 0.0455833~6t1.8

− 0.050240~3t2.7 − 0.11304~4t2.7 − 0.090432~5t2.7 − 0.02512~6t2.7

− 0.00717766~4t3.6 − 0.0114843~5t3.6 − 0.00478511~6t3.6

− 0.000432176~5t4.5 − 0.000360147~6t4.5 − 9.2256× 10−6~6t5.4,

ϕξi,7(t) =
6∑

m=0

ξi,m(t)

=0.02 + 0.0280734~t0.9 + 0.0701834~2t0.9 + 0.0935779~3t0.9

+ 0.0701834~4t0.9 + 0.0280734~5t0.9 + 0.00467889~6t0.9
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+ 0.0106383~2t1.8 + 0.0283688~3t1.8 + 0.0319149~4t1.8

+ 0.0170213~5t1.8 + 0.0035461~6t1.8 + 0.00204433~3t2.7

+ 0.00459975~4t2.7 + 0.0036798~5t2.7 + 0.0010221~6t2.7

+ 0.000227353~4t3.6 + 0.000363765~5t3.6 + 0.000151569~6t3.6

+ 0.000012687~5t4.5 + 0.0000105725~6t4.5 + 2.62249× 10−7~6t5.4,

ϕξr,7(t) =
6∑

m=0

ξr,m(t)

=0− 0.019339~t0.9 − 0.0483486~2t0.9 − 0.0644648~3t0.9

− 0.0483486~4t0.9 − 0.0193394~5t0.9 − 0.00322324~6t0.9

+ 0.0276918~2t1.8 + 0.0738447~3t1.8 + 0.0830753~4t1.8

+ 0.0443068~5t1.8 + 0.00923059~6t1.8 + 0.0211206~3t2.7

+ 0.0475213~4t2.7 + 0.0380171~5t2.7 + 0.0105603~6t2.7

+ 0.0039091~4t3.6 + 0.00625456~5t3.6 + 0.00260606~6t3.6

+ 0.000262745~5t4.5 + 0.000218954~6t4.5 + 5.80343× 10−6~6t5.4.
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