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Abstract. We consider the Cauchy problem for a second-order evolutionary equation, in which
the problem operator is the sum of two self-adjoint operators. The main feature of the problem
is that one of the operators is represented in the form of the product of the operator A by its

conjugate operator A∗. Time approximations are implemented so that the transition to a new
level in time is associated with a separate solution of problems for operators A and A∗, not
their products. The construction of unconditionally stable schemes is based on general results

of the theory of stability (well-posedness) of operator-difference schemes in Hilbert spaces and
is associated with the multiplicative perturbation of the problem operators, which lead to stable
implicit schemes. As an example, the problem of the dynamics of a thin plate on an elastic
foundation is considered.

Key words. Second-order evolutionary equation, Cauchy problem, explicit schemes, splitting
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1. Introduction

Many applied problems lead to the need for an approximate solution of the
Cauchy problem for second-order evolutionary equations [2]. As a typical example,
we note the dynamic problems of solid mechanics [3]. A class of problems can be
distinguished, a characteristic feature of which is that the main part of the problem
operator is the product of two operators. For example, when considering models of
thin plates we have a biharmonic operator, the product of two Laplace operators.

Unconditionally stable schemes for these problems are built based on implicit
approximations in time [5, 8]. In the theory of stability (well-posedness) of operator-
difference schemes [9, 10] the most complete results were obtained on the stability of
two-level and three-level schemes in Hilbert spaces. The computational complexity
of solving the Cauchy problem at a new level in time using implicit schemes may
be unacceptable. Therefore, various approaches are being developed to obtain
computationally simpler problems when solving non-stationary problems.

Simplification of the problem at a new level is often implemented for evolution-
ary problems when the problem operator is represented in the form the sums of
more simple operators. For such problems, additive operator-difference schemes
are constructed, which are related to one or another inhomogeneous approxima-
tion in time for individual operator terms. The traditional approach is based on
explicit-implicit approximations (IMEX methods) [1, 4] when one part of the prob-
lem operator is taken from the lower level in time (explicit approximation), and the
other — from the upper one (implicit approximation). This idea of time-stepping
is implemented most consistently when constructing splitting schemes [6, 17]. In
this case, the transition to a new level in time is carried out by solving evolutionary
problems for individual operator terms [19, 20].
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Another class of evolutionary problems can also be noted, in which the problem
operator is represented as the product of two or more operators. An example is
nonstationary problems with a variable weighting factor, the study of which is held
in [10, 13]. Special time approximations are constructed to simplify the problem at
a new time level. For example, paper [18] investigates schemes that are based on
the solution of a discrete problem at a new time level with one operator factor.

In this paper, we consider the Cauchy problem for a second-order evolutionary
equation in which the problem operator includes the product of operator A by
its conjugate operator A∗. Unconditionally stable schemes are constructed based
on a perturbation of both the A operator and the A∗ operator. In this case, the
computational implementation is associated with the separate solution of problems
for operators A and A∗, not their products.

The article is organized as follows. The statement of the Cauchy problem for a
second-order evolutionary equation, which includes the product of the operator A
and A∗, is given in Section 2. Section 3 describes a general approach to constructing
unconditionally stable schemes for second-order evolutionary equations based on
multiplicative perturbation of the operators of the problem. Splitting schemes for
the evolutionary problem, when the problem operator includesA∗A, are constructed
in Section 4. In Section 5, our schemes are applied to the model problem of the
dynamics of a thin plate on an elastic foundation. The results of our work are
summarized in Section 6.

2. Problem statement

The Cauchy problem for a second-order evolutionary equation is considered in a
finite-dimensional Hilbert space H. Omitting technical details, we restrict ourselves
to the following homogeneous equation when

d2w

dt2
+A∗Aw +Bw = 0, 0 < t ≤ T,(1)

w(0) = w0,
dw

dt
(0) = w̃0.(2)

Assume that the operators A and B in (1) are constant (do not depend on t), and
the operator B is self-adjoint and non-negative:

(3) B = B∗ ≥ 0.

We arrive at the problem (1)-(3), for example, after discretization by spatial
variables in the numerical solution of initial-boundary value problems for hyperbolic
equations. The key feature of the problem under consideration is associated with
the operator A, so that it enters equation (1) as the product A∗A. An example of
such a construction is the biharmonic operator (A = A∗).

The scalar product for u, v ∈ H is (u, v), and the norm is ∥u∥ = (u, u)1/2.
Let us define a Hilbert space HS with the scalar product and norm (u, v)S =

(Su, v), ∥u∥S = (u, v)
1/2
S , which is generated by the self-adjoint and positive definite

operator S.
The subject of our consideration is time-stepping for equation (1). We focus

on unconditionally stable schemes for an approximation solution to the problem
(1)-(3), which are convenient for computational implementation. When obtaining
the corresponding stability estimates we compare them with a priori estimates for
the differential problem.
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We multiply the equation (1) scalarly in H by dw/dt and obtain

d

dt

(∥∥∥∥dwdt
∥∥∥∥2 + ∥Aw∥2 + ∥w∥2B

)
= 0.

This equality implies the estimate

(4)

∥∥∥∥dwdt (t)
∥∥∥∥2 + ∥Aw(t)∥2 + ∥w(t)∥2B = ∥w̃0∥2 + ∥Aw0∥2 + ∥w0∥2B,

which ensures stability with respect to the initial data of the solution to the problem
(1)–(3).

We will use a uniform, for simplicity, grid in time with step τ and notation
un = u(tn), tn = nτ , n = 0, . . . , N, Nτ = T . As a basic scheme for the numerical
solution of the problem (1)–(3) we will use a three-level scheme with weights (σ =
const):

un+1 − 2un + un−1

τ2
+(A∗A+B)(σun+1 + (1− 2σ)un + σun−1) = 0,

n = 1, . . . , N − 1,
(5)

with the initial conditions

(6) u0 = w0, u1 = w1.

We have on the solutions of the problem (1), (2)

w(τ) = w(0) + τ
dw

dt
(0) +

τ2

2

d2w

dt2
(τ) +O(τ3)

= w0 + τw̃0 − τ2

2
(A∗A+B)w(τ) +O(τ3).

For the second initial condition, we put

(7)

(
I +

τ2

2
(A∗A+B)

)
w1 = w0 + τw̃0.

Difference scheme (5), (6) approximates (1), (2) with the second order in τ .
Note that explicit approximations of the type

w1 =

(
I − τ2

2
(A∗A+B)

)
w0 + τw̃0.

are unacceptable due to the overestimated requirements on the smoothness of the
initial conditions. Therefore, we focus on the implicit approximations (7).

Our consideration is based on the use of general results in the theory of stability
(well-posedness) of operator-difference schemes in Hilbert spaces [9, 10]. The main
statement on the stability of three-level schemes for the problems under consider-
ation is formulated as follows.

Lemma 1. Let in the three-level scheme

(8) C
un+1 − 2un + un−1

τ2
+Dun = 0, n = 1, . . . , N − 1,

with the initial conditions (6), the operators

(9) C = C∗ > 0, D = D∗ > 0.

Then at

(10) G = C − τ2

4
D > 0
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the scheme (6)–(9) is stable and a priori equality

(11)

∥∥∥∥un+1 − un

τ

∥∥∥∥2
G

+

∥∥∥∥un+1 + un

2

∥∥∥∥2
D

=

∥∥∥∥w1 − w0

τ

∥∥∥∥2
G

+

∥∥∥∥w1 + w0

2

∥∥∥∥2
D

,

holds for all n = 1, . . . , N − 1.

Proof. Taking into account

un =
un+1 + 2un + un−1

4
− τ2

4

un+1 − 2un + un−1

τ2
,

rewrite (8) in the form

(12) G
un+1 − 2un + un−1

τ2
+D

un+1 + 2un + un−1

4
= 0.

Let’s introduce new variables

sn =
un + un−1

2
, rn =

un − un−1

τ
,

and from (12) we arrive at the equation

G
rn+1 − rn

τ
+D

sn+1 + sn

2
= 0.

Let’s multiply it by

2(sn+1 − sn) = τ(rn+1 + rn),

what gives

(Grn+1, rn+1) + (Dsn+1, sn+1) = (Grn, rn) + (Dsn, sn).

Returning to the original variables, we obtain that the equality (11) holds. �
Application of this Lemma to a weighted scheme (3), (5), (6) brings us to the

next statement.

Theorem 2. Three-level scheme (3), (5), (6) is unconditionally stable at σ ≥ 1/4.
Under these constraints, for an approximate solution of the problem, we have a
priori equality (11), wherein

G = I +

(
σ − 1

4

)
τ2D, D = A∗A+B,

and I is the identity operator.

Proof. We write (5) in the form (8) for

C = I + στ2D.

Conditions (9) for σ ≥ 0 and (3) are satisfied, and the inequality (10) results in
σ ≥ 1/4 constraints. Thus, all conditions of the Lemma 1 are fulfilled. �

When using the scheme (5), (6) at a new n+ 1 level, the problem is solved

(I + στ2(A∗A+B))un+1 = φn

with the known right-hand side φn. The computational complexity of this problem
may be unacceptable and therefore it is necessary to simplify the problem at a new
level in time by using special time approximations. In our case, we want to ensure
the transition to a new level in time by solving individual problems for operators
A and A∗, avoiding solving a more complex problem with the product of these
operators.
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3. Unconditionally stable schemes with multiplicative regularization

The principle of regularization of difference schemes provides great opportunities
for constructing difference schemes of a given quality [7, 17]. Results of the theory of
regularization for difference schemes are used to improve the quality of the difference
scheme due to introducing regularizers into the operators of the original difference
scheme [12, 16]. The regularization principle for constructing unconditionally stable
difference schemes is implemented as follows:

(1) for the problem under consideration, we introduce the simplest difference
scheme (generating difference scheme), not possessing the necessary proper-
ties, that is, the scheme is conditionally stable or even absolutely unstable;

(2) the difference scheme is written in a unified (canonical) form, for which
stability conditions are known;

(3) the quality of the difference scheme (its stability) improves via the pertur-
bation of the difference scheme operators.

Thus, the principle of regularization of difference schemes is based on the use of
already known general stability conditions, which are given by the theory of stability
(well-posedness) of operator-difference schemes.

Consider the model Cauchy problem for the equation

(13)
d2w

dt2
+Qw = 0, 0 < t ≤ T,

with a constant, self-adjoint, and positive definite inH linear operator Q. Following
the regularization principle, we first choose some difference scheme for the problem
(2), (13), from which we will start. As such a generating scheme, it is natural to
consider the simplest explicit scheme

(14)
un+1 − 2un + un−1

τ2
+Qun = 0, n = 1, . . . , N − 1,

with the initial conditions (6).
To use Lemma 1, we write the difference scheme (14) in the form (8) with the

operators C = I, D = Q. Taking into account that Q ≤ ∥Q∥I, from (10) we get a
time step constraint

τ ≤ τ0 =
2

∥Q∥1/2

for the stability of the scheme (2), (13).
By (10), an increase in the stability of the difference scheme (8) can be achieved

twofold. In the first case, via increasing the energy (Cy, y) of the operator C or by
reducing the account energy of the operator D. The first possibility of construct-
ing stable difference schemes is based on using additive regularization: increasing
operator C or/and decreasing operator D due to additional terms. The second
possibility is related to the multiplicative perturbation of the operators of the gen-
erating scheme.

With the multiplicative regularization of the operator C, for example, we will
replace C 7−→ C(I + µR) or C 7−→ (I + µR)C, where R is a regularizing operator
and µ is a regularization parameter. With such a perturbation, we remain in the
class of schemes with self-adjoint operators if RC = CR∗. An example of a more
complex regularization is given by the transformation

C 7−→ (I + µR∗)C(I + µR).
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The multiplicative regularization is carried out similarly using the perturbation
operator D. Taking into account the inequality (10), we can implement transfor-
mation D 7−→ D(I + µR)−1 or D 7−→ (I + µR)−1D. For the simplest two-level
schemes, such a regularization can be treated as a new edition of the regularization
of the operator C. To stay in the class of schemes with self-adjoint operators, it is
enough to choose R = R(D). We have great opportunities for regularization

D 7−→ (I + µR∗)−1D(I + µR)−1.

In this case, the regularizing operator R may not be directly bind with operator D.
Under perturbation of the operator Q from (14), we arrive at the scheme

(15)
un+1 − 2un + un−1

τ2
+ Q̃un = 0, n = 1, . . . , N − 1.

For multiplicative regularization, we have, for example, Q̃ = R̃Q. In the simplest

case R̃ = (I + µQ)−1, from (15), we obtain a regularized scheme

(16)
un+1 − 2un + un−1

τ2
+ (I + µQ)−1Qun = 0, n = 1, . . . , N − 1.

The scheme (16) is related to the additive regularization of the operator with the
time derivative: C 7−→ C + µQ, C = I.

Checking the inequality (10) gives that for

µ = στ2, σ ≥ 1

4
,

the regularized scheme (16), (6) is stable. This scheme is directly related to the
conventional weighted scheme for equation (13):

un+1 − 2un + un−1

τ2
+Q(σun+1 + (1− 2σ)un + σun−1) = 0,

whose stability conditions are well known [8, 9].
In the case of an additive representation of the operator Q, stable splitting

schemes can be constructed based on the perturbation of the operator terms. Let
in the equation (13)

Q =

p∑
α=1

Qα, Q∗
α = Qα ≥ 0, α = 1, . . . , p.

Similarly to (15), (16), we will use the scheme

(17)
un+1 − 2un + un−1

τ2
+

p∑
α=1

Q̃αu
n = 0, n = 1, . . . , N − 1,

wherein

Q̃α = (I + µαQα)
−1Qα, α = 1, . . . , p.

In the simplest case of equal weights µα, α = 1, . . . , p, this additive scheme will be
stable when

µα = σατ
2, σα = σ ≥ p

4
, α = 1, . . . , p.

Thus, stability is ensured by increasing the weighting factors.
The implementation of the scheme (17) can be carried out based on solving

independent problems

un+1
α − 2un + un−1

pτ2
+ Q̃αu

n = 0, α = 1, . . . , p,
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and determining the solution at a new level in time according to the rule

un+1 =
1

p

p∑
α=1

un+1
α , n = 1, . . . , N − 1.

Such an organization of computations corresponds to the use of an additive-averaged
scheme [17].

We separately note the possibilities of multiplicative regularization for problems
with the product of operators. Let in the equation (13) Q = A∗A > 0 and A > 0.
Standard multiplicative regularization when in (15)

Q̃ = (I + µA∗A)−1A∗A,

maybe unacceptable due to the need to solve the problem with the operator (I +
µαA

∗A). Therefore, it seems reasonable to consider the option with perturbation
of each operator factor in Q = A∗A. For example, put

(18) Q̃ = (I + µA∗)−1A∗A(I + µA)−1.

Under the conditions (18), the inequality (10) for C = I, D = Q̃ is satisfied if

(I + µA∗)(I + µA) ≥ τ2

4
A∗A.

Thus, it suffices to put

(19) µ = στ, σ ≥ 1

2
.

The main potential drawback of the regularization (18), (19) is related to the fact
that

Q̃ = Q+ (A∗ +A)O(τ).

In case (16) we have

Q̃ = Q+A∗AO(τ2),

that is, the perturbation is associated with the second order in τ .

4. Regularized scheme

Now we can construct an unconditionally stable scheme based on the multiplica-
tive regularization for our problem (1)–(3). It is associated with the perturbation
of the operators A∗A and B and has the form

(20)
un+1 − 2un + un−1

τ2
+ Ã∗Aun + B̃un = 0, n = 1, . . . , N − 1.

This scheme is written in the form (8) with

C = I, D = Ã∗A+ B̃.

According to Lemma 1, stability will be ensured, in particular, for

(21) I ≥ τ2

2
Ã∗A, I ≥ τ2

2
B̃.

For the regularizing operator B̃ put

(22) B̃ = (I + σBτ
2B)−1B, σB > 0.

We will perturb the operator A∗A according to (18):

(23) Ã∗A = (I + σAτA
∗)−1A∗A(I + σAτA)

−1, σA > 0.
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For such Ã∗A and B̃ the inequalities (21) will hold for the following restrictions on
weight parameters:

(24) σ2
A ≥ 1

2
, σB ≥ 1

2
.

The result of our consideration is the following statement.

Theorem 3. The regularized scheme (6), (20), (22), (23) is unconditionally stable
for the constraints (24).

When using the proposed splitting scheme, it is necessary to use the splitting
scheme when specifying the second initial condition (6). Instead of (7) we can use

w1 =

(
I − τ2

2
(Ã∗A+ B̃)

)
w0 + τw̃0

under the constraints (24).
Similarly to (17), schemes with additional splitting are constructed. The simplest

variant is associated with splitting operator B. Let in (3)

B =

p∑
α=1

Bα, B∗
α = Bα ≥ 0, α = 1, . . . , p.

In the scheme (20), (23) we define

(25) B̃ =

p∑
α=1

(I + σBτ
2Bα)

−1Bα.

The stability of the scheme (6), (20), (23), (25) takes place, for example, for

σ2
A ≥ 1

2
, σB ≥ p

2
.

Similarly, we consider the case of splitting the operator A∗A, when

A∗A =

p∑
α=1

A∗
αAα, Ã∗A =

p∑
α=1

(I + σAτA
∗
α)

−1A∗
αAα(I + σAτAα)

−1.

In this case, the scheme (6), (20), (22) is unconditionally stable for

σ2
A ≥ p

2
, σB ≥ 1

2
.

The variant of splitting the operator’s A and A∗ deserves special attention when

A =

p∑
α=1

Aα, A∗ =

p∑
α=1

A∗
α, α = 1, . . . , p.

For Ã∗A put

(26) Ã∗A =

p∑
α=1

Ã∗
α

p∑
α=1

Ãα, Ãα = (I + σAτAα)
−1Aα, α = 1, . . . , p.

In this case, we have

(Ã∗Au, u) =

(( p∑
α=1

Ãαu
)2
, 1

)
≤ p

p∑
α=1

((
Ãαu

)2
, 1

)
= p

p∑
α=1

(
Ã∗

αÃαu, u
)
.

With this in mind, inequalities (21) will be satisfied with

σ2
A ≥ p2

2
, σB ≥ 1

2
,
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which ensures the stability of the scheme (6), (20), (22), (26).

5. Numerical experiments

The possibilities of using the constructed splitting schemes will be illustrated by
the results of the numerical solution of a model problem. We consider the most
evident test problem in a two-dimensional regular computational domain under
trivial boundary conditions with a basic biharmonic operator. We use difference
approximations on a uniform grid in space, when the operators A and B are easy
to construct, and we can write down the approximate solution itself explicitly.
The calculations performed have only methodological significance; the calculated
data complement our general theoretical consideration. We can use the developed
computational splitting technology for more significant applied problems; these
problems are characterized, in particular, by complex computational domains,
equations with variable coefficients, more general boundary conditions, and finite
element approximation in space.

Assume that the computational domain is a rectangle

Ω = {x | x = (x1, x2), 0 < xα < lα, α = 1, 2},

with the boundary ∂Ω. We need to find a solution v(x, t) of the equation

(27)
∂2v

∂t2
+△2v + γ1v − γ2△v = 0, x ∈ Ω, 0 < t ≤ T,

where γ1 = const > 0, γ2 = const > 0, and △ = div grad is the Laplace operator.
Equation (27) is supplemented with the following boundary and initial conditions:

v(x, t) = 0, △v(x, t) = 0, x ∈ ∂Ω,(28)

v(x, 0) = v0(x),
∂v

∂t
(x, 0) = 0, x ∈ Ω.(29)

Boundary value problem (27)–(29) describes (see details, for example, in the
[14, 15, 21]) displacement of the plate on the elastic base. In this case, v(x, t) is the
normal displacement of the plate, v0(x) defines the displacement at the start time.
The boundary conditions (28) correspond to hinge fastening. In the framework
of two-dimensional elastic models, the parameter γ1 is associated with the elastic
foundation reaction modulus (Winkler model), and the γ2 parameter — with the
tension action of a thin elastic membrane in the Filonenko-Borodich model and
with the shear action among the spring elements in the Pasternak model.

On the set of sufficiently smooth functions w(x) = 0, x ∈ ∂Ω, we define the
operator

Aw = −△w, x ∈ Ω.

Let us write the problem (27)–(29) in the form of the Cauchy problem for a second-
order evolutionary equation. The solution v(t) = v(·, t) is determined from the
equation

(30)
d2v

dt2
+A2v + γ1v + γ2Av = 0, 0 < t ≤ T.

Taking into account (29), it is supplemented with the initial conditions

(31) v(0) = v0,
dv

dt
(0) = 0.

To solve numerically the problem (27)–(29), we will use the standard difference
approximations in space [8]. We will introduce in the region Ω a uniform rectangular
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grid

ω = {x | x = (x1, x2) , xα = iαhα, iα = 0, 1, ..., Nα, Nαhα = lα, α = 1, 2},

where ω = ω∪∂ω, ω is the set of interior mesh nodes, and ∂ω is the set of boundary
mesh nodes. For grid functions w(x) such that w(x) = 0, x /∈ ω, we define the
Hilbert space H = L2(ω), in which the dot product and norm are

(w, u) =
∑
x∈ω

w(x)u(x)h1h2, ∥w∥ = (w,w)1/2.

For u(x) = 0, x /∈ ω, we define the grid Laplace operator −A on the usual
five-point stencil:

Au =− 1

h21
(u(x1 + h1, x2)− 2u(x) + u(x1 − h1, x2))

− 1

h22
(u(x1, x2 + h2)− 2u(x) + u(x1, x2 − h2)), x ∈ ω.

For this grid operator (see, for example, [8]), we have

(32) A = A∗ ≥ δI, δ > 0.

On sufficiently smooth functions, the operator A approximates the differential
operator A with an error O

(
|h|2
)
, |h|2 = h21 + h22.

The finite-difference approximation in the space of the problem (30), (31) leads
us to equation (1), which is complemented by the initial conditions

(33) w(0) = w0,
dw

dt
(0) = 0,

when w0 = v0(x), x ∈ ω. For the operator B we have

(34) B = γ1I + γ2A.

We carry out numerical experiments based on the exact solution of the problem
(1), (32)–(34). Consider the grid spectral problem

Aψ = λψ.

For eigenfunctions and eigenvalues we have (see, for example, [11]):

ψk1,k2(x) =

2∏
β=1

√
2

lβ
sin
(kβπxβ

lβ

)
, x ∈ ω,

λk1,k2 =
2∑

β=1

4

h2β
sin2

kβπ

2Nβ
, kα = 1, 2, ..., Nα − 1, α = 1, 2.

Because of this

δ = λ1,1 =
2∑

β=1

4

h2β
sin2

π

2Nβ
< 8
( 1

l21
+

1

l22

)
.

Eigenfunctions ψk1,k2 , ∥ψk1,k2∥ = 1, form a basis in H. Therefore, for any grid
function u ∈ H, the representation takes place

u =

N1−1∑
k1=1

N2−1∑
k2=1

(u, ψk1,k2)ψk1,k2 .
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Figure 1. Exact solution of the problem at different time-moments.

To solve the problem (1), (32)–(34), we get

w(x, t) =

N1−1∑
k1=1

N2−1∑
k2=1

(w0, ψk1,k2) cos(r
1/2
k1,k2

t)ψk1,k2(x),

rk1,k2 = γ1 + γ2λk1,k2 + λ2k1,k2
.

(35)

The calculation results presented below were obtained for the problem with

l1 = l2 = 1, N1 = N2 = 256, γ1 = 1, γ2 = 0.05.

Comparison of approximations in time is carried out on the problem with the initial
condition

w0(x) = 100x21(1− x1)x
2
2(1− x2).

The solution to the test problem at different time-moments is shown in Fig. 1. The
plate displacement dynamics at characteristic points are shown in Fig. 2. Complex
vibrations of the plate are observed.

It is natural to compare the accuracy of the constructed splitting scheme with
the accuracy usually weighted scheme (5), (6). At separate time-moments t = tn

we define the error norms of the solution in C(ω) and L2(ω):

ε∞(tn) = max
x∈ω

|un(x)− w(x, tn)|, ε2(t
n) = ∥un(x)− w(x, tn)∥, n = 0, . . . , N.

For the initial displacement of the plate, we have

max
x∈ω

|w(x, 0)| ≈ 2.195, ∥w(x, 0)∥ ≈ 0.9524.

The error in the approximate solution of the problem (27)–(29) is shown in Fig.
3 when using the scheme (5), (6) with σ = 0.25. For the considered initial data
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Figure 2. Displacement of the plate at individual points.
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Figure 3. The solution error ε∞ (left) and ε2 (right) for the
weighted scheme at σ = 0.25.
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Figure 4. The solution error ε∞ (left) and ε2 (right) for the
weighted scheme at σ = 0.5.

and time steps, the theoretical asymptotic dependence of the time step accuracy
(second-order) is not visible. With increasing weight σ the errors grow — see Fig.
4.

When using the splitting scheme (6), (20), (22), (23) with the constraints (24),
we set

σ2
A =

1

2
, σB =

1

2
.

Time-histories of the error of the approximate solution on time for this case is
shown in Fig. 5. Evidently, as the time step decreases, the accuracy increases, but,



SPLITTING SCHEMES FOR EVOLUTIONARY EQUATIONS 31

0.0 0.1 0.2 0.3 0.4 0.5
t

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

ε ∞

τ = 0.0005
τ = 0.001
τ = 0.002

0.0 0.1 0.2 0.3 0.4 0.5
t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

ε 2

τ = 0.0005
τ = 0.001
τ = 0.002

Figure 5. The solution error ε∞ (left) and ε2 (right) for the
splitting scheme with σ2

A = 0.5, σB = 0.5.

as you would expect, errors in comparison with the usual scheme with weights (see
Fig. 3, 4) are much larger.

6. Conclusions

Some applied models, in particular, of the theory of plates, lead to the necessity
of solving the initial-boundary value problems for partial differential equations
that include fourth-order elliptic operators. The paper discusses the problem of
reducing the computational complexity of the implementation of unconditionally
stable implicit schemes for these problems using special approximations in time. In
the present work:

(1) A class of Cauchy problems for a second-order evolutionary equation is
highlighted, in which the problem operator is the sum of two self-adjoint
operators. Wherein one of the operators is represented as the product of
the operator A by its conjugate operator A∗.

(2) Conditions for the absolute stability of three-level schemes with weights
formulated using general results the theory of stability (well-posedness) of
operator-difference schemes.

(3) Splitting schemes are constructed and investigated for which the transition
to a new level in time is associated with a separate solution of problems for
operators A and A∗, not their products.

(4) The efficiency of the proposed splitting schemes is demonstrated by the
results of calculations of the dynamics of a thin square plate on an elastic
foundation.
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