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AN INTEGRAL EQUATION MODEL FOR PET IMAGING

XINHUANG TANG1,2, CHARLES ROSS SCHMIDTLEIN2, SI LI3, AND YUESHENG XU4,∗

Abstract. Positron emission tomography (PET) is traditionally modeled as discrete systems.
Such models may be viewed as piecewise constant approximations of the underlying continuous

model for the physical processes and geometry of the PET imaging. Due to the low accuracy of
piecewise constant approximations, discrete models introduce an irreducible modeling error which
fundamentally limits the quality of reconstructed images. To address this bottleneck, we propose
an integral equation model for the PET imaging based on the physical and geometrical consid-

erations, which describes accurately the true coincidences. We show that the proposed integral
equation model is equivalent to the existing idealized model in terms of line integrals which is ac-
curate but not suitable for numerical approximation. The proposed model allows us to discretize
it using higher accuracy approximation methods. In particular, we discretize the integral equation

by using the collocation principle with piecewise linear polynomials. The discretization leads to
new ill-conditioned discrete systems for the PET reconstruction, which are further regularized by a
novel wavelet-based regularizer. The resulting non-smooth optimization problem is then solved by

a preconditioned proximity fixed-point algorithm. Convergence of the algorithm is established for
a range of parameters involved in the algorithm. The proposed integral equation model combined
with the discretization, regularization, and optimization algorithm provides a new PET image
reconstruction method. Numerical results reveal that the proposed model substantially outper-

forms the conventional discrete model in terms of the consistency to simulated projection data
and reconstructed image quality. This indicates that the proposed integral equation model with
appropriate discretization and regularizer can significantly reduce modeling errors and suppress
noise, which leads to improved image quality and projection data estimation.
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1. Introduction

Positron emission tomography (PET) is a critical tool for the in vivo detection of
cancer, due to its exquisite sensitivity to positron emitting radio-labeled molecules.
In PET, patients are administered a small amounts of a radio-labeled tracer that
has affinities for a particular molecular target (e.g. , 18F-fluorodeoxyglucose (FDG)
for glucose metabolism). After sufficient time for the tracer to circulate and bind
(typically 1-hour for 18F-FDG), the patient is then placed in a PET scanner where
the photons emitted from positron annihilation are counted. These photons are
emitted (nearly) back-to-back, and are counted in coincidence since their emission
is correlated in time. The coincidence count data are then reconstructed via a de-
blurring/denoising approach based on a physical model into images that represents
the tracer’s biodistribution. In PET, the physical model usually considers three
types of detected coincident counts, that is, true coincidences, scatter coincidences
and random coincidences. True coincidences come from the same decay events that
have not been scattered before hitting the detectors, whereas scatter coincidences
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are the events that have been scattered. Random coincidences involve two separate
decay events occurring within a physically allowable timing window (coincidence
window, typically 2-5 ns). In current practice, a reduced model, based on the true
coincidences portion of the physical model, is generally used and discussed in the
literature. In this reduced model, the scatter and random counts are externally es-
timated as additive count corrections. Discretization based on a piecewise constant
approximation of the reduced model leads to the commonly used discrete system
model. However, the resulting discrete model introduces irreducible modeling error
due to its use of the piecewise constant approximation. Moreover, even though a
great deal of work has been done in investigating the reduced model, the explic-
it development of higher accuracy representations of the physical model and its
subsequent regularization is less explored.

As mentioned in a comprehensive review [10], substantial focus has been placed
on improving the accuracy of the physical models. Accurately modeling the physical
effects can improve the fidelity of the model, and further increase the quality (such
as spatial resolution, lesion contrast) of the reconstructed image. If the discrete
nature of the projection data is ignored, the attenuated Radon transform model
(ART) [7, 33] represents an idealized and accurate model for true coincidences.
However, in a real PET data acquisition, a new form of the ART model that ac-
counts for the discreteness of data is required. Existing models for true coincidences,
mainly factorization approaches, can be considered as the discretization of the ART
model and still have the non-negligible modeling errors. Factorization approaches
[4, 24, 26, 32] formulate the system matrix as the product of independent sparse
matrices (e.g. , attenuation, positron range and detector efficiency). This leads to
a sparse system matrix, which substantially reduces storage space and can help
reduce reconstruction times. However, these factorizations are based on the decou-
pling of the integral kernel that can introduce modeling errors that fundamentally
limit image quality. These models also fail to consider the continuous nature of the
problem and can be regarded as piecewise constant approximations of the integral
equation model. The data/model mismatch mentioned above results in irreducible
modeling error and thus imposes a fundamental bottleneck in the improvement of
image quality. Therefore, it is the goal of this study to reduce the modeling error
through a holistic approach via establishing a continuous physical model and its
discretization of higher order accuracy.

In this study, we propose an integral equation model combined with the dis-
cretization, regularization, and optimization algorithm, leading to a new PET im-
age reconstruction method. In contrast to existing discrete models (DM), the true
coincidences model proposed in this paper improves consistency with the underly-
ing physics and geometry of the PET imaging. We consider the attenuation and
effective detection angle of each point source to determine the contribution weights
of the true coincidences. The model is then discretized by using piecewise poly-
nomials, resulting in a novel discrete system for PET reconstruction. Piecewise
polynomials can more precisely express the tracer distribution than a piecewise
constant function, and result in a higher order of accuracy than a piecewise con-
stant function. Based on the smoothness of the tracer distribution function, we
designed a suitable sparse wavelet-based regularizer to penalize the approximation
error of the discretization and to treat the ill-posedness of the proposed piecewise
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polynomial discrete system. The resulting non-smooth minimization problem is
solved by employing a preconditioned proximity fixed-point algorithm.

We validate numerically the accuracy of the proposed true coincidences model
for PET imaging by comparing the accuracy of the projection data of the proposed
model with that of the conventional discrete implementation of the ART model.
In addition, we compare the performance of the proposed reconstruction method
with the conventional discrete method. Numerical results that we have obtained
reveal that the proposed integral equation model with the regularization can reduce
significantly the modeling and approximation errors, suppress noise, and improve
the reconstructed image’s quality, demonstrating its remarkable improvement over
conventional discrete models.

This paper is organized in 8 sections. In Section 2, we introduce an integral
equation model for true coincidences in PET imaging. The equivalence of the
proposed integral equation model with an existing idealized continuous-to-discrete
ART model is established in section 3. In Section 4, we discretize the proposed
integral equation by using a piecewise linear basis. In Section 5, we apply the
wavelet-based regularized maximum likelihood estimation for the resulting discrete
system and describe a fixed-point iterative algorithm for solving the minimization
problem. Section 6 is devoted to deriving ranges for the parameters appearing
in the fixed-point iterative algorithm which ensure its convergence. We present
in Section 7 numerical results that demonstrate the performance of the proposed
integral equation model for PET image reconstruction. Finally, a conclusion is
drawn in Section 8.

2. Integral Equation Model for PET Imaging

In this section, we introduce an integral equation model for PET imaging. The
proposed model is constructed based on the physical effects and geometry of a PET
system.

The PET imaging process is to reconstruct a tracer distribution function from
data recorded by a PET scan. In the PET imaging system, the instrument records
the coincidence events, that is, effectively detected pairs of gamma photon emitted
from the radioactive tracer distributed inside the patient’s body. The radiotrac-
er emits a positively charged positron when it undergoes positron emission decay.
After a random trip, the positron loses its kinetic energy, and interacts with an elec-
tron. A pair of gamma photons with 511 keV energy is then produced and emitted
in approximately the opposite direction. The photon pair is detected by a pair
of detectors after the attenuation, where the number of photons, detection time
and energy information are recorded. There are three types of coincidence events
recorded on the detectors: true coincidences, scatter coincidences and random co-
incidences. Among them, the true coincidences are the major events. Particularly,
the two photons of a true coincidence come from the same decay event, and neither
photon has been scattered before entering the detector. In a scatter coincidence,
two photons come from the same decay event, but one or both of them undergo
the Compton scattering. The random coincidence is an event in which two photons
from different decay events are recorded.

There are many physical effects and geometry involved in the PET imaging
process. These factors are mainly divided into three phases. The first phase occurs
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before the photon pair is produced and consists mainly of the positron range, the
positron annihilation and the non-collinearity. In the second phase, the photon
pairs are generated and undergo attenuation and Compton scattering. The third
phase occurs within the detector and includes the photoelectric effect and inter-
crystal scatter. The physical effects and geometry of the PET imaging process
have a significant impact on the data collection. Therefore, accurately modeling
of these factors is crucial for PET imaging. In general, a PET imaging model is
mainly based on the modeling of the true coincidences with the addition of several
physical effects and geometric related factors. In this work, we focus on developing
an integral equation model for the true coincidences, by combining the attenuation
of photons and geometric structure of the system, but ignoring the positron range
and the non-collinearity. A more comprehensive model will be given in a future
project.

In an idealized PET environment, true coincidences can be accurately described
by the ART model. Existing studies based on the ART model consist of two cat-
egories. One uses the inverse attenuated Radon transform (IART) [7, 29, 33] to
give an approximate analytical form of the tracer distribution function. The other
employs the collected counts on a line-of-response (LOR) to approximate the col-
lected counts on a detector pair [4, 24, 26, 32, 33]. Both of these approaches fail to
incorporate the properties of the detector’s discrete distribution to give a specific
expression of the relationship between the tracer distribution function and the col-
lected data. The ART model is applicable only for the idealized PET environment
where detectors are assumed to be continuously distributed. In fact, by consid-
ering the properties of the discrete distribution of the detectors, one can obtain a
continuous-to-discrete ART model. However, the continuous-to-discrete ART mod-
el suffers from its limitations. It is difficult to expand the model by adding other
physical consideration. Moreover, the line integral involved in the ART model may
result in large approximation errors and high computational complexity in imple-
menting it. The model we introduce in this section for the true coincidences takes a
different viewpoint by considering the contribution weight of photons at each point
source to a detector pair, avoiding using the line integral. We will prove in the next
section that the proposed model is mathematically equivalent to the ART model.
This equivalence ensures that the proposed model is a feasible replacement for the
ART model, and more importantly, it overcomes the shortcoming of the latter.

We now briefly describe the geometry of a PET system considered in this work.
As shown in Figure 1A, we use a cylindrical PET system with a circular full ring
scanner. The detectors with width ∆L are distributed on a detector ring of radius
R. We assume that there are Nd effective detector pairs that can detect the true
coincidence events, and denote by g

k
, k = 1, 2, . . . , Nd, the true coincidence counts

detected by the kth detector pair. The field-of-view (FOV) or the tracer distribu-
tion area is a disk with radius r, denoted by Ω ⊂ R2. For the true coincidences
without the positron range and non-collinearity, the gamma photon pairs emitted
isotropically from each point source x in the FOV having the tracer distribution
function f(x) will be detected by the detectors, after interacting with the tissues
inside the patient’s body having the attenuation coefficient distribution function
µ(x). Considering the contribution of the tracer distribution function f to the
detected count vector [g1 , g2 , . . . , gNd

] leads to our model.
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We now introduce the integral equation model for the true coincidences. For
each detector pair, its recorded true coincidence counts come from a small region
within the FOV, which is called an effective contribution region. Each point source
in the region will have a weighted contribution to the total counts recorded by the
detector pair. Specifically, for the kth detector pair, k = 1, 2, . . . , Nd, we denote
by Ωk ⊂ Ω the effective contribution region, and by Wk the contribution weight of
the point source. The true coincidence counts g

k
are the total contribution of the

function f with the contribution weight Wk over the region Ωk. That is,

g
k
=

∫
Ωk

Wk(x)f(x) dx, for k = 1, 2, . . . , Nd.(1)

The contribution weight Wk is determined by the material attenuation, isotropic
multi-angle projection and the geometry of the PET system, which will be detailed
later.

(A)

(B)

Figure 1. In each figure, the outer circle is the detector ring, the
inner circular area is the FOV. The thick red lines on the outer
circle are detectors, and the blue lines with two arrows are the
LORs. The strip between the two detectors is the SOR.
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The effective contribution region Ωk is determined only by the system geometry.
As shown in Figure 1A, we introduce a fixed xy-coordinate system whose origin is
the center of the FOV. A line-of-response, the line connecting the two detectors of
a detector pair, represents the allowable path of an unscattered photon coincidence
pair. We next describe the LOR passing through a point source x := (x, y) ∈ Ω
and having a normal forming an angle ϕ ∈ [0, π) with the positive direction of the
x-axis, as shown in Figure 1A. The LOR can be described by

l(x, ϕ) := {x̄ := (x̄, ȳ) : x̄ := x− t sinϕ, ȳ := y + t cosϕ, t ∈ R}.(2)

For a particular detector pair, all the effective LORs form a strip-of-response (SOR).
The intersection of the SOR and FOV is the effective contribution region Ωk for
the kth detector pair. It is the gray area shown in Figure 1.

The contribution weight Wk(x) is the probability that the photon pairs emitted
from a point source x ∈ Ωk and detected by the kth detector pair. For x ∈ Ωk,
only the photons that emitting toward the kth detector pair and have not been
attenuated are counted in g

k
. Thus, the detection probability by a given detector

pair is the product of the probability of a photon pair emitting towards the detector
pair and the probability of the photon pair avoiding attenuation. For an isotropic
source in the 2D plane, the emission probability of a photon at an angle between
ρ and ρ + dρ is given by dρ/(2π), whereas for a photon coincidence pair, it is
dρ/π. The attenuation of a photon beam is the amount of the light intensity
(or the photon number) lost as the beam passes through a medium. According
to the Beer-Lambert law [2], the amount of attenuated photons is proportional
to the length of the medium through which the photon beam penetrates and the
attenuation coefficient of the medium. The attenuation kernel may be written as
an exponential function of the total attenuation on the path through the medium.
By the definition (2) of the LOR, the attenuation distribution function µ at a point
x̄ ∈ l(x, ϕ) can be also represented by µ(x−t sinϕ, y+t cosϕ). In addition, since the
attenuation distribution function is defined on the FOV, the effective attenuation
region of a LOR l(x, ϕ) satisfies t1 ≤ t ≤ t2 with{

t1 = x sinϕ− y cosϕ−
√
r2 − (x cosϕ+ y sinϕ)2,

t2 = x sinϕ− y cosϕ+
√
r2 − (x cosϕ+ y sinϕ)2.

Therefore, the attenuation on the LOR l(x, ϕ) is given by

(3) Ka(x, ϕ) := exp

{
−
∫ t2

t1

µ(x− t sinϕ, y + t cosϕ) dt

}
.

The detection probability on this LOR is then given by Ka(x, ϕ) dρ/π. Next, we
account for the detection probability on all possible LORs through the point source
x. According to the geometry of the PET system, shown in Figure 1B, the effective
detection angle of the point x and the normal angle of the LOR l(x, ϕ) have the
relation ϕ = ϕk − ρ. Here ϕk is the angle between the positive direction of the
x-axis and a line from the origin perpendicular to the SOR. For a given detector
pair, the effective LORs fall in its SOR, thus, the angle ρ is constrained by the
minimum effective detection angle ρ

min,k
(x) and the maximum effective detection

angle ρ
max,k

(x). Therefore, the total contribution weightWk(x) for the kth detector
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pair is an integral of the detection probability over all possible LORs. That is,

Wk(x) :=
1

π

∫ ρ
max,k

(x)

ρ
min,k

(x)

Ka(x, ϕk − ρ) dρ.(4)

We next specify ρ
min,k

and ρ
max,k

that appear in (4). To this end, we introduce a
new ukvk-coordinate system for the kth detector pair by rotating the xy-coordinate
system counter-clockwise by angle ϕk, and translating the system by ūk along the
uk-axis, where ūk is the number illustrated in Figure 1B. We let ∆hk denote the
width of the SOR in Figure 1B, Lk,1 and Lk,2 denote the lengths of the two edges
of the SOR in Figure 1A, respectively. The coordinates (uk, vk) of a point source
x := (x, y) ∈ Ωk in the ukvk-coordinate system are given by

uk := x cosϕk + y sinϕk − ūk and vk := −x sinϕk + y cosϕk.

Finally, the minimum and maximum effective detection angle of the point source x
are given by

ρ
min,k

(x) := −min

{
arctan

∆hk − 2uk
Lk,1 + 2vk

, arctan
∆hk + 2uk
Lk,2 − 2vk

}
,

ρ
max,k

(x) := min

{
arctan

∆hk − 2uk
Lk,1 − 2vk

, arctan
∆hk + 2uk
Lk,2 + 2vk

}
.

With the above discussion, a complete integral equation model for the true co-
incidence counts may be described as

g
k
=

1

π

∫
Ωk

∫ ρ
max,k

(x)

ρ
min,k

(x)

Ka(x, ϕk − ρ)f(x) dρdx, k = 1, 2, . . . , Nd.(5)

This is the model on which our reconstruction method is based.

3. Equivalence of the Proposed Model with the Continuous-to-Discrete
ART Model

The existing ART model [1, 3, 7, 29, 33] is the accurate model for true coin-
cidences in an idealized PET data acquisition. Hence, the continuous-to-discrete
(CtoD) ART model that considers the discrete distribution of detectors can give the
accurate true coincidences for each detector pair. However, the CtoD ART model is
not computationally efficient due to the involvement of line integrals. We establish
in this section the mathematical equivalence between the proposed model and the
CtoD ART model. This ensures that the proposed model which is more computa-
tionally efficient can be used as a feasible surrogate of the idealized model and can
overcome the computational shortcoming of the CtoD ART model. A comparison
of the performance of the proposed model with that of a conventional discretization
of the CtoD ART model will be presented in the numerical experiment section.

Before the introduction of the ART model, we first describe a new form for
the LOR and then consider the attenuation for this new form. This alternative
formulation describes the line representing the LOR using the normal angle and
the distance from the origin. We note that the new form of LOR and the form
in (2) can be converted to each other through the transformation between their
variables. Let U := [−r, r], Θ := [0, π) and u := x cosϕ + y sinϕ. Clearly, |u| is
the distance from the origin to the line-of-response. In PET, for the two parallel



AN INTEGRAL EQUATION MODEL FOR PET IMAGING 841

lines with same distance from the origin, if the angles between the perpendicular
lines from the origin to the line and the positive direction of the x-axis are ϕ and
ϕ + π, respectively, these two lines are considered to have the same normal angle
ϕ. To distinguish these two lines, we use |u| and −|u| to label these two lines,
respectively. Thus, each line-of-response has a corresponding pair (|u|, ϕ), if the
foot of the perpendicular line is above the x-axis, and (−|u|, ϕ), otherwise. It can
be verified that in the former case, u ≥ 0; while in the latter case, u ≤ 0. In
summary, a line-of-response has its corresponding pair (u, ϕ), with u ∈ U and angle
ϕ ∈ Θ. By denoting v := t−x sinϕ+y cosϕ ∈ R, a new form of the line-of-response
is given by

l̃(u, ϕ) := {x̄ := (x̄, ȳ) : x̄ := u cosϕ− v sinϕ, ȳ := u sinϕ+ v cosϕ, v ∈ R}.(6)

We then consider the attenuation on the LOR l̃(u, ϕ). Since the attenuation
distribution function µ is defined on Ω, we only consider the attenuation of the
interval on the line-of-response l̃(u, ϕ) within the FOV. Combining the geometry in
PET, we have the following constraint for the variable v

v ∈ [v1(u), v2(u)] with v1(u) := −
√
r2 − u2 and v2(u) :=

√
r2 − u2 for u ∈ U .

For any x̄ ∈ l̃(u, ϕ), the attenuation distribution function µ(x̄) can be expressed
by µ(u cosϕ− v̄ sinϕ, u sinϕ+ v̄ cosϕ). Similar to (3), the attenuation on the LOR

l̃(u, ϕ) is given by

K̃a(u, ϕ) := exp

{
−
∫ v2(u)

v1(u)

µ(u cosϕ− v̄ sinϕ, u sinϕ+ v̄ cosϕ) dv̄

}
.(7)

We now describe the existing ART model for the true coincidences. In an ideal-
ized PET data acquisition, the detectors are assumed to be continuously distributed
on the detector ring. The collected data at each point on the detectors can be pre-
cisely located so that the projected data are continuously distributed. Let g denote
the continuous projection function on U ×Θ. The projection function g is an inte-
gral of the tracer distribution function f on the LOR l̃(u, ϕ) with the attenuation
defined by (7). Again, the tracer distribution function f is defined on Ω, we on-

ly consider the photon pairs located at the interval on the line-of-response l̃(u, ϕ)
within the FOV. For any point source x = (u cosϕ − v sinϕ, u sinϕ + v cosϕ), the
ART model is given by

g(u, ϕ) =

∫ v2(u)

v1(u)

K̃a(u, ϕ)f(x) dv, for all (u, ϕ) ∈ U ×Θ.(8)

The above model (8) is only applicable for the idealized PET environment with
continuous distribution of detectors. By considering the properties of the discrete
distribution of the detectors, we can further obtain a CtoD ART model. We divide
the range U×Θ of g into Nd ranges according to the Nd detector pairs. Specifically,
we let

ũk,1 := ūk −∆hk/2, ũk,2 := ūk +∆hk/2

and η
k
(u) := min{ζ(u, ũk,1, Lk,1), ζ(u, ũk,2, Lk,2)},
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where

ζ(u, u∗, L∗) := arccos

(
4uu∗ − L∗

√
L2
∗ − 4u2 + 4u2∗

4u2 + L2
∗

)
.

For the kth detector pair, we define a set of points (u, ϕ) by

Sk := {(u, ϕ) : ũk,1 ≤ u ≤ ũk,2, ϕk − η
k
(u) ≤ ϕ ≤ ϕk + η

k
(u)}.

Then, we have that a partition for U ×Θ, that is,

U ×Θ =

Nd∪
k=1

Sk.

By considering the collected counts on all the LORs within the SOR of a given
detector pair, we obtain the relationship between the collected data of the detector
pair and the tracer distribution function. In particular, accumulating all g(u, ϕ)
with (u, ϕ) ∈ Sk, we have the total collected data g

k
for the kth detector pair.

In addition, since the photon pairs emitted by the point sources are isotropic, a
normalization factor 1/π needs to be considered in the modeling. The CtoD ART
model is then given by

g
k
=

1

π

∫∫
Sk

∫ v2(u)

v1(u)

K̃a(u, ϕ)f(x) dv du dϕ, for k = 1, 2, . . . , Nd.(9)

The above CtoD ART model is considered as an accurate model for the true
coincidences. We now establish the main result of this section that the proposed
model is equivalent to the CtoD ART model. We first construct a bijective mapping
between the two integration regions of the two models. For k = 1, 2, . . . , Nd, we
denote

Dk := Ωk × [ρ
min,k

, ρ
max,k

]

by the integral region for the integration variables (x, ρ) of the proposed model,
and

Ek := Sk × [v1(u), v2(u)]

by the integral region for the integration variables (u, ϕ, v) of the CtoD ART model.
We then define the mapping

J : (u, ϕ, v) ∈ Ek → (x, ρ) ∈ Dk(10)

by

J (u, ϕ, v) := ((x(u, ϕ, v), y(u, ϕ, v)), ρ(u, ϕ, v)),

where 
x(u, ϕ, v) := u cosϕ− v sinϕ,

y(u, ϕ, v) := u sinϕ+ v cosϕ,

ρ(u, ϕ, v) := ϕk − ϕ.

Lemma 3.1. The mapping J : (u, ϕ, v) → (x, ρ) defined in (10) is bijective.
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Proof. We prove this lemma by showing that J is injective and surjective.
We first show that J is injective. Suppose that for (u′, ϕ′, v′), (u′′, ϕ′′, v′′) ∈ Ek,

we have that

J (u′, ϕ′, v′) = J (u′′, ϕ′′, v′′).

By the definition of J , we observe that
u′ cosϕ′ − v′ sinϕ′ = u′′ cosϕ′′ − v′′ sinϕ′′,

u′ sinϕ′ + v′ cosϕ′ = u′′ sinϕ′′ + v′′ cosϕ′′,

ϕk − ϕ′ = ϕk − ϕ′′.

From the last equality, we get that ϕ′ = ϕ′′. Substituting this into the first two
equalities, we obtain that u′ = u′′ and v′ = v′′. Therefore, J is injective.

It remains to prove that J is surjective. For any (x, ρ) ∈ Dk, we have that
u(x, ρ) := x cos(ϕk − ρ) + y sin(ϕk − ρ),

v(x, ρ) := −x sin(ϕk − ρ) + y cos(ϕk − ρ),

ϕ(x, ρ) := ϕk − ρ.

We now verify that

(u(x, ρ), ϕ(x, ρ), v(x, ρ)) ∈ Ek.

Considering the geometry in Figure 1B, for (x, ρ) ∈ Dk, the minimum and maxi-
mum of u(x, ρ) can be taken by ūk −∆hk/2 and ūk +∆hk/2, respectively. Hence,

u(x, ρ) ∈
[
ūk − ∆hk

2
, ūk +

∆hk
2

]
.

Moreover, by the definition of u(x, ρ) and v(x, ρ), we obtain that

u2(x, ρ) + v2(x, ρ) = x2 + y2 ≤ r2.

This implies that

v(x, ρ) ∈
[
−
√
r2 − u2(x, ρ),

√
r2 − u2(x, ρ)

]
.

Substituting the minimum ρ
min,k

and maximum ρ
max,k

of ρ into the definition of
ϕ(x, ρ), the minimum and the maximum of ϕ(x, ρ) can be given by ϕk − η

k
(u) and

ϕk + η
k
(u), respectively. Thus,

ϕ(x, ρ) ∈ [ϕk − η
k
(u), ϕk + η

k
(u)] .

Based on the value range of u(x, ρ), ϕ(x, ρ), and v(x, ρ), we obtain that
(u(x, ρ), ϕ(x, ρ), v(x, ρ)) ∈ Ek. Further, according to the definition of the map-
ping J in (10), we have

J (u(x, ρ), ϕ(x, ρ), v(x, ρ)) = (x, ρ).

Hence, J is surjective. �

With the above Lemma 3.1, we are now ready to present the relationship between
the proposed model and the CtoD ART model.

Theorem 3.2. The integral equation model (5) and the CtoD ART model (9) are
equivalent.
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Proof. We prove the equivalence between the proposed integral equation model and
the CtoD ART model. This is done by proving that the integrals of multiple vari-
ables for the two models are equal. To do so, we construct a bijective differentiable
mapping between the two integration regions and show that with the mapping the
two integrals are equal.

According to Lemma 3.1, the mapping J from the integration region Ek to the
integration region Dk in (10) is bijective. It’s easy to verify that J : Ek → Dk is
differentiable with

J ′(u, ϕ, v) :=
∂(x, ρ)

∂(u, ϕ, v)
.

Thus, the Jacobian determinant of J is given by

detJ ′(u, ϕ, v) =

∣∣∣∣∣∣
cosϕ −u sinϕ− v cosϕ − sinϕ
sinϕ u cosϕ− v sinϕ cosϕ
0 −1 0

∣∣∣∣∣∣ = 1.

Therefore, we have

dρdx = detJ ′(u, ϕ, v) dudϕ dv = dudϕ dv.

Finally, we consider the integrands of two models. By the definitions of the at-

tenuation kernel in (3) and (7), Ka(x, ϕk−ρ) and K̃a(u, ϕ) represent the attenuation

on the lines l(x, ϕ) and l̃(u, ϕ), respectively. Since the lines l(x, ϕ) and l̃(u, ϕ) are
the same line-of-response, thus, the attenuation kernels satisfy

Ka(x, ϕk − ρ) = K̃a(u, ϕ).

Further, the integrand Ka(x, ϕk − ρ)f(x) of the proposed model is equal to the

integrand K̃a(u, ϕ)f(x) of the CtoD ART model. Thus, we have

g
k
=

1

π

∫
Ωk

∫ ρ
max,k

ρ
min,k

Ka(x, ϕk − ρ)f(x) dρdx

=
1

π

∫∫
Sk

∫ v2(u)

v1(u)

K̃a(u, ϕ)f(x) detJ ′(u, ϕ, v) dv dudϕ

=
1

π

∫∫
Sk

∫ v2(u)

v1(u)

K̃a(u, ϕ)f(x) dv dudϕ.

Hence, the proposed integral equation model and the CtoD ART model are equiv-
alent. �

We conclude this section with a brief discussion of the shortcomings of the CtoD
ART model that are addressed by the proposed model. The CtoD ART model itself
is an accurate model for true coincidences. However, its discrete implementation
introduces some limitations. The implementation of the CtoD ART model requires
calculating the line integrals over a finite number of intersections of the LORs with
the grids. In some parts of the image domain, the contribution weight of point
sources to the photon counts on the detector pair may have large approximation
errors. This is because the finite sampling of the LORs may introduce error to the
regions of the grid that contribute to the photon counts. In the worst cases, some
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regions of the grid may even be incorrectly treated as zero. For example, this can
occur when point sources are at the smaller intersections of some grids with the
SOR, or for counts in the grid near the edges of the SOR. To solve these problems,
a sampling method that can adapt to all intersection cases between the LORs and
the grids is necessary but at present does not exist. Increased sampling can reduce
the approximation error, but this is computationally expensive. In addition, the
entries of the system matrix cannot be given by a concise format, especially when
the non-constant bases are used for the discretization. Finally, it is difficult to
extend this model to include other physical effects, such as non-collinearity and
Compton scatter. On the other hand, the proposed model (5) avoids the above-
mentioned problems, allowing it to be implemented in a computationally efficient
way. Importantly, the discretization of the proposed modeling framework can be
accurately represented by basis functions, and models of the other physical effects
can be easily added. The equivalence of the two models is shown via Theorem 3.2,
which ensures that the proposed model is an equivalent and feasible surrogate to
the CtoD ART model. To evaluate the performance of the proposed model, we
compare the proposed integral equation model with an implementation using the
CtoD ART model. We add that the implementation of the CtoD ART model is
used to represent conventional discrete models. The details of the implementations
are given in the numerical experiments section.

4. Discretization of Integral Equation Model

In this section, we propose a discretization for integral equation (5) by employing
the piecewise linear polynomial collocation method [5, 6, 19, 22].

We start with choosing a basis that favors the expectation maximization (EM)
algorithm, since the coefficients of the approximation of f in the basis will be a
solution of a regularization problem to be solved by an EM-type algorithm. Gener-
ally, the EM-type algorithm will produce non-negative solutions at each iteration.
Because the distribution function f is non-negative, it is desirable to choose non-
negative basis functions. To this end, we propose a Lagrange interpolatory basis
(LIB) to discretize integral equation (5). Since the digital images are often displayed
in a rectangular shape, we need to extend the FOV to a rectangular image domain.
For the sake of simplicity, we use the tangential square of the FOV as the extended
image domain, denoted by Ω again, abusing the notation. The function value of f is
zero in the complement of the FOV. We define a p×p square mesh for the extended
domain Ω, with mesh-size h. For the ith grid ωi := [xi, xi+h]× [yi, yi+h], we then
choose four interpolation points (xi +mh/4, yi + nh/4) for m,n = 1, 3. Then the
corresponding LIB is given by

φi,1(x, y) := (4x− 4xi − 3h)(4y − 4yi − 3h)
/
(4h2),

φi,2(x, y) := − (4x− 4xi − 3h)(4y − 4yi − h)
/
(4h2),

φi,3(x, y) := − (4x− 4xi − h)(4y − 4yi − 3h)
/
(4h2),

φi,4(x, y) := (4x− 4xi − h)(4y − 4yi − h)
/
(4h2),

for (x, y) ∈ ωi,

and they all vanish on the outside of ωi. Note that the value of each of these
basis functions is 1 at one interpolation point and 0 at the other three interpolation
points, and these functions are discontinuous with support ωi. Using all basis
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functions associated with the p2 grids, we construct the space of trial functions as

X := span {φi,j : i = 1, 2, . . . , p2, j = 1, 2, 3, 4}.(11)

The interpolation of the tracer distribution function f from the space X is given by

f̃ :=

p2∑
i=1

4∑
j=1

fi,jφi,j ,(12)

where fi,j is the function value of f at the jth interpolation point in ωi.
We discretize integral equation (1) by replacing the tracer distribution function f

in the equation by its interpolation function f̃ from X. We then obtain the discrete
system of the proposed model:

g
k
=

p2∑
i=1

4∑
j=1

fi,j

∫
ωi∩Ωk

Wk(x)φi,j(x) dx, k = 1, 2, . . . , Nd.(13)

Equation (13) may be written in a matrix form. To this end, we define the column

vectors ḡ ∈ RNd
+ by ḡ := [g

k
: k = 1, 2, . . . , Nd], and f ∈ R4p2

+ with components
fq := fi,j , for q = (j − 1)p2 + i, i = 1, 2, . . . , p2, and j = 1, 2, 3, 4. The system

matrix A ∈ RNd×4p2

for the proposed model has the entries

ak,q :=

∫
ωi∩Ωk

Wk(x)φi,j(x) dx, k = 1, 2, . . . , Nd, q = 1, 2, . . . , 4p2.(14)

With the notation defined above, equation (13) with positive background counts γ
can be written in a compact form as

ḡ = Af + γ.(15)

Upon solving system (15) for f and substituting it into the right hand of (12), we

obtain an approximation f̃ of the tracer distribution function f .

5. Regularized Maximum Likelihood Estimation and Reconstruction Al-
gorithm

In this section, we describe a regularized maximum likelihood estimation for
solving system (15) and a fixed-point proximity algorithm.

We first introduce the regularized maximum likelihood estimation for PET imag-
ing derived from the linear system (15). In PET system, the detected coincidence
counts vector is a random vector that follows the Poisson distribution. Hence, the
measurements g := [g

k
: k = 1, 2, . . . , Nd] recorded at the Nd detector pairs is a

random vector which relates to the vector ḡ via

g = Poisson(ḡ),(16)

where Poisson(α) denotes a Poisson distributed random vector with mean α, cf.,
[13, 31]. Note that the tracer distribution function f may be constructed via the
coefficient vector f which may be estimated from data ḡ via system (15) using
the maximum likelihood estimation. Specifically, the regularized maximum likeli-
hood estimate f∗ is obtained by maximizing the conditional a posteriori probability
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p(f |g), the probability that f occurs when g is observed. This probability may be
computed using the Bayes law:

p(f |g) ∝ p(g|f)p(f),(17)

where α ∝ β means that the scalar α is proportional to the scalar β. By taking the
logarithm of both sides of equation (17), the estimate can be calculated by solving
the optimization problem

f∗ = arg max
{
ln p(g|f) + ln p(f) : f ∈ R4p2

+

}
.(18)

In the right-hand side of equation (18), the first term serves as a fidelity term, while
the second term serves as a regularization term. Recalling the Poissonian nature of
the detected data, we can calculate the likelihood function p(g|f) as

p(g|f) =
Nd∏
k=1

(g
k
)gk exp(−g

k
)

g
k
!

.

Substituting (15) and (16) into the right-hand side of the equation above yields

p(g|f) =
Nd∏
k=1

((Af)k + γk)
g
k exp(−(Af)k − γk)

g
k
!

.(19)

For the regularization term, applying the Gibbs priors [8, 15], we obtain that

p(f) ∝ exp(−λR(f)),(20)

where λ is a positive regularization parameter and R(f) is a real-valued convex

function defined on R4p2

+ to be specified later. Substituting (19) and (20) into
model (18), and converting the maximum problem to its minimum form, we then
obtain the following minimization model:

f∗ = arg min
{
⟨Af ,1⟩ − ⟨ln(Af + γ),g⟩+ λR(f) : f ∈ R4p2

+

}
.(21)

We note that here ‘1’ denotes the vector with all components equal to 1. A more
detailed derivation of the above model can be found in the references [12].

The regularization term is constructed by using the hypothesis that the tracer
distribution function f is piecewise smooth. Unlike the discrete models where the
traditional total variation (TV) regularization was used [12], for the Lagrange inter-
polatory basis described in the last section for the approximation of f , we need to
design a regularizer that penalizes the discontinuity of the basis functions. Follow-
ing the idea of [11], we propose a regularizer based on a multiscale representation
[5, 6, 21, 22] of the tracer distribution function to penalize its discontinuity. For
the p × p square mesh, and i ∈ {1, 2, . . . , p2}, let Si := {i, i + 1, i + p, i + p + 1}
denote the ith index set and let

Xi := span {φl,j : l ∈ Si, j = 1, 2, 3, 4}
denote the ith overlapping subspace of the trial function space X. Clearly, the

subspaces Xi satisfy X = ⊕p2

i=1Xi. We note that the periodic boundary condition
is used for the definition of index set Si when the ith grid is a boundary grid. We
next construct a coarse scale subspace Yi of the space Xi. First, we construct the
coarse grid χi :=

∪
l∈Si

ωl by taking the union of four neighboring fine grids. We
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then scale the four basis functions φi,j , j = 1, 2, 3, 4, to form four basis functions
φi,j(2

−1x, 2−1y), with support χi, for j = 1, 2, 3, 4. Thus, the coarse scale space Yi

of Xi can be constructed by

Yi := span {φi,j(2
−1x, 2−1y) : j = 1, 2, 3, 4}.

Let Wi denote the orthogonal complement of Yi in Xi, that is, Xi = Yi⊕⊥Wi. We
readily have that the dimension of Wi is dim(Wi) = dim(Xi)− dim(Yi) = 12. We
construct an orthonormal basis {ψi,n : n = 1, 2, . . . , 12} for Wi by using the basis
functions of Xi. For n = 1, 2, . . . , 12, let

ψi,n :=
∑
l∈Si

4∑
j=1

sl,jφl,j ,

where sl,j are coefficients determined by the equations⟨
ψi,n(x, y), φi,j(2

−1x, 2−1y)
⟩
= 0, j = 1, 2, 3, 4.(22)

The above system is underdetermined. By choosing a group solution {sl,j} for 12
basis functions of Wi, we are able to obtain specific ψi,n. Furthermore, applying the
Gram-Schmidt process to orthonormalize the resulting basis functions, we obtain
an orthonormal wavelet basis {ψi,n : n = 1, 2, . . . , 12} for Wi.

Now, we return to the construction of the regularization term. Based on the
orthogonality between the functions ψi,n and φi,j , we use the inner products of
the wavelet basis function and the trial function as the “derivative” of the tracer
distribution function. Then we use the absolute sum of the inner products as a
regularization to promote the sparsity of the derivative. This gives rise to the
regularization term

R(f) :=
12∑

n=1

p2∑
i=1

∣∣∣⟨ψi,n, f̃⟩
∣∣∣ .(23)

This regularization term enables us to minimize the discontinuity and staircase arti-
facts of the reconstructed image, which is consistent with the piecewise smoothness
nature of the tracer distribution function.

We next identify the regularization term as a composition of a convex function
with a matrix. Such a form is convenient for us to apply the existing fixed-point
proximity algorithm to solve the resulting nonsmooth minimization problem. For

n = 1, 2, . . . , 12, let Φn denote the l1-norm on Rp2

, that is,

Φn(xn) :=

p2∑
i=1

|xn,i|, xn ∈ Rp2

.

Then for x := [x⊤
1 ,x

⊤
2 , . . . ,x

⊤
12]

⊤ ∈ R12p2

, we define the function Φ by

Φ(x) :=
12∑

n=1

Φn(xn).(24)

The function Φ defined by (24) is actually the l1-norm of the vector in R12p2

, and
thus, it is a convex function.
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We next introduce a matrix B with 12 sub-matrices forming by the inner prod-
ucts of the 12 wavelet basis functions ψi,n and the fine scale Lagrange interpolatory
basis functions. Specifically, for each n = 1, 2, . . . , 12, we define the sub-matrix

Bn ∈ Rp2×4p2

as

Bn :=
[
Bn,1 Bn,2 Bn,3 Bn,4

]
.(25)

For j = 1, 2, 3, 4, the entries of Bn,j have the forms

(Bn,j)i,l := ⟨ψi,n, φl,j⟩, i = 1, 2, . . . , p2, l = 1, 2, . . . , p2,(26)

and let

B :=
[
B

⊤

1 B
⊤

2 . . . B
⊤

12

]⊤
.

Based on the above convex function Φ and matrix B, we have the following
proposition for the regularization.

Proposition 5.1. If the regularization R is defined by (23), then for each f ∈ R4p2

,
R(f) = Φ(Bf).

Proof. We re-express the regularier (23) in a form of matrix-vector multiplication.

Substituting the trail function f̃ in (12) into the right-hand side of (23), we obtain
that

R(f) =
12∑

n=1

p2∑
i=1

∣∣∣∣∣∣
p2∑
l=1

4∑
j=1

⟨ψi,n, φl,j⟩fl,j

∣∣∣∣∣∣ .(27)

According to the definition of the entries for matrix Bn in (26), equation (27) can
be written as

R(f) =
12∑

n=1

p2∑
i=1

∣∣∣∣∣∣
4∑

j=1

p2∑
l=1

(Bn,j)i,lfi,j

∣∣∣∣∣∣ .
In the above equation, the sum

∑4
j=1

∑p2

l=1(Bn,j)i,lfi,j is the product of the ith

row of Bn and the vector f . Moreover, the sum
∑p2

i=1 |
∑4

j=1

∑p2

l=1(Bn,j)i,lfi,j | can
be written as the absolute sum of the vector Bnf , that is, Φn(Bnf). Finally, the
regularier R can be written as

R(f) =
12∑

n=1

Φn(Bnf) = Φ(Bf), for f ∈ R4p2

,

proving the desired expression. �

We next describe the algorithm for solving the minimization problem (21).
Proposition 5.1 allows us to use an existing fixed-point proximity algorithm
[11, 12, 16, 20, 34], that is, the preconditioned proximity gradient algorithm (PP-
GA) to efficiently solve the minimization problem. To this end, we denote by Ip the
p× p identity matrix, and for τn > 0, n = 1, 2, . . . , 12, define a parameter matrix Γ
as

Γ := diag(τ1Ip2 , τ2Ip2 , . . . , τ12Ip2).
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For x ∈ R12p2

, we have that

proxΓΦ∗(Γx) :=
[
proxτ1Φ∗

1
(τ1x1), proxτ2Φ∗

2
(τ2x2), . . . , proxτ12Φ∗

12
(τ12x12)

]⊤
,

where Φ∗ is the conjugate function of Φ, and

proxτnΦ∗
n
(τnxn) :=

[
proxτnΦ∗

n
(τnxn,1), proxτnΦ∗

n
(τnxn,2), . . . , proxτnΦ∗

n
(τnxn,p2)

]⊤
,

proxτnΦ∗
n
(τnxn,i) := min{|τnxn,i|, 1}sign(τnxn,i).

The PPGA is shown as follows.

Algorithm 1 PPGA for PET image reconstruction

1: Given parameters: λ > 0, β > 0, τn > 0 for n = 1, 2, . . . , 12
2: Initialization: f0 = f ,b0 = 0
3: for r = 0, 1, 2, . . . do
4: br+1 = proxΓΦ∗(br + ΓBfr)
5: ∆br+1 = 2br+1 − br

6: fr+1 = fr − β

λ
SA⊤

(
1− g

Afr + γ

)
− βSB⊤∆br+1

7: end for

It is worthwhile pointed out that the PPGA can be accelerated via incremental
update methods such as relaxed ordered subsets [30] and momentum techniques
[17].

6. Convergence Analysis for PPGA

In this section, we establish convergence analysis for the PPGA algorithm.
Specifically, we provide specific ranges of parameters appearing in the PPGA algo-
rithm which ensure its convergence.

The following convergence result for Algorithm 1 was established in [12].

Theorem 6.1. Suppose that S is a positive diagonal matrix and Φ is a positive

homogeneous convex function on R12p2

. If positive parameters λ, β and τn, n =
1, 2, . . . , 12, are chosen to satisfy the conditions

0 <
β

λ
≤ (1− ε)γ2

2∥g∥∞∥A∥22∥S∥2
, 0 < βτn ≤ 1− ε

2∥Bn∥22∥S∥2
,(28)

for some ε ∈ (0, 1), then for any initial pair (f0,b0) ∈ R4p2

+ × R12p2

, the sequence
{(fr,br)} generated by Algorithm 1 converges to a solution of the minimization
problem (21).

Note that the ranges (28) of the choices of parameters guaranteed convergence of
Algorithm 1 involve ∥A∥2 and ∥Bn∥2. We next estimate these quantities to provide
specific parameter range conditions for convergence of the PPGA algorithm.

It is nontrivial to compute ∥A∥22. We turn to estimating its upper bound by

estimating the l1-norm and l∞-norm of matrix A. Let c ∈ R4p2

+ , c̃ ∈ RNd
+ denote
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the positive vectors, whose components are given respectively by

cq := max
x∈ωi

{
9

4π

∫ π

0

Ka(x, ρ) dρ

}
, for q = 1, 2, . . . , 4p2,

c̃k :=
9

π

∫
Ωk

∫ ρ
max,k

ρ
min,k

Ka(x, ϕk − ρ) dρdx, for k = 1, 2, . . . , Nd.

We define the positive constant

Ca := max(c)max(c̃).(29)

Lemma 6.2. If the matrix A is defined by (14), then ∥A∥22 ≤ Cah
2.

Proof. We give an upper bound of ∥A∥22 by estimating the upper bound of its
l1-norm and l∞-norm. Because 0 ≤ |φi,j | ≤ 9/4, together with (14), we obtain that

Nd∑
k=1

|ãk,q| ≤
1

π

∫
ωi

∫ π

0

Ka(x, ϕ)|φi,j(x)| dρdx ≤ 9

4π

∫
ωi

∫ π

0

Ka(x, ϕ) dρ dx ≤ cqh
2,

which yields that

∥A∥1 = max
1≤q≤4p2

Nd∑
k=1

|ãk,q| ≤ h2 max(c).(30)

Moreover,
∑p2

i=1

∑4
j=1 |φi,j(x)| ≤ 9, we then obtain that

4p2∑
q=1

|ak,q| ≤
1

π

∫
Ωk

∫ ρ
max,k

ρ
min,k

Ka(x, ϕk − ρ) dρ

 p2∑
i=1

4∑
j=1

|φi,j(x)|

 dx ≤ c̃k,

which leads to

∥A∥∞ = max
1≤k≤Nd

4p2∑
q=1

|ak,q| ≤ max(c̃).(31)

Finally, according to estimates (31) and (30), we conclude that

∥A∥22 ≤ ∥A∥1∥A∥∞ ≤ max(c)max(c̃)h2 = Cah
2,

proving the desired result. �
We now calculate the l2-norm of matrices Bn, n = 1, 2, . . . , 12. Due to the large

size of these matrices, it may be a challenge to calculate their norm directly. Since
∥Bn∥22 is equal to the largest eigenvalue of Bn

⊤Bn, and the eigenvalues of Bn
⊤Bn are

not easy to obtain, we shall construct a similar matrix of Bn
⊤Bn, whose eigenvalues

are easy to calculate. Thus, by calculating the largest eigenvalue of the similar
matrix, we can obtain ∥Bn∥22.

Before the construction of the similar matrix for Bn
⊤Bn, we analyze the structure

of Bn, and then construct its concise form by using the Kronecker product of
some simple matrices. According to the definition (26) of the entries for Bn,j , the
matrices Bn,j have the same structural characteristics for all n = 1, 2, . . . , 12 and
j = 1, 2, 3, 4. Without loss of generality, we only give the construction procedure
for one of Bn,j and others can be constructed in the same way. Considering the
wavelet functions ψi,n supported in χi, and the basis functions φl,j supported in
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ωl, we have that for i = 1, 2, . . . , p2, the inner product ⟨ψi,n, φl,j⟩ = 0, if l /∈ Si.
Thus, we only need to consider the non-zero entries of Bn,j , which are the entries
with l = i, i+ 1, i+ p, i+ p+ 1. Moreover, since the shift invariance of the wavelet
function ψi,n and the basis function φl,j on different grid, we can readily verify that
the value of the inner product ⟨ψi,n, φl,j⟩ is independent of the index i, but depends
on the relation between the indices i and l. Thereby, let ⊗ denotes the Kronecker
product, the matrix Bn,j can be written as a sparse block matrix with two kinds
of non-zero block matrices Zn,j,1 and Zn,j,2, that is,

Bn,j = Ip ⊗ Zn,j,1 +Ep ⊗ Zn,j,2,(32)

where Ep denotes a p× p circulant matrix and its specific form is given by

Ep :=


0 1

. . .
. . .

0 1
1 0

 ,
and the two non-zero block matrices are Zn,j,1 := ⟨ψi,n, φi,j⟩Ip + ⟨ψi,n, φi+1,j⟩Ep

and Zn,j,2 := ⟨ψi,n, φi+p,j⟩Ip+⟨ψi,n, φi+p+1,j⟩Ep. We now give a Kronecker product
decomposition for Bn,j . Let the indices k1, k2 defined as

k1 :=

{
mod(n+ 1, 2) + 1, 1 ≤ n ≤ 4,

mod(n+ 1, 2) + 3, 5 ≤ n ≤ 12,
k2 :=

{
⌊(n+ 1)/2⌋+ 2, 1 ≤ n ≤ 4,

⌊(n+ 1)/2⌋ − 2, 5 ≤ n ≤ 12,

(33)

where mod(α, β) denotes the modulo operation that returns the remainder of α
divided by β, ⌊α⌋ denotes the floor function that give the greatest integer less than
or equal to α. Based on the specific wavelet functions, we construct the following
eight circulant matrices Hk,r by

Hk,r := ak,rIp + bk,rEp, for k = 1, 2, 3, 4, r = 1, 2,(34)

to satisfy the conditions

ak1,1ak2,1 = ⟨ψi,n, φi,j⟩, ak1,2bk2,1 = ⟨ψi,n, φi+1,j⟩,
bk1,1ak2,2 = ⟨ψi,n, φi+p,j⟩, bk1,2 bk2,2 = ⟨ψi,n, φi+p+1,j⟩.

Specifically, these non-zero entries ak,r and bk,r are given by

a1,1 = 2
√
h√

21
, a2,1 = −

√
h

8
√
7
, a3,1 = 5

√
h

4
√
39
, a4,1 = 7

√
h

8
√
13
,

b1,1 =
√
h

2
√
21
, b2,1 = 5

√
h

8
√
7
, b3,1 = 7

√
h

4
√
39
, b4,1 = − 11

√
h

8
√
13
,

a1,2 =
√
h√
21
, a2,2 = 3

√
h

8
√
7
, a3,2 = − 11

√
h

4
√
39
, a4,2 = − 5

√
h

8
√
13
,

b1,2 = −
√
h

2
√
21
, b2,2 = 9

√
h

8
√
7
, b3,2 = −

√
h

4
√
39
, b4,2 = 9

√
h

8
√
13
,

(35)

where h is the grid size defined in section 4. With the above eight matrices Hk,r in
(34) and the relation between the index n and indices k1, k2 in (33), the matrices
Bn,j in (32) can be expressed in the form of the Kronecker product as follows, for
n = 1, 2, . . . , 12 and j = 1, 2, 3, 4,

Bn,j = Hk1,r1 ⊗Hk2,r2 , r1 := mod(j − 1, 2) + 1, r2 := ⌊(j − 1)/2⌋+ 1.(36)
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Finally, according to (25) and (36), the matrices Bn can be written as

Bn =
[
Hk1,1 ⊗Hk2,1 Hk1,2 ⊗Hk2,1 Hk1,1 ⊗Hk2,2 Hk1,2 ⊗Hk2,2

]
.(37)

With the above concise form for matrices Bn for n = 1, 2, . . . , 12, we construct
a similar matrix for Bn

⊤Bn. To facilitate the construction, we define the matrices
Vk by

Vk :=
[
Hk,1 Hk,2

]
, for k = 1, 2, 3, 4.(38)

We then have the following lemma for Bn
⊤Bn and its similar matrix.

Lemma 6.3. If matrix Bn can be written as the form in (37), then the matrix

Bn
⊤Bn is similar to Vk2

⊤Vk2 ⊗Vk1

⊤Vk1 , for all n = 1, 2, . . . , 12 and its corresponding
index pair (k1, k2) defined by (33).

Proof. For any n = 1, 2, . . . , 12, and the index pair (k1, k2), based on the per-
mutation equivalence of the Kronecker product [27], there exists the permutation

matrices P ∈ Rp2×p2

and Q ∈ R2p2×2p2

such that

Vk1 ⊗Hk2,1 = P⊤ (Hk2,1 ⊗Vk1)Q.

Since the matrixHk2,2 has the same structure withHk2,1, the permutation matrices
P and Q for Vk1 ⊗Hk2,2 are the same as these of Vk1 ⊗Hk2,1. Thus, we have

Vk1 ⊗Hk2,2 = P⊤ (Hk2,2 ⊗Vk1)Q.

Let Q̃ := diag(Q,Q) ∈ R4p2×4p2

. According to (37), and together with the above
two equations, we have

Bn =
[
Vk1 ⊗Hk2,1 Vk1 ⊗Hk2,2

]
= P⊤ [Hk2,1 ⊗Vk1 Hk2,2 ⊗Vk1

] [Q
Q

]
= P⊤ (Vk2 ⊗Vk1) Q̃.

The permutation matrix P satisfy PP⊤ = Ip2 . Further, we obtain that

Bn
⊤Bn = Q̃⊤

(
Vk2

⊤ ⊗Vk1

⊤
)
(Vk2 ⊗Vk1) Q̃

= Q̃⊤
(
Vk2

⊤Vk2 ⊗Vk1

⊤Vk1

)
Q̃.

It is easy to verify that Q̃ is a permutation matrix. Thus, we have that matrix
Bn

⊤Bn is similar to Vk2

⊤Vk2 ⊗Vk1

⊤Vk1 . �

According to the above Lemma 6.3, Bn
⊤Bn is similar to Vk2

⊤Vk2
⊗Vk1

⊤Vk1
, thus,

these two matrices have the same eigenvalues. We shall calculate ∥Bn∥22 by calcu-

lating the largest eigenvalue of Vk2

⊤Vk2 ⊗Vk1

⊤Vk1 . Based on the spectrum property

of the Kronecker product [14], the eigenvalues of Vk2

⊤Vk2 ⊗Vk1

⊤Vk1 are the prod-

uct of the eigenvalues of Vk2

⊤Vk2 and Vk1

⊤Vk1 . Therefore, the calculation of ∥Bn∥22
turns into calculating the eigenvalues of matrices Vk

⊤Vk. We give the following
lemma regarding the eigenvalues of Vk

⊤Vk for k = 1, 2, 3, 4.
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Lemma 6.4. If the matrix Vk is defined by (38) for k = 1, 2, 3, 4, then the non-zero

eigenvalues of Vk
⊤Vk are given by for l = 1, 2, . . . , p,

δk,l := (a2k,1 + b2k,1 + a2k,2 + b2k,2) + 2(ak,1bk,1 + ak,2bk,2) cos
2lπ

p
.(39)

Proof. Since Vk
⊤Vk has the same non-zero eigenvalues as VkVk

⊤, it suffices to
calculate eigenvalues of VkVk

⊤. By the definition (38) for Vk, and the definition
(34) for Hk,r, we have that

(40)
VkVk

⊤ = Hk,1Hk,1
⊤ +Hk,2Hk,2

⊤

= (a2k,1 + b2k,1 + a2k,2 + b2k,2)Ip + (ak,1bk,1 + ak,2bk,2)(Ep +Ep
⊤).

For eigenvalues of the above matrix, we have a somewhat more general result.
If a matrix can be expressed as aIp + b(Ep +Ep

⊤), for a, b ∈ R, then its eigenvalues
are given by

δl := a+ 2b cos
2lπ

p
, for l = 1, 2, . . . , p.

In fact, by selecting the eigenvector z ∈ Rp with components zk := sin (k − 1/2)θ,
and θ satisfy cos pθ = 1, we can directly verify that

(aIp + b(Ep +Ep
⊤))z = (a+ 2b cos θ)z.

For l = 1, 2, . . . , p, we choose θl = 2lπ/p to satisfy cos pθ = 1. This gives the desired
general result. The result of this lemma follows directly from (40) and the above
general result. �

We next present the l2-norm of Bn. For the sake of brevity, we define

(41)
ξk,1 := (ak,1 − bk,1)

2 + (ak,2 − bk,2)
2,

ξk,2 := (ak,1 + bk,1)
2 + (ak,2 + bk,2)

2.

Lemma 6.5. For n = 1, 2, . . . , 12, if the matrix Bn is defined by (37), then

∥Bn∥22 = max{ξk1,1, ξk1,2}max{ξk2,1, ξk2,2}.

Proof. The matricesBn
⊤Bn andVk2

⊤Vk2⊗Vk1

⊤Vk1 have the same eigenvalues. Based

on the spectrum property of the Kronecker product [14], the eigenvalues ofVk2

⊤Vk2⊗
Vk1

⊤Vk1 are the product of the eigenvalues of Vk2

⊤Vk2 and Vk1

⊤Vk1 . According to

Lemma 6.4, the non-zero eigenvalues of Vk
⊤Vk are δk,l in (39), for l = 1, 2, . . . , p.

Hence, the non-zero eigenvalues of Vk2

⊤Vk2 ⊗Vk1

⊤Vk1 are given by

Λl1,l2 := δk1,l1δk2,l2 , for l1 = 1, 2, . . . , p, l2 = 1, 2, . . . , p.

Thus, the non-zero eigenvalues of Bn
⊤Bn are Λl1,l2 .

We now calculate the largest eigenvalue of Bn
⊤Bn, which is ∥Bn∥22. In the def-

inition (39) of δk,l, ak,1, bk,1, ak,2, bk,2 are the constants that defined by (35), and
cos (2lπ/p) ∈ [−1, 1]. For all l = 1, 2, . . . , p, it is easy to verify that δk,l chooses its
extreme value ξk,1 when l = p/2, and chooses ξk,2 when l = p. We remarked here

that the size p of mesh is an even. Thus, the largest eigenvalue of Vk
⊤Vk is

max
1≤l≤p

δk,l = max{ξk,1, ξk,2}.
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Since the eigenvalues of matrices Vk1

⊤Vk1 and Vk2

⊤Vk2 are independent, the largest

eigenvalue of matrix Bn
⊤Bn is given by

max
1≤l1,l2≤p

Λl1,l2 = max
1≤l1≤p

δk1,l1 max
1≤l2≤p

δk2,l2 = max{ξk1,1, ξk1,2}max{ξk2,1, ξk2,2}.

We thus prove the desired result of this lemma. �

We finally consider the specific l2-norm of Bn. By substituting the specific non-
zero values (35) of matrix Hk,r into Lemma 6.5, we then obtain the l2-norm of 12
matrices as

∥B1∥22 = h2/7, ∥B2∥22 = 15h2/91, ∥B3∥22 = 65h2/336,
∥B4∥22 = 25h2/112, ∥B5∥22 = h2/7, ∥B6∥22 = 65h2/336,
∥B7∥22 = 15h2/91, ∥B8∥22 = 25h2/112, ∥B9∥22 = 36h2/169,
∥B10∥22 = 15h2/52, ∥B11∥22 = 15h2/52, ∥B12∥22 = 25h2/64.

(42)

For n = 1, 2, . . . , 12, we define constants Dn := ∥Bn∥22/h2. By using the formulas
in (42) we observe that

D1 = 1/7, D2 = 15/91, D3 =65/336, D4 =25/112,
D5 = 1/7, D6 =65/336, D7 = 15/91, D8 =25/112,
D9 =36/169, D10 = 15/52, D11 = 15/52, D12 = 25/64.

(43)

We finally provide the choice of parameters that guarantees convergence of Algo-
rithm 1.

Theorem 6.6. Suppose that S is a positive diagonal matrix, Φ is a positive ho-

mogeneous convex function on R12p2

, Ca is a constant defined by (29) and Dn are
the constants defined by (43). If positive parameters λ, β and τn, n = 1, 2, . . . , 12,
are chosen to satisfy the conditions

0 <
β

λ
≤ (1− ε)γ2

2Cah2∥g∥∞∥S∥2
, 0 < βτn ≤ 1− ε

2Dnh2∥S∥2
,(44)

for some ε ∈ (0, 1), then for any initial pair (f0,b0) ∈ R4p2

+ × R12p2

, the sequence
{(fr,br)} generated by Algorithm 1 converges to a solution of the minimization
problem (21).

Proof. It suffices to prove that the conditions for the parameter λ, β and τn in (44)
imply those in (28). Using the norm estimation in Lemma 6.2 for system matrix
A, we obtain that

∥g∥∞∥A∥22∥S∥2 ≤ Cah
2∥g∥∞∥S∥2.

Thus, we naturally obtain the inequality

(1− ε)γ2

2Cah2∥g∥∞∥S∥2
≤ (1− ε)γ2

2∥g∥∞∥A∥22∥S∥2
.(45)

For the second inequality in (44), using the norms (42) of the matrices Bn, we have
that

∥Bn∥22∥S∥2 = Dnh
2∥S∥2, n = 1, 2, . . . , 12.(46)

The desired result of this theorem is thus obtained from Theorem 6.1 with (45) and
(46). �
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7. Numerical Experiments

We conduct in this section numerical experiments to evaluate the performance of
the proposed integral equation model for PET image reconstruction. Comparisons
are presented for both the projection and image domains for the proposed model
with a conventional discrete model. In addition, we compare the reconstruction
performance of the proposed model discretized by two different bases with their
corresponding regularization to verify the advantages of piecewise linear discretiza-
tion.

We first describe the simulation setup and experiment data. The simulation
model used in this work is based on a 366.7mm radius cylindrical detector ring with
576 detectors with widths of 4mm. The FOV diameter is set to 300mm, with 576
projection angles and 83 parallel projection bins, and the mesh of the reconstructed
images is 256× 256. Two phantoms are used in the experiments. The NEMA-IEC
body phantom (Figure 2A) is mainly used for the projection comparisons due to
its well-defined structure and obvious edges of its sinogram. Whereas, the smooth
Lumpy phantom (Figure 2B) is used for the reconstruction experiments, which
represents a more variable tracer distribution as might be seen in patient studies.
The choice of the preconditioner S appearing in Algorithm 1 is given by

S := diag
(
f r̄/t

)
where t := max{A⊤1, Csh

2}, with Cs being an empirically selected positive con-
stant, and f r̄ is r̄th iteration solution of f . The division of two vectors f r̄ and
t in the above equation is the componentwise division of the vectors. When the
iteration step r + 1 is less than r̄, f in S is chosen as fr; while S is fixed when the
iteration step exceeds r̄.

(A) (B)

Figure 2. (A) Piecewise constant NEMA-IEC phantom; (B) s-
mooth Lumpy phantom.

The reference projection data for the true coincidences, without the positron
range and the detector effects, were generated for the experiment; its implementa-
tion is based on a modified version of Radon transform [23]. An ultra-high resolu-
tion phantom (8192 × 8192) and a highly dense detector ring with 4608 detectors
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of 0.5mm width were used to obtain high accurate projection data. The result-
ing sinograms are much larger (4608 × 664) than those typically used. To obtain
conventionally sized sinograms, each group of 8 adjacent detectors are combined to
form 576 groups. The 64 individual projection angles between the detectors within
each two groups are combined as well. Summing up all the counts on the projection
angles between each two detector groups, we obtain a 576× 83 reference sinogram.

To evaluate the performance of the proposed model, we use the following image
quality metrics.

(1) Peak signal-to-noise-ratio (PSNR): PSNR of images is used to measure the
image quality between two images. The higher the value of PSNR, the
better the image quality. PSNR is defined as a ratio of the maximum
possible power of a signal to the power of corrupting noise that affects
representation fidelity

PSNR := 10 ∗ lg N max(f∗)
2

∥f − f∗∥22
,

where N is the pixel number of images.
(2) Structural similarity index measure (SSIM [36]): SSIM is a method for

predicting the perceived quality of images. It gives a comparison of local
patterns of pixel intensities that have been normalized for luminance and
contrast. SSIM is used for measuring similarity between two images. The
closer the value is to 1, the higher similarity between two images there is.
Conversely, the closer the value is to 0, the lower similarity there is. The
specific form of SSIM is given by [36]

SSIM :=

(
2x̄ȳ + c1

x̄2 + ȳ2 + c1

)α(
2σxσy + c2
σ2
x + σ2

y + c2

)β (
σxy + c3
σxσy + c3

)γ

.

where x̄ and σx are the mean value and the variance of x, respectively, σxy
is the covariance of x and y. In addition, c1, c2 and c3 are three variables
to stabilize the division with weak denominator, and α, β and γ are the
weights for three fractions.

(3) Normalized mean square error (NMSE): NMSE is defined by

NMSE := ∥f − f∗∥22/∥f∗∥22,

where f and f∗ denote the reconstructed image and original image, respec-
tively.

(4) Normalized standard deviation (NSD): NSD used here is to measure the
amount of variation for the residual sinogram and it is normalized by the
mean value of the reference sinogram. The lower the value of NSD is, the
lower the error of the residual sinogram has.

(5) Normalized mean (NMean): NMean is a measurement for the residual sino-
gram. It provides the amount of the residual and is normalized by the mean
of the reference sinogram.

To examine the effect of Poisson noise on reconstruction results, the noisy projec-
tion data are used for the reconstruction. These noisy data are obtained by adding
Poisson noise to the reference sinogram. We define the measurement of the noise
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level by

∥(s− s∗)−mean(s− s∗)∥2√
Nmean(s∗)

%,

where s and s∗ denote the noisy sinogram and the noiseless sinogram, respectively,
and N denotes the dimension of the sinograms.

We next turn to discussing the competing model for the proposed model. The
competing model here is a conventional discretization of the CtoD ART model.
The CtoD ART model is of infinite dimension. It requires a numerical method to
solve it for a practical use. For each detector pair, there are an infinite number of
line integrals on the corresponding LOR. The discretization of these line integrals
is computationally expensive. Also, because this model is dependent on the line
integral, the intersections of LOR and the basis functions may be difficult to repre-
sent. Instead, some conventional discrete methods mentioned in [10] were used. For
example, previously uniformly spaced SORs were interpolated to redistribute the
counts on a rectangular sampling grid [7, 9], or as an alternative example, a small
number of approximate sampling parallel projections can be used [7, 18, 25, 28].

We use the conventional parallel projection discretization of the CtoD ART
model as a competing model in this section. This method first simplifies the integral
range Sk, and then assumes that the attenuation for each LOR between detector

pairs is the same. The resulting system is then discretized. We denote by S̃k ⊂ Sk

a finite subset with very few elements for the set Sk, and by

Lk := {l̃(u, ϕ) : (u, ϕ) ∈ S̃k}

a LOR set for kth detector pair. Each l̃(u, ϕ) in Lk is parallel to the vk-axis for
kth SOR. We discretize the model (9) by using the collocation principle with the
piecewise constant basis. With the mesh mentioned in the above discretization
of the proposed model, for i = 1, 2, . . . , p2, we define fi as the coefficient of the
piecewise constant basis for the ith grid. Then a basic LOR intersection based DM
derived from the parallel-beam sampling model is given by,

g
k
= K̃a(ūk, ϕk)

∑
lq∈Lk

p2∑
i

∆lq,ifi, for k = 1, 2, . . . , Nd,

where ∆lq,i is the intersection length of lq and ith grid. The contribution weights
of the image grid to a detector pair here are based on attenuation and intersection
length of the LORs and grids. Further, for high accuracy and less computation,
the intersection area of the SOR and grid is used as a part of the contribution
weight instead of the intersection length. The improved SOR intersection-based
DM [18, 25, 28] is now given by

g
k
= K̃a(ūk, ϕk)

p2∑
i

∆sk,ifi, for k = 1, 2, . . . , Nd,(47)

where ∆sk,i is the intersection area of the kth SOR and the ith grid. Note that
the LOR intersection-based DM is an approximation of the SOR intersection-based
DM using the composite rectangle integration rule. For a description of these two
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(A)

(B)

(C)

Figure 3. The residual sinograms of the three models: (A) Con-
ventional discrete model; (B) Integral equation model with the
piecewise constant basis; (C) Integral equation model with the
piecewise linear basis for NEMA-IEC.

models, refer to the Figure 2 of [35]. The linear system for SOR intersection based
model can be obtained in a manner similar to that of equations (13) to (15).

We now compare the proposed model with the competing discrete model in both
the projection and image domains. The two proposed methods are system models
discretized using either the piecewise constant basis (IE-PC), or the piecewise linear
basis (IE-PL), leading to the discrete systems (13). The competing method is the
conventional DM (C-DM) [18, 25, 28] for the CtoD ART model, resulting in the
discrete system (47).

We first compare the performance of two proposed models with the conventional
discrete model in the projection domain. We present the residuals between the
sinogram of three models and the reference sinogram in Figure 3. These residuals
show the agreement between the projection data of three models and the reference
projection data. The smaller the residuals, the higher the agreement, illustrating
the accuracy of the models. From the figure, we see that the two proposed models
performed significantly better than the conventional DM. The proposed model with
the piecewise linear discretization performed the best overall, showing the closes-
t agreement with the reference, especially near edges. The major source of the
improvements appear to be improved data fidelity at the edges and in textured
regions. Further, we give quantitative comparison between the projections in Table
1. Compared to the conventional DM, NSD and NMean of the proposed model
with the piecewise constant discretization are reduced by factors of 3.5 and 2.9,
respectively. In addition, PSNR of the proposed method is 10.8 dB higher than
that of the conventional DM. Discretization using the LIB further improves the
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results with respect to the piecewise constant discretization. Compared with the
conventional DM, NSD and NMean of the proposed model with the piecewise lin-
ear discretization are reduced by factors of 4.7 and 3.5, respectively, and PSNR is
improved by 13.5 dB. In summary, the projection data generated by the proposed
integral equation model are more consistent with those by the finely sampled Radon
transform than those by the conventional DM.

Table 1. Agreement of the sinograms of three methods (C-DM,
IE-PC and IE-PL) with the reference.

Method PSNR NSD NMean
C-DM 43.65 1.07× 10−2 5.24× 10−3

IE-PC 54.45 3.09× 10−3 1.81× 10−3

IE-PL 57.12 2.27× 10−3 1.51× 10−3

Now, we compare quality of the reconstructed images generated by the proposed
method and the conventional method for reconstructing the smooth Lumpy phan-
tom. We have conducted experiments from projection data with five noise levels.
In these experiments, we used the TV regularizer for both the conventional discrete
model and the proposed model discretized with the piecewise constant basis, while
used the wavelet-based regularizer for the proposed model with the piecewise linear
discretization.

Table 2. Agreement of the reconstructed images (noise free) with
the reference images.

Method PSNR SSIM NMSE
C-DM 33.74 0.9580 4.09× 10−3

IE-PC 40.60 0.9902 8.44× 10−4

IE-PL 53.79 0.9991 4.00× 10−5

Table 2 shows PSNR, SSIM and NMSE of the images reconstructed by the
three competing methods for the noise-free projection data. From the table we see
that PSNR of the images reconstructed by the proposed model with the piecewise
constant and linear discretization is respectively 7 dB and 20 dB higher than that by
the conventional DM. These results reveal the substantial improvements of image
quality of the integral equation method over the conventional DM.

We next compare the reconstruction results of the three methods for noisy da-
ta with noise levels 10%, 20%, 30%, and 40%, which correspond to 5274k, 1235k,
536k, and 320k photon counts, respectively. The numerical results are summarized
in Table 3. We observe that the proposed integral equation method has remarkable
advantages over the conventional discrete method in all cases. In particular, PSNR
produced by the proposed method with the piecewise linear discretization improved
by 5 dB and 1.5 dB for data with the 10% and 40% noise level, respectively, com-
pared to that by the conventional discrete method. Furthermore, for data with 30%
and 40% noise levels, the proposed method achieves the same reconstruction qual-
ity as the conventional DM for data with 10% and 20% noise levels, respectively.
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Table 3. Agreement of the reconstructed images with the refer-
ence images in the presence of noise.

Noise Level Method PSNR SSIM NMSE

10% (5274k)
C-DM 30.35 0.8814 8.93× 10−3

IE-PC 31.39 0.8892 7.04× 10−3

IE-PL 36.31 0.9750 2.27× 10−3

20% (1235k)
C-DM 28.39 0.8476 1.40× 10−2

IE-PC 28.97 0.8672 1.26× 10−2

IE-PL 31.91 0.9210 5.70× 10−3

30% (536k)
C-DM 27.50 0.8329 1.72× 10−2

IE-PC 27.61 0.8347 1.68× 10−2

IE-PL 29.73 0.9224 1.03× 10−2

40% (320k)
C-DM 26.69 0.8085 2.08× 10−2

IE-PC 26.69 0.8114 2.07× 10−2

IE-PL 28.14 0.8951 1.48× 10−2

When comparing SSIM of images reconstructed by the three competing methods,
the results of the proposed method for data with the 40% noise level are even bet-
ter than those of the discrete method for data with 10% noise level. Such results
show that even with higher noise in the projection data, the proposed method can
still produce better reconstructed images than the conventional discrete method,
which may help physicians and radiologists better identify tumors. This is very
encouraging for the proposed method to be used for low-dose PET imaging due to
the fact that SSIM is based on the human visual system.
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Figure 4. The radial line profile passing through the two hot
spheres for the Lumpy phantom.

Finally, we show in Figure 4 line profiles of the images reconstructed by the
proposed method and the conventional discrete method. Figure 4A shows that the
reconstructed image of the proposed method for projection data with 10% Poisson
noise is better than that of the conventional discrete method for the noise-free pro-
jection data, in terms of both the smoothness and the contrast of the hot spheres.
We then show line profiles of the images reconstructed by the two methods using
40% noise projection data in Figure 4B. As shown in this figure, the line profile of
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the discrete method presents an overall stepped shape, and poorer contrast recov-
ery of the two hot spheres. Conversely, the overall smoothness of the reconstructed
image and the contrast of the hot spheres by the proposed method are much better
than those by the conventional discrete method. The figure shows that the image
reconstructed by the proposed method can produce high consistency with the ref-
erence image. Whereas for the discrete method, non-negligible deviations appear
in the contrast of the hot sphere and the boundary regions of the reconstructed im-
age. We concluded that the proposed method can suppress noise, and may have the
potential to improve the image quality in the low-dose PET image reconstruction.

8. Conclusions

In this work, we proposed an integral equation model for PET imaging. The
proposed model allows the accurate modeling of the physical effects that would
otherwise impose a fundamental bottleneck on the approximation accuracy of a
PET system. Furthermore, the proposed model provides a general approach for
accurately modeling the imaging process of PET that allows one to flexibly add
additional physical effects into the model. We have shown that the proposed integral
equation model is mathematically equivalent to the continuous-to-discrete ART
model, an existing idealized model in terms of line integrals. Although the idealized
model is accurate, it is not well suited for numerical approximation. The proposed
integral equation model with the wavelet-based regularization produces encouraging
numerical results, which demonstrate it significantly outperforms the conventional
discrete model in all areas including approximation errors, noise suppression and
reconstructed image quality.
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