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A FULLY DISCRETE, DECOUPLED SCHEME WITH
DIFFERENT TIME STEPS FOR APPROXIMATING NEMATIC
LIQUID CRYSTAL FLOW

TING LI, PENGZHAN HUANG*, AND YINNIAN HE

Abstract. This paper designs a decoupled scheme for approximating nematic liquid crystal flow
based on a fully discrete mixed finite element method, which allows different time steps for different
physical fields. Besides, error estimates for velocity and macroscopic molecular orientation of
the nematic liquid crystal flow are shown. Finally, numerical tests are provided to demonstrate
efficiency of the scheme. It is found the presented scheme can save lots of computational time
compared with common decoupled scheme.

Key words. Nematic liquid crystal flow, decoupled scheme, different time steps, error estimates.

1. Introduction

Liquid crystal is usually known as the fourth state of matter and is different to
gas, liquid and solid. The simplest liquid crystal phase is the nematic liquid crystal.
It is consisted of elongated rod-like molecules with similar size. The centers of
mass of these molecules have no positional order, but tend to align along preferred
direction. In recent decades, many studies are dealing with the nematic liquid
crystal, due to the importance of related scientific and, engineering applications [2].

Ericksen-Leslie model, built by Ericksen [9, 10] and Leslie [18], can simulate
the hydrodynamics of the nematic liquid crystal flow, and it is the macroscopic
continuum description of the time evolution of both flow velocity and microscop-
ic orientation. Further, a simplified Ericksen-Leslie model is derived by Lin [22]
initially and its governing equations are written as follows [22, 1]:

u; —vAu+ (u-V)u+Vp+ AV - (Vdo Vd) =,
(1) d; — yAd + (u- V)d = ~|Vd|*d,
V-u=0, |d =1,

for (x,t) € Qp, where Qp = Q2x(0,T) with a fixed T' € (0, c0). Here, u(x,t) : Qr —
R? and p(x,t) : Q7 — R denote the velocity field and the pressure of the flow, re-
spectively. Besides, d(x,t) : Qr — S is the director, which represents the molecular
orientation field of the nematic liquid crystal material and describes the average
molecular alignment, where S C R? is a unit circle. In addition, f(x,t) : Qr — R?
represents a body force on the flow. Three parameters v, A and + denote the
kinematic viscosity, the competition between kinetic and potential energy, and the
microscopic elastic relaxation time for the molecular orientation field, respectively.
Hereafter, |Vd| or |d| denotes the Euclidean norm of Vd or d, and Vd ® Vd is

a 2 x 2 matrix whose (i, j)-the entry is written by (3_, 9dy. 0di), .. As in [1], in
i 3"
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this paper the system (1) is considered in conjunction with the following initial and
boundary conditions:

u(x,0) =up(x), d(x,0)=dy(x), Vx € Q,

2
( ) 11|ST = O, and|5T = O7

with V- ug = 0 and |dg| = 1, where Sp = 9Q x (0,T") and n is the outer unit
normal of 0f.

Although this simplified Ericksen-Leslie model neglects the Leslie stress in the
FEricksen-Leslie model, it still retains some essential difficulties of the Ericksen-Leslie
model and keeps the core of the mathematical structure, such as strong nonlineari-
ties and constraints, as well as the physical structure, such as the anisotropic effect
of the elasticity on the velocity field. Thus, the system (1)-(2) can be regarded as a
nice initial step towards the theoretical and numerical analysis of the Ericksen-Leslie
model.

Because the governing equations (1)-(2) of the simplified Ericksen-Leslie model
include not only the incompressibility, the strong nonlinearity and the physical and
nonconvex side constraint |[d| = 1 but also the coupling between the harmonic
map flow and the fluid equations of motion, which make it not easy to solve these
equations effectively. Therefore, much effort has been throwing to the development
of some efficient numerical methods for investigating this system [13, 6, 7, 27, 19, 16]
and the references therein. Besides, Du et al. [8] have studied a Fourier-spectral
method for the simplified Ericksen-Leslie system and established spectral accuracy.
In [12], a linear fully discrete mixed scheme has been considered, using finite element
method in space and a semi-implicit Euler scheme in time. In addition, Becker et al.
[3] have constructed a fully discrete scheme, which uses low order finite elements and
enjoys a discrete energy law. Based on explicit treatment of the unitary constraint
for the director field, a fully splitting and decoupled in time linear algorithm has
been designed [14]. Recently, An and Su [1] have shown optimal error estimates for
an linearized semi-implicit Euler finite element scheme for the considered system.

In this paper, we design a fully discrete, decoupled finite element scheme for
approximating the simplified Ericksen-Lesliel system (1)-(2). Since the system has
many physical fields and is a multiphysics problem, we adopt different time step
sizes for different physical fields. In fact, Ge and Ma [11] have proposed a multi-
rate iterative scheme based on multiphysics discontinuous Galerkin method for a
poroelasticity model, which is a fluid-solid interaction system at pore scale. Shi et
al. [26, 25] have designed a multistep technique to overcome the instability mainly
caused by the explicit treatment of the convection system and to enlarge the sta-
bility region such that the resulting scheme behaved like an unconditionally stable
scheme. Besides, the differing time steps methods have been applied to the Stokes-
Darcy model [24], the Navier-Stokes/Darcy model [17] and the Darcy-Brinkman
problem [21].

2. A decoupled scheme with different time steps for the nematic liquid
crystal flow

In this section, we describe some necessary definitions and inequalities, which
will be frequently applied to following sections.

Firstly, we introduce standard notations for Lebesgue space LP(Q2) and Sobolve
space W™P(Q), 1 < p < oo, m € NT. Then, their norms are denoted by || - ||Lr ()
and || - [[wm.»(q), respectively. In particular, H™(£2) is used to represent the space
Wm2(Q) and || - ||, denotes the norm in H™ (). Besides, L?(2) norm and its
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inner product are denoted by || -||o and (-,-). For X being a normed function space
in Q, LP(0,T; X) is the space of all functions defined on @Qr for which the norm

1

T P
[ull e o,mix) = (/0 IIUIl’S(dt> , peEll o),
is finite.

Next, for the mathematical setting of the nematic liquid crystal model (1)-(2),
we introduce the following function spaces:

V= BUQ)? = {v e B Q)2 vlpa =0}, W = H(Q)?,
M =L§(Q) = {g € L*(©) : (¢,1) = 0}.
Then, as in [2], based on the above definitions of the function spaces, we have

the following variational formulation of problem (1)-(2): Find (u(t),p(t),d(t)) €
V x M x W such that, for all (v,q,¢) € V. x M x W

(ug, v) + v(Vu, Vv) + (u- V)u,v) = (V-v,p) + (V- u,q)
(3) —A(Vd o Vd, Vv) = (f,v),
(4) (di, @) +7(Vd, Vo) + ((u-V)d, ¢) — ¥(|Vd[*d, ¢) = 0.

Furthermore, we assume that the domain €2 is regular partitioned into a mesh
K}, which consists of triangle elements K. Denote h = maxgexk, hix, where hg is
the diameter of the element K. Accordingly, we define the following finite element
subspaces on K} by

Vi ={v, € C(Q)2 NV, vilg € Pl(K)Q, VK € K},
W, ={w, € C(Q)*NW, wi|x € Po(K)? VK € K},
My, ={qn € L*(Q) N M, qulx € R(K), VK € K},
Xn = {’Uh € C(Q), Uh|K € F’1(I()7 VK € Kh},
where P;(K) (i = 0,1,2) denote the space of the polynomials on K of degree at
most i for every K € K}. Note that the lowest order conforming finite element pair
V1, x Mj, does not satisfy the discrete inf-sup condition. Hence, in order to fulfill
this condition, a stabilized bilinear term is used [4, 28]:
G(pnyqn) = (pr — Upn, g — an),  Vpn,qn € My,
where II is a projection operator from L?(2) to Xp,.
To derive fully discrete scheme of problem (1)-(2), we introduce a generalized
bilinear form:
B(ap, pr; va, qn) = v(Vun, Vvi) = (V- vi,pp) + (V- un, qn) + G(prs qn),

for all (up,pr), (Vh,qn) € Vi X M}, and a skew-symmetric trilinear form:

b(uh,Vh,Wh) = ((uh . V)Vh,wh) + %((V . uh)vh,wh)
1

o) = 3 V)i W) = (- V)wa v,

for all u, € Vy,, and v, wy, € V, or Wy, which satisfies following property [23]:
(6) b(up, v, wp)| < Clluplo]lvi[2 VW o,

for all uy,, wj, € V, or Wy, and v € H2(2)2. Here and after, we denote C a general
positive constant which is independent of h and may stand for different values
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at different occurrences. In addition, we need the following inverse inequality [5],
which holds for v, € Vj, or Wy,

(7) IVallwin oy < CR™ 20578 v a2,
where 1 < p,g < o0, 0<m <.
Finally, we assume that on each time level s; for the director field, there exists
a subtime level t,,, . For simplicity, we further assume uniform time levels, that is,
sk, =kAs, k=0,1,---,5, As=rAt and t,, = mAt, m=0,1,--- | N,

where At = L and N = rS, r > 1. So my, = kr. For t,,, ty, € [0,T], (), pi?,d;"™*)
will denote the fully discrete approximation by the presented decoupled scheme
to (W(tm), p(tm),d(tm,)). Setting £+ = f(x,t,,41), the fully discrete, decoupled
scheme with different time steps for approximating nematic liquid crystal flow reads
as:

Give u% € V3, and d% € Wy,

For k =0,1,---,5 — 1, do the following four steps.

Step 1: Find (uhmﬂ,pznﬂ) € (Vp, My), with m = mg,m + 1, - ;mps1 — 1,
such that for all (vp,qn) € (Vi, Mp),

uy - u;’ 1 1 1
(hAt7vh) + B(uzn+ 7p;1n+ ;Vh7CIh) + b(uzn7u;1n+ ,Vh)

(8) —A(VA o VA, V) = (F71 vy),
with the small time step size At.
Step 2: Set S"* = %27:7:]1;1 ul.
Step 3: Find d,,"**' € W, such that for all ¢, € Wy,
dZLkJrl — dZM M1 mg |2 3my
Tad)h +V(th av¢h) _7(|th | dh 7¢h)
(9) + b(Smk7dhmk+l7¢h) = 07
with the large time step size As = rAt.
Step 4: Set k = k + 1 and repeat until k =5 — 1.

3. Error estimates

In this section, we will state and prove the error estimates for the fully discrete,
decoupled scheme with different time steps (8)-(9). In order to derive error esti-
mates, we need to introduce the following projection [1, 5] (R4, Qp) : VX M —
Vh X Mh defined by

(10) BRuv,Qnq; Vh,qn) = B(v,¢; v, an) — G(q, qn),

for (v,q) € V x M and (v, qn) € V), x My, which satisfies following properties
[1, 5, 15]

(11) IV(tm) = Ranv(tm)llo + RV (v(tm) = Rav(tm))llo < Ch2|[v(tm) |2,
(12) la(tm) = @na(tm)llo < Chllg(tm)],

for (v,q) € VN H%(Q)? x M N HY(Q) and 0 < m < N. Further, for 0 < k < S, we
define the projection operator [20, 5] Pp, : W — W, by

(13) (V(d(tm,) = Prd(tm,)), Vo) =0, VdeW, ¢, € Wy,
Then, the projection operator satisfies the following properties [20, 5, 1]
(14)  [ld(tm,) = Prd(tm,)llo + AV (d(tm,) = Prd(tm,))llo < Ch*[[d(tm,)lls,
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ford e H}(Q)2N'W and 0 < k < S.
Besides, we denote (@™,5",d"*) = (Ruyu(tm), Qnp(tm), Prd(tm, )), then we
split errors as
u(ty) —up =u(ty) —a"+a™ —up =:el' +e’,
p(tm) = pit = p(tm) =™ + 9™ —pj' =0 + 0™
d(tm,) —dp* =d(tm,) — dm™r +admr — d;" =: e?’”‘ + €Mk
Besides, we suppose that €® = 0 and € = 0.
In order to obtain the error equations, set (v,q) = (va,qp) in (3) with ¢t = t,,41
and ¢ = ¢, in (4) with t = t,,,, ,, respectively, and use (10) and (13) to get

m—+1 _ am L L
(At >+B( LT Vi, qn) 4+ b(a(tgr), u(tmgr), Vi)

(15) = AVd(tm+t1) © VA(tm+1), Vvp) = (wm+1, vi) + (fm+1, Vi),

dme+1 — amk
(AS’ ¢)h> ( dmk+l V(rbh) (|Vd(tmk+1)|2d(tmk+l)7d)h)

(16) +0(u(tmyyy)s Altmg ), @n) = (Wi, dy),
where

sm4+1l _ sm dmeri _ dmk
mi1 1 u muy, AT —d

Wi =T A T U (tmg1), wg = Y Pe—— di(tmes)-

In fact, according to Cauchy-Schwarz inequality, we have

~m+1 ~m
mi1) |8 —u U(tmi1) — ultm) U(tmi1) — u(tm) _
||wu ||0 = At At 0 At ut(tm"rl) 0
1 tont1 1/2 o tont1 , 1/2
a0 < ([ leuiga) e aee ([ pelar)
tm tm
as well as
dmer — @™ d(t,,,) — ultm,)
M1 < _ k+1 k
oo < || T = 0
d(tm, ) B d(tm,)
+ H k+1AS k) dt(tfm,kJrl) i

. _— 1/2 1/2
1) <o ( S dt||3dt> |dtt||3dt) .
t

Moreover, subtractlng ( ) and (9) from (15) and (16), respectively, we arrive at

"‘ A31/2 (/tmk_H
t

mE

m+1
< > m“ m+1§Vh»(Ih)
( (m+1) ( ) Vh)_b(uh’uh+ ’Vh)
(19) — A(Vd(tm11) © Vd(tpy1) — VA @ VAT Vvy) = (@7 vy),

and

emk+1 _ emk m
(As,m) +A(Ve™ 1, Ve,

= (VA (tmy, ) Pd(tm,.,) — VA2, ¢),)
(20) + b(u<tmk+1)’ d(tmk+1 )7 ¢h) - b(Smk ) dZLkJrl ) ¢h) = (w:ink+1 ’ d)h)
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As is known, the discrete Gronwall’s inequality will paly an important rule in
convergence’s analysis, so we introduce it in the following lemma.

Lemma 3.1. Let ag, by and dy, for integers k > 0, be nonnegative numbers such
that

an +At2bk < AtZakdk +C, Vn>0,
k=0 k=0

suppose that Atdy < 1, for all k, and set o, = (1 — Atdy,) ™!, then

an + Atz b < exp (Atdeak> C, Vn>0.

k=0 k=0

We are now in a position to state and prove the error estimates of the velocity
at the larger time step As = rAt and the director.

Theorem 3.1. Assume the true solution is smooth and € =0 and €® = 0. If the
time step and mesh width satisfy At < Ch?, then there exists a positive constant
ho such that when h < hg the following estimates for the error at the larger time
steps hold,

S—1mgy1—1 S—1
le™ 1§+ lle™s |5 +At> " > [[Ve™ 5+ As > [[Vem |5 < C(AL + 1Y),
k=0 m=mi k=0
m+1

Proof. Taking vj, = e and ¢, = ™t in (19), we get

1
2At 2At
+ Ve TG+ [l — Iy g

= (Wit @™ ) = b(u(timsr), utmrr), ™) + b(up!, up+ €™

1
™ HIE + oA lle™ ™ — €™ (15 — 55 lle™ I3
24t

(21) + AMVd(tmi1) © Vd(tmi1) — VA © VA, Ve™ ).
Then, sum (21) over m = my, mi + 1,--- ,mpy1 — 1 to give
1 mp+1—1 mp41—1
oz e 15— le™ ) +v > IVemr g < > [(witt e™)
m=myp m=my
mk+171
+ > b uptt e ) = b(utm 1), u(tmn), ™))
m=myp
Mk4+1— 1 3
(22)  +A ) |(Vd(tmi1) © Vd(tmgr) — Vd* © Vdp™, Ve ™) = > " ;.
m=my, =1

We now estimate each terms of the right-hand side (RHS) of (22) separately.
Applying the Cauchy-Schwarz and Young inequality, we have the following estimate

mk+171

> U™ HIE + et HIE)-

m=my

(23) I; <

N —
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Besides, for I, adding and subtracting some trilinear terms, and combining (5)
with the definitions of the errors, we arrive at the following estimate

Mmy41—1 Mmpp1—1
I, < Z m m+1 u(tm+1)7em+1)|+ Z |b(em,u(tm+1),em+l)‘
m=my m=my
mr41—1 mp41—1
Y e )@ Y Bl ut). e
m=my m=my
Mp1—1
+ Z ‘b(u(tm)—u(thrl),u(thrl),em"'l)‘
m=my
Mmpy1—1
+ Z (tm+1) m+1_u(tm+l)>em+1)‘
m=mp
ME41— 1
+ Z —u(tyi1), up = u(tg),e™ )|
m=mp
mpp1—1 mpg1—1
< e e e )+ 3 e, ulten), o)
m=myp m=mp
mpy1—1 myp1—1
+ Z ;n’ ;nJrl’ m+1)|+ Z |b(e£nau(tm+1)aem+1)|
m=my m=myp
mk+171
+ Y [b(altm) = ultmin), ultmgr), €™ )|
m=my,
MEg4+1— 1
+ Z m+1 m+1 m+1)‘
m=my
(24)
ME41— 1

7
+ Y b —U(tmyr), e e = Y I
=1

m=mp
Next, due to (6) and the Young inequality, we deduce that

me1—1
L+1< Y le™loled ™ fl2lIVe™ o
m=my
mk.+1—1
+ > le™llolluttme) 2l Ve™ o
m=my
Mp41—1 Mp41—1

m m v m
> e I3 3 + lultme) 1D+ 15 D [Ve™ G,

m=my m=my

(25) <

R | oo
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myy1—1 mp41—1
B+ly< Y lelloled ™ l21ve™ o+ > lletllolultmes)ll2lVe™ o
m=mi m=my
8 mk+1—l v mk+1—1
(26) <- > leg"lI5(lleg ™15 + u(tm1)l12) + 35 Y Ve,
m=my m=mg
mk_*_l*l
L+i< Y lulte) = altnen)lo(ultns)llz + e+ 2) [ Ve™ o
m=myp
8mk+1 1
<= > lultn) = ultme) [§ultn) 15 + lle 1 3)
m=myp
v mk+1—l
m—+112
e+ > Ve,
m=my
as well as
mk+171
< Y Jultmry) 2l ol Ve o
m=mp
4 mk+171 v mk+171
(28) <= ) Fa(tm )l 5 + 14 Y Ve,
m=my i=myg

Then, by collecting (25)-(28), we conclude that

-1
8 Mp41
L<— > (™[5 + el 15 + attm) = ultms) 1) (Matmen) I3 + e+ 13)
m=my
4 mk+1—1 v mk+1—1
+- () [3lle I + 5 IVe™ 3
v 4
m=mi m=my
c ! m (|2 4 2 2 2
<= le™[I5 + P [[ultm)llz + Atlae (Ol 22, 00 0522(00)2) ) [0ER1) 12
1%
m=my
(29)
Ch4 mk+1—1 v mk+1—1
== > lutnlz+5 Y IVe™ 3,
m=my m=mi

where we have used (11).

Now the only issue left is to estimate the last term of (22). In fact, one easily
finds that

mk+1—1
<A Y |(Vd(tne) © (Vd(tn) = Vd(tn)), Ve™ )|
m=mp
mk+171
A Y |(Vd(tmar) = Vd(tn)) © Vd(tn), Ve )]

m=my
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mey1—1
+A D [(Vd(tm) — V™) © Vd(ty), Ve )|
m=myg
mk+1—1
=X ) |(Vd(t) = Vd™) © (Vd(t,) — V™), Ve™ )|
m=myg
mk_*_lfl
+A > |(Vd(tm) © (Vd(tm) — Vdj'™), Ve™ )]

m=my

5
_. (2
=3I
i=1

Then, making use of the Hoélder and Young’s inequalities, we arrive at

mk+171

L<x Y IVA(tnr)lle ()2 Vd(tmsr) = Vd(tm) ol Ve™ o

m=my

oAt M
Z ||Vd(tm+1)||%00(§2)2HdtH%2(tm,tm+1;H1(Q)2)

m=mj,

<

14

v mk+171
m—+1/2
(30) 4 > Ve,

m=my
as well as

mey1—1

E<Xx ) IVA(tm) e @2 Vd(tmer) = Vd(ta) ol Ve™ o

m=my

ox2ar "M

S Z VAt )T 2 1961 F 2t o0 srsmr (9)2)

m=mi

mk+171

v m—+112
(31) Fo S Ve,

m=mip

Besides, for I3, applying (14), the Hélder and Young’s inequalities, we obtain the
following estimate

me41—1
<X Y (Ve ©Vd(ty), Vet

m=my

mk+1—1 N -
+A Y [(Vd™ = Vd™) @ Vd(t), Ve™ )|
m=mi
mk+171
(32) +A D [(Ve™ © Vd(tm), Ve )|

m=myp
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me41—1
<A Y IV ol Tt e [V
m=my
mey1—1
A S Ve oI VAt (@2 IVe™ o
m=my
mey1—1 _ }
+ A Z ”vdm7Vdm""HOHvd(tm)”L‘X’(Qp||Vem+1||0
m=mp
C>\2 mpy1—1 i )
s ST Bl () 3+ [VE™ = V™ |2+ [Ve™ 2 [V (tm) |3 (02
m=my
v mey1—1
tgg 2 IVe™i,

m=my

Further, according to the Holder and Young’s inequalities, and the inverse inequality
(7), we have

Mmp1—1
I§ S A Z ”Vd(tm) - Vd;znk ||L3(Q)2 ||Vd(tm) - denk ||L5(Q)2 HVem+1||0
m=my
ON2]—2 Mp41—1 y Mmpp1—1
<= Y V) = VA g D Ve
m=my m=my,

CA2h72 N 8 4 m Jmy |14 my (|14
< D BRd(tn)l5 + V™ = VA |5 + [[Ve™ |5)

m=my

14

mk_*_l*l

v m—+1(12
(83) 455 D IVe™I5,

m=mj,

as well as

mk+1—l
<X ) IVA(tn) o= Vd(tm) = Vi [lo|Ve™ o

m=myi

% et 4 2 Im Tmy (|2 me |2 2
<= Y (AMd(tm)]3 + [IVA™ — VA [[§ + [V [V () [1F 00 (022

m=my

(34)
v mk+171
m—+1112
Y Vet

m=mp
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Consequently, (30)-(34) imply that

y Mt ox2AL !
I3 SZ Z [Ve™ 5 + » Z ||Vd(fm+1)”2Loo(Q)2||dt||2L2(tm,tm+1;H1(Q)2)
m=mg m=mg
O)‘2 ! 4 2 Jm Jmy |12 my |2 2
+ = > (W) 3+ VAT = VA G+ [V )V ()17 ()2
m=myp
(35)

C)\2h_2 mk+1_1 8 4 J 3 4 4
+ 22 ST (It I+ VAT - A+ [ Vem I

m=myi

v

Finally, combining (23), (29) and (35) with (22), multiplying 2A¢ and summing
over k=0,1,...,5 — 1, we obtain

S—1mp41—1
eI+ a3 3 Ve
=0 m=my
S—1mpt1—1
< CAP +Ch* + CAPR2 + ALY Y ([le™ M5 + [lwi t13)
k=0 m=my
S—1mpp1—1

CAt m CN2rAL S m _ .
(36) Z > lle™g + V Z IVe™ |5+ h 2 Ve™ |5)

k=0 m=my k=0

where we have observed that

S—1mgy1—1 _ _ S—1mgy1—1 _ B
Yo vdr—varg<cd s Y (Ivdm - vd™
k=0 m=my k=0 m=my

S—1mp41—1

S CAt Z Z ||dt||iz(tm7tm+1§Hl(Q)2).

k=0 m=my

In addition, choosing ¢, = €™+ in (20), we obtain

—— €™ |5 +
2As ot

< l( ME+1 €mk+1)‘

0ty ), Aty ), €75F) = B(S™E, Ay, €M)

1
2 2 2
S llems — e E = s llem I} + Al Ve

6
(7)) ANVt ) P, ) — (VA Py e =2 ) L
i=4
Firstly, it’s easy to show that

(38) In < 5 (lwg™ 17 + lle™=3).

l\’)\r—\
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Secondly, by use of (5) and (6), the Holder and Young’s inequalities, we deduce
that

1 mk+171
5= b (T Z em7d(tmk+1)7€mk+l> |
m=mp
1 mk_*_l*l
+ b < (ﬁm _ ﬁmk)’ Eznk+17€mk:+l> |
r m=myp

1 mk+171
+1b| = E em’eglk+176mk+l
r

m=my

1 mk+1—1
’ b<r 2 (a’"—ﬁmw,d(tmk“),emkﬂ)

m=my,
+ [b(e™, ettt €™ )| + [b(er™ d(tmy,, ), €M)

(bl ), €25, €M) 4 bty ) = Wty ), Aty ), €75

C mk+1—1
S 2 (el I3 + 167 = &7 Bl 13)
’y m=my
C mk+171
toze 2 (lem ey 5 + 5 — & [ d (e, ) I3)
m=mp
C
ez I3l 13 + e I3t )I3)
C
(I 7 + lattme) = e )31, )IE)
+ 4 1vems;
/y O mk+1—1
STV B+ =1+ D e
’y m=mi
C mk+171
+oo(Lh?) Y -
,y m=mi
CAt
(39) +Ch* + 7,}/ Hut(t)‘I%Q(t,,Lk,t,,Lk+l;LQ(Q)Q)'

Thirdly, we now aim to estimate 5. Rewrite |Vd(tm,€+1)|2d(tmk+l) — |vdy|2dy
as

Vd(tr ) Pt ) — [V Py
= (Vd(tmk+1) - Vd(tmk))(Vd(tmk+l) + Vd(tmk))d(tmk+1)
VAt ) P (A(tm) = d(tm,)) + VAt )P (d(tn,) — di™)
+ 2v(d(tmk) - lek)Vd(tmk)d(tmk)
—2V(d(tm,) — di™)Vd(tm,)(d(tm,) — d}™)
+[V(d(tm,) = dy*)P(d(tm,) = di™) = [V(d(tm,) = i) Pd(tn,),
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which implies

Is <AIVd(tmyy) + VA(tm,) e @2 [|[ Aty ) [ 2 0)2
X [IVdA(tmyy,) = Vd(tm, ) lloll€™ lo
+ VAt ) 17 @)z 1Aty ) — Aty loll€™ o
F ANVt )7 (2l €™ + €2 lolle™+ o
+ 29(IVd(tm, )| = (2 [|[d(Em) | oo ()2 [ VE™ + Ve ™ [[o][€™ o
+ 29[VA(tm ) Lo ()2 ([ VE™ 4+ Vel [lofl€™ + €™ || Lo ()2 [[€™ [|o
+ €™ + € [ L ()2 [VE™ + Ve ™ |lo
X [|[Ve™ + Vel || sz [|€™ || Lo ()2
+ylldEm )l L @)z [VE™ + Ve ™ o

X ||Ve"““ =+ VeZ”“ ||L3(Q)2 ||6mk+1 ||L6(Q)2

7
(40) =) I
i=1

In what follows we bound (40). To this end, we will apply the Cauchy-Schwarz and
Young’s inequalities and (14) to get

Is + 15 < Cy|IVd(tm,.,) = Vd(tm,)lloll€™ " [|o

CAt 2 g Mpy1 |2
< T”dt(t)”LQ(tmk by i HU (@) T 1—6||Ve o,

I} + I < Orl|Ve™ + Ver | + L[ vem+ |3
< Oyt + (V€™ ) + 15 1Vem™ 3,
I§ + 15 < Cy|[Ve™ + Ve [[§[Ve™ o
< Oy Ve + Vet i+ 15 Ve 3
< Cy(®d(tm) I3 + (V€™ I3) + 15 19€™+ o,
I < Oy|[Ve™ + Ve 3| em+ o
< Oy (b, )§ + V€™ ) + Tl V™3,

which leads to

Vi m CAt
Is Szﬂve |3+ T”dt(t)H%?(tmk,t 1)) + Ch*

M1

(41) + Oy Ve™ [[§ + Cy[[Ve™ [l + CHlIVe™ .
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Combining (38), (39) and (41) with (37), multiplying 2As and summing the

ensuing inequality over k =0,1,---,5 — 1, yield
5—1
le™s 5 +~As Y [ Ve 3
k=0
S—1mp41—1 S—1mp41—1
CAt CAt?
| m||o Z Z \uth(tm tmi1;L2(Q)2)
k=0 m=my k=0 m=my
CrAt? 3 —
4 Mk+1 |2
+Ch 5 Z [ (2) ||L2(tmA by 13L2(2)2) T A8 > ey 13
k=0 k=0
S—1 S—1
CrAt?
1|2 2
+As Y [lem g+ > Qe ONT2 (b, g, s ()2
k=0 -
S—1
(42) +CvAs Y (V™[5 + [ Ve™[ls + Ve |I5),
k=0

where we have noticed that

S—1mpy1—1 S—1lmkt1—1
SN e -ampLoy) Y an - a3
k=0 m=my k=0 m=my
—1mp41—1
< CAtZ Do lwlag, b iz2@p)-
=0 m=my

Furthermore, taking ¢, = A (€™+! — €™k) =: d,€™*+ in (20), we have

Idse™1 3 + inwmw I3
S IVems 3 + s Ivems: — vers 3

< e demen)

bty ) Aty ), do€™40) = B(S™, Ay €™ )]

2As

(43) + (VA )P () = VA PR, doe™e )| =

Moreover, it is easy to see that

m 1
(44) Iz < Cllwg™ [ + g lldse™ 5.
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By the similar arguments for (39), Ig is bounded by

Iz <

<

1mk+171
(1S et e
r

m=mry

DY @ amen em’v“,dsem”l)

mo_my mp
e” el k1 d e k+1>’

1 me41—1
+1|b ( L em’“,dsem“l) ‘
r

1 mk+1—1
- E e €Mk dseMmrtt
r

1 ~m ~m mg
; Z (u —u k)vd(t7nk+1)vd36 k+1>

(e, e+t + €™kt do €™ )| + |b(el™, (b, ), ds€™ )|
+ |b(u(t €Nkl €Mkt eMht1
| ( (mk)7 c y Ws

+ |b(u(tmk) - u(tmk+1)7 d(tmk+1)7 dsemk+l)’
C mk+171
= (le™ Il s )y e + [IVE™ = VAT [[Flef ™+t + €m=41]3)
r
m=my

mk+171

C

o D (el nm e + €™ I3lle™ .o ye)
m=miy

mk+1—1

~m ~m 1 m
D Ivan = VA lid(tm, I3 + glldse™ S

m=mp
+ C(lleg [3IIVers + Ve [+ [l [l d(tm. )iy~ )2)
+ C(u(tm)3IVers + Ve™ = [§ + [|Vu(tm, ) — Vultm, ) [5ldEm, ., )113)

C

T

C Mmp1—1 Ch_2 mpy1—1
<5 2 lemIE+ =5 30 (Ve g+ [ver ) var - var3
m=mp m=my
ch—2 Mt cmETt .
t—3 > lle™lg(Ivers 3 +[[Ve™[I§) + 3 > vam - vam|3
m=mi m=mpg

<

(45)

+ Ol + O[T [+ [ Ve )

1 m
+ CAt W T2, s @0 T Gllds€™ G

tmpgrs
C mp41—1 C mp+1—1
SO Y e+ s S var - var 3
m=mp m=mip
_ —1 _ mk+171
Cch2"E ~ ~ Ch™2
t—3 > Ve FIvan — vare|[s + 2 > lle™glIve™ |3
m=my m=my

1
O+ CVEm 3 4 Ot uy e, o + g

mystmy g3
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In addition, using the same arguments as (40) once more, we immediately find that

Io S’Y”vd(tmkﬂ) + Vd(tmk)”L‘”(Q)?
X N1y ) oo @2 [[VA(Emyr) = V() ol ds €™ lo
+ VAt )7 2 1Aty 1) — At o]l dse™ o
F ANVt ) |7 )2 l€™ + €% [Jo]ldse™+ [|o
+ 29[IVA(tm, ) || oo ()2 [ (Emy) | oo ()2 (| VE™ + Ve [lof|ds €™ lo
+ 29[[Vd(tm,) | ()2 [ VE™ + Ve™ [lof| €™ + €7 || oo (2| ds €™+ [|o
+ V€™ + € [ Lo (2| VE™ + Vel |o
X [|[Ve™ + Ve[| Ls ()2 |ds €™ || Lo (o)
A (Em, ) [ Lo ()2 ([ VE™ + Ve (o

X ||V6mk + Vel® ||L3(Q)2 ||d56mk+1 ||L6(Q)2
7
=: ZI&.
i=1

In order to bound Iy, we need the Cauchy-Schwarz and Young’s inequalities, the
inverse inequality (7) and (14). Then

1 m
(@) + gglldse™ G,
e
30
m 1 m
13 < Cy?(R®||d(tm,) |5 + V€™ [I5) + @Hdsﬁ o,

I§ < Cyh=HIVe™ + Ve[l dse™ + |lo

Ig + I3 < Oy At de(t) |72

mp mk+1

I3 + 1§ < CP2 (W [ d(tm, )13 + ([ VE™ [3) + == [ldse™ 3,

- m 1 mi
< Cy? R (hP2]|d(tm, IS + (Ve ’“||8)+%Ilds€ 5
I < Cyn=HIVeE™ + Ve[l dse™ + o

1
< O (B8 (tm, )15 + IVE™ [lo) + g5 lldse™ 5.
Hence, Iy is bounded by

1
Iy < s 15+ Cy* Atllde (t) 72, () + Ch?

mps mk+

(46) + OV (IVe™ [I§ + Ve [[g + h 72| V™[5 + h=2|[ Ve™ [5).

Finally, combining (44), (45) and (46) with (43), multiplying 2As and summing
over k=0,1,---,5 — 1, yield

S—1 S—1 CAtS 1megy1—1

T S R | Ry e R SR D
k=0 k=0 k=0 m=my
CAtQ S—1mgy1—1 S—1

Z Z 10l T2 ey iasirr ()2) + CAS Z Ve 13

k=0 m=my
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—1mp41—1

CAtQh‘ m
Z Z e llZ2h, 0 pasmrr () 1 VE™HH2]G

k=0 m=my

| CAth- 2Tt .
— " > lem3Iver g + Ch?

k=0 m=my

S—1
+ CTAtQ Z ||ut‘|%2(tmk,

by q i H(Q)?)
k=0
S—1
+ Oy rAt? Z llde(t) ||L2 by, sty yq s HL(2)2)
k=0
S—1
+ 07 As Y[V [+ IV [§ + h2 | Ve [§ + =2 [ Ve §)
k=0
o1 C’Ats 1mey1—1
SCAsY I+ == D llem i+ Car +Cnt
k=0 k=0 m=my
_g\ S-1
+CAs (1 + ) > Ivems
k=0

9 S—1mry1—1

C’Ah
COMESTST e 3 ven 2

k=0 m=my
S—1
(47) + OV As Y (IVE™ |5+ [ Ve™ |5+ h 2| Ve™ |5 + h2(|Ve™ |5).
k=0

Note that the following bound holds

S—1mp41—1 S—1
ALY Y i HIE+ CAs Y flwg™ S
k=0 m=my k=0

S—1mk41—1 mt1 tmt1
coary Y (g [ w7 )

k=0 m=my tm

S—1 1 tmgpy ) 2N )
voasy (5 [ - dulgas as [ au e

k=0 tmy, mp

T T
< [ - wlae+oad [ fudiar
0 0

T T
(48) + C/ |ld; — dq||2dt + As2/ lde||2dt < C(AE* + h?).
0 0

Here, (48) is obtained by applying (17) and (18) with approximation properties.
Summing up (36), (42) and (47), we have

S—1mp41—1
le™ 15 + €™ 1§ +Vem 1§ +rvatd " > [Ve™ 3
k=0 m=my
S—1 S—1
+9As Y IV G+ As Y [l dee™
k=0 k=0
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S—1mp41—1
< CAPR2+ CAR +CR + ALY S flem™ 3

k=0 m=my

CAtS 1mg41—1 . CAtS 1mgp1—1 . CAtS 1mgp1—1 .
le ||0+7Z > e Ho+7z > le™ils
k=0 m=my k=0 m=my k=0 m=my
= Ath
+As )y €™ g+ CAs (1 i ) Z IVems+ |3
k=0

CA2rAL 3=
+ == Y (Ve I+ A2 v )

k=0
—1mgyp1—1 S—1
+Atz Z m+1||2+CASZmek+1H2
k=0 m=my k=0
S—1
+CyAs Y (IVE™ I3 + IVe™[|3 + [ Ve™[I§) + le IBlIve™ |3
k=0
S—1
+Cy*As Y (V™[5 + [Ve™ |5+ b2 Ve™ |5+ b~ Ve™|[5)
k=0
S—1mgy1—1 S—1
<OAR + Ch + OABR 2+ OAtY . Y [le™ 2+ As > [lem+3
k=0 m=my k=0

S—1mg41—1

Ath m CAth=? m m
T OAs (1 )va N S LA

=0 m=my
(49)
S—1
+CAs Y (IVe™ |5+ [Ve™[la + [IVe™|I§ +h72|[Ve™ [[§ + 2| Ve™|[5).
k=0

Now we prove that ||[Ve™*||o < h for 0 < k < S by using mathematical induction
method. Clearly, this inequality holds for £ = 0. If we assume that this inequality
holds for k < S — 1 and At < Ch?. Then, we rewrite (49) as

le™ 15 + €™ I + Ve < CAL* + Ch*

S—1mgy1—1 S—1 S—1
(50) +COALY D e g+CAs D [[Vem e [§ 4+ As Y e 5.
k=0 m=my k=0 k=0

Hence, by applying Lemma 3.1, we derive that

1
|Vems|2 < Ch* < h?, if h< 75 = ho

which completes the induction.
Finally, combining Lemma 3.1 and (50), we arrive at

S—1mgy1—1 S—1
€™ 1§+ llem™s 5 +Aat> " > Ve 5+ As > [[Vem
k=0 m=my k=0

(51) < O(AP + hY).
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We are now in a position to state and prove the error estimate of the velocity at
the smaller time step At.

Theorem 3.2. Under the assumption of Theorem 3.1, the following estimate holds:

ford=1,2--- r—1, and k=0, 1,---, S—1,
le™ 7§ +vAt Y [[Ve™ 5 < C(AE + h?).
m=my
Proof. Summing (21) over m = my, mg + 1,- -+ ,my + J yield
1 mpg+J
S (e e ) v Y Ve
m=mi
my+J myp+J
< D0 lwnthe™ 4+ o bt e ) = b(u(tin), ultis), e )
m=mi m=my
(52)
mr+J
+A D [(Vd(tmi1) © Vd(tmyr) — V'™ © Vd)'™, Ve )],
m=my

Using similar arguments to (23), (29) and (35), and multiplying 2At, we obtain

myg+J my+J
le™ FTHE — (le™ (1§ +vAt > [vem g < At Y (le™ G+ witIE)
m=my m=myg
CAt "
= 3 (Il 13+t atm) I3 + At e, 0,0 iz2 ) 1)l
m=mpg
CAth* "
+ 2SNl
m=mi
CN2AL2 "
t— Z IVA(t g )17 oo ()2 1Qel Z2t, 001 (02)2)
m=my
CALN2 e S N
+ Y (WAl + 1VA™ = VA ([ 4 [Ve™ [5) VA (Em ) |7 )2
m=mip
CAtN2p~2 "X - -
= Y (W¥d(tm) 5 + V™ = VA" g + Ve )
m=mi
mp+J CAt my+J
<SOAP +Ch' + AL Y ™5+ — > [le™]5,

m=my m=mi
where we have applied (51).
Hence, employing Theorem 3.1 and Poincare inequality, we arrive at
my+J
le™ H G Fvar Y Vet
m=my
myg+J
< C(AP + 1Y)+ CAL Y [le™ 5 < C(AL + h).

m=my



830 T. LI, P. HUANG, AND Y. HE
TABLE 1. Numerical errors and convergence rates at T=0.1 for
At = 0.2h? with r = 5.
F Tum)—uplo  Rate  [V(d(tm) —dj)Jo Rate
1/30 0.0093657 — 0.0371636 —
1/60 0.0022947 2.0290813 0.0095850 1.9550399
1/90 0.0010135 2.0154445 0.0039397 2.1927838
TABLE 2. Numerical errors and CPU time for At = 0.1h2 at T =
0.1 with » = 1.
h Taln) —ulo V(a(n) —wlo [V@() —dp)lls_CPU
1/20 0.0186602 0.1275500 0.0283859 5.219
1/30 0.0078589 0.0505034 0.0127069 32.668
1/40 0.0051803 0.0295617 0.0078813 115.991
TABLE 3. Numerical errors and CPU time for At = 0.1h2 at T =
0.1 with r = 5.
B ) — W V() —wp)le [V(d(m) — e CPU
1/20 0.0219266 0.1134930 0.0227466 3.922
1/30 0.0084534 0.0541689 0.0106532 19.129
1/40 0.0049239 0.0307126 0.0056939 66.144

4. Numerical experiments

In this section, we assess the numerical performance of the fully discrete, de-
coupled scheme with different time steps for the nematic liquid crystal flow. All
computations are carried out in the unit circle Q = {(z,y) : 22 + y* < 1}.

On one hand, the initial data and the body force are taken as ug = 0, dg =
(sin(a), cos(a)), a = w(z% + y?)? and f = 0, respectively.

The main goal of the experiment is to verify the convergence rates for the con-
sidered method. The exact solution of this problem is unknown. Thus, we take the
numerical solution by the standard Galerkin method computed on a very fine mesh
(h = 1/150) as the “exact” solution for the purpose of comparison. Parameters are
set as A = v = = 1. Besides, the time step 7 = Ch%. We display the convergence
orders and errors of the considered method at the final time 7" = 0.1 in Table 1.
From this table, it can be easily to see that the presented method works well and
keeps the convergence rates just like the theoretical analysis.

Moreover, to investigate the effectiveness of the decoupled scheme with different
time steps, we compare the numerical results by the considered method with r =1
and r = 5. Note that when r = 1 the method has the same time step for the velocity
and the director. In fact, it becomes the standard Galerkin method.

The numerical errors and corresponding CPU time are listed in Table 2 and 3.
As expected, the considered method with » = 5 spends less CPU time than the
considered method with 7 = 1 to achieve nearly the same relative error.

On other hand, the initial data and the body force are taken as uy = 0, dy =
(sin(a), cos(a)), a = 4m(z* — y*)? and f = 0, respectively.

In the following example, the parameters are set as A = v = 1 and v = 2.
Besides, we choose the mesh size h = 80 and At = h2. In Figure 1 and 2, we plot
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(c)

T =1.5(c) and T = 3.0(d).

(d)
FIGURE 1. Evolution of velocity fields: T = 0.1(a), T

0.5(b),

7,
//////// /

L

T =1.5(c) and T = 3.0(d).

(d)
FIGURE 2. Evolution of director fields: T' = 0.01(a), T
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the evolution of the velocity fields and the director fields by the presented method.
From these figures, one can find that the velocity and director have almost the same
trend after the final time T = 1.5.
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