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COLLOCATION METHODS FOR A CLASS OF
INTEGRO-DIFFERENTIAL ALGEBRAIC EQUATIONS

HAIYAN ZHANG AND HUI LIANG*

Abstract. A class of index-1 integro-differential algebraic equations modeling a hydraulic circuit
that feed a combustion process is considered. The existence, uniqueness and regularity are ana-
lyzed in detail. Two kinds of collocation methods are employed to solve the equation numerically.
For the first one, the derivative and algebraic components are approximated in globally continu-
ous and discontinuous polynomial spaces, respectively; and for another one, both the derivative
and algebraic components are solved in globally continuous piecewise polynomial spaces. The
convergence, global and local surperconvergence are described for these two classes of collocation
methods. Some numerical experiments are given to illustrate the obtained theoretical results.
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1. Introduction

Integro-differential algebraic equations (IDAEs) arise in many mathematical
modeling processes, for example, [6, 7] (Kirchhoff’s laws); [10] (circuit simulation);
[9] (the seat-occupant dynamic model); and [16] (hydraulic circuit that feeds a com-
bustion process). Due to the rich applications, there are many researchers focus
on this research area. In [12], the convergence properties of implicit Runge-Kutta
methods of Pouzet-type for IDAEs that arise when solving singularly perturbed
Volterra integro-differential equations are analyzed; in [1], the global and local su-
perconvergence properties of piecewise polynomial collocation solutions for index-1
semi-explicit IDAEs are discussed; various aspects of the numerical treatment of
IDAEs are studied in [2, 3, 4, 5] (existence and uniqueness of analytic solutions
of certain IDAEs; convergence of the implicit Euler method and methods based
on backward differentiation formulas (BDFs)); [18] (well-posedness results for non-
autonomous integro-differential-algebraic evolutionary problems); and [17] (conver-
gence of the Legendre spectral Tau-method); in [15], the tractability index of IDAEs
are defined, the given IDAEs system of index 1 is decoupled into the inherent sys-
tem of regular Volterra integro-differential equations and a system of second-kind
Volterra integral equations, and the convergence, global and local superconvergence
are studied for two kinds of collocation methods.

Motivated by [16], in this paper, we consider the following IDAE comes from a
hydraulic circuit that feed a combustion process:

(1)

t

Y (1) + b1 (D)y(t) + baa(t)2(t) = f(t) + /0 [K11(t, s)y(s) + Kia(t, 5)2(s)] ds,
ba1 (t)y(t) + baa(t)z(t) = g(t),

where ¢t € I := [0,T1], the given functions b,q, K14 € R, p,q = 1,2, and |baa(t)] >
bo > 0. The system (1) is complemented by a given set of initial values (y(0), 2(0))? =
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(v0,20)T, which is assumed to be consistent, i.e.,
b21(0)y(0) + b22(0)2(0) = g(0).

This paper is aimed at the IDAE (1), and the outline is as follows. In Section
2, we recall the tractability index of IDAEs, and check the index for the IDAE (1).
In Section 3, we analyze the existence, uniqueness and regularity of the analytic
solution. The collocation scheme, convergence and global (local) superconvergence
results in different collocation spaces are shown in Section 4, and the corresponding
results in the same collocation space are shown in Section 5. In Section 6, we give
some numerical examples to illustrate the theoretical results obtained in this paper.

2. The tractability index of IDAEs

In this section, we will check that (1) is index-1 tractable. For this purpose, we
first review the definition of the tractability index induced in [15] for the following
general linear IDAE:

(2) A(t)2'(t) + B(t)x(t) + /0 K(t,s)x(s)ds = F(t),

where A, B, K € R**¢ and F € R%. Before stating the definition of the tractability
index for IDAEs (2), we first recall the definition of the notion of v-smoothing of
the linear Volterra integral operator ¥ : C(I) — C(I) defined by

t
(3) (V) (t) = / K(t,s)z(s)ds, t €1,
0
with the continuous matrix kernel
K(t,s) := [Kpy(t, s)] € R4

Definition 1. (see [13]) The Volterra integral operator ¥ in (3) is said to be v-
smoothing if there exist integers vpq > 1 with

V= lgﬂgiéd{’/pq}?
such that '
(a): ngizj(ts) 7t:0, tel, j=0,1,...,vpg —2;
(b): % £0, tel;
s=t
(c): (‘3”1"1;;'712575,5) e C(D).

If Kpy(t,s) =0, we set v,q = 0. The IDAFE (2) is called a v-smoothing problem if
Y is a v-smoothing operator.

We assume that the matrix kernel K (¢, s) of (2) does not vanish identically. Let
i >0 be an integer, K', K;, A;, B; € R%*? and denote by (K*),, and (K;),, as the
element (p, q) of the matrix K and K;, respectively. Let

K°(t,s) = K(t,s), Ko = K := K(t,t),

(4) AO = A, BQ =B — AQP(;, A1 = AQ + B()Qo.
If (K;)pg(t,t) #0(i > 0), set (K'T1),,(t,s) :== 0; otherwise
_ 8i+1<(Ki)pq<tv5))
B otitl '

(KHl)pq(ta s):
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Define K;11 = Kit1(t,t) := (K1), (¢, 8)|s=t (p,¢ = 1,2,...,d) and
(5) Bi+1 = Bi—l—l(t) = B1PZ — Ai+1P0HZ(+1]L-,

©) |
<Z KﬂL‘llQil) Qit1, 0<i<v—1,

=0

<Z KlHi—l—lQi—l> Qit1, 1 > 1.

=0

AH_Q = Az+2(t) = Ai—i—l + Bi+1Qi+1 +

Here IT_; := I, is the identity matrix in R¥¢ @Q; = Q,(t) denotes a projector
ontokerAj, Pj :P](t) IZId—Qj ande :ZP)O]Dl...P)j7 ]20

Definition 2. (see [15]) Assume that the Voterra integral operator describing the
IDAE system (2) is (v + 1)-smoothing with v > 0. Then (2) is said to be index-
tractable if all matrices A;(t), t € I(j =0,...,u—1) are singular with smooth null
space, and A, (t) is nonsingular for allt € I.

Now we consider the tractability index of the IDAE (1). Obviously, (1) can be
rewritten as

(7) A(t)a'(t) + B(t)z(t) + /0 K(t,s)x(s)ds = F(t),
with
o o 1 0 o b11 b12 o —Kll(t, 8) —Klg(t,s)
AOA[O 0}’B[b21 bzz]’K(t’s)[ 0 0 ]7

xor= 1] o

Il
L
Q
=
S~
— =
—_

0 0

Take Qo = [0 1},thenPolQo F 0

0 0

B 10 b bie] o 0] 1 0] 0 bw] [l b
== ool [ ] 03] =lo o+ o 22l =l )
Since bag # 0, so det(A;) = baa # 0, i.e., A; is nonsingular, and the tractability
index p = 1.

],BOBAP(;B, and

3. Existence, uniqueness and regularity of the analytic solution

By the second equation of (1), we obtain

(8) 2(t) = Bi(t)g(t) + Ba(t)y(1),
where 0
1 bo1 (t
Bi(t) := o) Bsy(t) = — .
1( ) b22( ) 2( ) bgg(t)
Integration of the first equation of (1) from 0 to ¢, then
t
(9) / f(v dv+/ K, (t,v)y(v) dv—|—/ KD, (t,v)z(v) dv,
0
where

K?l(t,v) = —by1(v / Ki1(s,v) ds, K?Q(t,v) = —bya(v / Kia(s,v)
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By [1, Theorem 2.1. 2] we know that there exists a resolvent kernel Ryq(¢,s), which
is associated with K7P,(t,s), such that

/f dv+/K12tv
+/ Ri1(t,v) [ 0) +/ f(s)ds—i—/o K?z(v,s)z(s)ds} dv

¢
(10) =A(t / As(t,s) )ds—l—/ As(t, s)z(s) ds
0
where ,
Aq(t) = 1+/ Ry (t,v)dv, As(t,s):=1 —|—/ Ry1(t,v) do,
0 s
¢
As(t,s) = Ky(t, s) —|—/ Ry1(t,v) K (v, s) dv.

Substituting (10) into (8), we get

() = Bi(t)g(t) + Ba(t) [ / As(t, s) )ds+/OtA3(t,s)z(s)ds}
(11) = Bi(t)g(t) + Ca(t /C’gts ds+/0t(]3(t,s)z(s)ds,
where

Cl (t) = Bg(t)Al (t), 02(t7 S) = Bg(t)AQ(t, S), Cg(t, S) = BQ(t)A3(t, S).

Again by [1, Theorem 2.1.2], we know that there exists a resolvent kernel Ras(t, s),
which is associated with Cs5(t, s), such that

z(t) =B1(t)g(t) + C1(t / Co(t, s)
+/OtR22(t,s) [Bl( )g(s) + C1 (s / (s, v) ] ds
(12)  =Bi(t)g(t) + Di(t /D2ts ds+/0 Ds(t, $)g(s) ds,
where

Dy (t) := Cl(t)—i—/o Roo(t,s)C1(s)ds, Da(t,s) = Cg(t,s)—i—/ Rao(t,v)Ca(v, s) dv,

D3(t, S) = Rgg(t, S)Bl (S)
Substituting (12) into (10), we get

¢
=A;(t)y(0 +/ As(t,s)f(s)ds
0
¢
+/ As(t,s) [Bl(s )+ Di(s / Dy(s,v)
0
+/(D3 s,v)g(v dv} ds

(13) =F(t / Es(t,v) dv—i—/ Es(t,v)g(v) dv,



762 H. ZHANG AND H. LIANG

Bu(t) = A1) + /0 As(t, $)Dy(s)ds,  Ea(t,v) = As(t,v) + / Ay(t, 5)Da(s,v) ds,

t
Ey(t,v) = As(t,0) By (v) +/ As(t, 5)Ds(s, v) ds.
Therefore, we have the following theorem.

Theorem 1. Let d > 0 and assume that

(a): b1 € Cd(l), bio € Cd—H(I), 1=1,2 with |b22(t)‘ >bg > 0;

(b): K € Cd(D), K5 € OdJrl(D);

(c): f.g € CUI).
Then the IDAE (1) possesses a unique solution v = (y,z)T on I, with y € CTY(I),
z € CUI). In additions, there exist functions By, Dy € CU(I), E, € C¥(I),
Dy, D3 € CUD), Ey, E3 € CY(D), such that

y(t) =E1(t)y(0) + [ Ex(t,v)f(v)dv+ [ Es(t,v)g(v)dv,
» / J, s

z(t) =B1(t)g(t) + D1 (t) / Dy(t, s) )ds—l—/o Ds(t,s)g(s)ds.

On the other hand, if the functions b1, g € CHL(I), then y, z € C4TY(I), with
By, Dy, By € CPY(I), Dy, E; € CT"Y(D), j

2,3.

4. Collocation by different piecewise polynomial spaces

4.1. The collocation scheme. Let I}, := {t, :=nh,n=0,1,...,N (tny :=T)}
be a given mesh on I = [0,7]. The solution x = (y, 2)” can be approximated by
elements zj, = (yp, z,)7 with

(15) g € SO = {y € C(I) - yle, € Tm(0 <0 < N — 1)},

and

(16) 2n €SS (I) = {2len € Fm1 (0 <n < N — 1)},

where ey, := (tn, tnt1], €n := [tn, tnt1], and m,, denotes the set of real polynomials

of degree not exceeding m.

For prescribed m collocation parameters {c;}, the collocation points are given
by Xpi={t=t,+ch:0<c1 < - <e¢p <1(0<n<N-1)} Then at t € X,
the collocation equation is

(17)
Yn () + bia ()yn(t) + bia(t)zn(t) = f(t) +/0 [K11(t, s)yn(s) + Ki2(t, s)zn(s)] ds,
(18)  bar()yn(t) + baz(t)zn(t) = g(t),
with the initial value (y1,(0),2,(0))T = (y(0), 2(0))T satisfying ba1 (0)yn(0) +baa(0)
xz,(0) = g(0). N
Setting Uy, i := ), (tn,i), Vi := 2n(tni), we can write

s s

m

(19) Yt +sh) =Y Li(s)Un;, 2n(tn + sh) = ZL Vo, 5€(0,1],

j=1
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then

(20) Gt + 5h) = n(ta) + B> B5(5)Uns 5 € [0,1),
j=1
where 3;(s) := /S L;(v)dv. By (17) and (18), we obtain
0

Un,i +b11(tni) |yn(tn) +h Z ai;Unj| + b12(tn,i)‘7n,z'
j=1

- h/ Kll(tn,ia ty, + Sh) yh(tn) +h Z ﬂj(s)Un,j ds
0 j=1

— h/ Klg (tn,ia t, + Sh) Z Lj (S)Vn,j ds
0

n—1 1 m
:hZ/O Kll(tn7i7tl +5h) yh(tl) +hZﬂj(S)Ul7j ds
1=0 i j=1

m

n—1 1
+hZ/ K12(tn,iatl +Sh) ZLj(S)‘/l’j d5+f(tn,i)7
1=0 70

j=1

and

m
bo1(tni) |yn(tn) + R Z @iiUn,i | +bo2(tn,i)Vini = g(tni),

j=1
where a;; := 3;(¢;). In order to write these equations in a more transparent form,
we introduce the following notations:

M = /o Ki1(tn,i tn + sh)Bj(s)ds
(,j=1,...,m)

1
Ml — / K1 (tnist1 + sh)B;i(s) ds
: 0
(G,j=1,...,m)

N{Lq = dlag /0 KlQ(tn,ia tn + Sh) ds

S

(it=1,...,m)
1
qu’l := diag /OKlq(t"’i’tl+Sh)dS )
(i=1,...,m)

wWm .= /0 Kl?(tn,iv tn + Sh)L](S) ds
G j=1,...,m)

1
Wn’l — / Klg(tmi,tl + Sh)LJ(S) dS
: 0
(i,j=1,...,m)

N~—
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A (g =3 ) B 20).
foi= (Ftnn)s s FEnm) s gn = (9(tnn)s- s 9(tnm)) ",
e=1,....,1)", Up=Unt,- . Unm) . Vo= (‘7,1,1, ce Vn’m)T ,
where 0 <1 <n—-1,0<n <N -1, p,g=1,2. Then we obtain
[Im Y hBLA - B2M™ Bl — hW”] [Un}

hBy, A B, Vi
n—1
WMt W] U,
=h}_ [ 0 0 ] [17
1=0 !
n—1
(21) + —Bleyn(tn) + AN eyn(t,) + h Z Nlnl’leyh(tl) + fn
1=0

—Biieyn(tn)) + gn

The determinant of the coefficient matrix on the left-hand side of this system
has the form

det(In) det(BY,) + O(h™) = det(BL,) + O(h™).
Due to baa(t) > bg > 0, det(BY,) # 0, so we have the following theorem.

Theorem 2. There exists an E > 0 so that for any given mesh Iy with mesh
diameter h > 0 satisfying h < h, each of the linear algebraic systems (21) has a
n

unique solution (‘q/ ) € R?™. Hence the collocation equations (17) and (18) define

a unique collocation solution xy, = (yn,2n)", with y, € Sg,?)(fh), zp € Sr(n_j%(fh) for
the IDAE (1), and its representation on the subinterval (tn,tn+1] is given by (19)
and (20).

4.2. Convergence analysis.

Theorem 3. Assume that:

(a): the given functions in (1) satisfy the conditions of Theorem 1 so that
y € CHYUI), 2 € CUI) with d > m;
(b): (yn,zn)T is the collocation solution for the solution (y,z)T of the IDAE
(1), with y, € S (I4) and 2, € S5 (11);
(c): h > 0 is such that, for any h € (0,h), the linear algebraic systems (21)
has a unique solution.
Then for all uniform meshes Iy, with h € (0,h), the collocation solution (y, zn)T
converges uniformly to (y, z)T on I, for any set X;, with distinct collocation pa-
rameters 0 < ¢; < -+ < ¢y < 1, and the attainable global orders of convergence
are given by

1y =y lloc = maxly(t) —yn (DN < CLh™, Iy’ =y lloc = suplly’(t) —ya(B)l] < C2h™,
<€

and
[z = znloo = Su5T>||Z(t) —z(t)[| < C3h™,
te

where the constants C,Co, C3 depend on the collocation parameters, but not on h.
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Proof. By the assumption, we have

(22) Y (tn +sh) = Li(s)y (tn + cjh) + hmﬁ;,n(s), s e (0,1],
j=1

(23) 2t +sh) =3 Ly(s)z(tn + ;) + B R, (), s € (0,1],
=1

where the remainder terms and the Peano kernel (see [1, Section 1.8]) are given by

inn /K (s,0)y ™V (t,, + vh) dv,

R
/ Km S, ’U (t +Uh)d

and

K, (s,0) = ﬁ {(s— v) Pt - ZLk( Jew — )P 1}, s € (0,1].

k=1

Here, (s —v)7"' =0 for s < v, and (s —v)7" " == (s — )™ ! for s > v.
Integrating (22), we have

(24)  y(tn +sh) =yt +h§j@ (tn +c;h) + R HIRL (s), s € [0,1],

where R, (s) :== /OS E,ln,n(v) dv. Setting
en(tn + sh) :=y(t, + sh) — yn(tn + sh), €n(tn + sh) := z(t, + sh) — zp(t, + sh),
and using (19), (20), (22), (23) and (24), we have
(5)  chltntsh) = Ly(s)eh(tns) + AR A(5), 5 € (0,1],
j=1
(26)  en(tn + sh) = en(t +hZﬁj +h™HIRY L (s), s €[0,1],

(27)  Enltn +sh) = L;j(s)en(tn;) + + W R, (), s € (0,1].
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For t = t,4, by (1), (17), (18), (26) and (27), the error equations have the form

en(tni) +bri(tni) |en(tn) +h Z aijeh (tng) | + br2(tni)en(tn,i)
- h/ Ki1(tn,i,tn + sh) |en(tn) + hZ@'(S)@/h(tn,j) ds
0

_h / Kia(tnistn + sh) st)’éh(tn,j) ds
0

n—1 1
:hZ/O K11 (tnist + sh) |en(t;) +h25] s)en(t;) | ds
=0

m

n—1 1
(28) +hY / Kuoltuioti +5h) |3 Li(s)en(te) | ds+ b7,
1=0 70

j=1

and

(29) bo1(tn,i) en(tn) + hzaije%(tn,j) + baa(tn,i)en(tn,i) = K" 0n i,

where

Cq ~
B = — hbui () RY, (ci) + h / K1 (taistn + sh) [AR}, ()| ds
0

+ h/ | K12(tn,i7 tn + Sh)ﬁfn,n(s) ds
0
n—1 1 "
+ hZ/ Ki1(tni ty + sh) {hR}nJ(s)} ds
1=0 70

n—1 1
+h Z / Kio(tni ti + Sh)R;J(S) ds,
1=0 70

E'rL,i = hb21<tn,i)§71n,n(ci)'
Set
E, = (Q;L(tn,l), ceey Q;l(tn,m))T ) En = (gh(tn,l)v s 7gh(tn,m)) )
Pr = Bpir- s Pom) s o= On1ree s Onm)’
then we obtain that
I, + hBYA—h2M™ BY —hW"| [E,
hB% A B%,

=S [

(30) + —Byeen(tn) + hNTieen(ts) + hz Ny eeh (t) +h"p,

— B eep(tn) + h’”
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Since ey, is continuous on [0, 7], we have ey (to) = en(0) =0, and

en(tn) = en(tn—1 +h) = en(tn-1 —|—th e, (tn— 1J)—|—hm+1Rmn 1(1)
Jj=1

n—1

= =0 Y byl () A SRR (1)

1=0 j=1 1=0
n—1 n—1 N

(31) =hY b'E +h™> R}, (1)
=0 =0

with b; := 8;(1) = [, L;(s)ds, b:= (b1,...,b)". Then

Ly + hB{A—h*M™ By — hw"] [En
hBp A B3, E,

_hZ[thl (RNTY — B} )eb” W"»l] [?]
1

—321ebT 0
5 n—1
S n S v o [B] . [7)
(32) +hy 1A PR AR
=0 0 0
with
n—1 _ n—2 n—1 _
7y, = (AN}, —Bﬁ)eZth,z(thZh > NiFeR), (1) + 5y,
= =0 k=Il+1
Gl = —B2leZhR )+ Tn.

Similarly to Theorem 2, for sufficiently small h, the coefficient matrix

I, Bl
{0 Bé’z]+0(h)

is nonsingular, with the inverse

n n \—17
[Ig “ERUR) ] o,

Then we have
— n,. —=—n,l]
M, M El:| [O(hm)]
33 2 : 11 7;2 ol .
(33) [ } ~ [Mm MQQZ] LB O(h™)

—n,l

with obvious meanings of M, .
Corollary 2.1.19]), we have

(34) I1Enlloe = O(R™), || Eulloc = O(R™),
which together with (25), (26), (27) and (31) yield the desired result. O

By the discrete Gronwall’s inequality (see [1,

Next, we will show that for certain particular choices of the collocation parame-
ters ¢;, the global or local superconvergence can be achieved (respectively on I and
Ip,). The key to the analysis is the representation of the collocation errors given in
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Theorem 4 below. It is based on the defects (or residuals) d(¢) and dy,(t) associated
with the collocation equations (17) and (18). They are defined by

(35) On(t) := =y (t) — bra(t)yn(t) — bia(t)2n(t)
+/0 [K11(t, 8)yn(s) + Kia(t, s)zn(s)] ds + f(t), t € 1,

and

(36) dp(t) == —ba1 (t)yn(t) — baa(t)zn(t) + g(t), t € I.

Therefore, the collocation errors e; and €, are

e, (t) + b1 (t)en(t) + bra(t)en(t) — /Ot [K11(t, s)en(s) + Kia(t, s)en(s)] ds
(37) =6(t), tel,
and
(38) ba1 (t)en (t) + bao(t)en(t) = di(t), t € I.
It is obvious that
on(t) =0 and dp(t) =0, for all t € Xp,

and it follows from Theorem 3 that ||§,(¢)|| = O(h™) and ||dx(t)]| = O(R™).
Similarly to Theorem 1, we have the following result.

Theorem 4. Let (1) be index-1 tractable, and assume that the given functions
in (1) satisfy the conditions of Theorem 1 so thaty € C4H(I), z € CUI), then
the system of error equations (37) and (38) has a unique solution (ep, €n)T with
en € CH Yty taia], €n € CUtp, tny1] (0<n < N —1), and there exist functions
By € CU(I), Dy, D3 € CUD), Ey, E3 € CL(D), such that the solution can be
represented in the form

(39)  en(t) = /0 Ba(t, v)0(v) dv + /O By(t, v)dn(v) dv, t €1,

(40)  en(t) =By (t)dn(t) + /O D (t, 8)84(s) ds + /0 Dy(t, s)dn(s)ds, t € 1.

Theorem 5. Let (1) be index-1 tractable. Assume that the assumptions (b), (c¢) of
Theorem 3 hold, and let (a) be replaced by the assumption y € C4TH(I), z € C4(I)
with d > m + 1. If the m collocation parameters c; are subject to the orthogonality
condition

Jo = H(s —¢;)ds =0,
0 =1
then the corresponding collocation solution (yn, zn), with y;, € va?)(fh) and zp, €
Sﬁ,:i (I), satisfies

max|ly(t) — yn(t)l| < Csh™F, suplly'(t) — yh (D) < Csh™,
ter tel

and

sup||z(t) — zn(t)|| < Ceh™,
tel

where the constants Cy, Cs, Cg depend on the collocation parameters, but not on h.



COLLOCATION METHODS FOR INTEGRO-DIFFERENTIAL ALGEBRAIC EQUATIONS 769

Proof. By (39), for t = t,, + vh,
t n—1 .1
(41) / Es(t,v)on(v)dv =h Z/ Es(t,t; + sh)op(t; + sh) ds
0 =5 /0

+ h/ Ea(t, by + sh)on(t + sh) ds.
0

Suppose now that each of integrals over [0, 1] is approximated by the interpolatory
m-points quadrature formula with abscissas ¢;, then for v € [0,1] and | < n,

1
/ Ba(t ti + sh)on(ts + sh) ds
(42) Zb Es(t, 1 + ¢;h)0y,(t + ¢;h) + E{) (v) = B (v).

Here, E§ 2L( ) denote the quadrature errors induced by these quadrature approxi-

mations. The orthogonality condition Jy = 0 implies that each of these quadrature
formula has degree of precision m, and thus the quadrature errors can be bounded
by

(E(” ’ < Quih™, ve0,1] (I <n),

where @1 is bounded. Therefore, there exists a constant C7, such that

[ Bt
0

Similarly, there exists a constant C%, such that

/t E5(t,v)dp(v) dv
0

The desired results follow from (43), (44), (37) and (40). O

(43) < Ophm™ T

(44) < CHp™HL

Theorem 6. Let (1) be index-1 tractable and assume that:

(a): the given functions satisfy the conditions of Theorem 3 so that y €
CHYI), z € CUI) with d > m + K for some k with 1 < k < m spec-
ified in (b) below;

(b): the m collocation parametersc; are subject to the orthogonality conditions

1 m
J,,:/s”H(s—ci)ds:QV:0,...,f$—1, with J,, # 0.
0 .

Then for all uniform meshes Iy, with h € (0,h), the corresponding collocation solu-
tion (yn, zn)T with y;, € S7(,?)(Ih) and zp, € S( i([h) satisfies

max]ly(t) — yn(t)]| < Czh™ ™, sup|ly'(t) — 3, ()] < Csh™,
el tely,

and

sup||z(t) — zn ()| < Coh™,
tely,

where the constants Cr7,Cg, Cy depend on the collocation parameters, but not on h.
If in addition we choose ¢, = 1 (implying k < m — 1), the collocation solutions
Yn € ST(,?) (Iy), zn € 57(,:_1% (Iy) have the properties

tS;lelly’(t) —y ()] = O™ ™), Sélp\l 2(t) = zn(t)]| = O(R™ ™).
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Proof. By (39), for t = t,,

tn n—=1 .1
(45) / Bo(tn, 0)0(0)dv =8 Y / Ea(tn,t1 + sh)on(ts + sh) ds.
0 =5 Jo

The following proof is similar to the proof of Theorem 5.
For ¢, = 1, note that t, = t,—1 + h and now 0y (t,) = 0, dp(t,) = 0, then the
second part for the local superconvergence for 3’ and z follows. O

Remark 1. Assume that the conditions of Theorem 6 hold.

o If the collocation points are chosen as the (shifted) Gauss points in (0,1),
the local convergence orders at the mesh points become

max|y(t) — yn(t)[| = O(h*™), sup|ly/(t) — 4 ()] = O(h™),
€l tel,

and

tS;lellz(t) —zn(t)|l = O(R™).

e If the collocation points are chosen as the (shifted) Radau II points in (0, 1],

then
max ||y(t) — yh(t)H = O(th—l)’ sup ||y/(t) _ y;l(t)H — O(h2m.—1)’
teIp\{0} teln\ {0}
and

sup [|2(t) — z(t)[ = O(h*™71).
telp\{0}

5. Collocation by the same piecewise polynomial space

5.1. The collocation scheme. Now both the components of the solution z =

(y, z)T of (1) are approximated by the same collocation space, i.e., yp, 25 € SO (Ip),
the collocation equations for t € X}, are

(46)
Y (t) 4 011 (t)yn () + bra(t)zn(t) = f(t) +/O [K11(t, 8)yn(s) + Kiz2(t, s)2n(s)] ds,
(47)  bar(t)yn(t) + baa(t)zn(t) = g(t),

with the initial value (y5,(0), 2,(0))T = (y(0), 2(0))7 satisfying b2 (0)ys (0)+b22(0)z,(0)
=9(0).
Setting Uy, ; := ¥}, (tn,i), Vi, := 2, (tn,i), we can write

)

(48)  wh(tn+sh) = Li(s)Unj, 2(ta +sh) = Li(s)Vay, s € (0,1],
j=1
then

yn(tn + sh) = yn(ta) + 0> Bi(5)Un ;.
j=1

(49) Zn(tn +sh) = zn(tn) + 1Y _ Bi(s)Vij, s € [0,1].
Jj=1
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For t = t,, + ¢;h, by (46) and (47), we obtain

Un,i+b11(tn,i) ( +hza’lj n,j +b12(n2 Zh +hzalj n,j
j=1

_h / Kot (st + ) [gn(tn) + 0 S Bi(5)Un; | ds
0 —

—h/ Kio(tnitn + sh) Zh(tn)'f‘hZﬂj(S)Vn,j ds
0 =1

n—1 1
:hZ/O Ki1(tni ti + sh) [yn(ts) +h2/5] (s)Un; | ds
=0

+hZ/ Kosltinti  sh) | () + bS8, (\Vis | ds + F(t0).

j=1
and
b21(tn,i) ( +hza2] n,j +b22( nz Zh +hza2] ng| — tnz)
j=1
Let

Vn = (Vn,la DR} Vn,m)T7

/ K12 (tn,h tn + Sh)ﬁj (S) ds
0
(i,j=1,...,m)

1
/V\V/n’l — / Klg(tn’i,tl =+ sh)ﬁj(s)ds
: 0
(ij=1,...,m)
where 0 <1 <n—-1,0<n <N —1. Then

Iy +hBYA—h2M™ hBYA— h2Wn] [U,
hBE, A thzA Vi

hart pwnt [0 N1n1l N5 | |eyn(ti)
- Z [ ] [ h Z 0 ezp(tr)
(50) + [—Blleyh( n) - B?Q@Zh( n) + hN11€yh( ) —+ hN12eZh( n) + fn:| '
—B3eyn(tn) — Biezn(tn) + gn
The determinant of the coefficient matrix on the left-hand side has the form
det(fm)hm det(B;LzA) + O(hzm) — pm det(BSQ) det(A) + O(th),

which is nonzero for sufficiently small h, due to |be2(t)| > by > 0 and det(A4) # 0.
Thus we have the following theorem:

Theorem 7. There exists an E > 0 so that for any given mesh I with mesh
diameter h > 0 satisfying h < h, each of the linear algebraic systems (50) has a

unique solution (‘U/") € R*™. Hence the collocation equations (46) and (47) define
n
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a unique collocation solution xy = (yn, zn)T, with yn, zn € Sg,?)(fh) for the IDAE
(1), and its representation on the subinterval (t,, tn11] is given by (49).

5.2. Convergence analysis.

Theorem 8. Assume that
(a): the given functions in (1) satisfy the conditions of Theorem 1 so that
y, z € CH2(I) with d > m;
(b): (yn, zn)T is the collocation solution for the solution (y,z)T of the IDAE
(1), with yn, 2z € S (I);
(c): h > 0 is such that, for any h € (0,h), the linear algebraic systems (50)
has a unique solution.
Then for all uniform meshes I, with h € (0,h), the collocation solution (yp, z1)
converges uniformly to (y, z) on I, if, and only if, the collocation parameters {c;}
are subject to the condition

(51) —1<pm = (=D)"]]
=1

1—01‘

and the attainable global orders of convergence are
ly=tmlloo = max]ly(®)—un O < CLA™, Iy’ ~yplloo = suplly’ () —yn'(B)]| < Coh™,
€

and
lo = 2nlloe 1= max](t) — (1)) < Ch™

Here, C1,Cy and Cs denote general constants that depend on the collocation pa-
rameters c;, but are independent of h, and the exponent m of h cannot in general
be replaced by m + 1.

Proof. By the assumption, we have (see [1, Section 1.8])

m

(52) Y (tn + sh) = Z L;i(8)y (tn + c;h) + ™R, . (s), s € (0,1],
j=1

(53) Lt sh) = 30 Ly(9) (b + esh) £ HTRE (s), s € (0,1]
j=1

where

R,lnn / K (s,0)y ™ (8, + vh) do,

R: . / K (s,0)2 D (4, + vh) do.
Integration of (52) and (53) yields

(54) y(t +5h *y +h25j +C] ) herlRin n( )a s € [07 1}7

(55)  2(tn + sh) = z(t +hZﬂJ "(tn +c;h) + K™HIRE, (s), s €[0,1],

’"LTL / R ; 1’2)

with
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Setting
eh(tn + Sh) = y(tn + Sh) - yh(tn + 5h>7 gh(tn + Sh) = Z(tn + Sh) - Zh(tn =+ Sh)a
and using (49), (54) and (55), we can write

(56) en(tn + sh) = ep(tn) + hZﬁj hm+1R1 a(8), s €(0,1],

m

(57)  @n(tn + sh) = en(t +hZﬁ] J)+HRMTIRE(s), s € (0,1].

For t =ty 4, by (1), (46) and (47), the error equations have the form

€ (tn,i) + b11(tni) leh(tn) +hy aije;(tw)]
j=1
+ b1a(tn,i) |:gh(tn) +hy aijgh(tn,j):|
j=1

“h / K1 (bt + 5h) | enlta) + 1S Bi(s)eh(bny) | ds
; _

“h / Kua(tuistn+ 5h) |n(tn) +h S B;()h (tng) | ds
0 i

n—1 1
:hZ/O K11(tn7i,tl +Sh) en tl —|—h2ﬂj €h tl,]) ds
=0

Jj=1

(58) +h2/ Kio(tn,i ti + sh) [en(t)) +h26] )&, (ti) | ds+hm 5,4

Jj=1
and
ba1(tni) |en(tn) +h Z agjep (tn,;)
(59) + b2a(tni) |€nltn) + hz aij €, (tn ) | = " o,
where

pn'L == bll( n, l)R’}n n(CZ) b12( TL%)REn n(cl +h’/ K11 "17t +8h) m, n(s) dS

+h / Kot b+ sh) 2, () ds+hz / Koy (bnisty + sh)RL (5) ds
1=0 0

+h2/ Kio(tn,isty + sh)R2, ,,(s) ds

Oni = = bar(bna) Ry (€1) = baa (i) B 1),
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Set

T T
En = (eh(tnn)s s eh(tum) s en = (€ (ta1)s - € (tnm)) "
~ ~ ~ \T
Pn = (pn,17--~7pn,m) ;  On = (Un,la-~-70n,m)
Now we rewrite (59) with n replaced by n — 1 and ¢ = m, then subtract this
equation from (59). This yields

bor(tni) | en(tn) + Y aijen(tn) | + baa(tni) |Entn) + B Y aij@,(tn ;)

m
=bo1(tn—1,m) |en(tn—1) +h Z amj€h(tn—1,5)
j=1

(60) 4 baa(tn—1,m) |€n(tn_1)+ hzamjgh(tn—l,j) + A" op i — On1.m] -
j=1
Notice that
baj(tn—1,m) = b2j(tni) + [em — (ci + 1)]hby; (), j = 1,2,

where - is between ¢,,_1 ,, and ¢, ;. Then (60) becomes

bo1(tn,s) [en(tn ) —en(tn-1)]
+ hb21(tn,i) Zaljeh Zam]eh n— 1,]

+ b22(tn,i) [Nh(tn) - eh(tnf )]

m

m
+ Bboa(tni) | D @i (tn) = > ami@,(ta1,7)
j=1 j=1

=O(h) |en(tn—1) + 1> amjey(tn-1;)

j=1

(61) + O(h) gh(tnfl) + hZamjgh(tn,Lj) + hm+1(0'n7i — O'nfLm)-
=1

Since now e, and €, are continuous on [0, T, by (31) we have

n—1 m
(62) =h> Y biey(ty) +hmZhle
=0 j=1
and similarly,
n—1 m n—1
(63) n(tn) =h YD gy (tiy) +h™ > hRZ (1)
1=0 j=1 1=0
Therefore,
tn) — enltn
(64) o) heh( U _ =0 By + W R, (1),
en(ty,) —en(tn—
(65) ehltn) —ehltn-1) _yr, VAR, (1),
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Divide both sides of the equation (61) by h, we get

3

bo1 (i )b En—1 + ba1 ( (tnj) — Zamje;L(tn—l,j)

+ bao(t nz)b En—1 + baa(t [Z Z th-1,4)

=0(1) |en(tn_1) Jthamjeh (tn_1;)

j=1

(66) +0(1) [En(tn—1) + 1Y ami@(tn1) | + "G,
j=1

with En,i =0n,g — On—1,m — bgl (tn,i)é}n,nfl(l) — bgg(tn)i)égn,nil(l).
By (58) and (66), we have

In +hBYM A — h2M™  hBYLA — B2Wn] [E,
By A By, A €n

B 0 0 B
~ | Bhe (el A—bT) +O(h) Bhe (el A—bT) +O(h)| |en—
LS [t i (B
e [ ]

n [ Bl eep(t,) — Biseen(tn) + hNT eep(tn) + thnzegh(tn)}
O(Den(tn 1) + Ozt 1)

n—1 n—1
n,l n,l ~ m ~
h E Niyeen(ti) +h E Niseen(ti) +h 5,
1=0 1=0
h™mo,,

)

o 0 0 En—l
~ | Bhe(ehbA—=b") +0(h) Bie (el A—b")+O(h)| |en-1

n—1 r —~
h Z AM™! 4+ (hNT — B)eb?  hW™! + (RN, — BY) ebT] [El:|

67
(67) 0 0 €l

n—1
= |n Z NiFeb™ hY O Nyted| (B [hmp?
+h) k=l+1 k=l+1 alt e
=0 o(1) O(1)
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where 7,, := (01, . .,&mm)T, and
n—1 " n—1 "
Py = (hNJ; — BYy) eh Z Ry, (1) + (AN, — Biy) eh Z Ry, (1)
1=0 1=0
+hZh Z N{i"eR}, +hZh Z N{5 eR2, (1) + hpn,
1=0 k=I+1 1=0  k=l+1

n—2
h)ZR}n,l( Zle + Op.
1=0
We divide the proof into the followmg two cases:
Case I: ¢, = 1. Then
el A—b" = (am1— b1, -+, Gmm — b)) = (0,...,0)7,
and
I, + hBY A — h2M™  hBY,A — h2Wn] [E,
B3 A B3, A En

(68) —hZ|:Mnl (hNJ; — BYy) eb”  hW™! + (hNp, — Bu)ebT] Ll]

— 0 0

n—1
+h”§ h > Nt h Z NysFeb” [El%{hmﬁg].
=0

k=l+1 k=l+1 & o2
o(1) o(1)
For sufficiently small h, the coefficient matrix
I 0
B ppal OO
is nonsingular, with the inverse
I, 0 }
— n\—1 n — n \—1 + O h :
[_A ! (322) B3 A A ! (Bzz) ( )
Therefore,
n=1T=nl  77n,l =2
(69) {En} = hz M%z M%Ql [El} +hm | Pyl
En My My | L& Tn

with obvious meanings of M ] , pn and & cr . By the discrete Gronwall’s inequality
(see [1, Corollary 2.1.19]), we have

[En]l = O(h™),  llenll = O(R™),
which together with (56), (57), (62) and (63) yield that
1y = ynlloo = O™), Y = Yhlloo = O(R™), Iz = znlloc = O(R™).
Case Il: ¢, < 1. Let M :=e (e,TnA — bT). Then (69) now becomes

E)] 0 0 En_y
en| A*l(Bgz)‘lBglM AIM| |ens

nl rn =2

M B w7
70 +h E + A" |Z5 .
(70) [Mil Mznzl [ ] 5i]
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Let
o 0 0
T lart Byt By M Al
Since
am1 — bl am2 — b2 e Amm — bm
M= aml—bl amg—bg amm—bm ’
Am1 — b1 ama2—ba ... Gmm — by

the rank of the matrix M is one, implying that the rank of the matrix A=*M is
also one. This means that this matrix has exactly one nonzero eigenvalue. Setting
A= (Vij)mxrm we have

m

aml — bl E Vij (amg — bg) E Vij e amm E Vij
J=1 j=1
m m

A-lAf — (am1 —b1) E vaj  (Gma — b2) E vaj oo (Gmm — E Vaj
j=1 j=1

(aml - bl) Z Vmj (amQ - b2) Z Vmj - amm - Z Vmj
L =1 j=1
and the nonzero eigenvalue is
AilM) = Z (am,i — bz) Z Vij = 1-— bTAile.
i=1 j=1

By Proposition 3.8 and Theorem 3.10 of [8], we obtain

1—-p7A471

Then, it is easy to verify that its eigenvalues of G are 0,...,0; py,, 0,...,0. and the
—— ——

m m—1
eigenvalue 0 of multiplicity 2m — 1 has 2m — 1 linearly independent eigenvectors.
Therefore, G is diagonalizable, and there exists a nonsingular matrix 7" such that

T7'GT = diag(0,...,0, pp, 0,...,0) =: H.
SN—— N——

m m—1
. _1 | En . .
Defining Z,, :=T Bk and recalling (70), we obtain
n—2 .
(71) Zn=HZn1+hY G"Z +0(h™),

=0

with obvious meanings of Gnl.
Now, we divide into the following three cases.
Case 1: —1 < p,,, < 1. By [8, Lemma 6], we have

[En]l = O(h™),  [lenll = O(R™),
which together with (56), (57), (62) and (63) yield the desired result.
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Case 2: p,, = —1. Rewrite (70) with n replaced by n — 1 and subtract it from
(70), and notice that

By (tn-1.i) = B3y (tn,i) + O(h), (B3,)™" (ta-1.0) = (B3) ™" (tns) + O(h),
M (bor) = M5 (t00) + O(h),

and j- —po_y = O(h), & — 5.y = O(h) for y, z € C™*+2 then we have
E,
En
En—l
En—1
Im + O(h) o(h) 0 0
_| AT (BR) T BEM +0(h) In+AT'M+0(h) —AT'(BR) ' BRM  —AT'M
- I 0 0 0
0 Im 0 0
(72)
En_: J[om®) owm?) o 0] [ B O(h™+1)
tnc1| = O OMRY) 0 of | & O(h™+1)
Ens *; 0 0o o o|l|E.|T] o
En—2 a 0 0 0 0 €1-1 0

Similarly to the proof for Case II of [14, Theorem 2.1], we obtain that the
eigenvalues of the matrix

I, 0 0 0
Do AT (BR) T BEM L+ ATIM —ATN(BR)T B M —AT'M
I, 0 0 0
0 1, 0 0
are 1,...,1; —1, 0,...,0, and the eigenvalue 1 of multiplicity 2m has 2m linearly
—— ——
2m 2m—1

independent eigenvectors, while to the eigenvalue 0 of multiplicity 2m — 1 there
correspond 2m—1 linearly independent eigenvectors. Therefore, D is diagonalizable,
and there exists a nonsingular matrix P such that

P 'DP=diag|1,...,1, =1, 0,...,0 | = F.
N—— ——
2m 2m—1

E,

Defining Y,, := P! EE” , and recalling (72), we obtain
n—1
En—1
n—2 "

(73) Y, = (F+O0(h) Yooy + O(h*) Y D™'Y; + O™ ),

=0

with obvious meanings of D, Therefore, there exist constants C;, Cs and Cs,
such that
n—2
[Yalls € (1 + Cih) | Yaoall + Cob® Y Vil + Csh™ 1,
1=0
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An induction argument then leads to

n—1 n—k—2

[Valls <+ Crh)™[Yoll + C2h® > (1+Cih)* Y~ Vil
k=0 =0

n—1

+ nghm+1 Z(l + Cflh)k
k=0

n—2 /n—I1-2
=(1+ C1h)"||[Yoll + Coh® ) < > (1+Cih) ) e[l
=0 k=0
n—1
+ Csh™ Y (14 Crh)*
k=0
(1+Cih)" =t —1

Cih

=(14Cih)" HY0||1+C2h22 1¥2[x

=0
ey G -1
Cih

Therefore, by the discrete Gronwall’s inequality (see [1, Corollary 2.1.19]), we get
that

(74) [Yallr = O(R™),

ie, |En| = O(h™), |len]| = O(R™) and the desired result follows from (56), (57),
(62) and (63).

Case 3: p,,, = 1. For this case, using the technique of [11], we write the collocation
approximation ¥y, z5 in the form

NE

(75)  yn(tn+sh) = D Li(s)yn(tn;), s € (0,1],

j=1
- Z(m) nn -
(76) 2n(tn + sh) = Li(s)zn(tn ;) + h"L2—= T (s — ), (0,1],
j=1 i=1
with 1, € (tn,tne1), then
(77) Yn(tn + sh) = yn(tn) + 0> Bi(8)yh(tn), s € [0,1].
j=1
So (25), (26) and
(78) En(tn + sh) =Y L;i(8)en(tn;) + ™ Rinn(s), s € [0,1]

j=1



780 H. ZHANG AND H. LIANG

m)
hold, where Ry, ,,(s) := Efnn(s) _zn () [T~ ,(s — ¢). Then we have the error

m!
equations
eh(tni) + b11(tni) |en(tn) + B aijel (bng) | + bra(tn,i)en(tn,)
- h/ ’Kll(tn,iatn +sh) |en(tn) + hZﬂj(S)ek(tn,j) ds
0 =
- h/ ’K12(tn,iatn + sh) ZLJ‘@)gh(th) ds
0 =
n—1 1
:hZ/ K11 (tn,is t1 + sh) |en(tr) +hZBJ sep(ti;)| ds
1=0 70
(79) +hZ/ Kia(tnisti+sh) | Y Li(s)en(ti;)| ds+ B pni,
j=1

and (29), where

P = — hbir(tn,)) Re, o (ci) +h / K11 (b isto -+ 5h) AR, ,(5)] ds
0

Yh / " Kia(tnis tn + 5h) Ry (s) ds
0
n—1 1 "
+hy / Ks(tnty+ sh) (R, ()] ds

+h2/ Kio(tni,t1 + sh)Rpu(s) ds.

Similarly to the proof of Theorem 3, we have |E,| = O(h™), |E,| = O(h™),
o (56), (57), (62) and (63) yield the desired result. Obviously, the collocation
solutions yy,, zp are divergent if |p,,| > 1. The proof is completed. O

Similarly to Theorem 4, we have the following result.

Theorem 9. Let (1) be index-1 tractable. Assume that the given functions in (1)
satisfy the conditions of Theorem 1 such thaty, z € C*1(I), and the m collocation
parameters ¢; are subject to the condition (51), then the system of error equations
(37) and (38) has a unique solution (e, en)T with e, e, € CH(t,, tni1] (0 <
n < N —1), and there exist functions By € C4TY(I), Dy, D3, Ey, Ez € C41(D),
such that the solution can be represented in the form (39) and (40).

Theorem 10. Let (1) be index-1 tractable. Assume that the assumptions (b), (c)
of Theorem 8 hold, and let (a) be replaced by the assumption y,z € C4TY(I) with
d > m+2. If the m collocation parameters c; are subject to the condition (51) and

to the orthogonality condition Jy := fol [12,(s —c;)ds = 0, then the corresponding
collocation solution (yp, zn)* with yn, 2, € Sgg)(lh) satisfies

max||y(t) — yn ()| < Cah™*, suplly'(t) =y (1) < Csh™,
tel tel
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and
L R i — 1< < 1,
suplle)) — )] < Co{ " LS

where the constants Cy, Cs, Cs depend on the collocation parameters, but not on h.

Proof. Similarly to the proof of Theorem 5, we can obtain the estimations for
y. For —1 < p,, < 1, by (59), we have |[é,(t,)| = O(R™T1), further, we have
[ (tn + sh)|| = O(h™*1) by (57). O

Similarly to the proof of Theorem 6 and noticing (59), we get the following
theorem.

Theorem 11. Let (1) be index-1 tractable and assume that:

(a): the given functions satisfy the conditions of Theorem 8 so that y, z €
CHHII) with d+ 1> m+ K for some k with 1 < k < m;

(b): the m collocation parameters ¢; are subject to the condition (51) and to
the orthogonality conditions

1 m
Jl,::/SVH(S—ci)ds:O,1/:0,...,5—1, with J,; # 0.
0 =1

Then for all uniform meshes Iy, with h € (0,h), the corresponding collocation solu-
tion (yn, zn)T with yn, zn € Sy(,?)(lh) has the properties

max||y(t) — yn ()| < C7h™F", suplly'(t) — y, ()] < Csh™,
tely tely

and
hn1+1

9 if _'1 S; m <:17
supl(t) =4 0] < { 1, g
telp )

if pm =1,

where the constants C7,Cs, Co depend on the collocation parameters, but not on h.
If in addition we choose ¢,, = 1 (implying k < m — 1), the collocation solutions

Yn, Zn € S,(,?)(Ih) satisfy

supl|y’(t) — yp, (1) = O(K™F"),  sup|l2(t) — z ()] = O(K™F").
tely tely

Remark 2. Assume that the conditions of Theorem 11 hold.

o If the collocation points are chosen as the (shifted) Gauss points in (0,1),
the local convergence orders at the mesh points become

max|ly(t) — ya(t)]| = O(r*™), suplly'(t) — yx (1)l = O(h™),
€ln tel,

and
O(R™Y), if m is odd,
suplt) ~ (o)l = { Qi o

tely
o If the collocation points are chosen as the (shifted) Radau II points in (0, 1],
then
max |y(t) —yu(t)]| = OR*™71),  sup |y (t) =y, ()| = O(A*™ ),
teIp\{0} tel,\{0}
and

sup |[z(t) = zn ()| = O(R*™ ).
telp\{0}
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TABLE 1. The errors of y, € Sg,?)(fh) for Example 1 with m = 2.

N Gauss Radau ITA (1 2) (3.2) (3.3)
(pm =1) (pm = 0) (pm = é) (pm =1) (pm =5)
21 2.5813e-08 5.3157e-06 1.3519e-06 2.2891e-05 3.7772e-05
25 1.6125e-09 6.6399e-07 1.6744e-07 5.7382e-06 9.0153e-06
26 1.0077e-10  8.2972e-08 2.0833e-08 1.4344e-06 2.2024e-06
27 6.2969e-12  1.0370e-08 2.5981e-09 3.5858e-07 5.4425e-07
Order 4.0003 3.0002 3.0033 2.0001 2.0168

TABLE 2. The errors of z, € an_,

1{ (Ip) for Example 1 with m = 2.

N Gauss  Radau IIA  (,2) (3. 2) (5.3)
(pm =1) (pm =0) (pm = %) (pm =1) (pm =5)
24 3.2856e-04 5.3157e-06 2.4631e-04 4.3185e-04 8.1442¢-04
29 8.1782e-05 6.6399¢-07 6.1317e-05 1.0823e-04 2.0356e-04
26 2.0397e-05 8.2972e-08 1.5295e-05 2.7092e-05 5.0878e-05
27 5.0928¢-06 1.0370e-08 3.8192e-06 6.7773e-06 1.2718e-05
Order  2.0018 3.0002 2.0017 1.9991 2.0002
TABLE 3. The errors of y;, € Sﬁg)(lh) for Example 1 with m = 3.
N Gauss Radau ITA (3,3, 2) (3.2,9) (5.3:3)
(pm==1) (pm=0) (pm=-1) (pm= % (pm = 16)
22 4.8095e-09  9.6445e-08 2.5678e-06 5.2938e-06 6.1070e-05
23 7.5815e-11  3.0729e-09 1.5745e-07 8.2217e-07 7.1010e-06
24 1.1876e-12  9.6495e-11  9.7932¢-09 1.1248e-07 8.5105e-07
2° 1.8652e-14  3.0192e-12  6.1133e-10 1.4648¢-08 1.0398e-07
Order 5.9925 4.9982 4.0017 2.9408 3.0329

TABLE 4. The errors of z;, € S

1(Ih) for Example 1 with m = 3.

N Gawss — RadaulIA  (3.5.5) (333 (533)
(pm = _1) (pm = 0) (pm = _1) (pm = 3) (pm = 16)
22 1.0418e-04 9.6445e-08 2.2884e-04 1.7935e-04 5.4306e-04
23 1.3368e-05 3.0729e-09 2.9546e-05 2.3131e-05 7.1351e-05
24 1.6918e-06 9.6495e-11 3.7496e-06 2.9339e-06 9.1284e-06
25 2.1274e-07 3.0191e-12 4.7215e-07 3.6934e-07 1.1539e-06
Order 2.9913 4.9982 2.9894 2.9898 2.9838

6. Numerical experiments

We give some numerical examples to illustrate the theoretical result on the at-
tainable order of the collocatlon method in this paper. The underlying collocation
1(Ih) with m = 2 and m = 3, and we use, in addition

spaces are S,(qg)(I ) and S

C1

to the Gauss and Radau II collocation parameters (m = 2 : ¢; = 3_6‘/5,
3 o — 2. _ 5=/15 _ 1 _5 \/ 4—6
+\[7 C1 = 5702:1,’[’)’1,—3. C1 = 0 » 2= 3, C3= t ; €1 = 1(\(
4+f 1

40

10

cs = 1), some additional sets (m = 2 :
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2. _ 1 _ 2. _ 9. _ 1 _ 1 _ 2 — 0 _
, =353 =3, =35 m=3: ¢ =3, =3, c=735(Jo=0)c =
cg = %) The errors are calculated for

TABLE 5. The errors of y, € Sﬁ,?)(lh) for Example 1 with m = 2.

373 672
(pm =1) (pm =0) (pm = %) (pm =1) (pm =5)
2% 2.9843e-09 7.7072e-07 1.8492e-07 6.4901e-05 1.5432e+02
25 1.8673e-10 9.8676e-08 2.4181e-08 1.6225e-05 7.4473e+11
26 1.1674e-11 1.2478e-08 3.0894e-09 4.0562e-06 5.4490e+32
27 7.2919e-13  1.5687e-09 3.9031e-10 1.0140e-06 9.2560e+75
Order 4.0009 2.9918 2.9847 2.0000 -

N Gauss  Radau ITA (1.2 (1,9 E D

TABLE 6. The errors of z, € S (Ip,) for Example 1 with m = 2.

N Gauss ~ RadauITA  (3,3) (3, 2) (5.3)
(pm =1) (pm =0) (pm = %) (pm =1) (pm =5)

24 2.9954e-05 7.7072e-07 7.8468e-06 3.9973e-05 5.9400e+4-05

25 7.5026e-06 9.8676e-08 1.1724e-06 9.9895e-06 1.1827e+16
26 1.8758e-06 1.2478e-08 1.6535e-07 2.4971e-06 3.5158e+37
27 4.6897e-07 1.5687e-09 2.2272e-08 6.2427e-07 2.4075e+-81
Order 1.9999 2.9918 2.8922 2.0000 -

TABLE 7. The errors of y, € Sg,?)(fh) for Example 1 with m = 3.

N Gauss Radau IIA (%,%,%) (%,%,é) (%,%,%)
(pm = 71) (pm = 0) (pm = - ) (pm = 5) (pm = 16)
22 6.6871e-09 1.7767e-07 2.6578e¢-06 1.3455e-05 2.4457e-04
23 1.0519e-10 5.6816e-09 1.6827e-07 1.5747e-06 3.2001e-01
24 1.6451e-12 1.7937e-10 1.0551e-08 1.8911e-07 2.1120e+07
25 2.4036e-14 5.6304e-12 6.6000e-10 2.3128e-08 6.0371e+24
Order 6.0968 4.9936 3.9988 3.0315 -

TABLE 8. The errors of z, € S (Ip,) for Example 1 with m = 3.

N Gauss Radau ITA (%,%,%) (%7%7%) (5’%’%)
=1 (=0 (me-l) (m=?)  (pmei6)
22 1.5256e-05 1.7767e-07 3.2931e-05 2.8117e-05 3.5625e-01

23 9.8544e-07  5.6816e-09 2.1500e-06 2.0033e-06 1.4913e+03
24 6.2585e-08  1.7937e-10 1.3766e-07 2.1809e-07 4.0459e+11
25 3.9426e-09  5.6305e-12  8.7139e-09 2.4939e-08 4.6890e+29
Order 3.9886 4.9935 3.9816 3.1284 -
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TABLE 9. The errors of y;, € S,(,g)(lh) for Case 1 of Example 2
with m = 2.

N Gauss Radau ITA (1. 2) (3. 2) (5.3)

(pm = 1) (pm =0) (pm = %) (pm = 1) (pm = 5)
24 1.4289e-07 1.9664e-05 4.9974e-06 7.0177e-04 1.0671e-03
25 1.8145e-08 2.4963e-06 6.3635e-07 1.7532e-04 2.6479e-04

26 2.0865e-09  3.1607e-07 8.0553e-08 4.3817e-05 6.5952e-05
27 2.2679e-10  3.9926e-08 1.0156e-08 1.0953e-05 1.6458e-05
Order 3.2017 2.9848 2.9877 2.0002 2.0026

TABLE 10. The errors of z;, € Sf,:_li(lh) for Case 1 of Example 2
with m = 2.

N Gauss Radau ITA (1 2) (3.2) (3.3)
(bm=1)  (pm=0) (pm=2) (pm=1)  (pm=25)
2% 1.2430e-03  1.9664e-05 9.3580e-04 9.6897e-04 2.0592e-03
25 3.0798e-04  2.4963e-06 2.3144e-04 2.3913e-04 5.0749e-04
26 7.6645e-05 3.1607e-07 5.7541e-05 5.9392e-05 1.2595e-04
27 1.9117e-05 3.9926e-08 1.4345e-05 1.4799e-05 3.1373e-05

Order 2.0033 2.9848 2.0040 2.0048 2.0053

TABLE 11. The errors of yp, € Sy(,?)(lh) for Case 2 of Example 2

with m = 2.
N Gauss  Radau IIA  (3,2) (3. 2) (5-3)
(pm =1) (pm =0) (pm = %) (pm =1) (pm = 5)
24 3.1717e-07 5.1150e-05 1.2501e-05 1.4328e-03 2.1682e-03
25 2.0090e-08 6.3868e-06 1.5785e-06 3.5822¢-04 5.3973e-04

26 1.2682e-09 7.9789e-07 1.9832e-07 8.9557e-05 1.3464e-04
27 7.9914e-11  9.9707e-08 2.4854e-08 2.2389e-05 3.3622e-05
Order 3.9882 3.0004 2.9963 2.0000 2.0016

TABLE 12. The errors of z, € an__li (Ip,) for Case 2 of Example 2
with m = 2.

373 672
(pm =1) (pm =0) (pm = %) (pm =1) (pm =5)
21 2.8703e-03 5.1150e-05 2.1642e-03 2.3956e-03 5.0259e-03
2° 7.1503e-04 6.3868e-06 5.3769e-04 5.9524e-04 1.2503e-03
26 1.7840e-04 7.9789e-07 1.3398e-04 1.4832e-04 3.1169e-04
27 4.4553e-05 9.9707e-08 3.3437e-05 3.7016e-05 7.7802e-05
Order 2.0015 3.0004 2.0025 2.0025 2.0022

N Gauss  Radau ITA (5.2) (3.2) (5:3)

Example 1. We consider the following IDAE system:
(80)
t

y'(t) +y(t) +t=(t) +/0 (6= s)y(s) +exp(t —s)z(s)] ds = f(t), 4 o 1.1 1),

y(t) + 2(t) = g(t),
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TABLE 13. The errors of y;, € Sg,?)(fh) for Case 3 of Example 2

with m = 2.
N Gauss Radau ITA (1. 2) (3. 2) (5.3)
(pm=1)  (pm=0) (pm=2) (pm=1) (pm =5)
24 8.9259e-07 1.0380e-04 2.5023e-05 2.3771e-03 3.5889¢-03
29 5.5754e-08 1.2951e-05 3.1798e-06 5.9453e-04 8.9478e-04
26 3.4838e-09 1.6171e-06 4.0067e-07 1.4865e-04 2.2335e-04
27 2.1772e-10  2.0203e-07 5.0281e-08 3.7163e-05 5.5792e-05
Order 4.0001 3.0008 2.9943 2.0000 2.0012

TABLE 14. The errors of z, € S,(n:li(lh) for Case 3 of Example 2

with m = 2.

N Gauss Radau ITA (1. 2) (3. 2) (5.3)
(pm =1) (pm = 0) (pm = %) (pm =1) (pm =5)

2% 5.1105e-03  1.0380e-04 3.8600e-03 4.4401e-03 9.1717e-03

25 1.2803e-03 1.2951e-05 9.6359e-04 1.1128e-03 2.3048e-03

26 3.2030e-04 1.6171e-06 2.4064e-04 2.7843e-04 5.7729e-04

27 8.0095e-05 2.0203e-07 6.0122e-05 6.9631e-05 1.4443e-04

Order 1.9997 3.0008 2.0009 1.9995 1.9989

TABLE 15. The errors of y;, € Sﬁg)(lh) for Case 4 of Example 2

with m = 2.
N Gauss  Radau ITA (1.2 3, 2) (5.3)
(bm=1)  (pm=0) (pm=2) (pm=1)  (pm=5)

2% 4.1133e-07  3.2421e-05 8.4691e-06 1.4826e-03 1.6317e+4-02
2° 2.6109e-08 3.9868e-06 1.0248e-06 3.7066e-04 2.8529e+11
26 1.6512e-09 4.9344e-07 1.2544e-07 9.2666e-05 7.7553e+31
27 1.0416e-10 6.1391e-08 1.5485e-08 2.3167e-05 4.9624e+74
Order 3.9867 3.0068 3.0181 2.0000 -

TABLE 16. The errors of 2z, € S (I,) for Case 4 of Example 2

with m = 2.
N Gauss  Radau ITA 12 (3.2) (3.3)
(pm =1) (pm =0) (pm = %) (pm =1) (pm =5)

21 3.2749e-03  3.2421e-05 7.8332e-04 2.8844e-03 6.2809e+05
2° 8.1899e-04  3.9868e-06 1.0721e-04 7.2135e-04 4.5308e+15
26 2.0476e-04  4.9344e-07 1.4010e-05 1.8035e-04 5.0038e+-36
27 5.1192e-05 6.1391e-08 1.7901e-06 4.5089e-05 1.2907e+-80
Order 2.0000 3.0068 2.9683 2.0000 -

1 1 1
with f(t) = iet +et+ 3 sin(t) + (t — 5) cos(t) +t+1, g(t) = et +cos(t), and

initial values

)
solution is y(t) = e, z(t) = cos(t).

(0) = 1, 2(0) = 1. It can be easily check that the (unique) exact
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TABLE 17. The errors of y;, € 57(,?)([;1) for Case 5 of Example 2
with m = 2.

N Gauss Radau ITA (1 2) (3, 2) (5.3)

(=1  (pm=0) (pm=2) (pm=1) (pm=5)
21 1.0549¢-06 8.0472e-05 2.0275e-05 2.4235¢-03  3.3080e+01

25 6.5913e-08  9.8946e-06 2.5050e-06 6.0613e-04 2.8889e+10
26 4.1189e-09 1.2264e-06 3.0941e-07 1.5155e-04 3.9224e+4-30
27 2.5745e-10  1.5264e-07 3.8366e-08 3.7888e-05 1.2536e+-73
Order 3.9999 3.0062 3.0116 2.0000 -

TABLE 18. The errors of z, € S (Ip,) for Case 5 of Example 2
with m = 2.

N Gauss  Radau ITA (1.2 (3, 2) (5.3)
(pm =1) (pm =0) (pm = Q) (pm =1) (pm =5)
2% 5.1880e-03  8.0472e-05 1.5798e-03 4.4946e-03 1.2734e+4-05
25 1.2980e-03 9.8946e-06 2.2696e-04 1.1246e-03 4.5880e+14
26 3.2456e-04  1.2264e-06 3.0495e-05 2.8120e-04 2.5308e+35
27 8.1143e-05 1.5264e-07 3.9540e-06 7.0303e-05 3.2607e+78
Order 1.9999 3.0062 2.9472 1.9999 -

In Tables 1-4, we list the errors of y and z components in different polynomial
collocation spaces. In Tables 5-8, we list the errors in the same polynomial col-
location space. It is observed that the numerical results are consistent with the
theoretical ones in Sections 4.2 and 5.2, respectively. We also observe that the
numerical solutions are divergent for the last sets of collocation parameters due to

|pm| > 1.

Example 2. In order to illustrate the theoretical convergence order with the exact
reqularity, we consider the same IDAE system as Example 1 with initial values
y(0) = 0, 2(0) = 1, and take functions f(t) and g(t) such that the (unique) exact
solution are as follows:
Case 1: y(t) = 371/3 — L2 2(t) =271/2 41 (ye C3(I), z € C*(1));
Case 2: y(t) = t*1/3 — 1t2 2() =32 411 (ye CHI), z € C3(I));
Case 3: y(t) =t°t/3 — L2 2(t) = t"TV2 41 (y € C°(I), 2 € C(I));
Case 4: y(t) = t*+1/3 — 1t2 2(t) =12 411 (y,z € C*());
Case 5: y(t) = t°t1/3 — 1t2 2(t) =0TV 11 (y,z € C°()).

In Tables 9-10, 11-12 and 13-14, we list the errors of y and z components in
different polynomial collocation spaces with m = 2 for Cases 1, 2 and 3, respectively.
It is observed that the numerical results are consistent with Theorems 3, 5 and 6
respectively. It is noticed that in Table 9, due to y € C*4(I), order 4 is not reached
for the component y at Gauss points.

In Tables 15-16 and 17-18, we list the errors in the same polynomial collocation
space with m = 2 for Cases 4 and 5, respectively. It is observed that the numerical
results are consistent with Theorems 8, 10 and 11, respectively. We also observed
that the numerical solutions are divergent for the last sets of collocation parameters
due to |pp| > 1.
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