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MODIFIED TIKHONOV REGULARIZATION FOR IDENTIFYING

SEVERAL SOURCES

OLE LØSETH ELVETUN AND BJØRN FREDRIK NIELSEN

Abstract. We study whether a modified version of Tikhonov regularization can be used to identify
several local sources from Dirichlet boundary data for a prototypical elliptic PDE. This paper
extends the results presented in [5]. It turns out that the possibility of distinguishing between
two, or more, sources depends on the smoothing properties of a second or fourth order PDE.

Consequently, the geometry of the involved domain, as well as the position of the sources relative
to the boundary of this domain, determines the identifiability. We also present a uniqueness
result for the identification of a single local source. This result is derived in terms of an abstract

operator framework and is therefore not only applicable to the model problem studied in this
paper. Our schemes yield quadratic optimization problems and can thus be solved with standard
software tools. In addition to a theoretical investigation, this paper also contains several numerical
experiments.

Key words. Inverse source problems, PDE-constrained optimization, Tikhonov regularization,
nullspace, numerical computations.

1. Introduction

We will study the following problem:

(1) min
(f,u)∈Fh×H1(Ω)

{
1

2
∥u− d∥2L2(∂Ω) +

1

2
α∥Wf∥2L2(Ω)

}
subject to

−∆u+ ϵu = f in Ω,

∂u

∂n
= 0 on ∂Ω,

(2)

where Fh is a finite dimensional subspace of L2(Ω), W : Fh → Fh is a linear regular-
ization operator, α is a regularization parameter, d represents Dirichlet boundary
data, ϵ is a positive constant, n denotes the outwards pointing unit normal vector
of the boundary ∂Ω of the bounded domain Ω, and f is the source. Depending on
the choice of W, we obtain different regularization terms, including the standard
version W = I (the identity map).

The purpose of solving (1)-(2) is to estimate the unknown source f from the
Dirichlet boundary data u = d on ∂Ω. Mathematical problems similar to this occur
in numerous applications, e.g., in connection with electroencephalography (EEG)
and electrocardiography (ECG), and has been studied by many scientists, see, e.g.,
[1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. A more detailed description of previous
investigations is presented in [5].

In [5] we showed with mathematical rigor that a particular choice of W almost
enables the identification of the position of a single local source from the bound-
ary data. That paper also contains numerical experiments suggesting that two or
three local sources, in some cases, can be recovered. The purpose of this paper
is to explore the several sources situation in more detail, both theoretically and
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experimentally. Moreover, we prove that our particular choice of W, which will be
presented below, enables the precise recovery of a single local source.

2. Analysis

2.1. Results for general problems. Let us consider the abstract operator equa-
tion

(3) Khx = b,

where Kh : X → Y is a linear operator with a nontrivial nullspace and possibly
very small singular values, X and Y are real Hilbert spaces, X is finite dimensional
and b ∈ Y . We will use the notation ∥ · ∥X and ∥ · ∥Y for the norms induced by
the inner products of X and Y , respectively. (For the problem (1)-(2), Kh is the
forward operator

Kh : Fh → L2(∂Ω), f 7→ u|∂Ω,
where Fh is a finite dimensional subspace of L2(Ω), and u is the unique solution of
the boundary value problem (2) for a given f .)

Applying traditional Tikhonov regularization, with the regularization parameter
α > 0, yields the approximation

(4) xα = argmin
x

{
1

2
∥Khx− b∥2Y +

1

2
α∥x∥2X

}
,

and, according to standard theory, the minimum norm least squares solution x∗ of
(3) satisfies

x∗ = lim
α→0

xα = Kh
†b ∈ N (Kh)

⊥
,

where N (Kh)
⊥

denotes the orthogonal complement of the nullspace N (Kh) of Kh,

and Kh
† represents the Moore-Penrose inverse of Kh.

Throughout this paper we assume that

B = {ϕ1, ϕ2, . . . , ϕn}
is an orthonormal basis for X and that

(5) Kh(ϕi) ̸= cKh(ϕj) for i ̸= j and c ∈ R.

That is, the images under Kh of the basis functions are not allowed to be parallel.
Note that (5) asserts that none of the basis functions belong to the nullspace N (Kh)
of Kh. (For PDE-constrained optimization problems one can, e.g., choose basis
functions with local support. We will return to this matter in subsection 2.2.)

Throughout this text,

(6) P : X → N (Kh)
⊥

denotes the orthogonal projection of elements in X onto N (Kh)
⊥
. In [5] we inves-

tigated whether a single basis function ϕj can be recovered from its image1 Khϕj .

More specifically, using the fact that Kh
†Kh = P, we observe that the minimum

norm least squares solution x∗
j of

(7) Khx = Khϕj

is

(8) x∗
j = Kh

†(Khϕj) = Pϕj .

1Since Kh has a nontrivial nullspace, it is by no means obvious that ϕj can be recovered from

its image Kh(ϕj).
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Furthermore, provided that the linear regularization operatorW : X → X is defined
by

(9) Wϕi = ∥Pϕi∥Xϕi for i = 1, 2, . . . , n,

it follows from (8), the orthonormality of the basis B = {ϕ1, ϕ2, . . . , ϕn} and basic
properties of orthogonal projections that

W−1x∗
j = W−1Pϕj

= W−1
n∑

i=1

(Pϕj , ϕi)X ϕi

= W−1
n∑

i=1

(Pϕj ,Pϕi)X ϕi

=
n∑

i=1

(
Pϕj ,

Pϕi
∥Pϕi∥X

)
X

ϕi

= ∥Pϕj∥X
n∑

i=1

(
Pϕj

∥Pϕj∥X
,

Pϕi
∥Pϕi∥X

)
X

ϕi.(10)

Consequently, the minimum norm least squares solution x∗
j of (7) is such that

(11) j ∈ argmax
i∈{1,2,...,n}

(
W−1x∗

j (i)
)
,

where W−1x∗
j (i) denotes the i’th component of the Euclidean vector [W−1x∗

j ]B ∈
Rn. Here, [W−1x∗

j ]B denotes the coordinate vector of W−1x∗
j relative to the basis

B. That is, using our notation,

W−1x∗
j =

n∑
i=1

W−1x∗
j (i)ϕi.

The property (11) implies that we almost can recover the basis function ϕj from its
image Khϕj : Compute the minimum norm least squares solution x∗

j of (7). Then

j is among the indexes associated with the largest components of [W−1x∗
j ]B. For

further details, see Theorem 4.2 in [5]. We write almost because the maximum
component of [W−1x∗

j ]B may not be unique.
Based on these findings, we defined Method I in [5] as: Compute

(12) W−1xα,

where xα is the outcome of applying standard Tikhonov regularization (4), and
the operator W is defined in (9). (Assume that ϕj is a basis function with local
support. Then the discussion above shows that a local source equaling ϕj almost
can be recovered by Method I from its image Khϕj .)

2.1.1. Uniqueness. We will now show that we can replace “∈” in (11) with equal-
ity if (5) holds, i.e., the maximum component of [W−1x∗

j ]B is unique.

Theorem 2.1. Assume that the basis B for X is orthonormal and that (5) holds.
Then the minimum norm least squares solution x∗

j of (7) is such that

j = argmax
i∈{1,2,...,n}

(
W−1x∗

j (i)
)
,

where W is defined in (9).
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Proof. Recall the expression (10) for W−1x∗
j and the definition (6) of the projection

P. From the Cauchy-Schwarz inequality we know that∣∣∣∣( Pϕj
∥Pϕj∥X

,
Pϕi

∥Pϕi∥X

)
X

∣∣∣∣ ≤ 1,

with equality if, and only if, there is a constant c such that Pϕi = cPϕj .
Let

(13) PN : X → N (Kh)

denote the orthogonal projection mapping elements of X onto N (Kh), i.e.,

PN= I − P,

where I is the identity mapping. Assume that Pϕi = cPϕj for some c ∈ R. The
orthogonal decomposition

ϕi = Pϕi + PNϕi

yields that

Khϕi = Kh(Pϕi) + Kh(P
Nϕi)

= Kh(Pϕi)

= Kh(cPϕj)

= cKh(Pϕj)

= cKh(Pϕj + PNϕj)

= cKh(ϕj).

We have thus proved the implication

(14) Pϕi = cPϕj ⇒ Khϕi = cKhϕj ,

or, equivalently,

Khϕi ̸= cKhϕj ⇒ Pϕi ̸= cPϕj .

Consequently, if (5) holds, then∣∣∣∣( Pϕj
∥Pϕj∥X

,
Pϕi

∥Pϕi∥X

)
X

∣∣∣∣ < 1 for i ̸= j.

The result now follows from (10). �

This result only shows that we can recover the individual basis function ϕj from
its image Khϕj . Nevertheless, the numerical experiments in [5] indicate that Method
I also is capable of identifying more general local sources from Dirichlet boundary
data. We will discuss this issue in more detail in subsection 2.1.3 below.

Remark. We mention that the opposite/inverse implication of (14) also holds:
Assume that Khϕi = cKhϕj . Then, see (8),

Pϕi = Kh
†(Khϕi)

= Kh
†(cKhϕj)

= cKh
†(Khϕj)

= cPϕj ,

which together with (14) leads to the conclusion

Pϕi = cPϕj ⇐⇒ Khϕi = cKhϕj .
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2.1.2. Several sources. Since Theorem 2.1 asserts that the maximum component
of [W−1x∗

j ]B is unique, it makes sense to use the linearity of the problem to extend
Theorem 2.1 to cases involving several basis functions:

Corollary 2.1.1. Let {j1, j2, . . . , jr} ⊂ {1, 2, . . . , n} be an index set and assume
that (5) holds. Then the minimum norm least squares solution x∗ of

(15) Khx = Kh(ϕj1 + ϕj2 + · · ·+ ϕjr )

satisfies

(16) W−1x∗ = W−1x∗
j1 +W−1x∗

j2 + · · ·+W−1x∗
jr ,

where

jq = argmax
i∈{1,2,...,n}

(
W−1x∗

jq (i)
)
,

W−1x∗
jq = ∥Pϕjq∥X

n∑
i=1

(
Pϕjq

∥Pϕjq∥X
,

Pϕi
∥Pϕi∥X

)
X

ϕi(17)

for q = 1, 2, . . . , r. Here, x∗
jq

denotes the minimum norm least squares solution of

Khx = Khϕjq for q = 1, 2, . . . , r.

Proof. Since x∗
jq

= Kh
†(Khϕjq )= Pϕjq , see (8), the linearity of Kh, Kh

† and W imply

that

W−1x∗ = W−1Kh
†(Khϕj1) +W−1Kh

†(Khϕj2) + · · ·+W−1Kh
†(Khϕjr )

= W−1Pϕj1 +W−1Pϕj2 + · · ·+W−1Pϕjr(18)

= W−1x∗
j1 +W−1x∗

j2 + · · ·+W−1x∗
jr ,

and the result therefore follows from Theorem 2.1 and (10). �

Roughly speaking, Corollary 2.1.1 shows that W−1x∗ can be written as a sum
(16) of vectors which achieve their maximums for the correct indices. Consequently,
if the index subsets associated with the significantly sized components of the Eu-
clidean vectors, see (18),

(19) [W−1Pϕj1 ]B, [W
−1Pϕj2 ]B, . . . , [W

−1Pϕjr ]B

are disjoint, then this corollary shows that we can recover all the vectors ϕj1 , ϕj2 , . . . ,
ϕjr from Kh(ϕj1 + ϕj2 + · · · + ϕjr ). This indicates that Method I in many cases
should be able to identify several sources. Nevertheless, the content of the vectors
(19) depends on the projection P, and the properties of this projection is problem
dependent. Below we will explore this issue in more detail for our model problem
(1)-(2), but we remark that: W−1 is a simple “diagonal” operator (9). Hence, if
the supports of [Pϕj1 ]B, [Pϕj2 ]B, . . . , [Pϕjr ]B are disjoint, then the source identi-
fication will work well. Moreover, in cases which are such that the line segments
between different sources are not completely contained in the underlying domain
Ω, one would expect that these supports are almost disjoint. This discussion thus
suggests that non-convex domains, with sources in different “pockets”, may yield
better identification results than problems involving convex regions.
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2.1.3. Composite local sources. So far we have only studied local sources con-
sisting of a single basis function. Let us now consider a local source which is a sum
of several basis functions, i.e.,

(20) f = a1ϕj1 + a2ϕj2 + · · ·+ arϕjr ,

where a1, a2, . . . , ar are constants. Can we roughly recover such a source from its
image Khf?

As in the analysis leading to Corollary 2.1.1, we find that the minimum norm
least squares solution x∗ of

Khx = Kh(a1ϕj1 + a2ϕj2 + a3ϕj3 · · ·+ arϕjr )

is such that

(21) W−1x∗ = a1W
−1x∗

j1 + a2W
−1x∗

j2 + · · ·+ arW
−1x∗

jr .

Consequently, if ϕj1 , ϕj2 , . . . , ϕjr are basis functions with neighboring local sup-
ports, then a1W

−1x∗
j1
, a2W

−1x∗
j2
, . . . , arW

−1x∗
jr

will all achieve their maximums

(or minimums) in these neighboring supports. We thus expect that W−1x∗ roughly
will recover the composite local source (20).

If the right-hand-side b in (3) does not belong to the range of Kh, then the
analysis of the potential recovery of a local source becomes even more involved.
Typically, one would consider the problem

Khx = b̂,

where b̂ represents the orthogonal projection of b onto the range of Kh. Assuming
that there exists a composite function f in the form (20) such that

(22) Khf = b̂,

the discussion above suggests that W−1x∗ can yield an approximation of f . Here,
x∗ is the minimum norm least squares solution of

Khx = b̂(= Kh(a1ϕj1 + a2ϕj2 + a3 · · ·+ arϕjr )).

Whether W−1x∗ also yields an approximation of the true local source, and not only
the function f satisfying (22), will definitely depend on how “close” b is to the
range of Kh and the ill-posed nature of (3).

In the numerical experiments section below we primarily study cases where the
right-hand-side b in (3) does not belong to the range of Kh: The synthetic obser-
vation data d in (1) was generated by solving the forward problem on a finer grid
than was used in the inversion process.

2.2. Results for elliptic source problems. We will now study the PDE-
constrained optimization problem (1)-(2). Let us discretize the unknown source f
in terms of the basis functions

ϕi =
1

∥XΩi∥L2(Ω)
XΩi

= A−1/2 XΩi , i = 1, 2, . . . , n,(23)

where Ω1, Ω2, . . . ,Ωn are uniformly sized disjoint grid cells, XΩi denotes the char-
acteristic function of Ωi and A = |Ω1| = |Ω2| = . . . = |Ωn|. That is, the space X
associated with (3) is

X = Fh = span{ϕ1, ϕ2, . . . , ϕn}⊂ L2(Ω)

and thus consists of piecewise constant functions. (In appendix A we explain how
such basis functions also can be employed when ϵ = 0, i.e., when the PDE in (2) is
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Poisson’s equation.) Throughout this paper we assume that Ω and the subdomains
Ω1, Ω2, . . . ,Ωn are such that (5) holds. Note that the (abstract) norm ∥ · ∥X , used
in subsection 2.1 above, in this concrete case “becomes” the standard L2-norm
∥ · ∥L2(Ω). Similarly, the norm ∥ · ∥Y “becomes” the standard L2-boundary-norm
∥ · ∥L2(∂Ω), compare (1) and (4).

Note that the basis functions (23) are L2-orthonormal and have local support.

From the latter property, and the fact that P : X → N (Kh)
⊥

is an orthogonal
projection, it follows that we can write (10) in the form

W−1x∗
j = ∥Pϕj∥L2(Ω)

n∑
i=1

(
Pϕj

∥Pϕj∥L2(Ω)
,

Pϕi
∥Pϕi∥L2(Ω)

)
L2(Ω)

ϕi

=
n∑

i=1

1

∥Pϕi∥L2(Ω)
(Pϕj ,Pϕi)L2(Ω) ϕi

=

n∑
i=1

1

∥Pϕi∥L2(Ω)
(Pϕj , ϕi)L2(Ω) ϕi

= A−1/2
n∑

i=1

1

∥Pϕi∥L2(Ω)

∫
Ωi

Pϕj dx ϕi

= A−1/2 1

∥Pϕj∥L2(Ω)

∫
Ωj

Pϕj dx ϕj

+A−1/2
n∑

i=1,i ̸=j

1

∥Pϕi∥L2(Ω)

∫
Ωi

Pϕj dx ϕi.

Recall that

Pϕj ∈ N (Kh)
⊥ ⊂ X = span{ϕ1, ϕ2, . . . , ϕn},

and that the functions in X are piecewise constant. Consequently,∫
Ωi

Pϕj dx = APϕj(zi) for any zi ∈ Ωi,

and we conclude that

W−1x∗
j = A1/2 Pϕj(zj)

∥Pϕj∥L2(Ω)
ϕj

+A1/2
n∑

i=1,i ̸=j

Pϕj(zi)

∥Pϕi∥L2(Ω)
ϕi,(24)

where z1 ∈ Ω1, z2 ∈ Ω2, . . ., zn ∈ Ωn are arbitrary points in these subdomains.
Alternatively, we can express W−1x∗

j in terms of the projection PN onto the
nullspace N (Kh), see (13). More specifically, from (24) and the orthogonal decom-
position ϕj = Pϕj + PNϕj it follows that

W−1x∗
j = A1/2 A

−1/2 − PNϕj(zj)√
1− ∥PNϕj∥2L2(Ω)

ϕj

−A1/2
n∑

i=1,i̸=j

PNϕj(zi)√
1− ∥PNϕi∥2L2(Ω)

ϕi.(25)

Here we have used the facts that ϕj(zj) = A−1/2 and that ϕj(zi) = 0 for i ̸= j, see
(23).
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From Theorem 2.1, (24) and (25) it follows that

Pϕj(zj)

∥Pϕj∥L2(Ω)
>

Pϕj(zi)

∥Pϕi∥L2(Ω)
for i ̸= j,

A−1/2 − PNϕj(zj)√
1− ∥PNϕj∥2L2(Ω)

>
−PNϕj(zi)√

1− ∥PNϕi∥2L2(Ω)

for i ̸= j,

which show that the dominance of the j’th component of the Euclidean vector

[W−1x∗
j ]B is determined by the projections Pϕj or PNϕj of ϕj onto N (Kh)

⊥
and

N (Kh), respectively. As discussed in connection with (10) and Theorem 2.1, we can
recover ϕj from its image Khϕj by identifying the largest component of [W−1x∗

j ]B.

Furthermore, the present analysis reveals that to what degree W−1x∗
j yields a

“smeared out/blurred” approximation of ϕj depends on how fast Pϕj(zi) (or P
Nϕj(zi))

decays as a function of the distance between Ωi and Ωj . This decay also determines
to what extent Method I can identify several local sources, see Corollary 2.1.1.

2.2.1. Properties of the projections. Motivated by the investigation presented
above, we will now explore the mathematical properties of the orthogonal projec-
tions Pϕj and PNϕj , see (6) and (13). To this end, consider the forward operator

Kh : Fh → L2(∂Ω), f 7→ u|∂Ω,

associated with (1)-(2). Here, u is the solution of the following variational form of
the boundary value problem (2): Determine u ∈ H2(Ω) such that∫

Ω

(−∆u+ ϵu)ξ dx =

∫
Ω

fξ dx ∀ξ ∈ L2(Ω),

∂u

∂n
= 0 on ∂Ω.

This rather non-standard variational form is employed for the sake of simplicity.
If we define

(26) V00 =

{
ψ ∈ H2(Ω) : −∆ψ + ϵψ ∈ X, ψ =

∂ψ

∂n
= 0 on ∂Ω

}
,

then the nullspace of Kh can be characterized as follows

(27) N (Kh) = {q = −∆ψ + ϵψ, ψ ∈ V00} .

Any function r ∈ N (Kh)
⊥

satisfies∫
Ω

rq dx = 0 ∀q ∈ N (Kh)

or

(28)

∫
Ω

r · (−∆ψ + ϵψ) dx = 0 ∀ψ ∈ V00.

We may, in view of Green’s formula/integration by parts, say that r is a discrete
very weak solution of

(29) −∆r + ϵr = 0.

(Any member ofN (Kh)
⊥ ⊂ X is piecewise constant, and (29) is thus not meaningful

for such functions.) We here use the word discrete because r ∈ N (Kh)
⊥ ⊂ X and

X is finite dimensional.
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Recall that x∗
j = Pϕj ∈ N (Kh)

⊥
, see (8) and (6), and we conclude that the

minimum norm least squares solution x∗
j of (7) is the best discrete approximation

of ϕj satisfying, in a very weak sense,

(30) −∆Pϕj + ϵPϕj = 0.

In other words, provided that ϵ = 0, Pϕj is the best discrete very weak harmonic
approximation of ϕj .

Having characterized Pϕj , we turn our attention toward PNϕj . Since PNϕj be-
longs to N (Kh), it has a “generating” function τj ∈ V00, see (26) and (27):

PNϕj = −∆τj + ϵτj .

Choosing r = Pϕj = ϕj − PNϕj in (28) yields that this “generating” function must
satisfy the following discrete weak version of a fourth order PDE: Find τj ∈ V00
such that

(31)

∫
Ω

(−∆τj + ϵτj) · (−∆ψ + ϵψ) dx =

∫
Ωj

ϕj · (−∆ψ + ϵψ) dx ∀ψ ∈ V00,

where we have invoked the fact that ϕj has the local support Ωj , see (23). Note
that, with ϵ = 0, (31) roughly2 becomes the standard discrete, using a somewhat
peculiar discretization space V00, weak version of the inhomogeneous biharmonic
equation with homogeneous boundary conditions:

∆2τj = ∆ϕj in Ω,

τj =
∂τj
∂n

= 0 on ∂Ω.
(32)

The solution of a second or fourth order elliptic PDE depends significantly on
the size and shape of the involved domain Ω. Hence, (30) and (31) show that
the aforementioned decaying properties of Pϕj and PNϕj depend on Ω and the
position of the true source relative to the boundary ∂Ω. Hence, the “sharpness” of
the reconstruction/recovery W−1x∗

j of ϕj , as well as the possibility of identifying
several sources with Method I, will depend on the geometrical properties of Ω –
each domain must be studied separately. This issue is explored in more detail in
the numerical experiments section below.

3. Methods II and III

If we apply weighted Tikhonov regularization to (3), we obtain the regularized
solutions

(33) zα = argmin
z

{
1

2
∥Khz− b∥2Y +

1

2
α∥Wz∥2X

}
,

where, in this paper, the regularization operator W is defined in (9). In [5] we also,
in addition to Method I described above, introduced the following two schemes for
identifying sources:

: Method II Defining y = Wz, we obtain from (33),

(34) yα = argmin
y

{
1

2
∥KhW

−1y − b∥2Y +
1

2
α∥y∥2X

}
,

2The function ϕj , see the right-hand-side of the PDE in (32), must be sufficiently differen-
tiable and supp(ϕj) ⊂ Ωj in order for (31) to be the weak version of (32) (when ϵ = 0). The
basis functions defined in (23) do not satisfy the necessary regularity conditions because they are

discontinuous.
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which is Method II. Theorem 4.3 in [5] expresses that the minimum norm
least squares solution y∗

j of

KhW
−1y = Khϕj ,

satisfies ∥∥∥∥ϕj − y∗
j

∥Pϕj∥X

∥∥∥∥
X

≤ ∥ϕj −W−1x∗
j∥X ,(35)

where x∗
j is the minimum norm least squares solution of (7). Recall that

y∗
j = limα→0 yj,α, where

yj,α = argmin
y

{
1

2
∥KhW

−1y − Khϕj∥2Y +
1

2
α∥y∥2X

}
.

Consequently, (35) shows that, for small α > 0, a scaled version of Method
II can yield more accurate recoveries than Method I of the individual basis
functions from their images under Kh. (Method I is defined in (12).)

: Method III This method is defined by (33), i.e., the outcome of the scheme
is zα. Note that there is a simple connection between methods II and III:

(36) zα = W−1yα.

Hence, a result similar to (35), though not that strong, also holds for
Method III, see [5] for further details.

3.1. Several sources. Let us briefly comment on Method II’s ability to localize
several sources. Similar to (15) we consider

KhW
−1y = Kh(ϕj1 + ϕj2 + · · ·+ ϕjr ),

which has the minimum norm least squares solution

y∗ = (KhW
−1)†Khϕj1 + (KhW

−1)†Khϕj2 + · · ·+ (KhW
−1)†Khϕjr

= y∗
j1 + y∗

j1 + · · ·+ y∗
jr ,(37)

where y∗
js
, for s = 1, 2, . . . , r, represents the minimum norm least squares solution

of
KhW

−1y = Khϕjs .

Since y∗
js
, for s = 1, 2, . . . , r, satisfies an inequality in the form (35), we conclude

that y∗ is a sum of vectors which can yield better recoveries of the individual
basis function from their images under Kh than Method I. We therefore expect that
Method II can separate several local sources whenever Method I can do it.

Invoking (36) leads to a similar type of argument for Method III’s ability to
identify two, or more, sources. We omit the details.

4. Numerical experiments

We avoided inverse crimes by generating the synthetic observation data d in (1)
using a finer grid for the state u than was employed for the computations of the
inverse solutions: hforward = 0.5 · hinverse, where hforward and hinverse are the grid
parameters associated with the meshes used to produce d and the inverse solutions,
respectively. More specifically, on the unit square we employed a 64 × 64 mesh
for the forward computations and a 32 × 32 grid for computing the unknown u
by solving (1)-(2). Except for the results presented in example 4, a coarser mesh,
16× 16, was applied for the unknown source f in the numerical solution of (1)-(2).

The triangulations of the non-square geometries were obtained by “removing”
grid cells from the triangulations of the associated square domains. We used the
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(a) True source (b) True source

(c) Method I (d) Method I

(e) Method II (f) Method II

(g) Method III (h) Method III

Figure 1. Example 1. Comparison of the true sources and the
inverse solutions for an L-shaped and square-shaped geometry. The
regularization parameter was α = 10−6.

Fenics software to generate the meshes and the matrices, and the optimization prob-
lem (1)-(2) was solved with Matlab in terms of the associated optimality system.
In all the simulations ϵ = 1, and no noise was added to the observation data d, see
(1)-(2). (Some simulations with noisy observation data are presented in [5].) We
performed computations with various values for the regularization parameter α in
the range [10−6, 10−2]. Visually, the size of α, within this range, did not change
the results significantly. Only relative moderate alterations of the magnitudes were
observed. We therefore only present results with α = 10−6 in examples 1, 2, 3, 5,
6 and with α = 10−4 (for the sake of variety) in example 4.



MODIFIED TIKHONOV REGULARIZATION 751

(a) True source (b) True source

(c) Method I (d) Method I

(e) Method II (f) Method II

(g) Method III (h) Method III

Figure 2. Example 2. Comparison of the true sources and the
inverse solutions for a horseshoe-shaped and a square-shaped ge-
ometry. The regularization parameter was α = 10−6.

Example 1: L-shaped versus square geometry. Figure 1 displays the numer-
ical results obtained by solving (1)-(2) for an L-shaped geometry and a square-
shaped geometry, respectively. The true sources, shown in panels (a) and (b), are
located at the same positions for both geometries.

Method I fails to separate the two sources on the square domain, but works
well for the L-shaped case. On the other hand, methods II and III handle both
geometries adequately, noticing that the separation is more pronounced for the
L-formed domain. This is consistent with the mathematical result (35), which
expresses that a scaled version of Method II yields more L2-accurate approximations
than Method I. These results illuminate the impact of the geometry on the inverse
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(a) True source. (b) Method I.

(c) Method II. (d) Method III.

Figure 3. Example 2 with partial boundary observations: d in
(1) is only defined along the red line segments in panel (a) (and
the boundary integral in (1) is adjusted accordingly). Comparison
of the true sources and the inverse solutions. The regularization
parameter was α = 10−6.

source problem and suggest that convex domains lead to harder identification tasks
than non-convex regions.

In these simulations the two true local sources did not equal a single basis func-
tion ϕj , but was instead defined as a sum of four basis functions with neighbouring
supports. Hence, for each of the two local sources, the considerations presented in
subsection 2.1.3 are relevant.

Example 2: Square versus horseshoe. Figure 2 shows computations performed
with a horseshoe-shaped domain and a square region. In these simulations each of
the two true sources consisted of a single basis function. Hence, Corollary 2.1.1 is
directly applicable. Again we observe that the source identification works better
for a non-convex domain than for a convex region.

We also performed computations with partial boundary observations d, see Fig-
ure 3: boundary observation data was only available for the part of the boundary
marked with red in panel (a). We observe that this reduces the quality of the
reconstruction of the true sources, compare Figures 2 and 3, and that Method I
works somewhat better than methods II and III in this case.

Example 3: Rectangles, distance to the boundary. So far we have compared
convex and non-convex regions. We now illuminate how the distance from the
source(s) to the boundary of the domain influence the quality of the recovery, see
figure 4: The identification of the three sources improves as the distance to the
boundary decreases. Also, methods II and III yield better results than Method I.

In this example each of the true local sources is composed of several basis func-
tions with neighbouring supports, cf. subsection 2.1.3 for further details.



MODIFIED TIKHONOV REGULARIZATION 753

(a) True source. (b) True source. (c) True source.

(d) Method I. (e) Method I. (f) Method I.

(g) Method II. (h) Method II. (i) Method II.

(j) Method III. (k) Method III. (l) Method III.

Figure 4. Example 3. Comparison of the true sources and the
inverse solutions for three different rectangles. The regularization
parameter was α = 10−4 and Ω = (0, 1) × (0, γ), where γ = 1, 0.5
and 0.2 for the left, middle and right panels, respectively.

Example 4: A smooth local source. In examples 1-3 we considered true sources
which are piecewise constant. Figure 5 shows results obtained with the true smooth
source

f = e−10(x1−0.3)2−5(x2−0.25)2 .

Methods I and III handle this case very well, but the outcome of Method II is not
very good. The outcome of Method I is as one could anticipate from the discussion
presented in subsection 2.1.3, but we do not have a good understanding of the
rather poor performance of Method II for this particular problem.
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(a) True source. (b) Method I.

(c) Method II. (d) Method III.

Figure 5. Example 4. Comparison of the true smooth source and
the inverse solutions. The regularization parameter was α = 10−6.

Example 5: Identifying local constant sources with a known magnitude.
If the magnitude of the local sources is known, we only need to recover the size and
positions of the sources. We will now briefly explain how Method I can be used to
handle such cases. Recall Corollary 2.1.1, which expresses that Method I in many
cases can detect the index, and thereby the position, of the individual local sources.
This leads to the following three-stage optimization procedure:

(1) Apply Method I, i.e., compute W−1xα, where xα is the outcome of employ-
ing standard Tikhonov regularization (4), and W is defined in (9).

(2) Retrieve the positions p1, p2, ..., pm of all the local maximums of W−1xα.
(3) Use p1, p2, ..., pm as centers of simple geometrical objects, e.g., circles, and

solve the optimization problem

min
r1,r2...,rm∈R+

1

2
∥u− d∥2L2(∂Ω)

subject to

−∆u+ ϵu = c

m∑
i=1

XBri
(pi) in Ω,

∂u

∂n
= 0 on ∂Ω,

where Bri(pi) = {x ∈ Ω : ∥x− pi∥ < ri}, and c is the known magnitude of
the source(s).

Panel (c) in figure 6 shows that this procedure can work very well: Even though
Method I almost fails to detect the small local source in the lower right corner of
the L-shaped domain, see panel (b), the radii optimization approach handles the
case very well.

Discussion. In some cases methods II and/or III work better than Method I, see
Figures 1, 2 and 4. This is in contrast to the results presented in Figures 3 and
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(a) True source. (b) Method I. (c) Radii optimization.

Figure 6. Results obtained with the three-stage algorithm de-
scribed in example 5. Panel (a) depicts the true sources, and panel
(b) shows the inverse solution computed with Method I, where the
regularization parameter was α = 10−6. Finally, panel (c) displays
the outcome of the radii optimization algorithm.

5 for which Method I provides the best source identification. Hence, we can not
advice that only one of the algorithms should be used. Method I should be applied
to get a rough picture of the location of the sources, since this scheme can localize
the position of the maximum of single sources. The outputs of methods II and III
may yield less “smeared out/blurred” images of the true sources, but should only
be trusted if their localization is consistent with the results obtained with Method
I.

Our mathematical analysis shows that the ability to identify internal local sources
from Dirichlet boundary data highly depends on the geometry of the domain and
the position of the true sources relative to the boundary of this domain, see the
analysis leading to (30) and (31). The numerical experiments exemplify this, and, in
particular, source identification for non-convex domains can lead to better recovery
than computations performed with convex domains of approximately the same size.
We commented on this latter topic from a theoretical perspective at the end of
subsection 2.1.2, and in connection with the numerical experiments we observed
the following:

• The sources depicted in panels (a) and (b) in Figure 1 approximately have
the same distance to the boundary, provided that one employs the standard
mathematical definition for the distance between subsets of R2. (A larger
part of the boundary is closer to the sources in panel (b) than in panel
(a).) Panels (c) and (d) show that Method I works much better for the
non-convex domain. The improvement is not that pronounced for methods
II and III. Similar comments hold for the results presented in Figure 2, but
now also improvements for the non-convex domains can be observed for
methods II and III.

• Figure 4 shows that the ability to separate between different sources, as well
as the sharpness of the reconstruction, increases as the distance between
the sources and the boundary decreases.

Based on these observations and further experiments (not presented), it is in gen-
eral difficult to determine whether close-to-the-boundary or non-convex-domain con-
tribute most to improve the recovery of several sources. Roughly speaking, in many
cases, sources close to the boundary can be separated and identified without much
blurring, and sources positioned in different “pockets” in non-convex domains can
be identified and separated.
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Appendix A. Poisson’s equation

In many applications ϵ = 0, and the PDE in (2) becomes Poisson’s equation.
Then the boundary value problem (2), for a given f , does not have a unique solution,
and f must satisfy the complementary condition

(A.1)

∫
Ω

f dx = 0.

Note that the basis functions (23) do not satisfy this condition. In fact, it may be
difficult to construct convenient L2-orthonormal basis functions with local supports
which obey (A.1). To handle this matter, one can “replace” the right-hand-side f
in the state equation with f − |Ω|−1

∫
Ω
f dx:

(A.2) min
(f,u)∈Fh×H1(Ω)

{
1

2
∥u− d∥2L2(∂Ω) +

1

2
α∥Wf∥2L2(Ω)

}
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subject to

−∆u = f − |Ω|−1

∫
Ω

f dx in Ω,

∂u

∂n
= 0 on ∂Ω.

(A.3)

Note that (A.3) is meaningful for any f ∈ L2(Ω), and it follows that we can use
basis functions in the form (23) to discretize the control.

Let us also make a few remarks about the forward operator associated with
(A.2)-(A.3). Assume that (f∗, u∗) solves (A.2)-(A.3). Note that, if u∗ solves (A.3),
so does u∗ + c for any constant c. Consider the function

g(c) =
1

2
∥u∗ + c− d∥2L2(∂Ω) +

1

2
α∥Wf∥2L2(Ω), c ∈ R.

The optimality condition
g′(0) = 0

yields that ∫
∂Ω

u∗ dS =

∫
∂Ω

d dS = 0,

provided that the data d, which typically is a measured potential, has been nor-
malized such that ∫

∂Ω

d dS = 0.

Consequently, the forward operator associated with (A.2)-(A.3) is

Kh : Fh → L2(∂Ω), f 7→ u|∂Ω,
where u, for a given f , denotes the solution of the boundary value problem (A.3)
which satisfies ∫

∂Ω

u dS = 0.

We also note that, in this case any constant function f(x) = C, for all x ∈ Ω,
belongs to the nullspace of Kh. Consequently, the minimum norm least squares
solution of Khf = d will have zero integral.
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