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ENERGY AND MASS CONSERVATIVE AVERAGING LOCAL

DISCONTINUOUS GALERKIN METHOD FOR SCHRöDINGER

EQUATION

FUBIAO LIN, YAXIANG LI∗, AND JUN ZHANG

Abstract. In this article, we develop the semi-discrete and fully discrete averaging local discontin-
uous Galerkin method to solve the well-known Schrödinger equation, in which space is discretized

by the averaging local discontinuous Galerkin (ADG) method, and the time is discretized by
Crank-Nicolson approach. Energy and mass conservative property of both schemes are proved.
These schemes are shown to be unconditionally energy stable, and the error estimates are rigor-
ously proved. Some numerical examples are performed to demonstrate the accuracy numerically.

Key words. Averaging local discontinuous Galerkin method, Schrödinger equation, energy con-
servative, mass conservative, error analysis.

1. Introduction

In this paper, we study the local discontinuous Galerkin method with averaging
flux [27] for the nonlinear Schrödinger equation. According to the differential def-
inition of the energy potential, the nonlinear Schrödinger equation can be divided
into two types: one is called linear Schrödinger equation, i.e., the energy potential
v(x, u) equals to some given function, the other is nonlinear Schrödinger equation,
e.g., v(x, u) = c|u|2. The Schrödinger equation is the fundamental equation used to
describe quantum mechanical behavior. It is often called the Schrödinger wave e-
quation. Energy conservation and mass conservation are two important concepts in
the theory of Schrödinger equation. The presence of nonlinearity is the main cause
for stiffness which in turn involves many challenges for the algorithm developments.
Therefore, an efficient and accurate numerical solution of this equation is needed
to understand its dynamics. Concerning the temporal and spatial discretizations,
various numerical approaches had been developed to solve it, including finite d-
ifference method [3, 16], finite element method [14, 23], spectral method [21], and
discontinuous Galerkin method [15, 19, 25, 30]. The conservation law structure of
many PDEs is considered to be fundamental in their discretization since numerical
methods that can preserve the required invariants always have some advantages,
e.g., the high accuracy of numerical solutions, unconditional stability properties
after long-time numerical integration, etc.

The discontinuous Galerkin (DG) method was first introduced by the pioneering
work of Reed and Hill for solving the neutron transport problem, see [22]. After
that, Lesaint and Raviant provide the first theoretical analysis of this DG method
in [17]. After this method was generalized to the local discontinuous Galerkin
(LDG) method by Cockburn and Shu to solve the convection-diffusion equation
in [5], the DG method has been widely used to solve various hyperbolic and para-
bolic problems. Using a completely discontinuous piece-wise polynomial space for
the numerical solution and the test function within the finite element framework,
the DG method has the advantage of flexibility for unstructured meshes, easily
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to handle complex boundary conditions and interface problems. We refer to the
interested readers to the reviews [1,6] or books [4,10,12,24] and references therein.

We recall that some recent attempts have been made to apply the DG discretiza-
tion to solve the Schrödinger equation [19, 25, 28, 29]. Here we give a brief review
of those work. In [25], Xu and Shu developed an LDG method to solve the non-
linear Schrödinger equation. For linearized Schrödinger equation, they obtained
an error estimate of order k + 1/2 for polynomials of degree k. The optimal error
estimate was further obtained in [26] by using special local projections. In [19],
Lu, Cai, and Zhang presented a mass conservative LDG method to solve one-
dimensional linear Schrödinger, but the theoretical analysis is missing. Zhang, Yu,
and Feng presented a mass preserving direct discontinuous Galerkin (DDG) method
for the one-dimensional coupled nonlinear Schrödinger (CNLS) equation [28], and
in [29] for both one and two-dimensional CNLS equation. In [29] the conservation
property is verified and further validated by some long time simulation results.
In [11], Guo and Xu developed energy conservation fully discrete LDG method to
solve multi-dimensional Schrödinger equation with wave operator. For linearized
Schrödinger equation, they obtained the optimal error estimate for the semi-discrete
scheme. The mass conservative DDG method to solve the Schrödinger equations
is constructed in [20]. The optimal error estimate for the semi-discrete scheme is
obtained. Conservative local discontinuous Galerkin method based on upwinding
flux for nonlinear Schrödinger equation is introduced by Hong, Ji, and Liu in [13].
However, all the effort on the LDG method for Schrödinger equation is about the
upwind flux. According to [27], we know the averaging flux has some advantage,
e.g., the 2k + 2 superconvergent order. Hence, in this paper, we present a fully
discrete averaging local discontinuous Galerkin (ALDG) method with the Crank-
Nicolson time discretization to solve the linear and nonlinear Schrödinger equation.
This scheme can preserve both the energy and the mass at the discrete level. An
optimal error estimate of even order and suboptimal error estimate of odd order
are obtained for both the semi-discrete ALDG scheme and the fully discrete ALDG
scheme.

The rest of this paper is organized as follows. In section 2, the model problem
and the semi-discrete is presented. Meanwhile, the energy and mass conservation
property of the semi-discrete scheme is proved. An energy and mass conservative
fully discrete scheme will be introduced in section 3. In section 4, we present
the error analysis for the semi-discrete scheme and fully discrete scheme. Section 5
contains numerical results for both linear and nonlinear problem to demonstrate the
accuracy and capability of the methods. Concluding remarks are given in section
6.

2. Model problem and semi-discrete scheme

2.1. semi-discrete scheme. In this paper, we mainly focus on the following one
dimension linear or nonlinear Schrödinger problem:

(1) iut +
1

2
uxx − ϕ(u)u = 0,

subject to an initial data

(2) u(x, 0) = u0(x),

and periodic boundary condition or zero Dirichlet boundary condition.
We first introduce the usual notations of the ALDG method [27]. Let Th be a

partition of the interval I = [a, b] of the form a = x 1
2
< x 3

2
< · · · < xM+ 1

2
= b

with xj+ 1
2

= a + (j − 1)h, h = (b − a)/M. The points xj+ 1
2
are called nodes,
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while Ij = [xj− 1
2
, xj+ 1

2
] will be referred to an element and xj =

x
j− 1

2
+x

j+1
2

2 be the

center of the element. we also denote by u−
j+ 1

2

and u+
j+ 1

2

be the values of u at the

discontinuity point xj+ 1
2
, from the left of the element Ij and the right of the element

Ij+1, respectively. The jump JuKj+ 1
2
of u at xj+ 1

2
is defined as u+

j+ 1
2

− u−
j+ 1

2

, and

the average {{u}}j+ 1
2
is defined as

u+

j+1
2

+u−
j+1

2

2 .

We denote ∥u∥0,Ij and ∥u∥∞,Ij to be the standard L2 and L∞ norm of u defined
on the element Ij . For any p > 0 and integer k ≥ 1, the norms of the Sobolev space
W k,p(Ij) is given by

||u||k,p,Ij = ||u||Wk,p(Ij), and ||u||Wk,∞(Ij) = max
0≤α≤k

||Dαu||L∞(Ij).

When p = 2, we simply denote ||u||k,Ij = ||u||k,2,Ij . In this paper, C always denotes
a constant which is independent on the mesh size h, time-steps ∆t and differential
from each other.

Let P k(Ij) denote the set of polynomials of degree no more than k defined on
the element Ij . Then the discontinuous Galerkin finite element space can be chosen
as

V k = {v ∈ L2(I) : v|Ij ∈ P k(Ij), j = 1, 2, · · · ,M}.
We are now ready to define the averaging discontinuous Galerkin method. First-

ly, we rewrite (1) as a first order system:

iut +
1

2
qx − ϕ(u)u = 0,(3a)

q − ux = 0.(3b)

Then, multiplying (3a) and (3b) by a smooth function v, w and integrating by
parts over Ij , we obtain the following weak formulation,

i

∫
Ij

utvdx− 1

2

∫
Ij

qvxdx+
1

2
(qv)−

j+ 1
2

− 1

2
(qv)+

j− 1
2

−
∫
Ij

ϕ(u)uvdx = 0,(4a) ∫
Ij

uwxdx+

∫
Ij

qwdx− (uw)−
j+ 1

2

+ (uw)+
j− 1

2

= 0.(4b)

Finally, based on the above weak formulation, we define the averaging discon-
tinuous Galerkin method: find U,Q ∈ V k such that

i

∫
Ij

Utvdx− 1

2

∫
Ij

Qvxdx+
1

2
(Q̂v−)j+ 1

2
− 1

2
(Q̂v+)j− 1

2
−
∫
Ij

ϕ(U)Uvdx = 0,(5a)

∫
Ij

Uwxdx+

∫
Ij

Qwdx− (Ûw−)j+ 1
2
+ (Ûw+)j− 1

2
= 0,

(5b)

for all v, w ∈ V k and elements Ij .
The“hat” terms in (5a) and (5b) in the cell boundary terms for integration by

parts are so-called “numerical fluxes”, which are single valued functions defined on
the edges and should be designed to ensure the stability. We consider the so called
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“average flux”, i.e, we choose

Ûj+ 1
2
=

{
U+

j+1
2

+U−
j+1

2

2 , for j = 1, 2, · · · ,M − 1
0, j = 0,M

,

Q̂j+ 1
2
=


Q+

j+1
2

+Q−
j+1

2

2 , for j = 1, 2, · · · ,M − 1
Q+

1
2

, j = 0

Q−
M+ 1

2

, j =M

,

(6)

for the zero Dirichlet boundary condition.

Remark 2.1. If the boundary condition is periodic boundary condition, we can
choose the numerical flux as

(7) Ûj+ 1
2
=
U+
j+ 1

2

+ U−
j+ 1

2

2
, Q̂j+ 1

2
=
Q+

j+ 1
2

+Q−
j+ 1

2

2
, ∀j = 0, 1, · · · ,M,

where U−
1
2

= U−
M+ 1

2

, U+
M+ 1

2

= U+
1
2

and Q−
1
2

= Q−
M+ 1

2

, Q+
M+ 1

2

= Q+
1
2

.

2.2. Mass conservation and Energy conservation for the semi-discrete
form.

Lemma 2.1. For any complex value x, y, we have xy = xy.

To simplify the notation, we define the following bilinear form

(8) B(U, v) =
M∑
j=1

(∫
Ij

Uvxdx− (Ûv−)j+ 1
2
+ (Ûv+)j− 1

2

)
.

Lemma 2.2. If we choose the numerical flux as (6) or (7), then we have

B(U,Q) +B(Q,U) = 0.

Proof. By the definition of B(U,Q) in (8), we have

B(U,Q) +B(Q,U)

=
M∑
j=1

(
(

∫
Ij

UQxdx− (ÛQ
−
)j+ 1

2
+ (ÛQ

+
)j− 1

2
)

+(

∫
Ij

QUxdx− (Q̂U
−
)j+ 1

2
+ (Q̂U

+
)j− 1

2
)
)

=
M∑
j=1

(
(−

∫
Ij

UxQdx− (ÛQ
−
)j+ 1

2
+ (ÛQ

+
)j− 1

2
+ (UQ)−

j+ 1
2

− (UQ)+
j− 1

2

)

+(

∫
Ij

QUxdx− (Q̂U
−
)j+ 1

2
+ (Q̂U

+
)j− 1

2
)
)
.

On the other hand, by simple calculation, we have

M∑
j=1

(
(UQ)−

j+ 1
2

− (UQ)+
j− 1

2

)
= (UQ)−

M+ 1
2

− (UQ)+1
2

−
M∑
j=2

(
{{U}}j− 1

2
JQKj− 1

2
+ {{Q}}j− 1

2
JUKj− 1

2

)
.

Summing the above two equations together and using lemma 2.1, we finish the
proof of this lemma. �
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For the semi-discrete scheme (5a)-(5b), we can get the following mass conserva-
tion property.

Theorem 2.1. The solution to (5a)-(5b) with the numerical flux (6) satisfies the
following mass conservation property

(9)
d

dt

∫
I

∥U∥2dx = 0.

Proof. Firstly, taking v = U,w = Q in (5a) and (5b), we have

i

∫
Ij

UtUdx− 1

2

∫
Ij

QUxdx+
1

2
(Q̂U

−
)j+ 1

2

− 1

2
(Q̂U

+
)j− 1

2
−
∫
Ij

ϕ(U)UUdx = 0,(10a) ∫
Ij

UQxdx+

∫
Ij

QQdx− (ÛQ
−
)j+ 1

2
+ (ÛQ

+
)j− 1

2
= 0.(10b)

Then, summing the above equation for j = 1 to M , and using the notation define
in (8), we obtain

i

∫
I

UtUdx− 1

2
B(U,Q)−

∫
I

ϕ(U)UUdx = 0,(11a) ∫
I

QQdx+B(Q,U) = 0.(11b)

Moreover, multiplying (11b) by 1
2 and taking the conjugate of it, we have

(12)
1

2

∫
I

QQdx+
1

2
B(Q,U) = 0.

Subtracting (11a) from (12), and using lemma 2.2, we have

i

∫
I

UtUdx− 1

2

∫
Ij

QQdx−
∫
Ij

ϕ(U)UUdx = 0.(13)

Hence, taking the image part of (13), we arrive at

d

dt

∫
I

∥U∥2dx = 0,

which is actually the mass conservation property of the Schrödinger equation. �

Moreover, the semi-discrete scheme (5a)-(5b) conserves the discrete energy as
follows.

Theorem 2.2. The solution to (5a)-(5b) with the numerical flux (6) or (7) satisfies
(1) if ϕ(u) = c,

(14)
d

dt

∫
I

c∥U∥2 + 1

2
∥Q∥2dx = 0,

(2) if ϕ(u) = c|u|2,

(15)
d

dt

∫
I

c∥U∥4 + ∥Q∥2dx = 0.

Proof. Taking the time derivative in (5b), and choosing the test function w = Q,
we obtain

(16)

∫
Ij

UtQxdx+

∫
Ij

QtQdx− (ÛtQ
−
)j+ 1

2
+ (ÛtQ

+
)j− 1

2
= 0.
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Summing (16) for j = 1 toM and taking the conjugate of the obtained equation,
we have

(17)
1

2

∫
I

QtQdx+
1

2
B(Ut, Q) = 0.

Then, taking v = Ut in (5a), we get

i

∫
Ij

UtU tdx− 1

2

∫
Ij

QU txdx+
1

2
(Q̂U

−
t )j+ 1

2
− 1

2
(Q̂U

+

t )j− 1
2
−
∫
Ij

ϕ(U)UU tdx = 0.

By summing the above equation for j = 1 to M , we arrive at

(18) i

∫
I

UtU tdx− 1

2
B(Q,Ut)−

∫
I

ϕ(U)UU tdx = 0.

Subtracting (17) from (18), and using lemma 2.2, we have

−1

2

∫
I

QtQdx+ i

∫
I

UtU tdx−
∫
I

ϕ(U)UU tdx = 0.(19)

Finally, taking the real part of (19), we obtain
(1) if ϕ(u) = c,

d

dt

∫
I

c∥U∥2 + 1

2
∥Q∥2dx = 0,

(2) if ϕ(u) = c|u|2,
d

dt

∫
I

c∥U∥4 + ∥Q∥2dx = 0,

which is actually the energy conservation property of the semi-discrete form for
both the linear and nonlinear Schrödinger equation. �

3. Analysis of the fully discrete scheme

In order to develop a fully-discrete ALDG scheme to discretize the Schrödinger
equation, we divide the time interval [0, T ] into N uniform subintervals by points
0 = t0 < t1 < · · · < tN = T, where tk = kτ . Moreover, we denote Ik = [tk−1, tk],
ψk = ψ(·, tk), and

δkt ψ =
ψk+1 − ψk

∆t
, ψ̄k =

ψk+1 + ψk

2
.

Based on the semi-discrete scheme (5a)-(5b), we can define a fully discrete form
as

i
M∑
j=1

∫
Ij

δnt Uv −
1

2

M∑
j=1

Q̄nvxdx+
1

2

M∑
j=1

( ̂̄Qn
v−)j+ 1

2

− 1

2

M∑
j=1

( ̂̄Qn
v+)j− 1

2
−

M∑
j=1

∫
Ij

ϕ(U)U
n
vdx = 0,(20a)

M∑
j=1

∫
Ij

Un+1wx +Qn+1wdx−
M∑
j=1

(Ûn+1w−)j+ 1
2
+

M∑
j=1

(Ûn+1w+)j− 1
2
= 0,(20b)

M∑
j=1

∫
Ij

Unwx +Qnwdx−
M∑
j=1

(Ûnw−)j+ 1
2
+

M∑
j=1

(Ûnw+)j− 1
2
= 0,(20c)

where Ûn, Q̂n denote the numerical flux, and

• if ϕ(u) = c, then ϕ(U)U
n
=
Un + Un−1

2
,
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• if ϕ(u) = c|u|2, then ϕ(U)U
n
=
c(|Un|2 + |Un−1|2)

2

Un + Un−1

2
.

In our fully discrete scheme, we take

Ûn
j+ 1

2
=

{
(Un

j+1
2
)++(Un

j+1
2
)−

2 , for j = 1, 2, · · · ,M − 1
0, j = 0,M

Q̂n
j+ 1

2
=


(Qn

j+1
2
)++(Qn

j+1
2
)−

2 , for j = 1, 2, · · · ,M − 1
(Qn

1
2

)+, j = 0

(Qn
M+ 1

2

)−, j =M

(21)

for zero dirichlet boundary condition, and
(22)

Ûn
j+ 1

2
=

(Un
j+ 1

2

)+ + (Un
j+ 1

2

)−

2
, Q̂n

j+ 1
2
=

(Qn
j+ 1

2

)+ + (Qn
j+ 1

2

)−

2
, ∀j = 0, 1, · · · ,M,

for periodic boundary condition, with (Un
1
2

)− = (Un
M+ 1

2

)−, (Un
M+ 1

2

)+ = (Un
1
2

)+ and

(Qn
1
2

)− = (Qn
M+ 1

2

)−, (Qn
M+ 1

2

)+ = (Qn
1
2

)+.

Then, we will show our fully discrete scheme (20a)–(20c) not only conserve the
mass, but also conserve the energy.

Theorem 3.1. The solution to (20a)-(20c) with the numerical flux (21) or (22)
satisfies the following mass conservation property

(23)

∫
I

|Un+1|2dx =

∫
I

|Un|2dx, ∀n = 1, 2, · · · , N.

Proof. On the one hand, taking w = Q̄n in (20b) and (20c), and summing them
for j = 1 to M , we obtain

M∑
j=1

∫
Ij

ŪnQ̄n
x + Q̄nQ̄ndx−

M∑
j=1

( ̂̄Un
Q̄n

−
)j+ 1

2
+

M∑
j=1

( ̂̄Un
Q̄n

+
)j− 1

2
= 0.(24)

Then, multiplying (24) by 1
2 and taking the conjugate, we get

(25)
1

2

∫
I

Q̄nQ̄ndx+
1

2
B(Ūn, Q̄n) = 0.

On the other hand, taking w = Ūn in (20a) and summing them for j = 1 to M ,
we have

(26) i

∫
I

δnt UŪ
ndx− 1

2
B(Q̄n, Ūn)−

∫
I

ϕ(U)U
n
Ūndx = 0.

Therefore, subtracting (26) from (25), we obtain

i

∫
I

δnt UŪ
ndx−

∫
I

ϕ(U)U
n
Ūndx− 1

2

∫
I

Q̄nQ̄ndx = 0.(27)

Finally, taking the image part of (27) leads to∫
I

∥Un+1∥2dx =

∫
I

∥Un∥2dx,

which is (23). �

Theorem 3.2. The solution to (20a)-(20c) with the numerical flux (21) or (22)
satisfies the following energy conservation property
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(1) if ϕ(u) = c, then

(28)

∫
I

c∥Un+1∥2 + 1

2
∥Qn+1∥2dx =

∫
I

c∥Un∥2 + 1

2
∥Qn∥2dx,

(2) if ϕ(u) = c|u|2, then

(29)

∫
I

c∥Un+1∥4 + ∥Qn+1∥2dx =

∫
I

c∥Un∥4 + ∥Qn∥2dx.

Proof. On one hand, by subtracting (20c) from (20b), we have∫
Ij

(Un+1 − Un)wx + (Qn+1 −Qn)wdx

−
(
(Ûn+1 − Ûn)w−

)
j+ 1

2

+
(
(Ûn+1 − Ûn)w+

)
j− 1

2

= 0.

Taking w =
Qn+1 +Qn

2
in the above equation and summing for j = 1 to M , we

arrive at

(30)

∫
I

(Qn+1 −Qn)
Qn+1 +Qn

2
dx+B(Un+1 − Un,

Qn+1 +Qn

2
) = 0.

On the other hand, taking v = Un+1 − Un in (20a) and summing for j = 1 to M ,
we obtain
(31)

i

∫
I

δnt U(Un+1 − Un)dx− 1

2
B(Q

n
, Un+1 − Un)−

∫
I

ϕ(U)U
n
(Un+1 − Un)dx = 0.

Subtracting (31) from (30), and using lemma 2.2, we get

i

∫
I

δnt U(Un+1 − Un)dx−
∫
I

ϕ(U)U
n
(Un+1 − Un)dx

− 1

2

∫
I

(Qn+1 −Qn)
Qn+1 +Qn

2
dx = 0.(32)

Finally, by taking the real part of (32), we arrive at{ ∫
I
c∥Un+1∥2 + 1

2∥Q
n+1∥2dx =

∫
I
c∥Un∥2 + 1

2∥Q
n∥2dx, if ϕ(u) = c;∫

I
c∥Un+1∥4 + ∥Qn+1∥2dx =

∫
I
c∥Un∥4 + ∥Qn∥2dx, if ϕ(u) = c|u|2.(33)

It finishes the proof of this theorem. �

4. Error analysis for the linear case

In this section, we derive the optimal error estimates for the conserving ALDG
method proposed in the above sections of the linear Schrödinger equation, i.e., we
assume ϕ(u) = c.

4.1. The semi-discrete scheme. To prove the L2 error analysis of the semi-
discrete scheme, we need the following notations and lemmas.

let li be i-th order Legendre polynomial on the reference interval E = [−1, 1],

i.e., li(s) = γi∂
i
s(s

2 − 1)i, γi =
1

2ii!
, i = 0, 1, 2, · · · . Any function defined on E can

be expanded as

(34) u(s) =
∞∑
i=0

bili(s), bi = (i+
1

2
)(u, li)E .

Let the k-th order partial sum of u in (34) and its remainder be ukL and Ru,
respectively. In other words,
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(35) ukL =
k∑

i=0

bili(s), Ru = u− ukL =
∞∑

i=k+1

bili(s).

It is easy to see that Ru is orthogonal to any polynomials P i(s) whose degree is
less than k.

Then, we have the following estimate for the remainder Ru,

Lemma 4.1. [27]Let u ∈ W k+1,p(I). The remainder of u on the element Ij , j =
1, 2, · · · ,M satisfies

||Ru||0,q,Ij ≤ Chk+1+( 1
q−

1
p )||u||k+1,p,Ij .

In particular, when k is even and u ∈ W k+2,p(I), the average of the reminder on
the nodes xj+ 1

2
satisfies

|{{Ru}}(xj+ 1
2
)| ≤ Chk+2||u||k+2,∞,Ij+Ij+1 , j = 1, 2, · · · ,M − 1.

Lemma 4.2. (Gronwall’s lemma) Suppose that ϕ is a nonnegative continuous func-
tion such that

ϕ(t) ≤ a+ b

∫ t

0

ϕ(s)ds, for t > 0,

where a and b are nonnegative constants. Then

ϕ(t) ≤ aebt.

In the following, we will show the convergence order of the proposed semi-discrete
ALDG scheme (5a)–(5b). Denote by eu = u − U, eq = q − Q. Then, using the
definition of Ru introduced above, we can decompose eu, eq as

eu = u− U = u−Ru − (U −Ru) ≡ ρu − θu,

eq = q −Q = q −Rq − (Q−Rq) ≡ ρq − θq.

By the definition of Ru and Rq, we have the following orthogonal property,

(36) (ρξ, θζ) = 0, ∀ξ, ζ = u, q.

By the definition of the numerical flux in (6) or (7), we know that they are
consistent. Hence, the combination of (4a)–(4b) and the semi-discrete scheme (5a)–
(5b) leads to the following error equation on each element Ij ,

i

∫
Ij

eutvdx− 1

2

∫
Ij

eqvxdx+
1

2
(êqv

−)j+ 1
2
− 1

2
(êqv

+)j− 1
2
−
∫
Ij

ceuvvdx = 0,∫
Ij

euwxdx+

∫
Ij

eqwdx− (êuw
−)j+ 1

2
+ (êuw

+)j− 1
2
= 0.

Then, summing the above two equation from j = 1 to j =M , we get

i

M∑
j=1

∫
Ij

eutvdx− 1

2

M∑
j=1

∫
Ij

eqvxdx

+
1

2

M∑
j=1

(êqv
−)j+ 1

2
− 1

2

M∑
j=1

(êqv
+)j− 1

2
−

M∑
j=1

∫
Ij

ceuvdx = 0,(38a)

M∑
j=1

∫
Ij

euwxdx+
M∑
j=1

∫
Ij

eqwdx−
M∑
j=1

(êuw
−)j+ 1

2
+

M∑
j=1

(êuw
+)j− 1

2
= 0.(38b)

Finally, we can show the following convergent result:
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Theorem 4.1. Suppose that u, q be the exact solution of (1), U,Q be the ALDG
solution of (5a)-(5b). Then

• when k is even, we have

∥q(·, T )−Q(·, T )∥+ ∥u(·, T )− U(·, T )∥ ≤ Chk+1(∥u∥k+2 + ∥Q∥k+2),

• when k is odd, we have

∥q(·, T )−Q(·, T )∥+ ∥u(·, T )− U(·, T )∥ ≤ Chk(∥u∥k+1 + ∥Q∥k+1).

Proof. Taking v = θu in (38a), w = θq in (38b) and using the orthogonal properties
(36), we get

i
M∑
j=1

∫
Ij

θutθudx− 1

2
B(θq, θu) +

1

2
B(ρq, θu) +

M∑
j=1

∫
Ij

cθuθudx = 0,(39a)

−
M∑
j=1

∫
Ij

θqθqdx+B(θu, θq)−B(ρu, θq) = 0.(39b)

Then, taking the conjugate of (39b), we arrive at

(40) −1

2

M∑
j=1

∫
Ij

θqθqdx+
1

2
B(θu, θq)−

1

2
B(ρu, θq) = 0.

Subtracting (40) from (39a), we obtain

i
M∑
j=1

∫
Ij

θutθudx+
M∑
j=1

∫
Ij

cθuθudx+
1

2

M∑
j=1

∫
Ij

θqθqdx = −1

2
B(ρq, θu)−

1

2
B(ρu, θq).

(41)

Therefore, taking the image part of (41), we have

M∑
j=1

∫
Ij

θutθudx = −Im{1
2
B(ρq, θu) +

1

2
B(ρu, θq)}.(42)

Hence, taking the real part of (41), we obtain

M∑
j=1

∫
Ij

cθuθudx+
1

2

M∑
j=1

∫
Ij

θqθqdx = −Re{1
2
B(ρq, θu) +

1

2
B(ρq, θu)}.(43)

Finally, by the combination of (40), (43), lemma 4.1 and lemma 4.2, we have
1). if k is even, then

∥θq(·, T )∥2 + ∥θu(·, T )∥2 ≤ C(T )h2k+2(∥u∥2k+2 + ∥q∥2k+2),

2). if k is odd, then

∥θq(·, T )∥2 + ∥θu(·, T )∥2 ≤ C(T )h2k(∥u∥2k+1 + ∥q∥2k+1).

Using the triangle inequality, we complete the proof of this theorem. �

4.2. The fully discrete scheme. In this subsection, we will introduce the error
estimate of the fully discrete scheme for the linear Schrödinger equation.

Denote by enu = un − Un, enq = qn −Qn. Then, we can decompose them as

enu = un − Un = un −Rn
u − (Un −Rn

u) ≡ ρu − θu,

enq = qn −Qn = qn −Rn
q − (Qn −Rn

q ) ≡ ρq − θq.

By the definition of Rn
u and Rn

q , we have the following orthogonal property,

(44) (ρjξ, θ
i
ζ) = 0, ∀0 ≤ i, j ≤ N, and ξ, ζ = u, q.
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To prove the L2 Error analysis of the fully discrete scheme, we need the following
lemmas.

Lemma 4.3. Denote uk = u(·, kτ). For any u ∈ H2([0, T ], (L2(Ω))), we have

||∆tūk+1 −
∫
Ik

u(s)ds||20 ≤ ∆t5

4

∫
Ik

||utt(s)||2ds.

Lemma 4.4. (The discrete Gronwall inequality) Let ∆t, B,C > 0, {an}n be se-
quence of nonnegative numbers satisfying

an ≤ B + C∆t

n∑
j=0

ai,∀n ≥ 0.

If Cτ ≤ 1, then

an ≤ eC(n+1)∆tB.

In the following, we are ready to introduce the error equation of the proposed
ALDG method (20a)-(20c). Integrating (4a) over [tn, tn+1] with respect to t on
both sides of it and dividing by ∆t, then subtracting (20a), we get

i

∆t
(en+1

u − enu, v)−
1

2∆t

∫ tn+1

tn

B(q, v)dt+
B(Qn +Qn+1, v)

4

− 1

∆t

∫ tn+1

tn

(u, v)dt+
(Un + Un+1, v)

2
= 0.

By inserting some intermediate term, the above equation can be rewritten as

i

∆t
(en+1

u − enu, v)−
1

2∆t

∫ tn+1

tn

B(q, v)dx+
B(qn + qn+1, v)

4
(45)

−
B(enq + en+1

q , v)

4
− (enu + en+1

u , v)

2
− 1

∆t

∫ tn+1

tn

(u, v)dt+
(un + un+1, v)

2
= 0.

On the other hand, integrating (4b) over [tk, tk+1] with respect to t on both sides
of it and subtracting (20b) and (20c), we obtain

1

∆t

∫ tn+1

tn

(q, w)dt− (Qn +Qn+1, w)

2

+
1

∆t

∫ tn+1

tn

B(u,w)dt− B(Un + Un+1, w)

2
= 0.

By inserting some intermediate term, the above equation can be rewritten as

1

∆t

∫ tn+1

tn

(q, w)dt− (qn + qn+1, w)

2
+

(enq + en+1
q , w)

2
(46)

+
B(enu + en+1

u , w)

2
+

1

∆t

∫ tn+1

tn

B(u,w)dt− B(un + un+1, w)

2
= 0,

where (u, v) =
M∑
j=1

(u, v)Ij .

Theorem 4.2. Let u, q be the solution of (20a)-(20c) with the numerical flux (6)
or (7) and Un, Qn be the solution of (1). Then

• if k is even, we have

∥qn −Q(·, tn)∥+ ∥un − U(·, tn)∥ ≤ C(∆t2 + hk+1), ∀0 ≤ n ≤ N,
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• if k is odd, we have

∥qn −Q(·, tn)∥+ ∥un − U(·, tn)∥ ≤ C(∆t2 + hk), ∀0 ≤ n ≤ N.

Proof. Taking v = θn+1
u + θnu in (45), and using the orthogonal property (44), we

have

− i

∆t
(θn+1

u − θnu , θ
n+1
u + θnu)−

1

2∆t

∫ tn+1

tn

B(q, θn+1
u + θnu)dx

+
B(qn + qn+1, θn+1

u + θnu)

4
−
B(ρnq + ρn+1

q , θn+1
u + θnu)

4
(47)

+
B(θnq + θn+1

q , θn+1
u + θnu)

4
+

(θnu + θn+1
u , θn+1

u + θnu)

2

− 1

∆t

∫ tn+1

tn

(u, θn+1
u + θnu)dt+

(un + un+1, θn+1
u + θnu)

2
= 0.

Meanwhile, taking w = θn+1
q + θnq in (46), we obtain

1

∆t

∫ tn+1

tn

(q, θn+1
q + θnq )dt−

(qn + qn+1, θn+1
q + θnq )

2

−
(θnq + θn+1

q , θn+1
q + θnq )

2
+
B(ρnu + ρn+1

u , θn+1
q + θnq )

2

−
B(θnu + θn+1

u , θn+1
q + θnq )

2
+

1

∆t

∫ tn+1

tn

B(u, θn+1
q + θnq )dt

−
B(un + un+1, θn+1

q + θnq )

2
= 0.(48)

By subtracting the conjugate of (48) from (47), one gets

− i
1

∆t

(
||θn+1

u ||2 − ||θnu ||
)
+

1

4
∥θn+1

q + θnq ∥2 +
1

4
∥θn+1

u + θnu∥2

=
1

2∆t

∫ tn+1

tn

B(q, θn+1
u + θnu)dx− B(qn + qn+1, θn+1

u + θnu)

4

+
B(ρnq + ρn+1

q , θn+1
u + θnu)

4
+

1

∆t

∫ tn+1

tn

(u, θn+1
u + θnu)dt

− (un + un+1, θn+1
u + θnu)

2
+

1

2∆t

∫ tn+1

tn

(q, θn+1
q + θnq )dt

−
(qn + qn+1, θn+1

q + θnq )

4
−
B(un + un+1, θn+1

q + θnq )

4

+
B(ρnu + ρn+1

u , θn+1
q + θnq )

4
+

1

2∆t

∫ tn+1

tn

B(u, θn+1
q + θnq )dt.

Therefore, by taking both the image and the real part of the above equation, we
have

1

∆t

(
||θn+1

u ||2 − ||θnu ||
)

=− Im
{ 1

2∆t

∫ tn+1

tn

B(q, θn+1
u + θnu)dx− B(qn + qn+1, θn+1

u + θnu)

4

+
B(ρnq + ρn+1

q , θn+1
u + θnu)

4
+

1

∆t

∫ tn+1

tn

(u, θn+1
u + θnu)dt
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− (un + un+1, θn+1
u + θnu)

2
+

1

2∆t

∫ tn+1

tn

(q, θn+1
q + θnq )dt

−
(qn + qn+1, θn+1

q + θnq )

4
−
B(un + un+1, θn+1

q + θnq )

4

+
B(ρnu + ρn+1

u , θn+1
q + θnq )

4
+

1

2∆t

∫ tn+1

tn

B(u, θn+1
q + θnq )dt

}
,

and
1

4
∥θn+1

q + θnq ∥2 +
1

2
∥θn+1

u + θnu∥2

=Re
{ 1

2∆t

∫ tn+1

tn

B(q, θn+1
u + θnu)dx− B(qn + qn+1, θn+1

u + θnu)

4

+
B(ρnq + ρn+1

q , θn+1
u + θnu)

4
+

1

∆t

∫ tn+1

tn

(u, θn+1
u + θnu)dt

− (un + un+1, θn+1
u + θnu)

2
+

1

2∆t

∫ tn+1

tn

(q, θn+1
q + θnq )dt

−
(qn + qn+1, θn+1

q + θnq )

4
−
B(un + un+1, θn+1

q + θnq )

4

+
B(ρnu + ρn+1

u , θn+1
q + θnq )

4
+

1

2∆t

∫ tn+1

tn

B(u, θn+1
q + θnq )dt,

which together with lemma 4.1, lemma 4.3, and lemma 4.4 yields
• when k is even,

∥θn+1
q ∥2 + ∥θn+1

u ∥2

≤C(T )(∆t4
∫ L

0

||utt||2 + ||qtt||2ds+ h2k+2||u||2k+2,2 + h2k+2||q||2k+2),

• when k is odd,

∥θn+1
q ∥2 + |θn+1

u ∥2

≤C(T )(∆t4
∫ L

0

||utt||2 + ||qtt||2ds+ h2k||u||2k+1,2 + h2k||q||2k+1).

Finally, using the triangle inequality, we complete the proof of this theorem. �

Remark 4.1. Although we only focus on one-dimensional case, our results can be
easily extended to two-dimensional and three-dimensional cases with tensor product
meshes.

5. Numerical results

In this section, we present some numerical examples to illustrate both accuracy
and capacity of the proposed ALDG method with flux (21) and (22) for both linear
and nonlinear Schrödinger equations.

Example 1: Consider the numerical solution to the linear Schrödinger equation

iut + uxx + u = f, t > 0, 0 ≤ x ≤ 1,

u(x, 0) = u0(x),(49)

with zero direct boundary conditions. Suppose the exact solution of (49) with some
given source term f be

u(x, t) = sin(πx) exp(it).
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The L2 error and order of accuracy at t = 1 for k = 1, 2, 3, 4 are given in table 1.
We see that the optimal (k+1)-th order of accuracy of even k = 2, 4 and suboptimal
k-th order of accuracy of odd k = 1, 3.

Table 1. The convergence rate at t = 1.

k N Errorur order Errorui order Errorqr order Errorqi order

1 4 3.7245e-2 2.4646e-2 7.6467e-2 7.2007e-2
8 1.7894e-2 1.0576 1.1644e-2 1.0818 4.0037e-2 0.9333 3.5681e-2 1.0130

16 8.1576e-3 1.1333 5.9986e-3 0.9569 1.9890e-2 1.0093 1.7864e-2 0.9981
32 4.0028e-3 1.0217 3.0684e-3 0.9671 9.7098e-3 1.0345 8.6472e-3 1.0468

2 4 5.8516e-4 9.0190e-4 7.0405e-3 1.2365e-2
8 7.7885e-5 2.9094 1.2222e-4 2.8835 1.0352e-3 2.7658 1.4608e-3 3.0814
16 9.2711e-6 3.0705 1.4399e-5 3.0854 1.6677e-4 2.6340 1.4087e-4 3.3743

32 1.1431e-6 3.0198 1.7767e-6 3.0187 1.8449e-5 3.1762 1.9969e-5 2.8185

3 4 1.4835e-4 1.1098e-4 2.2777e-3 2.5180e-3
8 9.6025e-6 3.9495 1.4187e-5 2.9677 1.5736e-4 3.8554 3.7809e-4 2.7355
16 1.3160e-6 2.8673 1.8336e-6 2.9518 2.5323e-5 2.6355 4.6299e-5 3.0297

32 1.8361e-7 2.8414 2.0829e-7 3.1380 3.8075e-6 2.7335 5.8350e-6 2.9882

4 4 2.6355e-6 2.7222e-6 6.1471e-5 2.2402e-5
8 8.1058e-8 5.0230 8.6180e-8 4.9813 1.9024e-6 5.0140 7.0105e-7 4.9980
16 2.5700e-9 4.9791 2.6605e-9 5.0176 6.0034e-8 4.9859 2.1882e-8 5.0017

Table 2. The convergence rate at t = 1.

k N Errorur order Errorui order Errorqr order Errorqi order

1 200 8.9065e-2 9.6784e-2 4.9018e-1 5.7761e-1
400 4.6701e-2 0.9314 4.9801e-2 0.9586 2.4987e-1 0.9721 2.8709e-1 1.0086

800 2.3287e-2 1.0039 2.4098e-2 1.0473 1.2086e-1 1.0478 1.3910e-1 1.0454

2 100 4.8936e-2 5.0141e-2 2.0162e-1 2.0062e-1
200 9.4797e-4 5.6899 9.2703e-4 5.7572 8.9153e-3 4.4922 8.9073e-3 4.4933
400 8.8805e-5 3.4161 8.8291e-5 3.3923 1.0145e-3 3.1355 1.0155e-3 3.1328

800 1.1076e-5 3.0032 1.2234e-5 2.9744 1.2516e-4 3.0189 1.2520e-4 3.0199

3 100 1.7313e-3 1.7234e-3 1.2284e-2 1.2281e-2
200 1.4897e-4 3.5388 1.4906e-4 3.5313 1.9547e-3 2.6518 1.9523e-3 2.6532
400 1.6783e-5 3.1499 1.6802e-5 3.1492 2.5630e-4 2.9310 2.5628e-4 2.9294
800 1.8020e-6 3.2193 1.8030e-6 3.2202 3.3254e-5 2.9462 3.3279e-5 2.9450

4 100 1.6035e-4 1.8971e-4 3.0087e-3 2.9836e-3
200 5.0084e-6 5.0007 5.8918e-6 5.0089 9.2019e-5 5.0311 9.5109e-5 4.9713
400 1.5697e-7 4.9958 1.8719e-7 4.9761 2.9379e-6 4.9691 2.9138e-6 5.0286

Example 2: Consider the numerical solution to the nonlinear Schrödinger equa-
tion

iut + uxx + 2|u|2u = 0, t > 0, −25 ≤ x ≤ 25,

u(x, 0) = u0(x),(50)

with periodic boundary conditions and initial condition u0(x) = sech(x) exp(2ix),
and the exact solution to be

u(x, t) = sech(x− 4t) exp(i(2x− 3t)).

The L2 error and order of accuracy at T = 1 for k = 1, 2, 3, 4 are given in table 2.
We see that the optimal (k+1)-th order of accuracy of even k = 2, 4 and suboptimal
k-th order of accuracy of odd k = 1, 3. Further, Fig. 1 shows the discrete mass
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Figure 1. The numerical mass of Example 2. k = 2(Left), k = 3(Right).
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Figure 2. The numerical energy of Example 2. k = 2(Left),
k = 3(Right).
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Figure 3. The soliton propagation of Eq. (51) with initial con-
dition (52). c1 = 4, x1 = −10, c2 = −4, x2 = 10. T = 0(Left),
T = 1( Right).

conserve all the time, Fig. 2 shows the discrete energy conserve. This means our
theoretical predictions are true.

Example 3: Consider the numerical solution to the nonlinear Schrödinger equa-
tion

iut + uxx + 2|u|2u = 0, t > 0, −20 ≤ x ≤ 20,

u(x, 0) = u0(x),(51)

with periodic boundary conditions and the initial condition to be

(52) u(x, 0) =

2∑
j=1

sech(x− xj) exp(
1

2
icj(x− xj)).
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Figure 4. The soliton propagation of Eq. (51) with initial con-
dition (52). c1 = 4, x1 = −10, c2 = −4, x2 = 10. T = 2.5(Left),
T = 5(Right).

In this example, we show the process of the two solitons when they meet, collide
and separate by displaying |U(x, t)| in Figs. 3-4 with P 2 element and M = 100.

6. Concluding Remarks

In this paper, we developed the energy and mass conservative local discontinuous
Galerkin method to solve the linear and nonlinear Schrödinger equation. In our
ALDG method, we choose the average flux rather than the up-winding flux or
alternating flux. This method conserves both energy and mass. An optimal error
estimate of even order and suboptimal error estimate of odd order are obtained for
the linear case. Finally, numerical results demonstrate that in most cases, our error
estimates are optimal, i.e., the error bounds are sharp.
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