
INTERNATIONAL JOURNAL OF c⃝ 2021 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 18, Number 5, Pages 642–655

STABILIZED INVARIANT ENERGY QUADRATIZATION (S-IEQ)

METHOD FOR THE MOLECULAR BEAM EPITAXIAL MODEL

WITHOUT SLOPE SECTION

HUI ZHANG, XIAOFENG YANG, AND JUN ZHANG

Abstract. The design of numerical approaches for the molecular beam epitaxy models has

always been a hot issue in numerical analysis, in which one of the main challenges for algorithm
design is how to establish a high-order time-accurate numerical method with unconditional energy
stability. The numerical method developed in this paper is based on the “stabilized-Invariant
Energy Quadratization” (S-IEQ) approach. Its novelty is that by adding a very simple linear

stabilization term, the difficulty that the original energy potential for the no-slope selection case
is not bounded from below can be easily overcome. Then by using the standard format of the
IEQ method, we can easily obtain a linear, unconditionally energy stable, and second-order time

accurate scheme for solving the system. We further implement various numerical examples to
demonstrate the stability and accuracy of the proposed scheme.
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1. Introduction

Molecular Beam Epitaxy (MBE) model refers to a continuum model to describe
the growth of crystalline layer deposited on a substrate. By using a scalar variable
to represent the height of the crystalline layer, the model is derived by using the
gradient flow approach in L2 space. The postulated energy of the system is com-
posed of a linear entropy and a nonlinear potential where the nonlinear potential
can take two forms, one is the fourth-order Ginzburg-Landau double-well potential
and the model built on that is called the slope selection model, and the other is
the logarithmic potential and the model built on it is called the no-slope selection
model. Since the algorithm development for the double-well potential of the slope
selection model has been extensively studied, see [11,15,17,20,21,30], in this paper,
we consider the numerical approximations of the no-slope selection model, i.e., the
time marching scheme for the logarithmic potential. Formally, the governing sys-
tem of the MBE model with no-slope selection is not complicated where only two
terms (a linear term and a nonlinear term) are involved. However, it is still very
challenging to develop an effective numerical scheme due to the complexity of the
logarithmic format of the nonlinear term.

Here, we briefly introduce the available numerical schemes for the MBE no-slope
selection model here. According to the discretization method of the nonlinear po-
tential, the available approaches can be categorized to the following two types,
explicit type and semi-implicit type. The explicit type methods includes the oper-
ator splitting approach [10], explicit method [11], stabilized-explicit method [8,13],
convex-splitting method [17], and ETD approaches [3–5, 9], etc. The semi-implicit
approach includes the quadratization approach, including the Invariant Energy
Quadratization (IEQ) method [30] and its various version of Scalar Auxiliary Vari-
able (SAV) method [7], etc. It is worth noting that almost all available schemes are
linear and their implementation are very effective practically (e.g., most schemes
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only need to solve linear systems with variable coefficients or even constant coeffi-
cients at each time step). Among so many effective algorithms that can be used to
solve the MBE model, considering that the process of constructing and implement-
ing the quadratization type scheme is relatively simpler and easier, in this article
we use IEQ method to solve the model.

However, the choice of the IEQ method raises a direct open question. Although
the IEQ method developed in [30] enables one to construct linear, second-order, and
unconditionally energy stable schemes for a large class of gradient flows, it is prob-
lematic whether it is applicable for solving the MBE model without slope selection
since the nonlinear logarithmic potential is not obviously bounded from below. To
overcome it, in this paper, we modify the IEQ approach to the stabilized version
where we modify the total free energy by adding a gradient potential. With the
help of it, we can easily show that the boundedness (from below) can be naturally
satisfied, and the second-order time marching scheme can be obtained easily. Note
that the total free energy of the model has not changed, because while adding that
gradient term, we also subtract it and the subtracted item can be further bounded
by the higher-order linear potential. In this way, the bounded-from-below property
of the total free energy can still be strictly guaranteed. Moreover, the magnitude of
the stabilization term can be arbitrarily small as long as it is positive, which implies
that the splitting error caused by this term can actually be controlled within the
machine precision. We further prove the well-posedness of the developed scheme
and also show that the constructed scheme is unconditionally energy stable.

The structure of this article is as follows. In Section 2, the MBE model without
slope selection is briefly introduced. The numerical scheme is further constructed
in Section 3. The practical implementation process is also given in detail. The
unconditional energy stability is proved rigorously. In Section 4, we implement
the numerical simulations numerically to demonstrate the stability, accuracy of the
developed schemes. In Section 5, we give some concluding remarks.

2. MBE model with no slope selection

We first give a brief introduction on the MBE model with no slope selection. The
computed domain is set as Ω = [0, L]d, d = 2. Suppose ϕ(x) is a height function
and the total phenomenological free energy is postulated as [11]

(1) E(ϕ) =

∫
Ω

(
L(∆ϕ) + F (∇ϕ)

)
dx,

where the L(∆ϕ) = ϵ2

2 (∆ϕ)
2 is the linear entropy that represents the surface dif-

fusion effect, the coefficient ϵ is used to controls the diffusive strength, and F (ϕ)
is the nonlinear potential that represents a continuum description of the Ehrlich-
Schwoebel effect. For the no slope selection case, F (∇ϕ) reads as

(2) F (∇ϕ) = −1

2
ln(1 + |∇ϕ|2).

The evolution equation for the height function ϕ is derived by using the gradient
flow approach in the L2 space, that reads as

ϕt = −M
(
ϵ2∆2ϕ+ f(∇ϕ)

)
,(3)

where M is the mobility constant, and

f(∇ϕ) = ∇ ·
( ∇ϕ
1 + |∇ϕ|2

)
.(4)
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The boundary conditions will be the periodic boundary condition or the no-flux
boundary condition ∂nϕ|∂Ω = ∂n∆ϕ|∂Ω = 0, where n is the outward normal on the
domain boundary ∂Ω:

One can easily obtain the energy dissipation property for the model (3) men-

tioned above. We denote by (f, g) = (
∫
Ω
f(x)g(x)dx)

1
2 the L2 inner product be-

tween functions f(x) and g(x), by ∥f∥ = (f, f) the L2 norm of a function f(x).
By taking the L2 inner product of (3) with ϕt and performing integration by parts,
we obtain

d

dt
E(ϕ) = − 1

M
∥ϕt∥2 ≤ 0.(5)

By taking the L2 inner product with 1 for (3), we obtain the mass conservation
property as

(6)
d

dt

∫
Ω

ϕdx = 0.

Without loss of generality, the zero integral condition
∫
Ω
ϕ(x)dx = 0 is assumed so

that the Poincaré inequality holds, i.e., there exists a positive constant c0 such that

(7) ∥ϕ∥ ≤ c0∥∇ϕ∥ ∀ϕ ∈ H̄1(Ω) := {ϕ ∈ H1(Ω) :

∫
Ω

ϕ(x)dx = 0}.

3. Numerical scheme

We aim to develop a second-order time accurate, linear, and unconditionally en-
ergy stable scheme based on the IEQ approach. However, one will quickly discover
that the nonlinear potential F (∇ϕ) is not bounded from below, so we cannot di-
rectly quadratize it. We need to find out how to establish the bounded-from-below
property of the nonlinear potential. For this reason, we reformulate the total free
energy to be the following equivalent form

(8) E(ϕ) =

∫
Ω

(ϵ2
2
(∆ϕ)2 − η

2
|∇ϕ|2

)
dx+

∫
Ω

(
η

2
|∇ϕ|2 + F (∇ϕ)

)
dx,

where η is any positive constant.
Inspired from [7, 20], we establish a bounded-from-below property for the non-

linear and linear parts of the total free energy as follows.

Lemma 3.1. For any η > 0, there holds the following inequality

η

2
|∇ϕ|2 − 1

2
ln(1 + |∇ϕ|2) ≥ CB ,(9) ∫

Ω

(ϵ2
2
(∆ϕ)2 − η

2
|∇ϕ|2

)
dx > 0,(10)

where CB = 1
2 (ln η − η + 1).

Proof. For any η > 0, it is easy to show that the function G(t) := η
2 t−

1
2 ln(1 + t)

is always convex (G′′(t) > 0). Hence we can find when t∗ = 1
η − 1, G(t∗) reaches

its minimum, i.e.,

η

2
t− 1

2
ln(1 + t) = G(t) ≥ G(t∗) =

1

2
(ln η − η + 1).(11)

Then set t = |y|2, we obtain

1

2
η|y|2 − 1

2
ln(1 + |y|2) ≥ 1

2
(ln η − η + 1).(12)
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Let y = ∇ϕ, we have

1

2
η|∇ϕ|2 − 1

2
ln(1 + |∇ϕ|2) ≥ 1

2
(ln η − η + 1),(13)

that concludes (9).
From the Poincaré inequality, we derive

∥∇ϕ∥2 = −(ϕ,∆ϕ) ≤ ∥ϕ∥∥∆ϕ∥ ≤ c0∥∇ϕ∥∥∆ϕ∥ ≤ 1

2
∥∇ϕ∥2 + c20

2
∥∆ϕ∥2.(14)

That is to say, the following inequality holds,∫
Ω

η

2
|∇ϕ|2dx ≤ η

2
c20

∫
Ω

|∆ϕ|2dx.(15)

Thus, as long as we choose η < ϵ2

c20
, we have∫

Ω

(ϵ2
2
(∆ϕ)2 − η

2
|∇ϕ|2

)
dx > 0,(16)

that concludes (10). �

From (9), we are able to introduce an auxiliary variable V (t) as

V (t) =

√
η

2
|∇ϕ|2 + F (∇ϕ) +B,(17)

where B is any constant such that B + CB > 0. Hence, using ϕ and U , the total
energy (8) becomes

E(ϕ, V ) =

∫
Ω

(ϵ2
2
(∆ϕ)2 − η

2
|∇ϕ|2 + V 2

)
dx−B|Ω|.(18)

Correspondingly, we rewrite the PDE system (3) for as follows,

ϕt +M
(
ϵ2∆2ϕ+ η∆ϕ+HV

)
= 0,(19)

Vt =
1

2
Hϕt,(20)

where

H(ϕ) =
−η∆ϕ+∇ · ( ∇ϕ

1+|∇ϕ|2 )√
η
2 |∇ϕ|2 + F (∇ϕ) +B

.(21)

Note that the boundary conditions of the new system (19)-(20) are the same as
the original system since the equation for V is just an ODE for time. The initial
conditions for the system read as

ϕ|t=0 = ϕ0, V |t=0 = V (ϕ0).(22)

The transformed PDE systems (19)-(20) still admits the energy dissipative laws.
In details, by taking the L2 inner product of (19) with ϕt and of (20) with U , then
performing integration by parts and summing up both equalities, we obtain

d

dt
E(ϕ, V ) = − 1

M
∥ϕt∥2 ≤ 0.(23)

We are now ready to construct the expected scheme based on the IEQ approach
[22–32]. For simplicity, we consider only the time marching scheme. The stability
results carry over to any version fully discretized schemes using Galerkin approaches
without any further difficulties. Let δt > 0 be a time step size and set tn = nδt for
0 ≤ n ≤ N = [T/δt], let ψn denotes the numerical approximation to ψ(·, t)|t=tn ,
and ψ∗ = 2ψn − ψn−1 for any function ψ.
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Assuming that ϕn−1, ϕn and V n−1, V n are known, we solve ϕn+1 and V n+1

based on the second-order backward differentiation formula as follows,

aϕn+1 − bϕn + cϕn−1

2Mδt
+ ϵ2∆2ϕn+1 + η∆ϕn+1 +H∗V n+1 = 0,(24)

aV n+1 − bV n + cV n−1 =
1

2
H∗(aϕn+1 − bϕn + cϕn−1),(25)

where a = 3, b = 4, c = 1, H∗ = H(ϕ∗) with ϕ∗ = 2ϕn −ϕn−1. Note that as long as
we set a = 2, b = 2, c = 0, the algorithm becomes first-order time accurate which
can be applied to get ϕ1 and V 1.

We show that the scheme (24)-(25) is unconditionally energy stable as below.

Theorem 3.1. The scheme (24)-(25) is unconditionally energy stable in the sense
that it satisfies the following discrete energy dissipation law:

(26)
1

δt
(En+1 − En) ≤ − 1

M

∥∥∥3ϕn+1 − 4ϕn + ϕn−1

2δt

∥∥∥2,
where En+1 is defined as:

En+1 =
ϵ2

4
(∥∆ϕn+1∥2 + ∥∆(2ϕn+1 − ϕn)∥2)

− η

4
(∥∇ϕn+1∥2 + ∥∇(2ϕn+1 − ϕn)∥2)

+
1

2

(
∥V n+1∥2 + ∥2V n+1 − V n∥2

)
−B|Ω|,

(27)

and En+1 ≥ −B|Ω| is uniformly bounded from below.

Proof. By taking the inner product of (24) with 1
2 (3ϕ

n+1− 4ϕn+ϕn−1) in L2, and
applying the following identity

2(3u− 4v + w, u) =(|u|2 + |2u− v|2)− (|v|2 + |2v − w|2)
+ |u− 2v + w|2,

(28)

we obtain

1

4Mδt
∥3ϕn+1 − 4ϕn + ϕn−1∥2 + ϵ2

4
(∥∆ϕn+1∥2 + ∥2∆ϕn+1 −∆ϕn∥2)

− ϵ2

4
(∥∆ϕn∥2 + ∥2∆ϕn −∆ϕn−1∥2) + ϵ2

4
∥∆ϕn+1 − 2∆ϕn +∆ϕn−1∥2

− η

4
(∥∇ϕn+1∥2 + ∥2∇ϕn+1 −∆ϕn∥2)

+
η

4
(∥∇ϕn∥2 + ∥2∇ϕn −∇ϕn−1∥2)− η

4
∥∇ϕn+1 − 2∇ϕn +∇ϕn−1∥2

+
1

2
(H∗V n+1, (3ϕn+1 − 4ϕn + ϕn−1)) = 0.

(29)

By taking the L2 inner product of (25) with V n+1, we find

1

2

(
∥V n+1∥2 + ∥2V n+1 − V n∥2

)
− 1

2

(
∥V n∥2 + ∥2V n − V n−1∥2

)
+

1

2
∥V n+1 − 2V n + V n−1∥2

=
1

2
(V n+1H∗, (3ϕn+1 − 4ϕn + ϕn−1)).

(30)
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Combining (29) and (30) and using Lemma 3.1, we arrive at

ϵ2

4
(∥∆ϕn+1∥2 + ∥2∆ϕn+1 −∆ϕn∥2)

− ϵ2

4
(∥∆ϕn∥2 + ∥2∆ϕn −∆ϕn−1∥2)

− η

4
(∥∇ϕn+1∥2 + ∥2∇ϕn+1 −∆ϕn∥2)

+
η

4
(∥∇ϕn∥2 + ∥2∇ϕn −∇ϕn−1∥2)

+
1

2

(
∥V n+1∥2 + ∥2V n+1 − V n∥2

)
− 1

2

(
∥V n∥2 + ∥2V n − V n−1∥2

)
+
{ϵ2
4
∥∆ϕn+1 − 2∆ϕn +∆ϕn−1∥2 − η

4
∥∇ϕn+1 − 2∇ϕn +∇ϕn−1∥2

+
1

2
∥V n+1 − 2V n + V n−1∥2

}
= − δt

M
∥3ϕ

n+1 − 4ϕn + ϕn−1

2δt
∥2.

(31)

From (10), it is easy to see that the terms in {} are positive. By dropping the terms
in {}, we obtain the desired result (26). Moreover, from (10), it is easy to see that
En+1 is uniformly bounded from below as En+1 ≥ −B|Ω|. �

We further show how to solve the constructed scheme (24)-(25) in practice.
Instead of solving the coupled system between ϕn+1 and V n+1, we reformulate (25)
to the following:

V n+1 =
1

2
H∗ϕn+1 + gn,(32)

where gn = 1
3 (4V

n − V n−1) − 1
6H

∗(4ϕn − ϕn−1). By replacing V n+1 in (24) with

(32), it is easy to find that ϕn+1 is the solution of the following linear system

Aϕ = b,(33)

where 
Aϕ =

3

2Mδt
ϕ+ ϵ2∆2ϕ+ η∆ϕ+

1

2
H∗H∗ϕ,

b =
4ϕn − ϕn−1

2δt
−H∗gn.

(34)

To solve (33), we consider its weak form. Namely, find ϕ ∈ H2(Ω), such that

(
3

2Mδt
ϕ, ψ) + ϵ2(∆ϕ,∆ψ)− η(∇ϕ,∇ψ)

+
1

2
(H∗ϕ,H∗ψ) = (b, ψ), ∀ψ ∈ H2(Ω).

(35)

It is easy to show that the bilinear system (35) is well-posed by using the Lax-
Milgram Theorem (coercivity and boundedness are obvious), i.e., there exists the
unique solution. Meanwhile, Note that the linear system (35) is symmetric positive
definite, therefore we can apply many well-known fast solvers like CG or PCG to
solve it efficiently.

Remark 3.1. The key to constructing the IEQ scheme for the MBE no-slope se-
lection model is to establishing the bounded-from-below property for the energy po-
tential. Without it, the definition of the new variable U and the law of energy
dissipation (26) are meaningless, since the radicand maybe negative, and the en-
ergy En+1 may tend to −∞. The term η

2 |∇ϕ|
2 works as the stabilization term

indeed. Moreover, note that Lemma (3.1) is valid for any arbitrarily small η, which
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(a) Presume exact solution (b) Mesh refinement in time

Figure 1. Convergence order tests for (a) the example of the pre-
sumed exact solutions (36); and (b) the time step refinement ex-
ample with initial conditions given in (37).

means that the splitting error caused by this stabilization term can be arbitrarily
small. Moreover, based on the same method to handle the total free energy, one can
establish another version of quadratization approach, SAV method, to construct a
similar second-order time marching scheme.

Similar stabilization techniques had been widely used in the numerical scheme
for solving the nonlinear models with high stiffness, e.g., the methods of linear
stabilization, IEQ, SAV, convex-splitting methods, etc., see [1,2,6,18,19,22,28,29,
31,32].

Remark 3.2. For the system (19)-(20), another alternative second-order scheme
of Crank-Nicolson type can be constructed in the similar way, and we leave it the
interested readers. Although we only carry out the semi-discrete time marching
scheme, the fully-discrete version can be further developed without any essential
difficulties.

4. Numerical simulations

In this section, we verify the stability/accuracy of the proposed scheme (24)-(25),
and perform some benchmark simulations to show its effectiveness. The compu-
tational domain is set as a rectangular 2D domain with (x, y) ∈ Ω = [0, L]2. We
adopt the Fourier-spectral method to discretize the space.

4.1. Accuracy tests. We first perform several convergence tests to verify the
accuracy and stability of the finite element scheme (24)-(25), referred to as S-IEQ
for short.

We impose some source term to the system (3) such that the exact solutions
read as:

ϕ(x, y, t) = sin(x)cos(y)cost,(36)

Assuming that the domain is Ω = [0, 2π]2 and the periodic boundary conditions
are satisfied, we set the order parameters as ϵ2 = 0.1,M = 1, η = 1e−10, B = 100.

To verify the temporal convergence order, we discretize the space using 256
Fourier modes so that the grid size is sufficiently small and the spatial discretization
errors are negligible compared with the time discretization error. In Fig. 1 (a), the
L2-errors between the numerical solution and the exact solution at t = 1 are plotted,
where we vary different time step size δt. It can be observed that the scheme S-IEQ
presents perfect second-order convergence rate.
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(a) Energy tests using various time

steps

(b) Original and discrete energy com-

puted with δt = 2−6

Figure 2. (a) The comparisons of the time evolution of the total
free energy (27) computed by using various time steps; and (b) the
comparison of the original free energy (1) and the discrete energy
(27) computed by using the time step δt = 2−6.

Furthermore, without pre-assigning the exact solution, we set the initial condi-
tion ϕ0 and compute the accuracy order by using different time step size δt. The
computational region is still set as the 2D computational domain of Ω = [0, 2π]2,
and the initial conditions are set as

ϕ0 = sin(2x)cos(3y).(37)

We still discretize the space using 256 Fourier modes, and refine the time step
size δt. Since the exact solutions are not known for this example, we assume that
the numerical solution computed with δt = 1e−6 is treated as the exact solution
to obtain computation errors. The model parameters are still set as the previous
example. In Fig. 1 (b), the L2 errors between the numerical solution and the exact
solution at t = 1 are plotted, where different time step sizes δt are used. The
convergence order illustrated by the test also display the perfect second-order time
accuracy.

4.2. Energy Stability tests. We further implement a numerical example to tes-
tify whether the energy stability of the scheme S-IEQ can be maintained as ex-
pected. The example is a benchmark numerical test given in [11, 12, 16, 20, 30].
where the initial conditions are set as

(38) ϕ(x, y, 0) = 0.1(sin(3x) sin(2y) + sin(5x) sin(5y)).

The computational domain is set as [0, 2π]2 and 2562 Fourier modes are used to dis-
cretize the space. The model parameters are set as ϵ2 = 0.1,M = 1, η = 1e−10, B =
100.

We test the energy stability of the scheme S-IEQ by using various time steps. In
Fig. 2 (a), the evolution curves of the total free energy (27) computed by the scheme
S-IEQ are plotted, in which all obtained energy curves show monotonic decays,
thereby verifying its unconditional energy stability. Moreover, when the time step
is sufficiently small (e.g. δt ≤ 2−6), the obtained energy curves completely overlap,
indicating that the smaller the time step, the more accurate the obtained solution
is. When the time step is larger (e.g. δt ≥ 2−4), the obtained energy curves deviate
significantly from those accurate energy curves computed using smaller time steps,
indicating that the time step is larger, the error is also large although the scheme is
stable. In Fig. 2 (b), the evolution curve of the original energy (1) and the modified
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Figure 3. Snapshots of the profile ϕ taken at t = 0, 0.6, 2.4, 4.8,
8, and 30.

(a) Roughness for t ∈ (0, 4) (b) Roughness for t ∈ (0, 30)

Figure 4. The time evolution of the roughness function W (t)
computed using δt = 2−6.

discrete energy (27) computed by using δt = 2−6 are plotted, and we find that the
two energy evolution curves completely overlap, without any visible difference.

In Fig. 3, snapshots of the profiles of ϕ at different times are plotted until the
steady-state. In Fig. 4, using δt = 2−6, we plot the time evolution of the so-called
“roughness” measure function that is a good quantity to evaluate the deviation of
the height function, defined as (cf. [11, 20,30]):

(39) W (t) =

√
1

|Ω|

∫
Ω

(ϕ(x, t)− ϕ̄(t))2dx,

where ϕ̄(t) = 1
|Ω|

∫
Ω
ϕ(x, t)dx. The time evolution curve of W (t) shown in Fig. 4

displays that the deviation decreases for a short period and then keep increasing
until the steady-state.

4.3. Coarsening dynamics. We implement another benchmark problems of the
MBE model (cf. [3,4,7–9,11,13,15,17,20,21,30]), the so-called coarsening dynamics
to verify the effectiveness of the proposed scheme S-IEQ, The initial conditions are
set as the random number ranging from −0.001 to 0.001, and the model parameters
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(a) Snapshots of ϕ at different times

(b) Snapshots of ∆ϕ at different times

Figure 5. Snapshots of the profile ϕ and ∆ϕ taken at different
times (time t is shown in each subfigure).

(a) Semi-log of energy evolution over
time

(b) Log-log of roughness W (t) over time

Figure 6. The time evolution of (a) the total free energy (27)
(semi-log over time), and (b) the roughness function W (t) (log-log
over time) computed using δt = 1e−3.
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(a) Profiles of ϕ with ϵ = 0.03, 0.01, 0.005, 0.0025, 0.001, 0.0005 (from
left to right and from top to bottom)

(b) Profiles of ∆ϕ with ϵ = 0.03, 0.01, 0.005, 0.0025, 0.001, 0.0005 (from
left to right and from top to bottom)

Figure 7. Snapshots of the profile ϕ and ∆ϕ taken at steady-state
(t = 1000) with various ϵ.

are set as

ϵ = 0.03, M = 1, η = 1e−10, B = 100.(40)

The computational domain is set as Ω = [0, 4π]2 which is discretized by using 2562

Fourier modes. We set the time step δt = 1e−3 for better accuracy.
In Fig. 5, we show snapshots of the height function ϕ and its Laplacian ∆ϕ

calculated at different times. We observe the growth of the thin films, and the
pyramid/anti-pyramid shapes of hills and valleys form over time. In Fig. 6 (a) and
(b), we plot the time evolution of the total free energy (27) (semi-log over time)
and the roughness function W (t) (log-log over time), respectively. We observe
that the energy decays at the rate of − log10(t), while the roughness increases at
the rate t0.5. In Fig. 7, we compare the steady-state solutions of ϕ and ∆ϕ with
various diffusive coefficient ϵ, where we find that smaller ϵ causes the density of
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pyramid/anti-pyramid of hills and valleys greater. By comparing the numerical
results given in [7,12,14,16,20,30], we find that the calculation results of the S-IEQ
scheme are consistent with them quantitatively, thus verifying the computational
effectiveness of the developed scheme.

5. Concluding remarks

In this paper, we solve the problem that the MBE model with no slope selection
can be handled by the IEQ type approach even if the nonlinear part of the energy
potential is not obviously bounded from below. After adding the stabilization
term with an artificially small magnitude, we prove that the bounded-from-below
property still holds for the modified nonlinear potential. Then a linear and second-
order time accurate BDF2 scheme is established, which brings up the so-called
stabilized-IEQ scheme. We only need to solve a symmetric positive definite system
at each time step. The unconditional energy stability is rigorously proved, and
various numerical simulations are implemented to verify the effectiveness of the
developed scheme, numerically.
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