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CONVERGENCE ANALYSIS OF ADI ORTHOGONAL SPLINE

COLLOCATION WITHOUT PERTURBATION TERMS

BERNARD BIALECKI AND RYAN I. FERNANDES

Abstract. For the heat equation on a rectangle and nonzero Dirichlet boundary conditions,
we consider an ADI orthogonal spline collocation method without perturbation terms, to specify
boundary values of intermediate solutions at half time levels on the vertical sides of the rectangle.
We show that, at each time level, the method has optimal convergence rate in the L2 norm in

space. Numerical results for splines of orders 4, 5, 6 confirm our theoretical convergence rates and
demonstrate suboptimal convergence rates in the H1 norm. We also demonstrate numerically that
the scheme without the perturbation terms is applicable to variable coefficient problems yielding

the same convergence rates obtained for the heat equation.

Key words. Convergence, alternating direction implicit method, orthogonal spline collocation,
perturbation terms.

1. Introduction

The alternating direction implicit (ADI) method is a popular and useful tech-
nique for solving partial differential equations on rectangles. Such methods re-
duce the solution of multi-dimensional problems to the solution of a collection
of independent discrete one-dimensional problems in the coordinate directions.
ADI techniques have been used in recent years to solve a variety of problems
in various fields such as biology, engineering, finance, physics (see, for example,
[1, 8, 13, 14, 16, 19, 23, 25, 31, 32]).

ADI methods were first introduced, in the context of finite differences, by Peace-
man and Rachford [20] to solve parabolic and elliptic problems with zero Dirichlet
boundary conditions. When extending the ADI finite difference method to nonzero
Dirichlet boundary conditions, some authors included additional terms, called ‘per-
turbation terms’, to specify intermediate solutions at half time levels on vertical
sides of the rectangle (see, for example, [12, (2.8)], [27, (13), (14) on pg. 549, (35) on
pg. 555], [29, (7.3.11)], [30, (4.4.20), (4.4.21)]). The inclusion of perturbation terms
preserves the optimal convergence rate in the discrete H1 norm in space. However,
it has been shown in [17, 3] for the heat equation and a variable coefficient parabolic
equation, respectively, that the ADI finite difference scheme without perturbation
terms has optimal convergence rate in the discrete L2 norm in space. This impor-
tant finding opened the door to an application of the ADI finite difference method
to the solution of parabolic equations with Dirichlet boundary conditions on non-
rectangular sets. In [4], for the first time in the literature, we have formulated
and analyzed an ADI finite difference method without the perturbation terms on a
convex set.

Over the past several years ADI orthogonal spline collocation (OSC) has proved
to be an efficient technique to solve time dependent partial differential equation
problems on rectangles and rectangular polygons (see [5, 6, 13, 14, 15, 16, 22, 24, 26]
and references therein). The ADI OSC scheme was analyzed in [15] for the solution
of the heat equation with zero Dirichlet boundary conditions on a rectangle. The
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ADI OSC scheme with perturbation terms was analyzed in [5] for the solution of a
variable coefficient parabolic equation with nonzero Dirichlet boundary conditions
on a rectangle. The purpose of the present paper is to prove the optimal convergence
rate in the L2 norm of the ADI OSC scheme without perturbation terms for the
solution of the heat equation

(1) ut + (L1 + L2)u = f(x, y, t), (x, y, t) ∈ Ω× (0, T ],

where Ω = (a, b)× (c, d),

(2) L1u = −uxx, L2u = −uyy,
with the initial and nonzero Dirichlet boundary conditions given by

(3) u(x, y, 0) = g1(x, y), (x, y) ∈ Ω,

(4) u(x, y, t) = g2(x, y, t), (x, y, t) ∈ ∂Ω× (0, T ].

While we define the ADI OSC scheme and give convergence analysis for the heat
equation, we demonstrate by a numerical example that the scheme without the
perturbation terms is applicable to variable coefficient parabolic problems yielding
the same convergence rates as those for the heat equation. We expect the result
of this paper to impact applications and convergence analysis of the ADI OSC
method for parabolic equations with nonzero Dirichlet boundary conditions on non-
rectangular sets [7].

In section 2 we give Preliminaries. The ADI OSC schemes with and without
perturbation terms are described in section 3. Convergence analysis of the ADI
scheme without perturbation terms is carried out in section 4. In section 5, errors
and convergence rates of the ADI OSC schemes with and without perturbation
terms are presented for splines of orders 4, 5, 6. Concluding remarks are given in
section 6.

2. Preliminaries

Let {xi}Nx
i=0 and {yj}

Ny

j=0 be respectively partitions (in general nonuniform) of

[a, b] and [c, d] such that

a = x0 < x1 < · · · < xNx−1 < xNx = b, c = y0 < y1 < · · · < yNy−1 < yNy = d.

Let Ixi = (xi−1, xi), I
y
j = (yj−1, yj), h

x
i = xi − xi−1, h

y
j = yj − yj−1, and let

hx = min
i
hxi , hx = max

i
hxi , hy = min

j
hyj , hy = max

j
hyj ,

h = max(hx, hy).

We assume that a collection of the partitions {xi}Nx
i=0×{yj}

Ny

j=0 of Ω is regular, that
is, there exist positive constants σ1, σ2, and σ3 such that for every partition in the
collection, we have

σ1hx ≤ hx, σ1hy ≤ hy, σ2 ≤ hx

hy
≤ σ3.

In the following, we assume that a natural number r ≥ 3. Let Pr denote the set
of polynomials of degree ≤ r. Let Mx, M0

x, My, and M0
y be the spaces defined by

Mx = {v ∈ C1[a, b] : v|[xi−1,xi] ∈ Pr, i = 1, . . . , Nx},

M0
x = {v ∈ Mx : v(a) = v(b) = 0},

My = {v ∈ C1[c, d] : v|[yj−1,yj ] ∈ Pr, j = 1, . . . , Ny},
M0

y = {v ∈ My : v(c) = v(d) = 0}.
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The dimensions of Mx and My are (r − 1)Nx + 2 and (r − 1)Ny + 2, respectively.
Let M and M0 be the spaces defined by

M = Mx ⊗My, M0 = M0
x ⊗M0

y.

Remark 2.1. M (M0) is the set of all functions that are finite linear combinations
of products ϕ(x)ψ(y), where ϕ ∈ Mx (M0

x) and ψ ∈ My (M0
y).

Let {ξk}r−1
k=1 and {ωk}r−1

k=1 be respectively the nodes and weights of the (r − 1)-
point Gauss-Legendre quadrature on (0, 1). Note that

(5) ωk > 0, k = 1, . . . , r − 1,
r−1∑
k=1

ωk = 1.

Set Gx = {ξxi,k}
Nx,r−1
i=1,k=1, Gy = {ξyj,l}

Ny,r−1
j=1,l=1, where

(6) ξxi,k = xi−1 + hxi ξk, ξyj,l = yj−1 + hyj ξl.

Set

G = {(ξx, ξy) : ξx ∈ Gx, ξ
yGy}, Gx = Gx ∪ {a, b}, Gy = Gy ∪ {c, d}.

For v and w defined on G, let (v, w)G and ∥v∥G be given by

(7) (v, w)G =

Nx∑
i=1

Ny∑
j=1

(v, w)Gi,j , ∥v∥2G = (v, v)G ,

where

(8) (v, w)Gi,j = hxi h
y
j

r−1∑
k=1

r−1∑
l=1

ωkωl(vw)(ξ
x
i,k, ξ

y
j,l), ∥v∥2Gi,j

= (v, v)Gi,j .

Corollary 5.3 of [21] implies that v ∈ M0 is uniquely defined by its values at the
points of G.

Let {tn}Nt
n=0 be a partition of [0, T ] such that tn = nτ , where τ = T/Nt, and let

tn+1/2 = (tn + tn+1)/2, n = 0, . . . ,M − 1. We introduce the notation

(9) ∂tv
n =

vn+1 − vn

τ
.

For a function s defined on Ω× [0, T ], we use the notation

sn = s(·, tn), sn+1/2 = s(·, tn+1/2).

Assume s is a function defined on Ω. Then the Gauss interpolant sG ∈ M of s
is defined by

(10) sG(ξ
x, ξy) = s(ξx, ξy), ξx ∈ Gx, ξy ∈ Gy;

and for α = a, b, the Gauss interpolant snG(α, ·) ∈ My of sn(α, y), y ∈ [c, d], is
defined by

(11) snG(α, ξ
y) = sn(α, ξy), ξy ∈ Gy;

and for α = c, d, the Gauss interpolant snG(·, α) ∈ Mx of sn(x, α), x ∈ [a, b], is
defined by

(12) snG(ξ
x, α) = sn(ξx, α), ξx ∈ Gx.

As in [11], for r > 3, let 0 < η1 < η2 . . . < ηr−3 < 1, be the simple zeros of the
polynomial

dr−3

dtr−3
[tr−1(t− 1)r−1],
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and let {ηxi,m}Nx,r−3
i,m=1 and {ηyj,n}

Ny,r−3
j,n=1 be the points given by

ηxi,m = xi−1 + hxi ηm, ηyj,n = yj−1 + hyj ηn.

Assume s is defined on Ω. Then, the Hermite interpolant sH ∈ M of s is defined
by

(13)

(sH − s)(ηxi,m, η
y
j,n) = 0, 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny

∂k(sH − s)

∂xk
(xi, η

y
j,n) = 0, 0 ≤ i ≤ Nx, 1 ≤ j ≤ Ny,

∂l(sH − s)

∂yl
(ηxi,m, yj) = 0, 1 ≤ i ≤ Nx, 0 ≤ j ≤ Ny,

∂k+l(sH − s)

∂xk∂yl
(xi, yj) = 0, 0 ≤ i ≤ Nx, 0 ≤ j ≤ Ny,

wherem,n = 1, . . . , r−3 and k, l = 0, 1. It is known [9] that sH exists and is unique.
For a sufficiently smooth function s(x, y, t) and α = a, b, the Hermite interpolant
skH(α, ·) ∈ My of sk(α, y), y ∈ [c, d], is defined by

(14)

(skH − sk)(α, ηyj,n) = 0, 1 ≤ j ≤ Ny, n = 1, . . . , r − 3,

∂l(skH − sk)

∂yl
(α, yj) = 0, 0 ≤ j ≤ Ny, l = 0, 1,

and for α = c, d, the Hermite interpolant skH(·, α) ∈ Mx of sk(x, α), x ∈ [a, b], is
defined by

(15)

(skH − sk)(ηxi,m, α) = 0, 1 ≤ i ≤ Nx, m = 1, . . . , r − 3,

∂l(skH − sk)

∂xl
(xi, α) = 0, 0 ≤ i ≤ Nx, l = 0, 1.

Throughout the paper, C denotes a generic positive constant which may depend
on σ1, σ2, σ3, and r but is independent of h and τ .

In the following lemma we give approximation results of sH.

Lemma 2.1. For s defined on Ω, let sH ∈ M be the Hermite interpolant of s
defined in (13). If s ∈ Hr+1(Ω), then

(16)

∥∥∥∥∂l(s− sH)

∂yl

∥∥∥∥
G
≤ Chr+1−l∥s∥Hr+1(Ω), l = 0, 2.

If s ∈ Hr+2(Ω), then

(17) ∥∆(s− sH)∥G ≤ Chr∥s∥Hr+2(Ω).

If s ∈ Hr+3(Ω), then, for i = 1, . . . , Nx, j = 1, . . . , Ny,

(18) |(∆(s− sH), 1)Gi,j | ≤ Chr+1(hxi h
y
j )

1/2∥s∥Hr+3(Ix
i ×Iy

j )
.

Proof. (16) follows from [2, (2.19)] with i = 0 and j = 0, 2. (17) follows from [2,
(2.20)] for i = 0, 2. (18) follows from an inequality used in the proof of [2, (2.22)]
for i = 0, 2; see the last unnumbered equation in the proof of Lemma 2.4 in [2] and
the first half of the same proof. �

For k = 1, 2, we introduce the operators Ak : M0 → M0 defined by

(19) Akv(ξ) = Lkv(ξ) ξ ∈ G,
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where L1, L2 are given in (2). Properties of the operators Ak are stated in the
following lemma.

Lemma 2.2. We have

(20) (Akv, w)G = (v,Akw)G , v, w ∈ M0, k = 1, 2,

(21) (Akv, v)G > 0, 0 ̸= v ∈ M0, k = 1, 2,

(22) A1A2 = A2A1,

(23) (A1A2v, v)G ≥ 0, v ∈ M0.

Proof. (20) and (21) follow from (7), (8), (19), (2), and [11, Lemma 3.1]. It
follows from (7), (8), and [11, Lemma 3.1] that

(ϕ′′1(x)ψ1(y), ϕ2(x)ψ
′′
2 (y))G = (ϕ1(x)ψ

′′
1 (y), ϕ

′′
2(x)ψ2(y))G ,

ϕ1, ϕ2 ∈ M0
x, ψ1, ψ2 ∈ M0

y,

which, by Remark 2.1, implies

(A1v,A2w)G = (A2v,A1w)G , v, w ∈ M0.

The last unnumbered equation and (20) yield (22). It is known (see [28, Theorem 4,
Section 5.1]) that for any self-adjoint, non-negative operator A there exists a unique
self-adjoint, non-negative square root A1/2 which commutes with every operator
commuting with A. Hence, for v ∈ M0, using (20), (21), both with k = 1, (22),
and (21) with k = 2, we have

(A1A2v, v)G = (A
1/2
1 A

1/2
1 A2v, v)G = (A2A

1/2
1 v,A

1/2
1 v)G ≥ 0,

which gives (23). �
In the analysis, we often use the ϵ-inequality

(24) αβ ≤ ϵα2 +
1

4ϵ
β2, α, β ∈ R, ϵ > 0,

and the inequality

(25) (α+ β)2 ≤ 2(α2 + β2), α, β ∈ R.

We also require the discrete Gronwall inequality [18] and a summation by parts
in t stated in the following lemmas.

Lemma 2.3. If αk, βk, k = 0, . . . , Nt are non-negative real numbers such that βk ≤
βk+1 and

αk ≤ βk + γτ
k−1∑
n=0

αn, k = 0, . . . , Nt,

where γ is a positive constant, then

αn ≤ eγτnβn, n = 0, . . . , Nt.

Lemma 2.4. Assume w0 = 0. Then

τ
k−1∑
n=0

(vn, ∂tw
n)G = (vk−1, wk)G − τ

k−1∑
n=1

(∂tv
n−1, wn)G , k = 1, . . . , Nt.

Proof. Since (v, w)G of (7) is linear in v and w, using (9), we verify that the
left-hand side is equal to the right-hand side in the desired equation. �
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3. ADI OSC Schemes

For n = 0, . . . , Nt − 1, we find Un+1 ∈ M such that

(26)

[
Un+1/2 − Un

τ/2
+ L1U

n+1/2 + L2U
n

]
(ξ) = fn+1/2(ξ), ξ ∈ G,

(27)

[
Un+1 − Un+1/2

τ/2
+ L1U

n+1/2 + L2U
n+1

]
(ξ) = fn+1/2(ξ), ξ ∈ G,

where

(28) U0 = g1,h,

(29)
Un+1(α, y) = gn+1

2,h (α, y), y ∈ [c, d], α = a, b,

Un+1(x, α) = gn+1
2,h (x, α), x ∈ [a, b], α = c, d,

and where g1,h, g
n+1
2,h (α, ·), and gn+1

2,h (·, α) are the Gauss or Hermite interpolants of

g1, g
n+1
2 (α, ·), and gn+1

2 (·, α), respectively (cf. (10)–(15)). For n = 0, . . . , Nt − 1

and ξy ∈ Gy, U
n+1/2(·, ξy) ∈ Mx and

(30) Un+1/2(α, ξy) =
[1
2
(Un+1 + Un) +

τ

4
L2(U

n+1 − Un)
]
(α, ξy), α = a, b,

if we use perturbation terms or

(31) Un+1/2(α, ξy) =
1

2
(Un+1 + Un)(α, ξy), α = a, b,

if we do not use perturbation terms. Using (21), one can show uniqueness, and hence
existence, of Un+1/2 and Un+1 satisfying (26), (31) and (27), (29), respectively.

4. Convergence Analysis

In our convergence analysis of the ADI OSC scheme (26)–(29) and (31), we
assume that initial and boundary conditions are approximated using the Hermite
interpolant; see (28), (29). We also assume that the solution u of (1)–(4) is a
sufficiently smooth function on Ω × [0, T ]. For sufficiently smooth function s on
Ω× [0, T ], we use the notation

∥s∥C([Ω,[0,T ]) = max
(x,y,t)∈Ω×[0,T ]

|s(x, y, t|,

∥s∥C([0,T ],Hl(Ω)) = max
0≤t≤T

∥s(·, t)∥Hl(Ω),

assuming that both quantities exist and are finite.

4.1. Error Equations. For n = 0, . . . , Nt, let z
n ∈ M be defined by

(32) zn = Un − unH,

where, for fixed tn, u
n
H = uH(·, tn) is the Hermite interpolant of un or equivalently

u(·, tn) (cf. (13)). Then it follows from (32), (3), (4), (28), (29) that

(33) z0 = 0,

and for n = 1, . . . , Nt,

(34) zn = 0 on ∂Ω.

For n = 0, . . . , Nt − 1 and ξy ∈ Gy, we introduce zn+1/2(·, ξy) ∈ Mx defined by

(35) zn+1/2(x, ξy) = Un+1/2(x, ξy)− w̃n+1/2(x, ξy), x ∈ [a, b],
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where w̃n+1/2(·, ξy) ∈ Mx is given by

(36) w̃n+1/2(x, ξy) =
1

2

(
un+1
H + unH

)
(x, ξy), x ∈ [a, b].

Using (35), (31), (36), (32), (33), and (34), we obtain

(37) zn+1/2(α, ξy) = 0, α = a, b, ξy ∈ Gy.

The truncation errors of the scheme, for n = 0, . . . , Nt − 1, are defined by

(38) Tn
1 (ξ) = fn+1/2(ξ)−

[
w̃n+1/2 − unH

τ/2
+ L1w̃

n+1/2 + L2u
n
H

]
(ξ), ξ ∈ G,

and

(39) Tn
2 (ξ) = fn+1/2(ξ)−

[
un+1
H − w̃n+1/2

τ/2
+ L1w̃

n+1/2 + L2u
n+1
H

]
(ξ), ξ ∈ G.

Equations (38) and (39) indicate by how much unH, un+1
H , and w̃n+1/2 fail to satisfy

equations (26) and (27). For n = 0, . . . , Nt − 1, we introduce Tn
+ and Tn

− in M0

defined by

(40) Tn
+(ξ) =

1

2
(Tn

1 + Tn
2 ) (ξ), Tn

−(ξ) =
τ

4
(Tn

2 − Tn
1 ) (ξ), ξ ∈ G.

Using (32), (35), (26), (27), (38), and (39), for n = 0, . . . , Nt − 1, we obtain

(41)

[
zn+1/2 − zn

τ/2
+ L1z

n+1/2 + L2z
n

]
(ξ) = Tn

1 (ξ), ξ ∈ G,

(42)

[
zn+1 − zn+1/2

τ/2
+ L1z

n+1/2 + L2z
n+1

]
(ξ) = Tn

2 (ξ), ξ ∈ G,

Subtracting (42) from (41), and multiplying by τ/4, we obtain

(43) zn+1/2(ξ) =
1

2
(zn+1+ zn)(ξ)+

τ

4
L2(z

n+1− zn)(ξ)− τ

4
(Tn

2 −Tn
1 )(ξ), ξ ∈ G.

Let wn+1/2 ∈ M0 be defined by

(44) wn+1/2(ξ) = L2(z
n+1 − zn)(ξ), ξ ∈ G.

Then

zn+1/2(x, ξy) =
1

2
(zn+1+zn)(x, ξy)+

τ

4
wn+1/2(x, ξy)−Tn

−(x, ξ
y), x ∈ [a, b], ξy ∈ Gy,

since the left- and right-hand sides are in M0
x and they are equal to one another

for all x ∈ Gx by (43), (44), and (40). Substituting (43) in place of the first zn+1/2

in (41), using (9), and substituting the last unnumbered equation in place of the
second zn+1/2 in (41), we obtain

∂tz
n(ξ) +

1

2
L2(z

n+1 − zn)(ξ)− 1

2
(Tn

2 − Tn
1 )(ξ)

+
1

2
L1(z

n+1 + zn)(ξ) +
τ

4
L1w

n+1/2(ξ)− L1(T
n
−)(ξ) + L2z

n(ξ) = Tn
1 (ξ), ξ ∈ G.

Rearranging the above unnumbered equation and using (40), we obtain

(45) ∂tz
n(ξ) +

1

2
(L1 + L2)(z

n+1 + zn)(ξ) +
τ

4
L1w

n+1/2(ξ)

= Tn
+(ξ) + L1(T

n
−)(ξ), ξ ∈ G.
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It follows from (44) and (19) that wn+1/2 = τA2∂tz
n. Hence, using (19), we rewrite

(45) in the operator form as

(46) ∂tz
n +

1

2
(A1 +A2)(z

n+1 + zn) +
τ2

4
A1A2∂tz

n = Tn
+ +A1(T

n
−).

To show uniqueness of zn+1 ∈ M0 satisfying (46), we assume Z ∈ M0 satisfies[
τ−1Z +

1

2
(A1 +A2)Z +

τ

4
A1A2Z

]
(ξ) = 0, ξ ∈ G.

Taking the inner product (·, ·)G on both sides of the last unnumbered equation with
Z and using (21) and (23), we obtain

0 = τ−1(Z,Z)G +
1

2
((A1 +A2)Z,Z)G +

τ

4
(A1A2Z,Z)G ≥ τ−1(Z,Z)G .

Therefore, Z = 0 which implies uniqueness of zn+1 ∈ M0.
It will be convenient in the analysis to introduce pn+1, qn+1 ∈ M0 satisfying (cf.

(46)), for n = 0, . . . , Nt − 1,

(47) ∂tp
n +

1

2
(A1 +A2)(p

n+1 + pn) +
τ2

4
A1A2∂tp

n = Tn
+,

(48) ∂tq
n +

1

2
(A1 +A2)(q

n+1 + qn) +
τ2

4
A1A2∂tq

n = A1T
n
−,

where

(49) p0 = q0 = 0.

It follows from (33) and (49) that z0 = p0 + q0. Assume that zn = pn + qn, n =
0, . . . , Nt − 1. Then (47) and (48) imply that (46) is true with zn+1 replaced by
pn+1 + qn+1. Hence by uniqueness of zn+1, we have

(50) zn = pn + qn, n = 0, . . . , Nt.

The representation (50) allows for a simple analysis of error bounds for (47) in
comparison to that for (48).

4.2. Error Bounds. In order to bound pn and qn of (47), (48), and (49), we
introduce

(51) η(·, t) = u(·, t)− uH(·, t), t ∈ [0, T ],

where, for fixed t, uH(·, t) is the Hermite interpolant of u(·, t) (cf. (13)). The next
two lemmas are concerned with Tn

+ and Tn
− appearing on the right hand sides of

(47) and (48), respectively.

Lemma 4.1. For Tn
+, n = 0, . . . , Nt − 1, defined in (40), we have

(52) Tn
+(ξ) = Sn(ξ) +

1

2
(L1 + L2)(η

n+1 + ηn)(ξ), ξ ∈ G,

where

(53) ∥Sn∥G ≤ C(τ2 + hr+1).
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Proof. It follows from (40), (38), (39), (9), (1), (36), and (51) that, for n =
0, . . . , Nt − 1,

Tn
+(ξ) = fn+1/2(ξ)−

[
∂tu

n
H + L1w̃

n+1/2 + 1
2L2(u

n+1
H + unH)

]
(ξ)

= u
n+1/2
t (ξ)− ∂tu

n
H(ξ) + (L1 + L2)u

n+1/2(ξ)− 1
2 (L1 + L2)(u

n+1
H + unH)(ξ)

= Sn(ξ) + 1
2 (L1 + L2)(η

n+1 + ηn)(ξ), ξ ∈ G,

where
(54)

Sn(ξ) = u
n+1/2
t (ξ)−∂tun(ξ)+∂tηn(ξ)+(L1+L2)

[
un+1/2(ξ)−u

n+1 + un

2
(ξ)
]
, ξ ∈ G.

This proves (52). Using (7), (8), (9), Taylor’s theorem, and (5), we obtain

(55)
∥∥∥un+1/2

t (·)− ∂tu
n(·)

∥∥∥2
G
≤ Cτ4 ∥uttt∥2C(Ω×[0,T ]) .

In a similar way, using (2), we obtain

(56)

∥∥∥∥L1

(
un+1/2(·)− un+1 + un

2
(·)
)∥∥∥∥2

G
≤ Cτ4 ∥uxxtt∥2C(Ω×[0,T ]) ,

(57)

∥∥∥∥L2

(
un+1/2(·)− un+1 + un

2
(·)
)∥∥∥∥2

G
≤ Cτ4 ∥uyytt∥2C(Ω×[0,T ]) .

Using (7), (8), the Cauchy Schwarz inequality, (51), (uH)t = (ut)H, (16) with l = 0
and s replaced by ut(·, t), we obtain

(58) ∥∂tηn∥2G =

∥∥∥∥τ−1

∫ tn+1

tn

ηt(·, t)dt
∥∥∥∥2
G
≤ τ−1

∫ tn+1

tn

∥ηt(·, t)∥2G dt

= τ−1

∫ tn+1

tn

∥[ut − (ut)H] (·, t)∥2G dt ≤ Ch2r+2 ∥ut∥2C([0,T ],Hr+1(Ω)) .

Using (54), the triangle inequality, and (55)–(58), we have

(59) ∥Sn∥G ≤ Cτ2
[
∥uttt∥C(Ω×[0,T ]) + ∥uxxtt∥C(Ω×[0,T ]) + ∥uyytt∥C(Ω×[0,T ])

]
+Chr+1 ∥ut∥C([0,T ],Hr+1(Ω)) ,

which yields (53). �

Remark 4.1. If f(ξ, tn+1/2) in (26) and (27) of the ADI OSC scheme is replaced
by [f(ξ, tn+1) + f(ξ, tn)]/2, then (54) is replaced by

Sn(ξ) =
1

2
(un+1

t + unt )(ξ)− ∂tu
n(ξ) + ∂tη

n(ξ), ξ ∈ G.

and (59) is replaced by

∥Sn∥G ≤ Cτ2 ∥uttt∥C(Ω×[0,T ]) + Chr+1 ∥ut∥C([0,T ],Hr+1(Ω)) .

Lemma 4.2. For Tn
−, n = 0, . . . , Nt − 1, defined in (40), we have

(60) ∥Tn
−∥G ≤ Cτ2, n = 0, . . . , Nt − 1, ∥∂tTn−1

− ∥G ≤ Cτ2, n = 1, . . . , Nt − 1.
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Proof. Using (40), (38), (39), (36), (2), and (51), for n = 0, . . . , Nt−1, we obtain

(61) Tn
−(ξ) =

[
w̃n+1/2 −

un+1
H + unH

2
− τ

4
L2(u

n+1
H − unH)

]
(ξ)

=
τ

4

[
(un+1

H )yy − (unH)yy
]
(ξ)=

τ

4

[
(un+1

yy − unyy)− (ηn+1
yy − ηnyy)

]
(ξ), ξ ∈ G.

Using (7), (8), Taylor’s theorem, and (5), we obtain

(62)
∥∥un+1

yy − unyy
∥∥2
G ≤ Cτ2 ∥uyyt∥2C(Ω×[0,T ]) .

Using (7), (8), the Cauchy Schwarz inequality, (51), uyyt = utyy, (uH)yyt =
[(ut)H]yy, (16) with l = 2 and s replaced by ut(·, t), we obtain

(63)
∥∥ηn+1

yy − ηnyy
∥∥2
G =

∥∥∥∥∫ tn+1

tn

ηyyt(·, t)dt
∥∥∥∥2
G
≤ τ

∫ tn+1

tn

∥ηyyt(·, t)dt∥2G

= τ

∫ tn+1

tn

∥∥∥[ut − (ut)H]yy (·, t)dt
∥∥∥2
G
≤ Cτ2h2r−2 ∥ut∥2C([0,T ],Hr+1(Ω)) .

The first bound in (60) follows from (61), the triangle inequality, (62), and (63).
Using (9) and (61), for n = 1, . . . , Nt − 1, we obtain

(64) ∂tT
n−1
− (ξ) =

1

τ
(Tn

− − Tn−1
− )(ξ)

=
τ2

4

[
un+1
yy − 2unyy + un−1

yy

τ2

]
(ξ) +

τ2

4

[
ηn+1
yy − 2ηnyy + ηn−1

yy

τ2

]
(ξ), ξ ∈ G.

Using (7), (8), Taylor’s theorem, and (5), we obtain

(65)

∥∥∥∥∥un+1
yy − 2unyy + un−1

yy

τ2

∥∥∥∥∥
2

G

≤ C ∥uyytt∥2C(Ω×[0,T ]) .

Using (7), (8), Cauchy Schwarz inequality, (51), uyytt = uttyy, (uH)yytt = [(utt)H]yy,
(16) with l = 2 and s replaced by utt(·, t), we obtain

(66)

∥∥∥∥∥ηn+1
yy − 2ηnyy + ηn−1

yy

τ2

∥∥∥∥∥
2

G

=

∥∥∥∥∥τ−2

∫ tn+1

tn−1

(τ − |t− nτ |)ηyytt(·, t)dt

∥∥∥∥∥
2

G

≤ τ−1

∫ tn+1

tn−1

∥ηyytt(·, t)∥2G dt = τ−1

∫ tn+1

tn−1

∥∥∥[utt − (utt)H]yy (·, t)
∥∥∥2
G
dt

≤ Ch2r−2 ∥utt∥2C([0,T ],Hr+1(Ω)) .

The second bound in (60) follows from (64), the triangle inequality, (65), and (66).
�

Lemma 4.3. Let v ∈ M0 and

(67) vi,j =
(
hxi h

y
j

)−1
(v, 1)Gi,j , i = 1, . . . , Nx, j = 1, . . . , Ny.

Then

(68)

Nx∑
i=1

Ny∑
j=1

∥v − vi,j∥2Gi,j
≤ Ch2(−∆v, v)G .
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Proof. It follows from (67) and (8) that

(69) vi,j =
r−1∑
µ=1

r−1∑
ν=1

ωµωνv(ξi,µ, ξj,ν).

Using (8), (5), (69), (25), and the Cauchy Schwarz inequality, we have
(70)

∥v − vi,j∥2Gi,j
= hxi h

y
j

r−1∑
k=1

r−1∑
l=1

ωkωl

(
r−1∑
µ=1

r−1∑
ν=1

ωµων

[
v(ξxi,k, ξ

y
j,l)− v(ξxi,µ, ξ

y
j,ν)
])2

= hxi h
y
j

r−1∑
k=1

r−1∑
l=1

ωkωl

(
r−1∑
µ=1

r−1∑
ν=1

ωµων

[
v(ξxi,k, ξ

y
j,l)− v(ξxi,µ, ξ

y
j,l)

+v(ξxi,µ, ξ
y
j,l)− v(ξxi,µ, ξ

y
j,ν)
])2

= hxi h
y
j

r−1∑
k=1

r−1∑
l=1

ωkωl

(
r−1∑
µ=1

r−1∑
ν=1

ωµων

[∫ ξxi,k

ξxi,µ

vx(s, ξ
y
j,l)ds+

∫ ξyj,l

ξyj,ν

vy(ξ
x
i,µ, s)ds

])2

≤ 2hxi h
y
j

r−1∑
k=1

r−1∑
l=1

ωkωl

r−1∑
µ=1

r−1∑
ν=1

ωµων

∣∣∣∣∣
∫ ξxi,k

ξxi,µ

vx(s, ξ
y
j,l)ds

∣∣∣∣∣
2

+

∣∣∣∣∣
∫ ξyj,l

ξyj,ν

vy(ξ
x
i,µ, s)ds

∣∣∣∣∣
2


≤ Chxi h
y
j

r−1∑
l=1

ωl

(∫
Ix
i

|vx(s, ξyj,l)|ds

)2

+
r−1∑
k=1

ωk

(∫
Iy
j

|vy(ξxi,k, s)|ds

)2


≤ Chxi h
y
j

[
hxi

r−1∑
l=1

ωl ∥vx(·, ξyj,l)∥
2
L2(Ix

i ) + hyj

r−1∑
k=1

ωk ∥vy(ξxi,k, ·)∥2L2(Iy
j )

]

≤ Ch2

[
hyj

r−1∑
l=1

ωl ∥vx(·, ξyj,l)∥
2
L2(Ix

i ) + hxi

r−1∑
k=1

ωk ∥vy(ξxi,k, ·)∥2L2(Iy
j )

]
.

Using (70), [11, Lemma 3.3], (7), and (8), we obtain

Nx∑
i=1

Ny∑
j=1

∥v − vi,j∥2Gi,j

≤ Ch2

Ny∑
j=1

hyj

r−1∑
l=1

ωl ∥vx(·, ξyj,l)∥
2
L2(a,b) +

Nx∑
i=1

hxi

r−1∑
k=1

ωk ∥vy(ξxi,k, ·)∥2L2(c,d)


≤ Ch2

Ny∑
j=1

hyj

r−1∑
l=1

ωl

Nx∑
i=1

hxi

r−1∑
k=1

ωk (−vxxv)(ξxi,k, ξ
y
j,l)

+

Nx∑
i=1

hxi

r−1∑
k=1

ωk

Ny∑
j=1

hyj

r−1∑
l=1

ωl (−vyyv)(ξxi,k, ξ
y
j,l)


= Ch2 [(−vxx, v)G + (−vyy, v)G ] = Ch2(−∆v, v)G ,
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which proves (68). �
We obtain an error bound for (47), (49) in the following theorem.

Theorem 4.1. For pn ∈ M0, n = 0, . . . , Nt, satisfying (47) and (49), we have

(71) (−∆pn, pn)G ≤ C(τ4 + h2r+2).

Proof. Taking the inner product (·, ·)G on both sides of (47) with 2τ∂tp
n and

using (7), (9), and (23), we obtain, for n = 0, . . . , Nt − 1,

(72) 2τ∥∂tpn∥2G + ((A1 +A2)(p
n+1 + pn), pn+1 − pn)G ≤ 2τ(Tn

+, ∂tp
n)G .

Using (52), the Cauchy Schwarz inequality, (24), (53), and (25), we have

(73) 2τ(Tn
+, ∂tp

n)G ≤ 2τ∥Sn∥G∥∂tpn∥G + τ((L1 + L2)(η
n+1 + ηn), ∂tp

n)G

≤ τ∥∂tpn∥2G + Cτ(τ4 + h2r+2) + τ((L1 + L2)(η
n+1 + ηn), ∂tp

n)G .

Using (7), (2), and linearity in w of (v, w)Gi,j of (8), we have

(74) τ
(
(L1 + L2)(η

n+1 + ηn), ∂tp
n
)
G = I(n) + II(n),

where

I(n) = τ

Nx∑
i=1

Ny∑
j=1

(−∆(ηn+1 + ηn), ∂t(p
n − pni,j))Gi,j ,(75)

II(n) = τ

Nx∑
i=1

Ny∑
j=1

(−∆(ηn+1 + ηn), ∂tp
n
i,j)Gi,j ,(76)

(77) pni,j =
(
hxi h

y
j

)−1
(pn, 1)Gi,j .

First, we bound II(n). Since (v, w)Gi,j of (8) is linear in v, it follows from (77) and
(9) that

∂tp
n
i,j = (hxi h

y
j )

−1(∂tp
n, 1)Gi,j .

Using the last unnumbered equation, the Cauchy Schwarz inequality, (8), (5), the
triangle inequality, (51), (18) with s replaced by un+1 and un, and using (24), we
have

(78) (−∆(ηn+1 + ηn), ∂tp
n
i,j)Gi,j = (hxi h

y
j )

−1(∂tp
n, 1)Gi,j (−∆(ηn+1 + ηn), 1)Gi,j

≤ ∥∂tpn∥Gi,j (hxi h
y
j )

−1/2
{
|(∆

[
un+1 − (un+1)H

]
, 1)Gi,j |

+|(∆ [un − (un)H] , 1)Gi,j |
}

≤ ∥∂tpn∥Gi,jCh
r+1

[
∥un+1∥Hr+3(Ix

i ×Iy
j )

+ ∥un∥Hr+3(Ix
i ×Iy

j )

]
≤ ∥∂tpn∥2Gi,j

+ Ch2r+2
[
∥un+1∥2

Hr+3(Ix
i ×Iy

j )
+ ∥un∥2

Hr+3(Ix
i ×Iy

j )

]
.

Using (76), (78), and (7), we obtain

(79) II(n) ≤ τ∥∂tpn∥2G + τCh2r+2
[
∥un+1∥2Hr+3(Ω) + ∥un∥2Hr+3(Ω)

]
.

Combining (72), (73), (74), and (79), we obtain

((A1 +A2)(p
n+1 + pn), pn+1 − pn)G ≤ I(n) + Cτ(τ4 + h2r+2).
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For given k = 1, . . . , Nt, we sum the last unnumbered equation from n = 0 to k−1,
use (20), p0 = 0 of (49), (19), and (2), to obtain

(80) (−∆pk, pk)G ≤
k−1∑
n=0

I(n) + C(τ4 + h2r+2), k = 1, . . . , Nt.

Next, using (75), p0 = 0 of (49) which implies p0i,j = 0 by (77), and Lemma 2.4
with the subscript G replaced by Gi,j , we obtain

(81)
k−1∑
n=0

I(n) =

Nx∑
i=1

Ny∑
j=1

τ
k−1∑
n=0

(−∆(ηn+1 + ηn), ∂t(p
n − pni,j))Gi,j

=

Nx∑
i=1

Ny∑
j=1

(−∆(ηk+ηk−1), pk−pki,j)Gi,j +τ

k−1∑
n=1

Nx∑
i=1

Ny∑
j=1

(∂t∆(ηn+ηn−1), pn−pni,j)Gi,j .

To bound the first term on the right-hand side in (81), we use twice the Cauchy
Schwarz inequality, (7), (8), the triangle inequality, (51), Lemma 4.3 with v, vi,j
replaced respectively by pk, pki,j , (17) with s replaced by uk and uk+1, and (24), to
obtain
(82)

Nx∑
i=1

Ny∑
j=1

(−∆(ηk + ηk−1, pk − pki,j)Gi,j ≤
Nx∑
i=1

Ny∑
j=1

∥∆(ηk + ηk−1)∥Gi,j ∥pk − pki,j∥Gi,j

≤ ∥∆(ηk + ηk−1)∥G

Nx∑
i=1

Ny∑
j=1

∥pk − pki,j∥2Gi,j

1/2

≤
(
∥∆[uk − (uk)H]∥G + ∥∆[uk−1 − (uk−1)H]∥G

)
Ch(−∆pk, pk)

1/2
G

≤ (−∆pk, pk)
1/2
G Chr+1∥u∥C([0,T ],Hr+2(Ω))

≤ 1

2
(−∆pk, pk)G + Ch2r+2∥u∥2C([0,T ],Hr+2(Ω)).

To bound the second term on the right hand side of (81), using (9), (7), (8), the
Cauchy Schwarz inequality, (51), (∆u)t = ∆(ut), [∆(uH)]t = ∆[(ut)H], and (17)
with s replaced by ut(·, t), we obtain

∥∂t∆ηn∥2G =
∥∥∥τ−1

∫ tn+1

tn

(∆η)t(·, t)dt
∥∥∥2
G
≤ τ−1

∫ tn+1

tn

∥(∆η)t(·, t)∥2Gdt

= τ−1

∫ tn+1

tn

∥∥∆[ut − (ut)H)](·, t)
∥∥∥2
G
dt ≤ Ch2r∥ut∥2C([0,T ],Hr+2(Ω)).

Then following derivations in (82) and using the last unnumbered equation, we have

(83) τ
k−1∑
n=1

Nx∑
i=1

Ny∑
j=1

(∂t∆(ηn + ηn−1), pn − pni,j)Gi,j

≤ τ

k−1∑
n=1

Nx∑
i=1

Ny∑
j=1

∥∂t∆(ηn + ηn−1)∥Gi,j∥pn − pni,j∥Gi,j
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≤τ
k−1∑
n=1

∥∂t∆(ηn + ηn−1)∥G

Nx∑
i=1

Ny∑
j=1

∥pn − pni,j∥Gi,j

1/2

≤τ
k−1∑
n=1

(
∥∂t∆ηn∥G + ∥∂t∆ηn−1∥G

)
Ch(−∆pn, pn)

1/2
G

≤τ
k−1∑
n=1

(−∆pn, pn)
1/2
G Chr+1∥ut∥C([0,T ],Hr+2(Ω))

≤τ
2

k−1∑
n=1

(−∆pn, pn)G + Ch2r+2∥ut∥2C([0,T ],Hr+2(Ω)).

Substituting (82) and (83) into (81), we obtain

k−1∑
n=1

I(n) ≤ 1

2
(−∆pk, pk)G +

τ

2

k−1∑
n=1

(−∆pn, pn)G + Ch2r+2, k = 1, . . . , Nt.

Substituting the last unnumbered equation into (80), multiplying by 2, and using
p0 = 0 of (49), we obtain

(−∆pk, pk)G ≤ τ
k−1∑
n=1

(−∆pn, pn)G + Ch2r+2, k = 0, . . . , Nt.

Lemma 2.3, applied to the last unnumbered equation with αk = (−∆pk, pk)G ,
βk = Ch2r+2 and γ = 1, completes the proof. �

Next we obtain an error bound for (48), (49).

Theorem 4.2. For qn ∈ M0, n = 0, . . . , Nt, satisfying (48), (49), we have

(84) ∥qn∥G≤ Cτ2.

Proof. (21) with k = 1 implies existence of A−1
1 . Multiplying (48) by A−1

1 and
taking the inner product (·, ·)G on both sides with 2τ∂tp

n , we obtain

(85) 2τ(A−1
1 ∂tq

n, ∂tq
n)G + τ(qn+1 + qn, ∂tq

n)G + τ(A−1
1 A2(q

n+1 + qn), ∂tq
n)G

+
τ3

2
(A2∂tq

n, ∂tq
n)G = 2τ(Tn

−, ∂tq
n)G , n = 0, . . . , Nt − 1.

It follows from (20) and (22) that

(A−1
1 A2v, w)G = (v,A2A

−1
1 w)G = (v,A−1

1 A2w)G , v, w ∈ M0,

which, along with (9), implies

τ(A−1
1 A2(q

n+1 + qn), ∂tq
n)G = (A−1

1 A2q
n+1, qn+1)G − (A−1

1 A2q
n, qn)G .

Using (9), we also have

τ((qn+1 + qn), ∂tq
n)G = (qn+1, qn+1)G − (qn, qn)G .

It follows from (21) that the first and last terms on the left hand side of (85) are
non-negative. Dropping these terms and using the last two unnumbered equations
in (85), we obtain

(86) (qn+1, qn+1)G − (qn, qn)G + (A−1
1 A2q

n+1, qn+1)G − (A−1
1 A2q

n, qn)G

≤ 2τ(Tn
−, ∂tq

n)G , n = 0, . . . , Nt − 1.

It follows from (20), (22), and (23) that

(A−1
1 A2v, v)G ≥ 0, v ∈ M0.
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For k = 1, . . . , Nt, summing (86) from n = 0 to k − 1, using the last unnumbered
equation, and q0 = 0 of (49), we obtain

(87) ∥qk∥2G ≤ 2τ

k−1∑
n=0

(Tn
−, ∂tq

n)G .

Using q0 = 0 of (49), Lemma 2.4, the Cauchy Schwarz inequality, (24), and (60),
we have

(88) 2τ

k−1∑
n=0

(Tn
−, ∂tq

n)G = 2(T k−1
− , qk)G − 2τ

k−1∑
n=1

(∂tT
n−1
− , qn)G

≤ 1

2
∥qk∥2G + 2∥T k−1

− ∥2G + τ

k−1∑
n=1

∥∂tTn−1
− ∥2G + τ

k−1∑
n=1

∥qn∥2G

≤ 1

2
∥qk∥2G + τ

k−1∑
n=1

∥qn∥2G + Cτ4.

Combining (87), (88), and using q0 = 0 of (49), we obtain

∥qk∥2G ≤ 2τ
k−1∑
n=1

∥qn∥2G + Cτ4, k = 0, . . . , Nt.

Lemma 2.3 applied to the last unnumbered equation with αk = ∥qk∥2G , βk = Cτ4,
and γ = 2, completes the proof. �

Theorem 4.3. Assume Un
h , n = 0, . . . , Nt, satisfy (26)–(29) and (31). Then,

max
0≤n≤Nt

∥un − Un∥L2(Ω) ≤ C(τ2 + hr+1).

Proof. For n = 0, . . . , Nt and p
n of (47) and (49), using the Poincaré inequality,

[11, Lemma 3.1], (7), (8), (21) with k = 2, (19), (2), and (71), we have

Ny∑
j=1

hyj

r−1∑
l=1

ωl

∫ b

a

[pn]2(x, ξyj,l)dx ≤ C

Ny∑
j=1

hyj

r−1∑
l=1

ωl

∫ b

a

[pnx ]
2(x, ξyj,l)dx

≤ C

Ny∑
j=1

hyj

r−1∑
l=1

ωl

Nx∑
i=1

hyi

r−1∑
k=1

ωl(−pnxxpn)(ξxi,k, ξ
y
j,l) = C(−pnxx, pn)G

≤ C(−pnxx, pn)G + (A2p
n, pn)G ≤ C(−∆pn, pn)G ≤ C(τ4 + h2r+2).

For n = 0, . . . , Nt and q
n of (48) and (49), using the second inequality in [21, (5.25)],

(7), (8), and (84), we have

Ny∑
j=1

hyj

r−1∑
l=1

ωl

∫ b

a

[qn]2(x, ξyj,l)dx ≤C
Ny∑
j=1

hyj

r−1∑
l=1

ωl

Nx∑
i=1

hxi

r−1∑
k=1

ωk[q
n]2(ξi,k, ξ

y
j,l)

=C∥qn∥2G ≤ Cτ4.

For n = 0, . . . , Nt and z
n of (32), using the second inequality in [21, (5.25)], (50),

(25), and the last two unnumbered equations, we have

∥zn∥2L2(Ω) =

∫ b

a

∫ d

c

[zn]2(x, y)dydx ≤ C

∫ b

a

Ny∑
j=1

hyj

r−1∑
l=1

ωl[z
n]2(x, ξyj,l)dx
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≤ C

Ny∑
j=1

hyj

r−1∑
l=1

ωl

∫ b

a

[pn]2(x, ξyj,l)dx+ C

Ny∑
j=1

hyj

r−1∑
l=1

ωl

∫ b

a

[qn]2(x, ξyj,l)dx

≤ C(τ4 + h2r+2).

For n = 0, . . . , Nt, it follows from the triangle inequality, (32), (16) with l = 0
and s replaced by un, the last unnumbered equation, and the inequality

√
α+ β ≤√

α+
√
β, α ≥ 0, β ≥ 0, that

∥un − Un∥L2(Ω) ≤ ∥un − unH∥L2(Ω) + ∥zn∥L2(Ω) ≤ C(τ2 + hr+1). �

5. Numerical Results

With Ω = (−1, 1) × (−1, 1) and T = 1, we choose f , g1, g2 so that the exact
solution of (1)–(4) is

u(x, y, t) = e
1

1+t exy.

The ADI OSC scheme (26)–(29) has been implemented as described in [5, Section
5] for r ≥ 3 using MATLAB. For approximation of the boundary condition on
vertical sides, we have tested both approaches, (30) which uses perturbation terms
and (31) which does not use perturbation terms.

The L2 and H1 norms of the error e = u(·, T )− UNt are approximated using p-
point Gauss-Legendre quadratures in x and y with suitable p so that quadrature er-

rors are negligible. Let {ξ̃k}pk=1 and {ω̃k}pk=1 be respectively the nodes and weights

of the p-point Gauss-Legendre quadrature on (0, 1). We set G̃x = {ξ̃xi,k}
Nx, p
i=1,k=1 and

G̃y = {ξ̃yj,l}
Ny, p
j=1,l=1, where ξ̃

x
i,k and ξ̃yj,l are given by the right-hand sides in (6) with

ξk and ξl replaced by ξ̃k and ξ̃l, respectively. Then, the L
2 and H1 norm errors are

approximated by the formulae

(89) ∥e∥2L2(Ω) ≈
Nx∑
i=1

Ny∑
j=1

hxi h
y
j

p∑
k=1

p∑
l=1

ω̃x
k ω̃

y
l e

2(ξ̃xi,k, ξ̃
y
j,l)

and

∥e∥2H1(Ω) ≈
Nx∑
i=1

Ny∑
j=1

hxi h
y
j

p∑
k=1

p∑
l=1

ω̃x
k ω̃

y
l

[
e2 + e2x + e2y

]
(ξ̃xi,k, ξ̃

y
j,l),

respectively. We explain how to evaluate UNt(ξ̃x, ξ̃y), UNt
y (ξ̃x, ξ̃y), UNt

x (ξ̃x, ξ̃y),

ξ̃x ∈ G̃x, ξ̃
y ∈ G̃y.

(a) For each ξx ∈ Gx we know the coefficients uξx,j in

(90) UNt(ξx, y) =

Ny(r−1)+2∑
j=1

uξx,jB
y
j (y), y ∈ [c, d],

where the B splines By
j form a basis for My. We use (90) to compute UNt(ξx, ξ̃y),

UNt
y (ξx, ξ̃y), ξx ∈ Gy, ξ̃

y ∈ G̃y.

(b) For each ξ̃y ∈ G̃y, we have

(91) UNt(x, ξ̃y) =

Nx(r−1)+2∑
i=1

αi,ξ̃yB
x
i (x), x ∈ [a, b],
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Table 1. L2 norm errors; initial, boundary conditions via Hermite interpolant.

With (30) With (31)
N Error Rate Error Rate

r=3 4 5.7–04 3.9–04
9 2.2–05 4.002 1.5–05 4.008
16 2.2–06 4.000 1.5–06 4.013
25 3.7–07 4.000 2.5–07 4.011

r=4 4 1.5–04 9.6–05
9 2.5–06 5.001 1.6–06 5.031
16 1.4–07 5.000 9.1–08 5.018
25 1.5–08 5.000 9.7–09 5.011

r=5 4 3.6–05 2.4–05
9 2.8–07 6.000 1.8–07 6.029
16 8.9–09 6.000 5.6–09 6.015
25 6.1–10 6.000 3.9–10 6.010

where the B splines Bx
i form a basis for Mx. We compute the coefficients αi,ξ̃y in

(91) by solving the interpolation problem

Nx(r−1)+2∑
i=1

αi,ξ̃yB
x
i (ξ

x) = UNt(ξx, ξ̃y), ξx ∈ Gx,

where UNt(ξx, ξ̃y), ξx ∈ Gx, ξ̃
y ∈ G̃x, are known from part (a) and UNt(ξx, ξ̃y),

ξx = a, b, are known from the first equation in (29). Then, we use (91) to compute

UNt(ξ̃x, ξ̃y), UNt
x (ξ̃x, ξ̃y), ξ̃x ∈ G̃x, ξ̃y ∈ G̃y.

(c) For each ξ̃y ∈ G̃y, we have

(92) UNt
y (x, ξ̃y) =

Nx(r−1)+2∑
i=1

βi,ξ̃yB
x
i (x), x ∈ [a, b].

We compute the coefficients βi,ξ̃y in (92) by solving the interpolation problem

Nx(r−1)+2∑
i=1

αi,ξ̃yB
x
i (ξ

x) = UNt
y (ξx, ξ̃y), ξx ∈ Gx,

where UNt
y (ξx, ξ̃y), ξx ∈ Gx, ξ̃

y ∈ Gy, are known from part (a) and UNt
y (ξx, ξ̃y) =

(g2,h)y(ξ
x, ξ̃y), ξx = a, b, (see the first equation in (29)). Then, we use (92) to

compute UNt
y (ξ̃x, ξ̃y), ξ̃x ∈ G̃x, ξ̃y ∈ G̃y.

For r = 3, 4, 5, the L2 norm errors and convergence rates of the ADI OSC scheme
are presented in Table 1. We use Hermite interpolation to approximate the initial
and boundary conditions; see (28), (29). Based on our analysis of the scheme, we
expect the maximum norm error in time to be O(τ2) and the L2 norm error in
space to be O(hr+1). Hence, for N = 4, 9, 16, 25, we have chosen Nx = Ny = 2N

(h = hx = hy = 2/(2N) = 1/N) and Nt = (
√
N)(r+1) so that τ2 = h(r+1). When

computing the errors, we choose p = r + 2 so that the quadrature error in (89) is
negligible since we expect this error to be O(h2p−1).

For r = 3, 4, 5, the convergence rates using the L2 norm errors in Table 1 are
approximately 4, 5, 6, respectively, which is optimal and confirms the findings of our
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Table 2. H1 norm errors; initial, boundary conditions via Her-
mite interpolant.

With (30) With (31)
N Error Rate Error Rate

r=3 4 6.0–03 1.9–02
9 5.2–04 3.008 2.8–03 2.329
16 9.3–05 2.999 6.3–04 2.604
25 2.4–05 2.999 2.1–04 2.436

r=4 4 1.5–03 6.6–03
9 5.8–05 4.003 4.2–04 3.403
16 5.8–06 4.000 5.6–05 3.490
25 9.7–07 4.000 1.2–05 3.486

r=5 4 3.7–04 2.2–03
9 6.4–06 5.001 6.0–05 4.436
16 3.6–07 5.000 4.5–06 4.486
25 3.9–08 5.000 6.1–07 4.490

Table 3. L2 norm errors; initial, boundary conditions via Gauss interpolant.

With (30) With (31)
N Error Rate Error Rate

r=3 4 5.8–04 3.8–04
9 2.3–05 4.002 1.5–05 4.007
16 2.3–06 4.000 1.5–06 4.012
25 3.8–07 4.000 2.5–07 4.010

r=4 4 1.5–04 9.6–05
9 2.5–06 5.001 1.6–06 5.031
16 1.4–07 5.000 9.1–08 5.018
25 1.5–08 5.000 9.7–09 5.011

r=5 4 3.6–05 2.4–05
9 2.8–07 6.000 1.8–07 6.029
16 8.9–09 6.000 5.7–09 6.015
25 6.1–10 6.000 3.9–10 6.010

theoretical analysis. While the convergence rates are the same for two approaches
(30) and (31), the L2 norm errors for (31) appear to be smaller.

For r = 3, 4, 5, the H1 norm errors and convergence rates of the ADI OSC
scheme are shown in Table 2. We use Hermite interpolation to approximate the
initial and boundary conditions. Since we expect the maximum norm error in time
to be O(τ2) and the H1 norm error in space to be O(hr), for N = 4, 9, 16, 25, we

have chosen Nx = Ny = 2N (h = hx = hy = 2/(2N) = 1/N), Nt = (
√
N)r so that

τ2 = hr. We again choose p = r + 2.
For r = 3, 4, 5, the optimal rates using the H1 norm errors in Table 2 are ap-

proximately 3, 4, 5, respectively, when the approach (30) is used. This is consistent
with the result proved in [5] for r = 3. We do not obtain the optimal H1 rates
for the approach (31); for h sufficiently small, the respective rates for r = 3, 4, 5
are approximately 2.5, 3.5, 4.5. Thus, when perturbation terms are not used, we
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Table 4. H1 norm errors; initial, boundary conditions via Gauss interpolant.

With (30) With (31)
N Error Rate Error Rate

r=3 4 6.0–03 1.8–02
9 5.2–04 3.011 2.8–03 2.326
16 9.3–05 3.001 6.3–04 2.603
25 2.4–05 3.000 2.1–04 2.435

r=4 4 1.5–03 6.6–03
9 5.8–05 4.003 4.2–04 3.403
16 5.8–06 4.000 5.6–05 3.490
25 9.7–07 4.000 1.2–05 3.486

r=5 4 3.7–04 2.2–03
9 6.4–06 5.001 6.0–05 4.436
16 3.6–07 5.000 4.5–06 4.486
25 3.9–08 5.000 6.1–07 4.490

Table 5. L2 and H1 norm errors; initial, boundary conditions via
Hermite interpolant.

L2 norm H1 norm
N Error Rate Error Rate

r=3 4 6.4–03 3.5–02
9 2.5–05 4.004 4.9–03 2.446
16 2.5–06 4.010 1.2–03 2.464
25 4.1–07 4.010 3.9–04 2.462

r=4 4 1.6–04 1.3–02
9 2.7–06 5.037 7.7–04 3.470
16 1.5–07 5.021 1.0–04 3.465
25 1.6–08 5.014 2.2–05 3.474

r=5 4 4.1–05 4.2–03
9 3.0–07 6.034 1.1–04 4.472
16 9.5–09 6.018 8.6–06 4.474
25 6.5–10 6.012 1.2–06 4.482

only obtain suboptimal convergence rates in the H1 norm, that is, 0.5 less than the
optimal rate.

In Tables 3 and 4 we present results similar to those in Tables 1 and 2 respectively.
All parameters are kept the same but instead of using Hermite interpolation, we
use Gauss interpolation to approximate the initial and boundary conditions.

Comparing Tables 1 and 2 with Tables 3 and 4 respectively, we observe that the
corresponding L2 and H1 norm errors and rates are comparable. Numerically, it is
easier to approximate the initial and boundary conditions using Gauss rather than
Hermite interpolation.

Finally, we demonstrate that the ADI OSC scheme without the perturbation
terms is applicable to variable coefficient problems. If (2) is replaced by

L1u = −a1(x, y, t)uxx, L2u = −a2(x, y, t)uyy,
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Table 6. L2 and H1 norm errors; initial, boundary conditions via
Gauss interpolant.

L2 norm H1 norm
N Error Rate Error Rate

r=3 4 6.3–04 3.5–02
9 2.5–05 4.003 4.9–03 2.444
16 2.5–06 4.009 1.2–03 2.463
25 4.1–07 4.010 3.9–04 2.461

r=4 4 1.6–04 1.3–02
9 2.7–06 5.037 7.7–04 3.470
16 1.5–07 5.021 1.0–04 3.465
25 1.6–08 5.014 2.2–05 3.474

r=5 4 4.1–05 4.2–03
9 3.0–07 6.034 1.1–04 4.472
16 9.5–09 6.018 8.6–06 4.474
25 6.5–10 6.012 1.2–06 4.482

then in (26), (27), Li, i = 1, 2, is replaced by L
n+1/2
i , i = 1, 2, see, for example, [5,

(3.1)]. We choose

a1(x, y, t) = (1/4)(1 + x2 + y2 + t2), a2(x, y, t) = sin(x+ y) + (1/3)(t+ 4)

with all other parameters the same as in the case of the heat equation.
The ADI OSC scheme has been implemented with boundary conditions on ver-

tical sides approximated without the perturbation terms (cf. (31)). Tables 5 and 6
give the L2 and H1 norm errors and the corresponding convergence rates with ini-
tial and boundary conditions approximated using Hermite and Gauss interpolants,
respectively.

Comparing results of Table 5 with the last two columns of Tables 1 and 2 and
comparing results of Table 6 with the last two columns of Tables 3 and 4, we see
that there is good agreement. This indicates that the ADI OSC scheme without
the perturbation terms for the variable coefficient problem also yields the optimal
L2 norm rate and suboptimal H1 norm rate.

6. Concluding Remarks

We have shown that the ADI OSC scheme for the heat equation on a rectangle
without perturbation terms on vertical sides for nonzero Dirichlet boundary con-
ditions has optimal convergence rate in the L2 norm. Numerical results confirm
the same. This new finding is important for applications of the ADI OSC scheme
to non-linear problems, problems with other types of boundary conditions and to
problems on non-rectangular regions, in which case it is impossible to use perturba-
tion terms. Numerical results also suggest that if perturbation terms are not used,
then a subotimal convergence rate is obtained for the H1 norm.
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