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GLOBAL WELL-POSEDNESS FOR NAVIER-STOKES-DARCY
EQUATIONS WITH THE FREE INTERFACE

BIN ZHAO, MINGYUE ZHANG, AND CHUANGCHUANG LIANG*

Abstract. In this paper, the Navier-Stokes-Darcy equations with the free interface are considered,
which model the movement of the sea and the sand in the seafloor or the filtration of blood through
the arterial wall. The global well-posedness of the solution perturbed around the constant steady
state is obtained and then the almost exponential decay to the constant stationary state is gained.
Finally, we present an efficient explicit discrete scheme based on finite-volume method for the free
interface system and provide the numerical tests to illustrate the consistency with our analysis
result.

Key words. Navier-Stokes-Darcy equations, the free interface, global well-posedness, large time
behavior.

1. Introduction

In this paper, we consider the Navier-Stokes-Darcy equations with the free
boundary, that is, the viscous, incompressible fluid coupled with the porous medium
flow which are separated by the free interface. The equations model the movement
of the sea and the sand in the seafloor or the filtration of blood through the ar-
terial wall; refer to [29, 2] and the references therein. The mixed Stokes-Darcy
model, which is the simplified model of the Navier-Stokes-Darcy equations, has a
wide range of applications in science and engineering including industrial settings,
especially in cases where a free flowing fluid moves over a porous medium, referring
to [8, 14, 24, 26] and the reference therein.

Let us assume that the two-phase flows are confined in a domain Q C R3, which is
separated into two free moving regions Q. (t) and ©_ (¢) such that Q = Q. (£)UQ_(¢)
and Q () NQ_(t) = 0. Here Q4 (t) and Q_(¢) represent the region of the upper
flow and the porous matrix region, respectively, defined as

(1) Q) ={y € T* xR [ n(t,y) <ys <1}
and
Q_()={y e T* xR | —b(y) <ys <n(t.y)}
where y = (v/,y3) and ¥ = (y1,92), T? = (2rL;T) x (2rLsT). T = R/Z is the

usual 1—torus and L1, Ls > 0 are fixed constants. The interface separating the
domain {2 is denoted by

S_(t) ={W ys)lys = n(t,y)}.
Let
S ={"y3)lys =1} and T, ={(¥,y3)lys = —b(y')}

denote the fixed upper boundary of Q. (¢) and the given lower boundary of Q_ (%)
respectively, where b(y’) € C°°(T?) is the known function describing the location of
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the bottom ¥_;. The upper fluid is described by the incompressible Navier-Stokes
equations

PuwOil + puti - Vi + VD = pAi — gp,€3 .
(2) { diva =0 m Q+(t)7

where the vector @ and the scalar function p denote the velocity and pressure of
the fluid respectively. p,, > 0 and p > 0 denote the density and viscosity of the
upper fluid, g > 0 is the gravitational constant and €5 = (0,0,1)7 is the Z—axis
unit vector.

The lower fluid is described by the porous medium model with v > 1

(3) 0 — AP =0,

where the scalar function ¢(t,-) : Q_(£) — R denotes the hydraulic head or dynamic
pressure. By the Darcy’s law, the velocity of the lower fluid is defined by

U_ = —LV&*_l for v > 1.
v—1

In the present paper, we consider the following boundary condition. On the
upper fixed boundary 3 the non-slip condition is considered
4) =0 on Xy,
and we give some fixed constant pressure ng > 0 on the lower fixed boundary ¥ _p,
i.e.
(5) Qg = (511 on E,b.

It’s an open problem that what conditions on the free interface ¥_(t) make the
problem (2) and (3) well-posed. In the present paper, the Beavers-Joesph-Saffman’s
interface condition on X_(t), seeing [7, 30] for the detail, is considered

(6) { Gt ) on £_ (1),

where

IE’AY = 1(;37*1 for v > 1,

I denotes the 3 x 3 identity matrix, (D(4));; = 0;a’ + ;@ describes twice of the
velocity deformation tensor, the positive constant ps is the density of lower fluid,
satisfying

Ps = Pw,
7i is the unit normal vector of X_(¢) pointing to the upper fluid, given by
(_61/1 Uk _61/2 n, 1) N

’F[:: = ,
V14 [Van[? V14 |Van[?

Vi, divg and Ag denote the horizontal gradient, the horizontal divergence and
the horizontal Laplace operator respectively. According to the kinematic boundary
condition of the fluid, the free interface satisfies

(7) O + u— 10y, + u_ 20,1 = u_ 3 on X_(t),

where u_ ;(i = 1,2, 3) represents the i-th element of the velocity u_. The initial
data are given by

(8) (1, @) |t=0 = (T, o, Mo),
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which satisfy some certain compatibility condition presented later. We also assume
the initial interface function ny satisfies

(9) 1> n0(y") > —b(y") on T?

and the ”zero-average” condition

(10) / nody’ = 0.
T2

Then as the time develops, the zero-average condition of the free interface n also
persists, i.e.

/ n(t)dy =0 fort>0.
T2
In fact, by (4), (6); and (7), we get

d

- ndy’=/ 8mdy’=/ @ -7idS = divaidy = 0,
dt T2 T2 F,(t) Q,(t)

where the incompressible condition in (2) is used. B
By the equations (2)-(7), we can easily find the constant steady state (@, ¢, p, 1),
satisfying

u=0 in Q,
b= in Q_,
(11) Op=—puwg in Qi
p(0) = P, on X_,
7=0 on XY_,

where the equilibrium domain ., 2_ and the equilibrium internal free surface ¥ _
are defined in (12), (13) below and

5 G|
P =——9q/ f >1.
vy ’yfl(bb or 7y

According to (11); and (11),, we can get p = —pu,gys + P.

There are many works on the free boundary problems in fluid mechanics. For
the single layer viscous incompressible flow, Beale [4, 5] firstly proved the local
well-posedness of the solution with or without the influence of the surface tension,
and then the global well-posedness of the solution is showed by Beale [5] under
consideration of the surface tension and Sylvester [36] without cosieration of the
surface tension. Coutand and Shkoller [10] also established the local well-posedness
of the solution under consideration of the surface tension. Solonnikov [32] proved
the local well-posedness of the solution in Holder space without the effect of the
surface tension and also did a series of works on the free boundary problem in fluid
mechanics, referring to [33, 34, 35]. Allain [1] also got the local well-posedness of
the solution by different method. Bae [3] showed the global solvability in Sobolev
space by energy method. The large time behavior of the solution is showed in [6]
under cosideration of the surface tension and in [27, 39, 40] for the periodic case.
Recently, Guo and Tice [15, 16, 17] developed a two-tier energy method to prove
the local and global well-posedness and the large time behavior of the solution.

For the two layer viscous fluid flow with free boundary, Yao and Zhu [44] investi-
gated the global existence and uniqueness of weak solution for a viscous two-phase
model. Priiss and Simonett [28] proved the local well-posedness of a free interface
problem with surface tension. Hataya [18] considered the periodic free interface
problem with surface tension and showed the local and global existence of the so-
lution perturbed around the steady state Couette flow. Wang, Tice and Kim [43]
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considered the two viscous incompressible flow which satisfies the density of the
lower fluid bigger than the upper one, and obtained the global existence of the
solution and the decay to the equilibrium at almost exponential rate without the
influence of surface tension or at exponential rate under the effect of surface ten-
sion. Xu and Zhang [45] also considered the global solvability of the same problem
in differential space. As regards the Stokes-Darcy equations, there are many nu-
merical results about it with the interface conditions, referring to [22, 23] and the
references therein.

For simplicity, we set v = 3 in this paper, and then the porous medium equation
(3) reads as

od — AP = 0.

In the present paper, we mainly consider the well-posedness and large time be-
havior of the solutions to Navier-Stokes-Darcy equations (2)-(7) perturbated around
the constant steady state. To do these, we only need to do the a priori estimates
by the two-tier energy method developed by Guo and Tice [17].

1.1. Reformulation in the flattening coordinate. The movement of the free
interface X _(t) creates many mathematical difficulties. To deal with these, we will
transform the free boundary problem to the problem in the new fixed domain by
a special flattening coordinate transformation motivated by one introduced in [5].
The equilibrium domain and the equilibrium interface are defined as

Qpi={(/,73) e T* xR |0 < x3 < 1},

(12 o ,
_:={(a",x3) e T* xR | —b(z') < x5 <0}

and

(13) Y= {(2,z3) | 3 = 0},

where 2’ = (z1, z2). Define Q = Q; UQ_. The harmonic extension of 7 is defined
as

it x' x3) == Pn(t,x’, z3) in RT x T? x R,
where P is defined in the appendix. Then the flattening transform is
(14) ExGQ’_)Q(t) > (yl,yg,yg):($1,$2,$3+977),

where 6 € C*°(R) is the nonnegative smooth cut-off function, satisfying 6(1) = 0,
6(0) =1 and 9(7%) =0,b= rr%gnb(xl,xg). Notice that Z(¢,X4) = X4, E(t,X_) =
¥_(t) and E(t,¥_p) = E_p, which means the flattening transformation = keeps the
upper and lower boundaries unmoved and transforms the free interface ¥_(t) to
the fixed interface _.

Via the direct computation, we obtain

1 0 O - 1 0 —AK
159 vE=[0 1 0| and #:=(VEY) =[0 1 -BK |,
A B J 0 0 K
where
(16) A =007, B=00y7, J=1+ 0307+ 0037 and K = J L.

Notice that if the norm of the free interface function 7 is sufficiently small in some
Sobolev space, the mapping = is a C'! diffeomorphism. Under this flattening trans-
formation =, the problem (2)-(7) can be transformed to the problem in a fixed



NSD WITH FREE INTERFACE 573

domain problem.

Pw(Ou — K0y Z305u + u - Vgu) + Vgp = pAgu — p,ges in Q.
divoyu=20 in Q4,
04 — KOyZ3050 — Ay d® =0 in Q_,
u=20 on X4,
on =1 N on X_,
u-ﬁ:—%vd&-ﬁ on X_,
(PI — pDor ()i = —psgnii + 5677 on ¥_,
¢ = o on X_y,

where the differential operators Vo, divy and Ay denote (Vo f), 1= ;0;f,
divy X = #;0;X; and Ay f = divy Vi f for any function f and any vector
function X, the repeated indexes denote the sum from 1 to 3, Sgr (p, u) := pI—puD g u
denote the stress tensor, I is the 3 x 3 identity matrix and (Dgu);; = Hr0ku; +
HjpOpui, N 1= —01ner — Oanes + és. )
Define ¢ = ¢ — ¢ and p = p — p — 93p(07). Note the fact that p(0) = ¢ on X_
and
Pwgdiz + <;;0;p + <7305 (O3p07)
= — puwg ;0,23 + pwg iz + puwgti;0;(07)
= — pwg ;05 (x3 + 00) + puwg iz + pwg;;0;(0n) = 0.

Then we get
pw(Ou — K0:Z305u + u - Vgu) + Vgp = pAgu in Qg
diveyu =0 in Oy,
~ 92 ~ .
O — KOyE303¢ — 3¢y Ay = 30p Ay + Ay®  in Q,
u=20 on Xy
17 . )
(17) on=u-N on X_,
u-ﬁ=—3¢bvd¢-ﬁ—%vd¢2~-ﬁ on 277
(pI — Doy (u))ii = —pgnii + 3opdii + 567 on¥_,
¢=0 on X_y,

where p := ps — pw.

1.2. Main results. In this paper, we mainly consider the global well-posedness
and large time behavior of the strong solution to the equations (17). The compatible
conditions of the initial data satisfy

Diu(0,-) =0 on X,
Ve - (D{u(0,-)) = 0 in Q. (0),
(18) D] (u-)(0,-) = D (u_ - i)(0,) on X_,
P, (Wg’(o, ) + Dy, Diu(0, -)NO) =0 on¥_,
DI¢(0,:) =0 on¥_,
for j =0,1,2,...,2N — 1, where W2 := W3 = ¢ii — pgnit and
-1

Wi =0]Ws+ > 0j€3 (D]~ u, 0] p),
1=0
with €3(v,¢) = Dy (Rv)N — (¢I — D)9 N + Dy, yvN and Dyu = dyu — Ru, for
R = 0:MM~! and M = KVZ. The orthogonal projection onto the tangential
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space of the suface {(2/,z3)|z3 = no(a’), 2’ € T?} is defined as

S o =2 - ~
IP()(U) =v — (U . No)NO No‘ fOI‘ NO = N(O, ) = (—(917’]07 —62’[70, 1)

To describe our results clearly, the energies and dissipations of the solution to
equations (17) are defined as follows. For any integer N > 3, the high-order energy
is wrote as

2 2 2

2N _ _ 4 2N-1
by =3 (ohe]._y, * ode]_,, + (200 o]
2N Jz_:()( t¥ AN —2j + % AN —2j +jein AN —2j + JZ:(:) tP AN—2j—1

and the corresponding dissipation as

2N 2 oy 2N-1
7av =3 (ot ot Joir]
2N Z ( du AN —2j+1 +|ore AN—2j+1 + Z %p AN —2j
7=0 7=0
2N+1 9
2 2 J
+ ||77H4N71/2 + ||8t77H4N71/2 + Jz_; ’ ] ‘4N_2j+5/2 :
The low-order energy is defined as
N+2 ‘ ‘ .
ENt2 = Z (Hagu||§(N+2)72j + 110/ 0ll5n12)—05 + ||ag77\|§(zv+2)72j)
j=0
N+1
+ Z Hagpng(NJrQ)ijfl
j=0

and the low-order dissipation is

J

N+2 2
eSS <] & u
j=0

]

. 2
ol
t HZ(N+2)72j+1 Pl n2)—2j

2 A
0| )+ 3|
09 2(N42)—2j+1 jgo

(N+2)+1
2 2 ‘
+ ||77||2(N+2)—1/2+ \|5t77||2(1v+2)—1/2+ Z Hain
=2

‘2(N+2)72j+5/2 '
The highest-order norm of the free interface 7 is defined by
(19) FaN = ||77||421N+1/2'

Finally, the total energy function is defined as

¢
7
G (t) = sup za@QN(r)—i—/ Do (r)dr+ sup (1+r)4N_8£N+2(T)+ sup 2N(r).
0<r<t 0 0<r<t o<r<t (1+7)

The main results in this paper are stated as follows.
Theorem 1.1. Assume that the initial data (ug,Po,n0) satisfy some compatible
conditions (18) and ng satisfies the zero average condition (10). Let N > 3 be an
integer. Then there exists a constant 0 < k = k(N) such that if the initial data
satisfy &an(0) + Fan(0) < K, the free interface problem (17) has a unique global
solution (u,p, ¢,n), satisfying
(20) “on(t) < C1 (Ean(0) + Fan(0))  for any t € [0, 00],
where C1 > 0 is a uniform constant independent of the time t.

Remark 1.2. Although we consider v = 3 here, the same results in Theorem 1.1
can be also established to all the cases v > 1 .
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Remark 1.3. The bound of the total energy %an in (20) implies that the solution
to the equations (17) algebraically decays to the constant stationary

(21) Enpa(t) < Cor(1 4 ) 74NH8,

Since N may be taken to be arbitrarily large, this decay result can be regarded as an
Zalmost exponential” decay rate.

Remark 1.4. Compared with the two-phase Navier-Stokes equations in Wang, Tice
and Kim [43], it is very interesting that the conditions on the free interface are
different with each other. In [43], the two-phase flow don’t slip relatively with each
other on the free interface X _(t), i.e. uyls_ (1) = u_|s_@). However, in our case,
we only need the two-phase flow has the same normal velocity on X_(t), i.e.

Up T=u_ -7 on X_(t),

which means that these two flows may slide with each other on the interface. The
other difference with [43] is that the flow in the lower domain Q_(t) is described
by the scalar function ¢ which is governed by the porous medium equation and the
velocity u_ is defined by the Darcy’s law.

Remark 1.5. The main difficulty of the present paper is the existence of the free
interface separated these two flows with each other. Due to the difference of the
density between the upper flow and the lower one, i.e. py, < ps, which gives the
dissperation of the free interface in the energy, we combine the energy estimates on
these two flows together and obtain the a priori estimates by the two-tier energy
method. Some technical estimates are used when we apply the highest order tem-
poral derivative to the nonlinear terms of the porous medium equation. FEspecially,
we need to be careful and make full use of the product estimate (142) in Lemma
7.6 exactly to control the highest order temporal derivative term V 402N ¢ on the
boundary ¥ _ in the nonlinear terms by the dissipation besides the trace theorem.

The rest part of paper is arranged as follows. Together with the local existence
results in the appendix Theorem 7.1, we shall establish the uniform a-priori estimate
in Section 2-4 under the a-priori assumption

(22) “n(T) <6

for some existence time T' > 0 and small constant § > 0. In Section 2, the temporal
estimate is obtained and the tangential and normal estimates are gained respec-
tively in Section 3 and Section 4. Then the proof of Theorem 1.1 is showed in
Section 5. The local existence result and useful tools are listed in the appendix. In
section 6, we establish an efficient explicit discrete scheme based on finite-volume
method for this free interface system in two dimension. On the other hand, we
perform the numerical experiments which agree with the theoretical results in The-
orem 1.1.

Notation. Throughout the paper, we use Einstein convention of summing over
repeated index for vector and tensor operations. The universal constant C' > 0
means the generic constant that depends on the parameters N and €2, but does not
depend on the initial data and the time ¢, and we employ the notation a < b to
denote a < Cb for the universal constant C > 0.

Denote 0% = 0,007 05205° and |a| = 2a0 + @1 + a2 + a3 for the multi-index
a = (ag,a1,a,a3) € N3 Vg f = (0,f, 0of) and Vf denote the tangential and
total derivatives of f. Denote H*(Qy)(k > 0) and H*(X+)(s € R) for the usual
Sobolev space with the norm |[|-||x and ||-||s respectively and H?(Q4) = L?(Q4) with
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the norm ||-||. For given integers n, m > 0, we introduce the following notations to
describe the sums of spacial derivatives

IV fIP = 0 o1 and [V p)P = D0 (0% I

aeN? aeN?
m<|a|<n m<|a|<n

and the time-space derivatives
15 fIP = >0 o fPand [[9mmf]* = >0 oI
aeN!T? a€eNT3
m<|a|<n m<|a|<n

If m =n > 0, we have the following convention
IVEFIZ = Vg™, V£ = 112,
ALl 2 7, 2 ALl 2 7, m 2
IVEA = V" v =[vmmrl
Denote

f@ = [ @y and [ g = / o(a")da!
Q4 Q4 pIES

pIEY

for simplification.

2. Temporal energy estimates.

In this section, the temporal energy estimate will be established under the a-
priori assumption (22) by the the linear geometric equations. Here we firstly give
an important lemma on the flattening transform.

Lemma 2.1. There exists a universal 0 < § < 1, such that if the a-priori assump-
tion (22) holds, then we have

2 2 2 2 2
23) I = UL + 1AL +1IBllz~ < 5, and [|[K[[pe + Al S 1.

N |

Proof. According to the definitions of A,
we may bound

Sy

and J given in(16) and Lemmas 7.3,

2 2 2 2 2
17 = Ul + Al Lo + 1Bl < MI7ll5 < NInll5 )2 -
Then if ¢ is sufficiently small, we obtain the estimate in (23). O

Applying the differential operator 9; for s € N to equation (17), we get

O — K9y Z303v +u - Vv +divy Sy(q,v) = F1 in Q
divgy v =F? in Q4
Oz — K9:Z3057 — 3¢y Auyz = F3 inQ_
(24) v=20 B B o on Xy
S (q,v)N = —pgéN + 3¢pzN + F* on Y_
v~]\7:—3q§bvﬂz-]\7+F5 on Y_
& =N-v+ FS on ¥_
z=0 on X_y,




NSD WITH FREE INTERFACE 577

where v = Jju, z = 0 ¢, ¢ = Ofp and & = Ofn. The nonlinear terms in (24) are
listed as

Fl= > Clopwdso; ™ui+ »  CrlofKoy ™0,Zs0su;

0<m<s 0<m<s
— Y CTOP ()0 " O
(25) 0<m<s
— Y ClOr 0 op+ Y ClO 0 O (O
0<m<s 0<m<s
+ Y 0, (O A Ok0; i) + OF O (g ),
0<m<s
(26) F2=— " Cropanopd; ™u; — 0; ipOuy,
0o<m<s
27) Fl=- > CIpgd"nd;~"N; + 0;"pd; " N;)
0<m<s
+ Y OO OO (g Ny) + O D0y (A N)
0<m<s
T Amam 9s—m N7 3 s N3
+ ) 3GCroe0; Ni+§8t(¢2Ni),
0<m<s
(28)
FP=— Y 30,0707 i0r0; " oN; — Y BGCT 07 (Aik0c)0; N
0<m<s 0<m<s
— > Crofu- 07N + 305 (6O p ),
0<m<s
(29) FS= > Cropud; "N
0<m<s
and
F3 _ F3,1 +F3’2
where
~ 2
(30) F3'= " 3¢, CI'Oy 0,07 (1 0kh)
o<m<s
~ 92 ~2 .
+ > 36 00 (0] A 0k0; ™) + 3y, OF O (10 ))
0<m<s
— s—m T2 s
+ Y Cloy(KoiEs)0s0; ™ + 3¢y 50 (0F ixOk)
o<m<s
+ YOI (;0;54) 05 (3% Ok + 6 010)
0<m<s
+ Y CrOP (et iw) 05 ((6 4 664) 90500k + 367 0; 0k + 6Dp00;0k ).,
0<m<s

F32 = A ;07 0° + 30 A 05 ¢
and w = K0;Z3.
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Then we have the basic energy for the system (24) as follows,

Lemma 2.2. Assume (u,p, ,n) is the solution to (17) and has suitable regqularity.
Then we have

d 1 ~ 2 1 2 1/ g 2
4 (2/Q+¢bm| 5 [ TP+ Ema)

1 ~ ~ 2
g [ aT el [ 36190
Qyp Q_
2
= QEZ,J(U-FlJqu?)jL/ F3Jz+ ¢y F4U+F5z—|—F6§+/ am@.
pI.

Qy _ bl 2

Proof. Multiplying the first equation (24) by Jv and integrating over 2., we have

(31) I+ 11=11I1I,
where
1= A O Jv; — 0y2303v;v; + 0 25,0, J V4,
+
II :/ DOk (Ser(q,0),;)Jvi, and  I11 = Fl. Jv.
Q. Q.

Integrating by parts and noting the boundary condition v = 0 on ¥, and the
geometric identity 0y (J.27j)) = 0 which is proved in Lemma 7.5, we get

1d

(32) I=-—
2dt g,

1 1 _ 1 _
Tl =5 [ o+ g [ o0zl + 5/ s [v]?
Q. Q s
1 1
—5/ J%ka]@’u]‘ |’U|2—§/ J’LLijjg |’U‘2 = Il+I2.

Since Z0ku; =0, On =u - N and 6(0) = 1, it yields

1 1 1
Iy =— = atJ IU‘Z +3 6381553 |U|2 + 7/ 8t53 |U|2
2 Q. 2 Q4 2 ¥

1 1
5 [ ool =5 [ ush o
2 Ja, 2Js.

) 1
:7/ —0,J [v]? + 930,25 |v]” — */ J Ok o]
2 Ja, 2 Jo,

1
+§/ 8t53 |’U|2 —J’u,jJijg |7}‘2.
X_

Note that Jo7j3 = Nj, so we get

1d
L=0 and I=== [ Jp?.
2dt Jo,
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Similarly, we calculate 11, yielding

== Salav)isd(Jviclis) - / 08 (0, 0)i5 T Fys
o s

—

= */ Sd(q,v)ijJ%jkﬁkvi*/ Se(q,v)N v
Q4

Do .
Dosol” Se(q,v)N v
Y_

Z/ —ql1, O + J
Q4

—/ —§J\7-U—|—zl\7~v+F4-v

Then we obtain

1
(33) H:/ qF2J+J| ‘”' 7at/ |§|2+/ 2FS — 20,6 — ¢FC — Fho
Q. 2 s s

Combining (32) and (33) together, we have

(34)
‘DMUF 6 o6 4
+/Q+J 2 +/272(F 0&) —EF° — Fo

1d 2 2
MVmJIv + [

:/ J(FY v+ qF?).
Q4

Next, multiplying the third equation of (24) by Jz and integrating over )_, we

get
Ld J|z|2—1/ 8J|z|2—/ 0,205 12
2dt Jo 2 )g 7" D)

*3€5b2/ JZ{ikak(vg{Z)iJZ:/ F3Jz.

(35)

Integrating by parts, it yields

(36) / atagako,'Z' / agat:g‘i+/ 855 'Z|

and

%kak(vggz)iJz = / z@k(Jmk(de)i)

Q_ _

(37) :f/ JMk(VMZ)ic?kaL/ 2(Vr2)id i

:—/ J|V£¢z|2—|—/ z(V%z)J\_f'.

The boundary condition implies

/ 2(Vz) - q¢;/ U-N)B;b/EFSZZ(atgFG)

= ~/ F52 4+ FS2 — 20,¢.
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Combining (35), (36), (37) and (38) together, we get

1d 2 2 2 |Z‘2
5%/@7*”4 + 3 /97J|V£¢z| /E, 81#77

—q;b/ FserFGZ—z@t{: F3Jz.
- Q_

(39)

Multiplying (34) by ¢, and adding the result to (39), we complete the proof. [

Next, we will estimate the nonlinear terms in the geometric form (25)-(29) by
Holder inequality, Cauchy inequality and Sobolev embedding inequalities.

Lemma 2.3. Suppose that the a-priori assumption 22) holds. If § is small enou, h,
g
then we have
||5t2 1‘JAH(Q) H5152N IKH% NEZIE

Proof. Note that J = 1+ 0307 + 0037 and K = J~!. By Lemma 7.3, we have
(40) 0N TLINE < 10N allg + 102V Vall§ S 107 )3 < Zew.
By Lemma 2.1, we get 3 < J < 3. (40) immediately gives
107" K |G S P
O

Lemma 2.4. Let F*, F?, F3Y F* F® and FS be defined in (25), (26), (30), (27),
(28) and (29), respectively. Suppose that the a-priori assumption (22) holds for
some small § > 0.

i) For 0 < s < 2N, we have
1) FYE+ 10:(TFHIG + 1F>HE + IFE + 1 F°I5 + 1F)I§ < fon Zon-
Also, we have
(42) 1F?[lo < o
it) For 0 < s < N + 2, we have
(43) (MG + IF215+10:(TEDIG+ IF2 5+ [1FHNE + I FNE + 1 FO§ < San Do
and

| F2(|5 < Sanéno-

Proof. These estimates are directly obtained via Sobolev embedding inequalities,
so we take the estimates of F2 and F'* as the example. We firstly estimate the term
F? | recalling the definition

F?=— " Clropapond;” " u; — 05 0u;.
0<m<s

Via its definition, 2 may have the terms like 9" (AK)9; ™" O3uy, O (AK)I; ™™ O3us
and 0" K0; ™0suz for any 0 < s < 2N. Note that the highest order derivatives
satisfy 0,J ~ 0,V7, A ~ V7 and B ~ V7). Then 9]"(AK) has the form of polyno-
mial Q(&! Vi, 87" /Vij, K), where j = 1,2,...m. By Lemma 2.1 and Lemma 7.3, it
is straightforward to see that each term can be written in the form X - Y, where
X involves fewer temporal derivative than Y, and then by Sobolev embedding in-
equalities, Lemma 7.3 and Lemma 7.4 and combining together with the definitions
of &N and Yoy, we obtain

IX)7 S on and Y5 S Zon-
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And then XY |2 < X[ [[V]2 S Gon Zan.
To the highest order s = 2N, 0] %1, 0ru; ~ 8?NVﬁ8kuj implies
107N VoI5 S 102N Vallgl Vull 7w < HBEN??HZ% [ullfs S GonZon

~

which gives the desired estimate of F2 in (41).
Similarly, we get

||8;";a7jk8k8tsfmuj||0 S &y for 0 <m < 2N.

But to estimate the term 97V <7, Oxu, with the help of Lemma 7.7 and the equation
0:n =wu- N, we have

62YTa0us |2 S 02 V2 Nowus e S 192 el

~ “2

5|

2
N— Vs 2
O - W) Nl S Sy,
2

which immediately gives (42).

To estimate F4, it involves 7, p and ¢ which has the same structure. So we only
need to estimate one term 9;"pd; " " N; (0 <m <2N). f0<m < N and i = 1,2,

2
o _ 2
D FpN TN S Y N0l 07V an] S San P
0<m<N 0 0<m<N
IFN+1<m<2N —1andi=1, 2, we adopt the estimate
2

_ = _ 2
SoooarpdtN TN S YD o elhe ) 102N TV am|
N+1<m<2N-1 g N+1<m<2N-1
S EanDan-

To estimate the other terms of F%, it yields
2

—

Y OOk 0N (A N)

(44) 0<m<N 0
L2
S Y 00 ey [0V )| S oD
0<m<N (2-)
and
2
Y ok oN T (A N)
(45) N+1<m<2N-—-1 0
T
D DI [ S R AR C70 )] IRt e

N41<m<2N-—1

Here we use these facts that if j = 1,2 and 0 <m < N

- 2
ARECR ! SR DI AT P i 27
) oIKIN-2]
+ Z HagVHTlH(Q) HafN_m_lVHnHsz < SanDan,

[N—m]4+1<I<2N-m
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while j =3
HatQNim‘Q{ikHHO(z_) S 2N

We also use that if j =1,2and N+1<m < 2N —1
2 e 2
| S oVl Y ]} S oo
0<I<2N—m
And if j = 3, it can be easily verified that

||3§N_m£7ik||im(z ) S Pan-

2
|
( k J) Loo(s)

For the term 82N (¢2N;), we only need to bound the highest order term ¢pd2N ¢.N;,
yielding
1907~ dNillzro sy S 1012 (=) 107N 0TI Nilloo S EanZan
So we complete the proof. O
To describe the temporal energy easily and clearly, we define the temporal and

tangential energy and dissipation as follows. The temporal energy and dissipation

are defined

82 =3 (IWT0ully + 19;nl3 + VI 0l13) and 9

s=0
n
= > (IDozully + 1V 9;0113)
s=0
and the horizontal energy and dissipation are

=[98 |+ 19 ol + [T o)

lo

+ ’|VH6?{7171(X¢)

_ 2 _
Jo+ s tal] + 19wl

and
7 = |V Dl H + | VavE D w)|}

[ v  + 19 Tl
We also define &, = &F + &° and 2, = ;7 + 29 and the special energy

2
H =|ullze + VG + IV T + D IV Ew | Fa s
i=1
(46) 2
+ Vel + IV2l7 + D IVESill2 )

i=1

Note that Z < &n 42 which is directly obtained by Sobolev embedding inequalities.

Now, we first give the temporal energy estimate of &y

Proposition 2.5. Assume (u,p, ¢,n) is the solution to equations (17) and satisfies
the assumptions in Theorem 1.1. Suppose the a-priori assumption (22) holds for
some small constant 6. Then we obtain

(47) Exn(t) /@2N<éa2N (0) + (&an(t /\/éaz Don.
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Proof. Define v = 0ju, z = 9 ¢, ¢ = 0;p and & = 0;n. Applying the differential
operator 97 to (17) for s = 0,1,2,...,2N, we get the equations (24). By Lemma
2.2, integrating from 0 to T, we get

1 ~ 1 1 -
L griopueP+ X / T1056(t)2 + / Gy 195n(D)?
2 Jay 2Ja_ 2 Js_
1 t ~ s 12 ¢ ~ 2 s 12
+§/ G0 Doy O3 +/ / 36,20 |V 03]
0 Ja, 0o Ja_

1 ~ , 1 , 1 f
(48) - (2 9T |07u(0)” + / T + 5 / K Iafn(0)|2>

Q4
t 5 t ~ t
+/ ¢bJ(agu-F1+a§pF2)+// F3Jaf¢+¢b// FAoiu
0 Jay 0 Ja_ 0 Jx_
- 1t
+F5.Nﬁf¢+F6(‘)fn+§// om ool .
0 JX_

Next, we estimate the right hand side of (48). For the term F!, in view of (41)
and Lemma 2.4, we get

¢ ¢ ¢

@) [ [ o r s [ E 0t Wl S [ Ve,
0 Ja. 0 0

But for the term F3 = F31 4 32 31 is bounded form from (41) that
¢ ¢ ¢

o) [ [ erertts [ 1ol 190 < [ Vg,

For the special term F32 if 0 < s < 2N — 1, it is easily verified that ||F?3?|
gQN@QN and

2
0 S

t t
/ / J85¢F3’2§/ \/@(()2]\/92]\].
0 JQ_ 0

While s = 2N, there are terms like ¢2427;j42/l-k3j8k33N ¢ which are beyond the control
of Zon. In fact, for the term A 7 (¢202N @) of A 02N @2, it follows from integration
by parts that

/ T (202N $)02N 6

Q_

= [ IV (PR VLN + / N - Vo (62028 )02V 6
Q_ >_

- / IV oy 6V oy 02 302N 6 / JG2|V o 02N 2
Q_

b [ 2@ PN Vot [ #HVoN Va0
— [+ I+ 1T 41V, .
Then we get
T+ 1T S (1 oo |V a7 0 lloc Nl 6l oo | 5110 1050 Bll0 |07 1o

+ 1l ll @136 1511310507 6115 < v/ Eanv Zon
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and
I+ 1V S ||l oo s [Nl oo (s A e (51050l oo s 107N @30 s

2 7 2N 2N
+ ||¢HL<>C(E,)||N'vM8t ¢||H7%(27)||8t (bHH%(Z,)
SVENDon + 0170 | #50,0 0l 3 o IN2NOZY S5
S VénZan + Haﬁllim(z,)II%HW@,)||3j5‘?N¢HH_%(27)Hﬁil\zllﬁf%HH%@)

S VéENDanN,

where we use (142) and the trace theory. Together with (50), we get
t t
(51) / / JO;oF® < / VENDaN.
0o Ja_ 0
For the terms F4, F5 and FS, we obtain
t —
/ / FAOfu+ F° - NO ¢+ F05n
o Ju_
t —
S 1o W05l + 17 W0l + -
t
2 s
S [ VAT o+ (1) |7, 10603
t
5/ V ENDaN.
0

It is easy to get that
t t t

63 [ [ omiorol < [ ol 1030l S | V.
0 > 0 0

For the term F?2, if s < 2N, we can directly derive by Sobolev embedding inequal-

ities
t t
[ [ oeor s [ 1ol 1£21,
0o Ja, 0
¢ ¢
5/ vV @2N\/52N@2N5/ VéanDan.
0 0

When s = 2N, we can’t directly control the pressure term 02Vp by Zan, so we
integrate by parts with respect to the time ¢

t t
/ JO;pF? =: — / PN =1po, (JF?) + / (OPN1p T F2)(t)
0 JOy 0 Jay Q4

652) NOEAl oz

- [ @ tprt o),
Qp
Then we get

t t t
_ / 92N 1pa, (JF?) < / 10231, |2 (TF)|, < / NN
0o Ja, 0 0
t
5/ vV éanDan
0
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and in view of (42)

| @ arne - [ @ paro
Q. Q4
S 102X )] 12l + 1)1 1 |87 2(0)]|, | F2(0)
SEn(0) + (Gan ()2,
so, combining these together, it yields
(54) /Ot ; JO;pF? S & (0) + (Ean(t / VénDan.
+

Finally, adding (49), (51), (52), (53) and (54) together, we have

<; [ v+ g [ iorer g [ afn<t>2>

1 t t
(55) 41 / J D dul® + / / TV ;0]
2Jo Ja, Q_

< (0) + (G (1) / N

To get the temporal energy estimate by (55), we need to rewrite the terms in the
left hand of (55). Note that

(56) J Dy oful® = [Doful>+(J —1) [Doful?+J (D O u+Ddu) : (D8 u—DOu)

and

ly

which yields

Do Oiu+Dojul S (14 éan) |[VOiul and Dy diu —DOjul < \/Ean VO ul.
Then we get

t t
// J|(Dm8§u+ﬂ)8fu):(Ddafu—ﬂ)afuﬂg/ (\/Gom+Ean) [V ul?
0 Q+ 0 Q+

t t
5/ (\/52N+0@2N)/ |Vafu|2§/ \ Ean Dan
0 Q4 0
and . .
/ / |J — 1] D8 u)? 5/ VENDon.
0 Jo, 0
Similarly, we have
J IV w05 ¢)? = [VO; 6 + (] — 1) |[VO; 6| + J(Vr 05 + VO;¢) - (Vy O — VO; §)
and
(V0] ¢ £ V0] ¢); = (i £ 0i5)0;0; ¢,
which yield
t t
/ / (V06 +V0:6) - (Vo036 — VO B)| < / / (Voon+6) [V
0 _ 0 Q_

¢ ¢
S / (Véan + 52N)/ Vs ol® < / VENDan
0 Q. 0



586 B. ZHAO, M.Y. ZHANG, AND C. LIANG

and
t 9 t

(57) // T — 1] Vo5l 5/ N
0 Q_ 0

Combining the above inequalities together, we get

(fm J|95u(t)]? +/SL J|05 () + /27 |5ts,7(t)|2>
+/Ot /Q+ D35u|2+/0t /Q, Voo

< 0+ ()t + [ B Dax

for 0 < s < 2N. Summing the above inequality over 0 < s < 2N, we obtain (47)
and then complete the proof. O

Next, we present the corresponding estimate to the N 4 2 level.

Proposition 2.6. Suppose that the assumptions in Proposition 2.5 hold, then we
have

d [ - _
(58) — <£J% 4o — 2 / Jag\’“pF?) + Do SVENDN 42
Q

dt
Proof. Applying 9;° (0 < ag < N +2) to (17), it yields that v = 9;°u, z = 9;° ¢,
q = 07°p and & = 9;°n solve the (24). By Lemma 2.2, we have

d (17 - 1 L I
- (2 /Q = oo u(t)® + 5 /Q J1apeO) + 3 /E iz 8?°n(t)l2>
1

T3

Go] Dy 900w +/ 32T |Vy 02062
(59) Q+ Q_
=[G B o)+ [ g
Qy Q_

- - 1
+ @f FA9u + F° - NOM ¢ + FOo™on + 5/ om |07 .
>

Then we only need to estimate the right hand of (59). Firstly, by (43), the term
F' is controlled
(60)

JOPu- FU S || | FH | 1089wl S V/an Do/ D ya = V/ Ean Dt
Q4

The term F? is estimated

[ 0200 S 1 |52, 105°6) S /Eow Tivra/ Tives = oy Do
Q_



NSD WITH FREE INTERFACE 587
For the terms F*, F5 and FS, in view of the trace theory and (43), we obtain that

/ FA%0u 4+ F° . N9 ¢ + FO9~y

SIF o horoull o + |72 | 19760l + [ F¥l, I05nl
VEN D12 Do+ L+ llE)) [ F 10526

SV ENDN+2.

For the last term in (59), it yields

H3 (Q_)

[ amlorol < 10l 1060, S VB Do

For the term F?, if 0 < oy < N + 2, we can directly control this term by the right
hand side of (58), i.e.

(61) / JOPPF2 < (7] e 102Dl | F2]ly S v/Eon Do
+
If g = N + 2, it yields
d
/ JONTIpF? = — | ONTLpa,(JF?) + %/ JONTIpE2,

Thanks to (43), we have

- / ONHipa, (TF?) <[|0Np, |0 TF2)],
Q4

SV DNioV/Ean DNz = V Ean DN 1.
Adding these two together, we obtain

d
(62) / JONTIpF? < —/ JONTIDF? 4+ \/En Do
Q dt Ja,

Combining (60)-(61) and (62) together, we deduce

d 1/ o 2 1/ a 2 1/ o 2
—| = Jogut)|” + = J1ogo(t)|]" + = g, n(t
dt<2 W+ [T e0F + 5 [ o)

1
—5aO7N+2/ J@tNHpF2> +—/ J|I[))g¢8t°‘“u|2+/ J |V 02 )
Q4 Q4 Q_

2
SVENDN+2.

We can argue as in (56)-(57) in Proposition 2.5 to get that

1 1
*/ DO u| S */ deataouﬁ + VEND N2
2 Ja, 2 Ja,

and
/ Vorog| < / TV 0200/ + /B v 1.
Q_ Q_

Finally, we sum over g from 0 to N + 2 to complete the proof. ([
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3. Horizontal energy estimate.

In this section, the horizontal energy estimate is gained via the linear perturbed
form as follows

Ou+ Vp — Au = ot in Q,
divu = @2 in Oy,
Oib — 36y Adp — ©° inQ_,
(63) u=0 ] on X4,
on —ug = ®° onXY_,
(pI — Du)és = —pgnés + 3¢pdés + 7 on B_,
u-é =3¢V e+ o on ¥_,
¢=0 on X_y,

where the nonlinear terms in the right side are listed as
®f = (85 — A;)0;p + 510 H1,0kui) — Or1u; — Doy — Oz3u;
+ pK 0 Z303u; — pu; ;O
= (513 — ,af/;j)ajp + %l@l%kakui + (A2 + BQ)K2833U1' + (K2 — 1)833ui

+ pK0;E303u; — pujapOpu; + Z j1951,01 0 U,
[

®? = divu — divy u = (1 — K)dsu3 + BKdsuy + AKdzus,
% = — 30, A+ 38y A+ K0Z3050 + 3020 9° + Ay &
= — 3,°0% — 36,020 — 36, 026 + 36" A Dpsts; 056 + 30, T hs; ;0
+ K8;Z3050 4 30pA 0 0° + Ay ¢®
=36, [-01 (AK)36 + AK95(AK )93 — 95(BK )36 + BK93(BEK )93
+ KO3 K93 4 (K? —1)02¢ — 2AK9,03¢ — 2BK 0203¢ + (A% + B*) K202 ¢)
+ K8,Z305¢ 4 3¢pA ¢ + Ay ¢,

(I)S = —ulam — UQaQT},

Oouy + O1us — BKOsu; — AKO3us
Orus + KO3uy — AKOsus

Oy + O1us — BKO3u; — AKOsus (K — 1)63u1 — AKO3us
7827] + )

. (Pgn—p+¢+281u1 — 24K 05u; + §’¢2)
" = —-0in

pgn —p + ¢ + 20,us — 2BKdzuy + 367 (K —1)0suy — BKd3us
Oguz — BKO3uz + K0O3uz 2(K — 1)d5u3 + 3¢2
PP =u-&—u-N+30Vo- & —360Vyd  N—36N -V ¢
= O1n(uy + 019 — AKO3¢0) + Oan(ug + 02 — BKO5¢))
+ (1= K)d3¢ — 3¢N - Vs .
Choose the smooth cut-off function x(x3) € C§°(R) defined as

1 if — %<t
64 T3) = 5 57
(64) x(z3) {0 if 3> % or x3< _5b
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where b = n%ign b. Then multiplying (63) by ¥, it yields

I (xu) + V(xp) — Alxu) = x®' + H' in Q,
div yu = x®2 + H? in Q,
~ 2 .
di(x®) — 30 Axo) = x®° + H? in Q_,
(65) XU = 0 on ZJ’_’
dim — xuz = xP° on X_,
((xp)I = D(xu))és = —pgnes + 3op(xd)és + T on X_,
(xu) - €5 = =3 V(x¢) - €3 + ®° on X_,
X¢ =0 on Z_b,

where the new linear terms in the right side of (65) are defined as
(66) H1 = 8gx(pé'3 - 28311,) 76§XU, H2 = 83XU3 and ]‘I3 = 78%)((257 283X83¢

Applying the differential operator 0% := 9;° 951052 for o € N!*+2 to equations (65),
we get

O +Vq— Av=G! in Q4,
dive = G? in Qg
Biz — 3y Az = GB inQ_
(67) v=0 on Xy,
06 —v3 =GP on Y_,
(¢I —Dv)és = —pglés + 3p2é3 + G7 on X_,
v-E3 = —3q§sz-é'3+G8 on YX_,
z=0 on X_yp,

where v = y0%, z = x0%¢p, ¢ = x0%p, & = 0“n and the nonlinear terms in the
right side of (67) are

Gl — X@”I)l 4 8()¢H1’ G2 — X@‘“I)Q 4 8(1H2’ G3 _ Xaaq)?) +aaH3,
G° = Xx0"®°, GT =09, G°=09"9°
The basic energy equality is gained as follows.

Lemma 3.1. Assume that v, z, ¢ and £ are the solutions to the above equations
and have suitable regularities, then we have

(68)

d 1 2 1 2 1 2 1/ 2 / ~ 2 2

Bl - - [ D

: (2/Q+|v| VLY T Y T A

:/ v~(G1—VG2)+/ ng—l—/ 3G3z+/ pg€G® + G7 - v + 3¢, G2,
Q. Q. Q_ o

Proof. We omit the calculus here, since it is similar with Lemma 2.2. (I

To obtain the tangential energy estimate, we firstly bound the nonlinear terms
®! — ®® by Sobolev embedding inequalities.

Lemma 3.2. Suppose the a-priori assumption (22) holds for some small constant
d > 0. Then there exists a positive constant 0(0 < 0 < 1), such that the following
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inequalities hold
(69) ||@O,4N72(I)1||(2)+H@O,4N72(I)2H?+||@0,4N72(I)SH§+ H@%Nfzqﬁui
2

g gl—&-&

2
1 2N

4 Hv%Nfzq)?

2

=0,4N—2 18
l+HVH o
2

2
I e e N e R [
2

+Hv%’4N_2@7

e R Y A Y el
2 2
00, + VR0 + [T, < s,

(71)
AN—1g1]|2 AN—-152](2 AN—-153](2 AN—155]|2 AN—-1 572
[Vt + ([ R+ [Vl [V ey + [V el
_ 2
|V TNy < N Dan + K Fan,
where the definition of & is given in (46).
Proof. For the sake of brevity, we only present a sketch for the proof of (69) and
(70). Since all the terms of ®° are the product which are comprised by at least two
terms, we estimate these according to Sobolev embedding inequalities, trace theory

and Lemma 7.6, Lemma 7.3 and Lemma 7.4. We take the term ®3 for example.
Recalling the definition of ®3, it yields

[vo=2adfo= 30 Jlore’s
N1+3
0<|a|<4N—2

and
O3 = — 0,(AK)036 + AKO3(AK)93¢ — 03(BK)93¢ + BK93(BK)d3¢
+ KO3 K939+ (K? —1)02¢ — 2AK9,03¢ — 2BK 0203¢ + (A% + B K?02¢
+ K0,Z3050 + 30 Ay 6° + Ay ¢®.

Applying 0% to ®3, for the highest order term, we have terms of the form in
04N 253

P (A, B, K)dsh, 9’7 P1(A, B, K)0*0s0,

72
(72) (K? —1)0°V?¢, AK0*V?*¢p, BKO*V¢,

9oV Py (A, B, K)02¢, A K20°V%p, B K29°V2¢,
K20°70,10s¢, K0;0°703¢, KO4id30%¢

where |y| = 4N, |v| = 2, |a| = 4N — 2, |f| = 4N — 1 with v,v,, 8 € N3 and
P(A,B,K), #(A,B,K),

P5(A, B, K) are polynomials. It is easy to verify that each term can be controlled
by 5’21;9, we take 7P (A, B, K)03¢ as example. Sobolev embedding inequalities
give |Z(A, B, K)|,, S1+ &~ S 1, by Lemma 7.3, we have

_ n2
10772 (A, B, K)ds6ly < || V*Vall; 12(A, B, K)|I%, 050]1%

(73)

aN—1 |2 2
S| wir | 1l < &5
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and the other terms of 9*®3 can be directly estimated by c%ljj,' % by Sobolev embed-
ding inequalities. (69) and (70) can be gained by the same idea.
Next, we just present some special terms in (71) which will be controlled by
ESDon + H Fan. To estimate VAV 10! we only bound the highest derivatives,
ie.

P2(A,B,J,K)du

with 2(A, B, J, K) a polynomial, where 3,7 € N3 and |8] = 4N + 1 and |y| = 1.
Via Lemma 7.3, it yields

IV < Il = Fan

and according to Sobolev embedding, it gets

| 2(A, B, J,K)|| o0 S 1+ &y

Then we have
10°02(A, B, J, K)o ul|; S ||0°0|[; 1. 2(A, B, J, K2 107 ul?
<[l IVulli~ S # Fon.
To control V=12 there are terms of the form
P72,(A, B, K)du

with 2, (A, B, K) a polynomial, where 3,7 € N3 and |3| = 4N and |y| = 1. By
Sobolev embedding, we have

121(A, B, K)|[2n S1+ &5y S1

and then

10°7.2, (A, B, K)"ul| < 121(A, B, K)||%: ||0°707u|;
< |@Paoull; + Vot aoT | + [|0° 7o ul|;
SVl IVl + [[V2ul]; ) + 9553 [ Vull;
< EonDon + K Fon,

where Sobolev embedding inequalities and Lemma 7.3 are used in the last inequality.
To estimate V4V =193 except "2 (A, B, K)03¢ with |y| = 4N + 1, other terms
can be bounded by &y Zaon. We give a simple estimate for 772 (A, B, K)d3¢ as
follows,
_ 2
l0772(A, B, k)93 <||V*N 0|, |2(A, B, |2 1034115

2 2
SInlByy IVSI2, S H Fan

To estimate V' ' ®°, we only need to control u;07n (i = 1,2) with v € N? and
|7] = 4N. In view of Lemma 7.7, it yields

(74) sl S lluillén 107013 S Fon .

To control V3 ~1®7, it only needs to estimate 9’12 (A, B, K)0"u with |3| = 4N
and |y| = 1, where 25(4, B, K) a polynomial, 8 € N? and v € N3. Via Sobolev
embedding inequalities, it yields

122(4, B, K)|¢n S 1+ &y,

~



592 B. ZHAO, M.Y. ZHANG, AND C. LIANG
and then

2 2
1070 22(A, B, K)o [y < [|07n][, | 2(4, B, )9l
2 2 2
S By 12204, B K2 1076l ) S Fon b
To estimate V‘}{N_lés, we only need to control u - V4Vn and 0°1n2;(A, B, K)0"¢

with |3] = 4N and |y| = 1, where 23(4, B, K) a polynomial, 3 € N and v € N3.
Note that

||°QB(AaBaK)”201 S + gZGNa

and it yields
|0%n25(4, B, K)o 6|} S |07 125(A, B, K)oz
S Vil 12504, B, K) & 96112
,S 92]\/&%/.

Combining these inequalities together, we complete the proof of (71). O

Similarly, the NV + 2-order estimates of the nonlinear terms ®’ are obtained and
the proof is omitted here.

Lemma 3.3. There exists a positive constant 0, such that the following inequalities
hold.

(75)
H@O,2(N+2)72¢,1H2+H@O,2(N+2)72(I)2H2+H@O,2(N+2)72¢)3H2+H@%z(NH)—zqﬁ
0 1 0

2
1

2

1
2

4 Hv(;j,[Q(N-i-2)—2q)7

2
0. 9(Nt)_
i HV(JJL}Q( +2) 2(1)8“1 < &0 Eno,
2 2

(76)

H@O,Q(N+2)—1‘I)1Hz+H?O,?(N—&-Q)—lq:,?Hj_"_H@O,Q(N+2)—1‘I)3Hz+H@%{%N«FQ)flqﬁ 2

1
2

2
6
S BN D

2

4 Hv?_}2(1\7+2)—1¢)7

2

= 0,2(N+2)—1
L+ HVH( P8
2

With these estimates in hand, the horizontal energy estimates of the solutions
to equations (17) are gained as follows.

Proposition 3.4. Assume (u,p, ¢,n) is the solution to the equations (17) and the
assumptions in Theorem 1.1 and the a-priori assumption (22) hold for some small
positive constant 6. Then for any € € (0,1), there exists a constant C(g) > 0, such
that

t t
(77) (%J]rv(t)—l-/ ‘@;N < 5*245\’(0)_’_/ C%GN@QN-‘F\/ @2]\7%@2]\]4‘8@21\7“1‘0(6)@%\,.
0 0
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Proof. Suppose o = (g, a1, ) € N'*2 such that ag < 2N — 1 and |a| < 4N.
Lemma 3.1 gives

d 1 a 12 1 o 12 1/ a, |2
g <2/Q+|x8 ul +2/Qi3\x3 o] +3 Z709|3 nl)

1 -
"2 /Q DO u)[* + /Q 99, |V (x0"9)*

(78) :/ (x0%u) - (x0“®' + 0°H' — V(x0*®* 4+ 0*H?))
Q4

+/ X0“p(x0*®* + 9 H?) +/ 3(x0*®° + 9 H?)xd"¢
Q4

+ / pgd NP B + 0BT - (xOu) + 30 B,
>

where H', H? and H? are given by (66). Then we only need to estimate the right
hand side of (78). The definitions of H® (i = 1,2,3) imply

O“H' = 03x(0°pés — 2030%u) — D3 x0%u, O“H* = d3x0“us
and
9" H? = —05x0%¢ — 205x030°,
yielding

/ XO“uO*H" — x0%u - V(0*H?) + x0*pd* H* + / xO% 0 H?
Q4
SN0%ullo (10%pllo + [10%ully) + 10%¢ll 1%l
SNOF°ullan 20y V2N + 10704y 20, V72
Via Sobolev interpolation theory, it gives
o « 0 e} 1-6
10y 0“||4N—2a0 S 1105 ullg" (10 Ou||4N—12a0+1
and
0 1-6
105 Dllan—200 S 1107 llo" 107 Allan"200+1
for 6, = m. Combining these with Lemma 7.8 and Lemma 7.9 together, we
obtain that for any € > 0

197 ull 4~ 20 \/%"‘ 107° Bllun 20, V Zon
1—6; 1-65
SN0 oullst Doz / Pan + 0°°0\5 Doz / Pon
1-61 1-6y
SIVO o ully! 2y N/ Dan + INO0|o! Dot/ Pon
o _1-4 61

_ o 0 _2 -
S(DIN) 2 Doy ® Se(l— 51)@2N + 551 % Dy

Next ,we turn to estimate the nonlinear terms ®'. If |a| < 4N — 1, in view of
(70) and (71) in Lemma 3.2, we get

/ (x0%u) - xO“®" — x0%u - V(x9*®?) + x0*pxd* P> + / (x0*®°)x0%¢
Q. Q

Sloully 0@, + 0% ul, [0 @*

S\/ QQN\/éDZQN@QN + X FoN.

I, + 0%y [[0%@|, + (|02, 1%l
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When |a] = 4N, integrating by parts with respect to the horizontal direction, we
get

/ (x0%u) - Y0 ® = —/ X0 TPuxdr et
Q4

Q4

<lloeull, 070, £ VPan ) Ein Pan + K Fox,

/ X0%u - V(x0"®?) = — / X0 P - V(0" ®?)
Q4

Q4

<10 ull, 0792, S V/Ton/ Sy Fon + H Fan

and

/Q XX ? < 0°p]l, |02, < 10°p] |7V 102,
+

5 V 92N\/£2%\]-®2N + %ﬂQN?

where o = B+~ and 9” only contains the horizontal direction derivative, satisfying
|y| = 4N — 1 and |3| = 1. To control the terms ®3, it gives

/ X" x0%¢p = —/ X'\ < |07 [0,
Q Q

SV PN \/6%9]\7921\7 + A Fan.

Via the trace theory and Lemma 3.2, we obtain

/ o7 . (x0%u) + PO = —/ . 9 BPT\ Pu 4 9P PP g

< 19 ) =0,AN—1 7H e ) H—0,4N—1 sH
s “HquHvH Vs, Tl [V s

SV 92N\/£29N92N + A Fon.

To estimate the term ®°, we split into two cases: ag > 1 and ag = 0. If ag > 1,
we get

/ pgd°nd*®° = —/ pgd°tina*=Pe% S (|07 || oy 10770y

o =0,AN—1
Sl0°nll, g [ V5N 00

2

SV 92N\/£29N92N + A Fon.

If ag = 0, it means 9% only involves horizontal spatial derivatives, so we may use
Lemma 5.1 in [17] to bound

/ pgd°*nd*®° < \/ Doy \/éageN@QN + K Fon.
ol
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Combining the above estimates together, we conclude

d (1 w1 wr L
dt<2/m|xau|+2/ﬂ|xa¢+2/E|an|>

1 2 / 2
+= [ DpocwfP+ [ [V(x0*
- 3, ool [ 96
< 0 P 01 01 1-& 50
N\/.@QN 52N.@2N+<%/J2N+€(175).@2N+56 1.@21\/

] o,
SENDan + N DonH Fon +Don + 77 Doy

Then we complete the proof via integrating over the time from 0 to ¢ and sum with
respect to a. (I

Next, we show the (IV + 2)th-order energy estimates of the solution.

Proposition 3.5. Assume (u,p, ¢,n) is the solution to the equations (17) and the
assumptions in Theorem 1.1 and the a-priori assumption (22) hold for some small
positive constant 6. Then for any e € (0, 1), there exists a constant C(g) > 0, such
that

d - _ _
(80) E g+ Do S ENDN2 +€DNs2 + C(€) D4

dt
Proof. By Lemma 3.1, we still have the same energy identity (78) in Proposition

3.4 for ap < N +1 and |a] < 2(N +2). So we need to estimate the right side of
(78). To bound the linear term, we have

/ XO“uO*H" — x0%u - V(0" H?) + x0°pd* H* + / X0 p0* H?
(81) Q, Q_
SN0%ullanr2)—200 VZN+2 + 107 Dllo(nt2)—200 VDN+2-
Via the interpolation theory, it gives
107 ully s 2) 200 S 0% U6 107 ull3 Ny 2) 251
and
105 D lla v +2) 200 S 107°@ll0" 107° Bll3a"2) 20041

for 6, = m Combining these two inequalities with (81) together, it gets

/ XO“ud*H — x0%u - V(0*H?) + x0°pd°*H* + / XO“ PO~ H?
Qy

0 01 12 -
<e(l-— %)@NH + 5151 WDy
SeDnjo +e 2N TR0

To estimate the nonlinear terms ®¢, by Lemma 3.3, we get

/ (x0%u) - xOD — xu - V(" D) + O px OB + / (X0 B%) 0"
Q. Q

S V DN+2 Y, 526N@N+27

where a = (ap, a1, as) satisfies |o| < 2(N +2) — 1. If |a| = 2(N + 2), choosing
and 7 such that 9 = 9797 and |3| = 1 and integrating by parts with respect to



596 B. ZHAO, M.Y. ZHANG, AND C. LIANG

the horizontal direction, we obtain

/S2+ (x0%u) - x8°®' = — / x0T Buxd @ < /D yor E8N D12

Q4
and

/Q+ X0%u -V (x0°9?) = —/ XU - V(x0"®%) S /D ya\/ Efn D va-

Q4
Similarly, we get

| xormane? slovsl a2, < ol [ 722102
Qp

SV DNt/ ESnDnta
| aorateno == [ 0000 < Dy 6y D

and

Via the trace theory and Lemma 3.3, it gets
/ o7 (x0%u) + By = f/ 9 BDT\ Py 4 9 BB 5P

SV DNi2\ ENDN 42

To bound the nonlinear term ®°, we split into two cases: oy > 1 and ag = 0. If
ap > 1, it yields

/ pgo nd*®* = - / pgd* a0 S (02 |y 00

SV IDN12\| EINDN 42

If ap = 0, it implies 9 only has the horizontal derivatives and ay + oz = 2(N +2).
By the Leibniz rule, we get that

8‘“1)5 == —GQ(VHn . uH)

H2(s_)

=— > CNgor Py Pug— > CAVR0* Py 0%up
0<B<a 0<p<a
[B|<2(N+2)-2 [B|22(N+2)-1
= I+1I,

where ug = (u1,uz) and C? is the constant depending only on o and 3. Then by
Lemma 7.6, it yields

[ paoent 10l V002l [0l

,S V -@N+2 V gQN V -@N+2

and
R P LR

S0l -y i, V0Pl |07

S VDN+2V N Dy

Combining these estimates together and summing with respect to «, we obtain the
estimate (80). O

H2(s)
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4. Normal energy estimates.

In this section, we will give the normal energy estimate, i.e. &, and %, are
comparable to &, and %, for both at the (N 4 2)th and (2N)th level, respectively.

Proposition 4.1. Assume (u,p,d,n) is the solution to equations (17) and the
assumptions in Theorem 1.1 and the a-priori assumption (22) hold for some small
positive constant §. Then there exists a positive constant 6 > 0, such that

(82) En S ban + G
and
(83) Enta S Enya + EgnEnya.
Proof. Define the norm of the nonlinear terms as
ffn_ZHaﬂqﬂ +Haﬂ¢)2 +Haf<p3
2n—25—-2 2n—25—1 2n—25—-2
(84)
2n— 237— 2n— 2377 '

By the a-priori assumption (22), it gives ||J — 1||L~ < 1/2, and then we have

D 0 w ol

and

Ingh

o] <35

The definitions of &2 and & give that

(85) ||a”u||o+Ha"¢||0+2||am||2n 2 S bn-

7=0

By the tace theory, we get that if 0 < j <n —1,

Jozo] S0l 3 [9500,

H %3 (5. H™3(3_)

and

2
ot & [[vi ]

2
< vOQn 1 H .
H™ (= H (xu) 0

2 2]75(

Applying & (0<j<n— 1) to the equations (63), it gives

Volp— Adlu=08d! — o/t in Qg
(86) diyaguzagtﬁz in Q4,
Hu=0 on X4,
(&I pI — DA u)és = —pgdinés + & pés + &1 ®T on B_
and
—ANYp=08103 -t in Q_,
(87) du-&=-Vdl¢g -&s+0® onX_,

8§¢) =0 on E_b.
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Via the Stokes estimates, combining with (84) and (85) together, we get

2 2 |12 2
(83) ot + |oiv < o + oo
2n—2j 2n—2j—1 2n—2j—2 2n—2j—2
& P2 2 o7 2 & 2 & 2
L R S
+‘ (Ol PP on—2j—2 " 2n—2j—g+ 00 B33 ()
And via the elliptic estimates, it yields
2 12 112 I
|t <|ore + oo +||ofe|| ...
2n—2j 2n—25—2 2n—25—2 H?"TA T2 (s)
(89) 4 )
] —
Adding (88) and (89) together, we obtain
(90)
2 2 2
’c‘){u +‘a§p +H8§¢>
2n—2j 2n—2j—1 2n—2j
T 112 2
<|loi + oo +|oi®
2n—25—2 2n—2j—2 2n—2j—2
2 T 2 2 _
4—’85@2 +—jag@3 +—‘ag@7 47’8§n +&F
2n—2j—1 2n—25—2 2n—2j5—3 2n—2j5—3
. 2 _ 2 _
§]8€“u +\8i“¢> + %+ by
2n—2j—2 2n—2j—2
If j =n—1, (90) gives
n— 2 — 2 — 2 n n @ @
107 ally + (|07 plly + (|08 01, S NOPullg + 107 ll6 + 2o+ En S 20+ &n,
which immediately gives
2 2 2 _
(91) > (bht +pr +H%¢ < 2+ 6.
; 2n—2j 2n—2j—1 2n—2j
0<j<n-—1
Then adding (85) and (91) together, we get that
En S 2+ 6.

Combining the above inequality with the estimates of the nonlinear terms %%y (69)
and (75) together, we complete the proof. O

Next, we give the comparable results on the dissipation.

Proposition 4.2. Assume (u,p,d,n) is the solution to equations (17) and the
assumptions in Theorem 1.1 and the a-priori assumption (22) hold for some small
positive constant §. Then there exists a positive constant 6 > 0, such that

(92) Don S Don + H Fon + ESnDon
and
(93) DINi2 S Dy + 529N9N+2~

Proof. Denote that

- H@o,znflqﬂ”i + H@0,2n71@2”i + H@O,znqq)gu(?) T Hv%’%_l‘bs‘ﬁ
3

T [v5-20,0°

2
1

2 =0,2n—1 =7
1 +HVH" o
2

2
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By the definition of Z;7 and 29 and the Korn inequality, we get that
(94)

2
—0,2n—1

5 2 —
(@) + ||VHV?_}L 1u||H1( —|— HVO ,2 1¢H

H(Q,-)

el 112
+[|VaVE 1¢HH1(91 )

<[+ Va9 el + |95 )|+ Va9 )l
<o

and

n

(95)

~

2
20
S9N,

o],

o,
H1(91+ Hl(Ql—

s=

where Q1 1 =04, NQy, Q- =0Q_NQ; and

. 4 4

Note that x =1 on ©;. Adding (94) and (95) together, it yields

—0,2n

H n:

2
% %57 H
(96) H U U@ 1)

‘Hl(QL_) ~
Via (96), the higher regularity of v on the horizontal boundary ¥ _ is gained
2

2
< j 2n—27 aj H
’ Ul gan—2i+d 5 O u HY (=) + ‘ Vi Otu HE (=)
i I12 —0,2n_||? =
<|o7u + [ V5| < .
H'(Q1,4) HY (21,4) ™
Similarly, we obtain the estimate on ¢
| ofo|| T
w2 2% o, i e, ) >
Applying & (0 < j <n —1) to the equations (63), it yields
~A8ju+Volp=0]" 9" u in Qs
div 8/ u = 0] * in Q4
du=0 on Xy,
lu=0lu on ¥_
and ' ‘ ‘
~00]¢ = 0] 9% — ate inQ_,
ol =0l onx_,
8§¢ =0 on E_b.
Via the Stokes estimate and the standard elliptic estimates, it gives
2
Haﬂ + |[voiv
2n—2j5+1 2n— 2j 1
2 2
97 ot +|lorar||” rell o2
(97) t Yy, 2j— 1 2n—2j—1 2n—2j o I H2 %t (n )
Haﬂ“ + Haﬂqﬂ + HaJ@Q +
2n—25—1 2n—25—1 2n—2j
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and
ol < lloias|’ 5t ol
(98) H L9 2n—2j+1 "7 H t 2n—2j—1 * ‘ A 2n—2j5—1 * H t¢‘ H2 %+ (2
2 _ 2 _
< ] o) @* +{[07 e + Dy
2n—2j—1 2n—2j—1
Summing (97) and (98) together, we get
2 2 A
ot +|[vaiv + o
(99) 2n—2j+1 2n—2j—1 2n—2j+1
, 2 . 2 _
§Hai+1u + H35“¢ + X+ Do
2n—25—1 2n—25—1
Via (99), we claim that
o ol 5 oip|| S+ 9
100 | | v o+ D
(100) j;) t¥ 2n—2j+1 + ||0: @ 2n—2j+1 +j§::() tP on—2j-1 " +

To prove this claim, combining (99) with (95) together, we get that if j =n — 1,
n— 2 n— 2 n— 2 2 2 7 7
Hat 1““3 + Hvat lpH1 + ”at 1¢H3 < ||atnu||1 + ||8tn¢||1 +Zn+ D0 S X+ Dn-

By induction, we assume that the following inequalities hold

(101) |07~ ullyryy + 1908 Pl y 1080l S 20t P fori<i<m-.

Then if j =n — (i + 1), combining (99) and (101) together, we have

2 2 2
Jor =+ |2~ Jor e
2(14+1)+1 2(14+1)—1 2(14+1)+1
n—I 2 n—I1 2 =
SHat “||2l+1+Hat ¢H21+1+%”+‘@"
5‘%'” + -@'fu

which implies that (101) holds for all 0 < ! < n. Summing with respect to [ from
0 to n, we obtain the claim (100).

To complete the proof, we need to estimate the other terms in %,,. To get the
estimate of 77, we will fully take advantage of the boundary condition

(102) pgn = ¢ + @ + 203u3 — p.

Since the estimate ||p||(2) isn’t gained, (100) gives the estimate ||Vp||*. Then applying
Vg to the equation (102), it yields
(103)
2
IVl

SIVuell?,

2 2 2 2
N H¢”2n + ||VH<I)7||2”,% + ||u||2n+1 + va||2n—1 :

+ Va5, s + IV dsusll;, +IVapl?,

i) =3z 3=

Note that [, 7 =0, and via the Poincére inequality and (100), (103) gives

2 2 2 2
Mll2n—1 < lInllo + IVEDlZ—2 S IVENZ,—2
2 2 2 2
(104) S H¢||2n + HVHq)7||2n_% + Hu||2n+1 + vaHQn—l
< I+ Dy
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To deal with the term ||5‘t77||§n_ L, we apply the operator 0; to the boundary con-
dition 9;n = ug + ®°, yielding

2 2 5(12 2 5(2
||87577||2n—% S ||u3||H2"*%(g_) + H(b HQn—% 5 ||U||2n + ||(I) HQTL—%
(105) S T+ |90 + (Vi
2 2
< D+ I,
Applying the temporal operator ag (2 <j <n+1) to the equation (63),, we get
‘ajn : <‘83_1u H2 +‘8j_1<1>5 ’
t 2n—2j+g ~ t 3 H2n_2]+%(2—) ¢ 2n—2j+%
: 2 , 2
(106) ol e
2n—2(j—1)+1 2n—2(j—1)+3
< 2o+ Dy
Combining (104), (105) and (106) together, we get
n+1 2
2 2 j =
WD)l + M0ty + 3 o], S 2k D
]:

Applying & (0 < j <n —1) to the equation (102), via (100) and (107), we have

2 2 2 o2 2
0 o, 000 000 o, + 20000+ [2007]
’ i D Ho(m_) + 1 OJF ; ¢ HO(E_)+ 30} U3 HO(E_)JF t 0
2 2 2 2
e < loin], + [l + ot + oie7]
< X+ D

Combining (108), Lemma 7.8 and (100) together, we get

2 2

2 . ) _
ol < bl ot 55
‘ tP||, ~ [P 1;2(2,)+ 3P| 2,y ~ +
Then we conclude that
Dy < o+ D

Then Lemma 3.2 and Lemma 3.3 respectively give the estimate of Z5x to the case
n = 2N and n = N + 2, which completes the proof. O

To gain the a priori estimate, we need to control the L2 norm of the highest
order derivative of the free surface. Next lemma shows the estimate of the transport
equation. The proof we omitted here can be found in [17].

Lemma 4.3. Assume (u,p, ¢,n) is the solution to equations (17) and the assump-
tions in Theorem 1.1 hold. Then there exists a constant C > 0, such that

(100)  sup Fa(r) < exp (c /0 t Wdr)

0<r<t

X [%N(O)+t/0t(1+52N(r))%N(r)dr+ (/Ot \/Wdrﬂ .

Via Lemma 4.3, we immediately get that
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Lemma 4.4. Assume (u,p,¢,n) is the solution to equations (17) and the assump-
tions in Theorem 1.1 and the a-priori assumption (22) hold for some small positive
constant §. Then we have

(110) sup ﬁgN(r)gﬁgN(O)—kt/t@gN
0<r<t 0
forall0<t<T.
Proof. The assumption %y (1) < 6 gives
H(r) S Ena(r),
and combining Lemma 4.3 together, we complete the proof. O

To close the a priori estimate, we also need

Lemma 4.5. Assume (u,p, ¢,n) is the solution to equations (17) and the assump-
tions in Theorem 1.1 and the a-priori assumption (22) hold for some small positive
constant §. Then we have

(111) /0 f%/(r)ﬁgN(r)drfJé?gN(O)—l—é/o @2N(T)dr
and

(112) /0 t A (1) Fan (1) Don (r)dr < V6.Fan (0) + V6 /O t Don (r)dr

Proof. Lemma 4.4 gives that

/,;z/ ) Fan (r )dr</t%()(da2N +r/ Don( )ds)d
(%N /%N ) Ut(ur)z/( )dr}

(%N / Dn(s ) / (147 L (1 )5y (r)dr

(0 i)

which gives the inequality (111). (112) is gained directly by Holder inequality and
(111) and then we complete the proof. O

Next, we will give the bound of the higher order energy.

Proposition 4.6. Assume (u,p,d,n) is the solution to equations (17) and the
assumptions in Theorem 1.1 hold. Then there exists a positive small constant §,
such that if the a-priori assumption (22) holds, the following inequality is established

or
(113) sup &on(r / Don(r)dr + sup JL()

< Zon(0) + &N (0).
0<r<T o<r<T 14T 2v(0) 2 (0)

Proof. The a-priori assumption (22) implies &y (t) < § for 0 < ¢ < T. In view of
(82) and (92), it yields

(114) bn S éan S ban

and

(115) Don S Don S Dan + H Fon.



NSD WITH FREE INTERFACE 603

Multiplying (47) by 1 + M and adding (77) together, it gets
— — t — — — 3
éazoN(t)"“gazJJrv(t)‘F/ [Zn + (1 + M)Z5y] S Eo (0)+(14+M)Ean (0)+(14+M) &Yy
0

t
—|—/ [(1 —|—M)\/ Eon Don +6020N92N + Vv Don K Fon + €eDan +C(5)~@gN:| )
0

where the constant M will be choosen later. Combining this ineqality with (114)
and (115) together, it yields

t 3
éazN(t)+/ [@2N+M.@§N] S (24 M)én(0) + (1+ M)EA,
0

t
+ / [(1 + M)E§y Don + N Don H Fon + H Fan + ePon + C(e)%ﬂ »
0

where £ = min{3,60}. Via (111) and (112), it gets
¢
N (t) +/ [Zon + M P9y
0
, ¢
<OV (2+ M)En(0) + CL(1+ M)EL + Co(1 + M) / E Do
0

t t t
L Cye / Dox + C2C(E) / Gy + Cov/3 T (0) + CoV/3 / Do (r)dr
0 0 0

where Cp, Cs and C3 are the positive constants independent on ¢, €, § and M
and C(g) = e 3N+4~1 for 0 < j < 2N — 1. Choosing ¢ small enough such that
Coe < é, M large enough such that M > EgNLil and ¢ small enough such that

Ci(1+M)oz < i, Co(1+ M)s* < & and 0307 < 1, we get

(116) San(t) + | Pon S €an(0) + Fan(0),

which controls the former two part of the left of (113). According to (110), it gets

Fon(r) S Fan(0) +1 / Do

for all 0 <r < T. And then

Fan(r) o Fan(0 /
Don < Fan(0) + Ean(0),
1+7r S 1+7“ 1—|— 2y 5 Fan(0) + 6an (0)
which gives the proof of this proposition. (I

To gain the decay of the IV 4 2-th level energy, the following interpolation in-
equality is needed.

Lemma 4.7. There exists a constant § € (0,1), such that if %an(T) < 6, then the
following inequality holds

Entr S (Dnia) N7 (Gon) 7.

Proof. This lemma is proved by the definitions of energy and dissipation and the
standard interpolation theory, so the proof is omitted here. (Il

Then the decay of the IV + 2-th level energy is showed as follows.
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Proposition 4.8. Assume (u,p,d,n) is the solution to equations (17) and the
assumptions in Theorem 1.1 hold. Then there exists a positive constant §, such
that if the a-priori assumption (22) holds, we get

(117) sup (1+ 7“)4N785N+2 < Fon(0) + &N (0).
0<r<t

Proof. Via (83) and (93), it gets

(118) é_aN+2 SN2 S g)N+2

and

(119) Inte S Dnya S Do

Multiplying (58) by 1 4+ M and adding the derived results with (80) together, it
yields

(120)
d [ - _ _ _ _
o (@@;H + EN g+ MEY 5 —2(1+ M)/ Ja§V+1pF2) + Do+ MDY,
Q

5 6{}20N.@N+2 + 6.@1\/4_2 + C(E).@RH_Q + (1 + M)\/ (%N.@N_,_Q,

where the positive constant M is determined later and C(¢) = e 2¥~*. Combining
(120) and (119) together, we get

d (- - = 1 _
pn (‘5%%2 + ENpo T MER 5, —2(1 + M)/Q a@N+2 + MDY is

<G (526N9N+2 + €Dny2+ C()DRrpo + (1 + M)V EanDN+2),

where C7 and Cy are the universal constants. Then we take e small enough such
that Cae < 34, M = CC(e) and § small enough such that C50" < g and
Cao(l+ M)o" < ﬁ for k = min{6, 1}, yielding

d (= ~ - 1

o <@fg¢+2 + EN o+ MEY 5 —2(1+ M) /Q Ja,{V“pF?) + Tcl%“ <0.
Note that

J@tN'HpFQ) +

<201+ M) | 09|, || F2

‘2(1+M)/ JON+1p o
Q

0 _
S Ca(l+ M)EEN 2
3 _
< =&
= 4 N+2,
where we take § small enough such that Cy(1 + M)z < 3. Denote

m(t) = Engo+ MEN 5 —2(1+ M)/ Jo) T pF?,
and then we have ’
(121) 0< %@m + MEY. 5 <mit) < ZENH + MEN 5 < C5EN42
for some universal constant C5 > 0. Via Lemma 4.7, it yields
Cs6nsa < Co(Dnya) N7 (Eyn) T8
and then according to (113), we get

4N —8 4N -8

0 < m(t) < Co(Dn42) =7 (Gan) =7 < Cr(D2) T W™ 7,
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where C7 > C5 > 1 and Wy = Z5n(0) 4+ &55(0). So we immediately obtain

(122) %m(t) + Cgm!'T(t) <0,

where ¢ = ;3 and Cs = —————. Solving (122), we get
20,0 B wg

mit) € ————
(qut + m+(0)) 4

Denote f(A) = MI%J?A, which is the monotonically increasing function with respect
to A in A > 0. So it yields f(\) < 7. (121) gives

m(0) < C58n42(0) < C56n(0) < CsWp.
Since Cy > 1 and C7 > C5 > 1, we get

q m(0)\q q Cs\q
Cem?(0) = =5y <
aCem*(0) 2010;+‘1( ) <206 6) b
which yields
) 1+1) 1 20,C3F7 1
12) (+pimpe—0EDT oL 200 iy,
(qut + m+(0)) K (ch) 1 q

for all ¢ > 0. Combining (118), (121) and (123) together, we get
(L+)76n42(8) S (1401 8n42(t) S (1+ 1) 5m(t) S Fon(0) + G (0),
which gives the proof of Proposition 4.8. (|
Adding (113) and (117) together, we conclude the a priori estimate as follows.

Proposition 4.9. Assume (u,p,d,n) is the solution to equations (17) and the
assumptions in Theorem 1.1 hold. Then there exists a positive constant §, such
that if the a-priori assumption (22) holds, we get

“Gon (t) < Co(Fan(0) + E5n5(0)) for all0 <t < T,
where Cy is a positive constant independent of t.
5. Proof of Theorem 1.1.

In this section, we will prove Theorem 1.1 by the a priori estimate Proposition
4.9 and the local existence results Theorem 7.1 in the appendix. Firstly, we will
rewrite the local existence result Theorem 7.1 as another expression which can be
directly used to prove Theorem 1.1.

Proposition 5.1. Suppose the initial data (ug, o, n0) € H*N x H*N x HAN+3

and satisfy the compatible conditions (18). Then for Ye > 0 small enough, there

exist constants 5y = do(€) > 0 and Ty = C(€) min{1l, —m3——} > 0 where C(e) is a
+1

Tl
positive constant only depending on e, such that if 0 < T < Ty, |Juo|3x + lPoll3n +

||r]0||iN < dg, the equations (17) have a unique solution (u,d,p,n) on the interval
[0,T], satisfying

T 2 2
(124) oinggZN(rH/o Do (|07l g g N0 Bl g ey - < €
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and

(125) sup yg}v(?‘) < 0992]\](0) + €.
0<r<T

Here Cy is a universal constant.

Proof. Via Theorem 7.1, choosing dy small enough such that C'(]|ug ||421N +|l¢o HiN +
ol + T \|770H2N+%) < €, we immediately get the desired result. O

To show Theorem 1.1, we also need

Lemma 5.2. Assume (u,p, $,n) is the solution to equations (17) and the assump-
tions in Theorem 1.1 hold. Let N > 3 and suppose 0 < Ty < Ty. Then we have the
following estimate

T>

(126) gQN(TQ) < ggN(Tl) + sup 6()2]\](7“) + .@QN(T‘)dT

T1<r<T; T

sup  Fan(r) + Cro(Tr — T)2%(1 + T2)4N_8 sup &an(r),
1+T1 m<r<ty T1<r<Ty

where Cg is a positive constant.

Proof. By the definition of %y (t), it is easy to find

T>
gQN(TQ) S ggN(Tl) + sup (502]\[(7“) + QQN(T)CZ’I“
T1§7"ST2 T
sup Fan(r)+ su 14+ ) =88y.o(r)).
1+Ty T@ETQ 2 (7) TlngS)Tz ( ) w+2(1)
Since N > 3, we get that
) 2 ) 2
Z ( sup 05“11(7“)” + sup 65+1¢(7“)H
0<j<nt2 \T1<r<Ts 2(N+2)=2j Ty <r<T, 2(N+2)—-2j
) 2
+  su ot n(r H )
Tlgrrg)Tz el 2(N+2)-2j
2 2
(127) + < sup || & u(r H + sup ||#o(r H
o<J;v+2 Ti<r<n, I ") AN+2)-2  Ty<r<m, | ¢ r) 2(N+2)-2j
) 2
+ su A n(r H )
Tlgrgn () 2(N+2)—-2j
< sup S (r)
T <r<T»
and
. 2 )
i P C 7
0<j<nt1 TISt<Te 2(N+2)—2j-1 0<j<n+1 TISt<T 2(N+2)—2j-1
< sup S (t).
T1<t<T3
Since
4N —8 ] 4N —8 ; t 4N— 8 4N —10 _7
(1+1t) 2 0lo(t) =1+ Th) = 0lo(Th) + (L+s) 2 9/¢(s)ds
T

t
+/ (1+s) 2 9/t g(s)ds

T
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for any 0 < j < N+ 2 and ¢ € [Ty, T»], we get that
|a+0"dlo)|

2N+4—2j

T>
4N 4AN-—8 ’

sfasm oo, o+ [ a9

T
e yn -8 _
+ / 2 (1 + S) 4N2 10
T

ag+1¢(8) H2N+4—2j ds

8,{(;5(5)” ds

2N+4—2j
NVn(T) + (T —TH)1+To) 2 sup /Ean(r),
T1<r<T>
which yields
. 2
sup_ (1465 o] o(0)| |
(128) 0<j<N 2 T1SISTe AN

SgQN(Tl) + (T2 —T1)2(1 +T2)4N_8 sup éDQN(’I").
Ty <r<T>

Similarly, we can get the estimate of u, n and p as follows

Z l sup (1+t)4N*8‘

0<j<N+2 [T1SIsT

2

ag'u(t)H

2N44—2j

) 2
+ sup (1+¢ 4N_8H8J t H
(129) T gthz( ) in(t) 2N+4—2j

. 2
D DI AN Tl 20
0<j<nN+41 1 <t<T» 2N+3-2j

5%2N(T1) —|— (TQ — T1)2(1 —|— T2)4N_8 sup gg]\[(r).
T <r<T>

Adding (128) and (129) together, we get

sup  (1+ )"V 38N 10(t) S Gan(Th) + (T — T1)*(1+ To)*™™% sup & (r),
T1<t<T> T, <r<T>

and then combining (127) together, we immediately obtain the desired estimate
(126). O

Then via Lemma 5.2, we immediately obtain

Corollary 5.2.1. Ifwelet Ty =0 and To = T, in light of the definition of %an(T),
we get the folllowing inequality

T
4N (T) < sup éazN(T)-i-/ Don(r)dr + sup Fan(r)
(130) 0<r<T 0 0<r<T

+ Cro(1 4+ T)4N—6 sup &an(r).
0<r<T

With these estimates at hand, we give the proof of the main result Theorem 1.1
as follows.

Proof of Theorem 1.1. In view of (130), the solution, existing on the interval
[0,T] with T' < 1, obeys the estimates (124) and (125) in Proposition 5.1, so we get

Gn(T) < Cok + €(2+ C12*V78),
where the constant Cy and Cjo comes from (125) and (130) respectively. Choosing

e satisfying €(2 + C102*¥78) = ¥ and « small enough such that Cor < % and
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Kk < dp(e) for 0 < v < 1 and Jp(€) coming from Proposition 5.1, we get that there
exists a unique solution on the interval [0,77], satisfying (124) and (125) which
yields %n (T) < v.

Because of the initial data satisfying the compatibility conditions and

&an(0) + Fan(0) < k,

we define that
T* (k) = sup{T > 0| the solution of (17) exists on the interval [0, T7,

satisfying % (T') < v}.

We know that T*(k) > 0 if k is small enough, i.e. there exists a constant £; > 0
such that T : (0,x1] — (0,00]. It is easy to get that T*(k) is non-increasing on
(0, k1]. Denote

d(e) v

131 = mi N 7
(131) Ko = min{r1, Co " 3Co(1 + Cy)

}.
We claim that
T* (ko) = oc.

Once the claim is established, we complete the whole proof by choosing x € (0, k).

Now we prove the claim by the contradiction. If the claim doesn’t hold, it gets
that T* (ko) < oo to the constant kg. The definition of T* (ko) gives that if the initial
data satisfy the compatability conditions and the bound &5x5(0)+.Zan(0) < Ko, the
solution of (17) exists on [0, T3] for every 0 < T7 < T*(ko), satisfying %N (T1) < v.
Then Proposition 4.9 implies

(132) gg]v(t) < Co(ﬂg]\l(()) + gQN(O)) < (Cokg for 0<t<Tj.
Together with (131), it yields that

Fan (T1) )
(133) éaQN(Tl) + < Cokg < (5(6) forall 0<Ti<T (Ho).

1+1

Since &N (T1) < 0(¢), by Proposition 5.1, we can view u(T1), ¢(T1), p(T1) and
7(T1) as the initial data which satisfy the compatability. Proposition 5.1 gives that
the solution can be extended to [0, T3] for some positive constant 7o > T satisfying

1
0<Tr —T1 <Tp:= C(e)min{l,}.
||77(T1)||421N+é
Let
v 1 1

(134) Egmln{Q,%}
and denote

. 1
135 T=C(eminql, ————— > .
(135) Omin {1 s T )

According to (133), it is easy to get 7' < Ty. Denote

. 1
v =min{ T, T*(ko), — ;.
{ (1 42T (ko)) "=
Choosing Ty = T* (ko) — %, by the above analysis, we can extend the solution to
[0, T3] for Ty = T™* (ko) + 4 and Proposition 5.1 gives the estimate
T>

sup Sy (r) + Don(r)dr < e and sup Fan(r) < CoFon(Th) + e,

Ty <r<T; T Ty <r<Ty
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which combines (132), (133) and(126) together, yields

T
Gon(T2) <%n(T1) + sup &n(r) + Don (r)dr + sup  Fon(r)
Ti<r<T» T 1+T1 ry<r<y
+ Clo(TQ — T1)2(1 + T2)4N78 sup (g’QN(T)
T1<r<T»
CoCoro(14+T1) + ¢

<Coko + €+

C 2 1 27T* 4N—-8
1+ T, + €Croy (1 + (ko))

<Coko(1+ Co) + 2€ + €Croy*(1 + 2T* (150) )N 8

1% 1% 1%
<s+o+o=v,

-3 3 3
which contradicts with the definition of T*(xg). Then we obtain the claim and
complete the proof. O

6. Numerical Simulations.

In this section, an efficient explicit discrete scheme is established based on finite-
volume method for the free interface system in two dimension. Our numerical
simulations demonstrate similar conclusions with the main results of Theorem 1.1.

6.1. Discrete schemes. To begin with, we give here our notations for the dis-
cretization. To this end, we discretize the spatial domain by placing a grid over
the domain € (¢) with the uniform small grid size Az = Ay = + (N is a pos-
itive integer). The mesh is centered at z; = iAz, y; = jAy with endpoints
Tipl = (z—l—%) Az and Yirr = (j—i—%) Ay for i,5 = 1,--- N, which is finally
divided into the cells

Oi,j = |:xi—%7xi+%:| X |:yj—%ayj+%i| ) Zaj = 17 aN'

For the time discretization, we set t" = nAt for n € N, where we assume that At
is a small temporal scale. The discrete approximation of the velocity u = (u,v) in
the finite volume sense is denoted by

L, 1 . N
Ui Aziy //c u(z,y,t")dedy,  i,j=1-- N, neN,

. 1 N o
Vi R TxAy //C] v(z,y, t")dxdy, i,j=1,---,N, nmneN,
1

T, 1
/+2n(x7t”)dx, i=1,---,N, neN.

T, 1

" %Ax

2
As for the discretization of spacial domain, 2™ consist of two moving regions Q™
and Q% defined as
Qy—L = {(Ii,aijtn)m S L; S L7fb S yj S 7]?}
respectively. Q" and Q7 is separated by the free interface ¥" given by
£ = {(@i, 5, ")y, = ni'}
where L, b are positive constant and the discretized interface at each discrete time

is presented as n* = n (z;,t"), i =1,--- , N,n € N. We consider the left side point
values at the interface. Let

Yy = {(Ii;yj\u-%)‘yN_;-% = 1} and X_p = {(l’i,y%)W% = *b}
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denote the given upper and lower boundary of 2". Therefore, an explicit discrete
scheme for the incompressible Navier-Stokes equations (2) and the porous medium
model (3) with v = 1 can be written into the following form as

—n+1 —n _ PwAt [=n o _an
Polliy = Polliy = "Az (“m (ui+%,j uifé,j))
_puAt (zn [(=n _ _ At (on _n
Ay (“z',j (“i,j+2 Uij—1 & (P41 —Pl;)
_BAt (=n _9sn n UAt (—n _osn —n . n
+an)? (“i+1,j 2a}; +apy ;) + Koy (U — 207 + ) in Q7
n+ _ _ PoAL (=n (=n _&n
Pu¥ij = Puli Az (ui,j Vitl,j vi—%,j))
_prt mn [ 5n _=n At n
Ay (”i,j (Ui,j+% Yij-1)) T Ay (perl pm)
pAt  (=n _ omn =T nAtL  (=n _ 9=n =N _ : n
a7 (1, — 20} ‘Jrvifl,j) * ap)? (041 — 2005 + 075 _1) — pug 0 QF,
1 (=n _an —=n _=n _ . n
Az (?H;,y‘ “z——a) + 2y (”z‘ﬁé ”m’—l) =0 in £23,
n+ _ n n n
(0777 ) = (97;)" + (Az)2 (( )Y = 2(08)7 + ( i71,j)7)
At n n : n
Ty (( i,jﬂ’)’y —2(d1;)7 + (675-1)7) in Q.

where ¢7'; = gb (xi,yj,t™) is the discrete approximation of (b and p;'; =p (24, yj, ")

is the dlscrete approximation of p. The values u” I U?_, i nj+ -l -1
, J+3 ;
_ —n — =n
ot = cand 07, — O™ are computed in an u —Wlnd manner:
i+3d imh.g ity hi—3 P P
n —n ; 7
g, = QM T Mg i al; >0,
i+3,j i—1.j al' i a;lj, otherwise.
, ,
n —n ; mn
1 — 'an 1 = uia.j - ui#ﬂ‘*l’ Zf Ui’j - O,
7J+2 L= 3 ﬂ?j+1 — ﬂfj» otherwise.
) )
and
T T ; A
Cgn . = QU Tt if w >0,
i+i.5 i—17 7 Y an =N ;
7 2 Oy — O otherwise.
=M =N ; H7n
—n L — 1_)n L = ’Ui,j - ’Ui,j—17 Zf Ui,j > 07
4,j+3 LT3 sznj—s-l — ﬁ?j, otherwise.
; ;

Here we use the standard five-points stencil to obtain a second-order approximate
Laplace operator

A oo Gty m 2t oy Cigan = 265 G

v (Az)” (Ay)®

The kinematic boundary condition (7) and the Beavers-Joesph-Saffman’s interface
condition (6) with v = 1, which is vital in our schemes to assign value to @ and ¢
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at each time step size on X _(t) , take the following form

=+ Aol — R (77?% - 7_7?*%) on s
oz (g — ) 5 = 2
= (00, = ) (e — )
oy (07,771 = (02,2077} on 22,
ar (ﬁﬂ% iy ( i A (ﬂﬂ%,j - al%u‘))
tay “Zlﬁé B ain,j—%) s (@Zr%»j a ﬁy—%»j)
Ay
_ %(%Z)x (77;:_% A ,7:1% _ ﬁlﬂ_% on X7,
2 (M =) (5 (g ~%0my) + 2 (0~ 004))
075 = 2y (04s — 0051 ) = 55 (08 — pagn} on X

where the value ML — 1,1 is given similarly as above in an up-wind manner. The
2 2
boundary condition on ¥ and ¥_, satisfies

5T

! N4l =0 on X%,

P n
U1N+1 =0 onX7},

ol =d on¥n,

where ¢ = 1,--- , N,n € N. Finally, we define the initial data (ﬂz s o9 3 (;51 3 771)
a small perturbation of the constant steady state (u, v, 0, 77) in (11).

6.2. Numerical results. We have obtained the global well-posedness of the so-
lution perturbed around the constant steady state, that is, if the initial data of
our model is a small perturbation of the constant steady state, the solution to the
free interface problem exists globally in time and converges to the constant steady
state at the almost exponential time rate as shown in Theorem 1.1 in Section 1.
In this section, we perform several numerical experiments to illustrate the theo-
retical analysis of the long time behavior of the Navier-Stokes-Darcy equations.
The numerical experiments agree with the theoretical results demonstrated by the
following figures.

Indeed, (a)-(c) of Figure 1 demonstrate time evolution to the velocity of the
upper fluid in domain 4 (¢) and (d)-(f) of Figure 1 show time evolution to the
pressure of lower fluid in domain Q_ (¢). It is clear that the velocity with a small
initial data will decay to zero as time goes to infinite. Meanwhile, the initial data
of the lower fluid as a small perturbation of d)b will converge to (bb when time goes
to infinite. These numerical simulation results are consistent with what we have
shown in Theorem 1.1. Especially, for the free interface ¥_(t), Figure 2 shows the
evolution trend of the interface when time changes. In fact, the time-dependent
7 (t) starts with a curve and ends with a line, that is, the free interface ¥_(¢) with
the nonzero initial data will converge to zero as t — oo.

In Figure 3, We perform numerical experiments to test the different decay rate for
varying exponent of the porous medium equation provided that others are chosen
to be the same. We observe that the decay rate of the hydraulic head gZ; towards
the equilibrium ¢~b is faster when the exponent for the porous medium equation is
bigger. But this is not proved in the theoretical analysis.
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< ~ < : . O

(a) t=1 (b) t=2000 (c) t=10000

(d) t=1 (e) £=2000 (f) t=10000

FIGURE 1. Time evolution of velocity u (up pictures) and pres-

sure ¢ (low pictures) on a uniform mesh with Az = Ay = 1

and At =1 x 1075, Here we _assume the initial data u? :~fu0 =
%y (y — 1) cos2mx and ¢° = ¢y + %y (y — 1) cos 2ma with ¢ = 1
as a small perturbation of steady state . The positive constant L
is fixed as L = 1. The density of two fluids are given as p, = 1

and ps = 2.

Moreover, a numerical decay rate with p, = 1 is exhibited in Figure 4. We
compare the decay rate of fluid with different density p, = 0.5 and p, = 1.5. In
these three cases, the fluid with density p, = 0.5 has the faster decay rate than
other two cases, while the fluid with density p, = 1.5 takes more time to converge
to the steady-state solution.

(a) t=1 (b) t=2000 (c) t=10000

FIGURE 2. Time evolution of the free interface ¥_(t).

7. Appendix.
In this section, for the completeness of this paper, we will give the local existence

result and some analytic tools which are used in this paper.

7.1. Local existence. For the completion of this paper, we record the results of
the local existence, which has been obtained in our forthcoming paper. Firstly, we
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Pressure

T
0.04 0.05 0.06 0.07 0.08 0.09 0.1
t

L L
0 0.01 0.02 0.03

FIGURE 3. Decay rate varying with the different power of diffusion
for the porous medium.

T
=05

0,15

Velocity u

T

FIGURE 4. Decay rate of velocity with different density p,,.

introduce some related notations. Set

"HY (Qy) = {ue H' (Q+) | u |, = 0},
OH () :={ue H'(Q+) |u|s,=0and divu=0},
oH'(Q-) = {¢p € H'(Q-) | ¢ |5,=0}.

Then the inner-product on *H*(€), ) is defined by

(u,v)jﬁll) = /(Ddu : Dgv)J (1),

where u and v denote the vector fields. Similarly, the inner-product on oH*(Q_)
for scalar value is also defined by

(QZ);w)jfé) = /(Vﬂ(ﬁ' Vah)d.

Next we can define the space.(;) := {u € "H' () | ||quf(11) < 00,divgy u = 0}
and A5 = {¢ € oH' () | ||¢||%o(12) < oo}, also we use (J(}))* and (H(3)" to
represent the dual space of %‘ﬁ) and %ﬂé)

Theorem 7.1. Assume N > 3 be an interger,y = 1 or v > 1 and the initial
data (uo, ¢o,7m0) satisfy |[uolsn + lléollin + ||770||ZN+% < oo and the compatibil-
ity conditions (18). Then there exists 0 < dg, Tp < 1, such that if 0 < T <

Tomin{l,m} and |Juosn + lldolan + n0lliy < do, there exists a unique
aN+3
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solution (u, ¢, p,n) on interval [0, T] and the solution obeys the estimates

2 2 2
Z (HaznuHLgf’H‘le?j + ||atm¢||L;SH4N—2j + Ha{”nHL%me,zj)

0<m<2N
+ Z H@Z"pHi%onfzjfl
0<m<2N-—1
m, |12 m 112
+ Z (”at u||L2%H4N—2j+1 + |9y ¢HL§,H4N*2J+1)
0<m<2N

2 2 2
+ Z Hatmp”L?TH‘lN*?j + |‘77||L2TH4N+% + ||8tn||L%H4N—%

0<m<2N-—1
2N+1, (|2 2N+1
Y e IO -+ 100N o
2<m<2N+1
2 2 2 2
C(Nluollyn + lldollin + llmollin + T llmollins )

and
2 2 2 2
||77||L°°(0,T;H4N+%(Z,)) S C (HUOHZLN + ||¢0||4N + (1 + T) ||n0||4N+%) ’

where C' > 0 is a universal constant depending on N and dg, but not depending on
time.

7.2. Poisson extension. Firstly, Poission extension is listed here, which is used
to extend the free boundary to the interal domain and keep the regularity of the
boundary matching with one in the internal domain. The related reference can be
referred [43].
Denote that ¥ = T? x {0}, where T? := (27L1T) x (2nrL>T) and define the
Poisson integral in T? x (—o0,0) by
in-x’

P_n(w) = 3 —%i/m

n€(LT'Z)x(Ly 'Z)

e‘”lxaﬁ(n).

—in-a’

Here f)(n) = [5; n 2m/L Iz
ysis, we have

da' for n € (L7'Z) x (L3 '7Z); Via the Fourier anal-

Lemma 7.2. Let P_n be a Poisson extension of a function n that is either in
HY(2_) or in HT2(X_) for ¢ € N, where H1(X_) and HI"2(X_) denote the
homogeneous Sobolev space. Then we have

2 2 2 2
IVIP-nllg S Wnlligacrzy  and  [IVIP-nllo S 10l et o)

Proof. We omit the proof here, which can be seen in the appendix of [17] O
Next, we extend the free interface n to Q4 and Q_. Let 0 < A < A\ <

- < A < 00 for m € N and define the (m + 1) x (m 4+ 1) Vandermonde ma-
trix V(Ao, )\1, ey >\m) by (V()\(), )\1, ey )\m))lj = (7/\j)i for Z,] = O, e, Note

that the Vandermonde matrix is invertible, so define a = (ag, g, ..., )7 is the
solution to
(136) VAo, Aty oy Am) @ = g

for ¢yt = (1,1,...,1)T. Then define the specialized Poisson integral in T2 x (0, co)
by

e —|n|Xjz3

P = % %%Za i(n).

n€(L]'Z)x(Ly 'Z)
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Via the equation (136), it is easy to check that
O“Pn(2',0) = 9°P_n(2',0)  Va e N?with 0 < |a] <m.
These facts allow us to extend 71 to the whole domain €2 by

Pin(a’, x3) z3 >0,

137 n(z’ = ! =
( ) ’17(,% ’373) 'Pn(.’L‘ 7$3) {P?]((E/,xg) 25 < 0.

It is easy to know that if n € H5~1/2(3_) for 0 < s < m, then i € H*(Q).
Next we also need some estimates of the Poission extension Pr).

Lemma 7.3. Let Pn be the Poisson integral of the interface function n that is
either in H1(X_) or HI=Y2(X_) for ¢ € N. Then

2 2 2 2
(138) IV Prllg S l1nllras_y or IV*Pallo S lnllra-1r2es_y -
Proof. Let Q:=Q,UQ_, where Q :=T?x (0,1) and Q_ := T? x (~b,0). Denote
b= H%T%Xb and Q_ := Tx (—b,0). Since P is defined on T2 x (—o0, 00), it suffices to

prove the estimates on Q := QLU Q_ for Q c Q. By Fubini and Parseval Theorem,
it yields

0
||Vq7377||H0(Q) 5 Z /E |n‘2q |77(n)|2 e2|n|m3dx3

ne(L7'2)x (L3 2) "

1
Y 3 / P [i(n)[? a2~ 2N gy
0

n€(Ly'Z)x (Ly'2z) 0<j<m

(139) )
< 2q 15 y2 (1= e
n€(Ly'Z)x(Ly'2Z)
29 | 2 o 1_6—2\n|>\j
X X e el ()
ne(L7Z)x (L3 'z) 0<i<m j
However,

_ —4xb|n| B _ o—2In|A;
16Smin{?b,l} and 16§min{2,1},
| I RV RV
which means that the right hand side of (139) is bounded by either ||77||%,q,1/2(2)
2
or ||77||Hq(z)- U

We will also need the L°° estimate.

Lemma 7.4. Let Pn be the Poisson integral of the interface function n that is in
HY*s(X_) for ¢ > 1 an integer and s > 1. Then

2 2
VP 2oe S Il Frass -

The same estimate holds for ¢ = 0 if n satisfies sz n=0.
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Proof. Via the definition of Pn, we have
VP 1o ()

< > [n(n)ln]* + > > Xnl* o] [i(n)]

n€(Ly'Z)x(Ly 'Z) ne(LT'Z)x (L, 'z) 0<j<m

S > i (n)|n|*
n€(Ly'Z)x(Ly ' Z)
1/2

—2s
Sl o > n| S Ml graes -
ne(Ly'Z)x(Ly ' Z)\{0}
Here A = max{1, A1, A2, A3, ..., Ay }. The same estimate works with ¢ = 0 if 7(0) =
0. U

7.3. Properties of o/. The following lemma gives some properties of matrix .o/
which will be used through the whole of this paper.

Lemma 7.5. Let o be the matriz defined by (15). Then we have

(1) 0;(Jtj) =0 fori=1,2,3.

(2) Jatés = N on Y_, while Jo/ €3 = €3 on Xy.

Proof. The first item can be verified by the direct calculation.

For the second item, we compute to get Jof'es = —Aé| — Béy + €3 = —017je] —
0aMéy + €3 = —01ne1 — Oanes + €3 = N and then these two equalities hold since
0(0) =1 and 6(—b) = 0. O

7.4. Products in Sobolev spaces. In this subsection, we will list some inequal-
ities which are used to estimate the nonlinear terms. The proofs can be found in
[4] [17] and the referrence therein.

Lemma 7.6. The following inequalities hold for sufficiently smooth subsets of R™.

(1) Let 0 < r < 51 < 89 be such that s1 > n/2. Let f € H**, g € H*2>. Then
fg€ H" and

(140) 19l S WSl ger N9l pree -

(2) Let 0 < r < s1 < 89 be such that s5 > r+mn/2. Let f € H%', g € H*.
Then fg € H" and

(141) 19l S WSl ger N9l g -

(3) Let0 < r < s1 < sg be such that so > r+n/2. Let f € H™"(X), g € H*2(X).
Then fg € H*1(X) and

(142) 19l —s, S IFI= gl -
We will also need the following lemma.

Lemma 7.7. Suppose that f € CY(X) and g € HY/*(X). Then

1£glls2 S WMl llglly o -

In the following lemma, some special Poincaré-type inequalities are also used in
this paper. Denote U by a periodic domain of the form Q4 and 3, and ¥; by the
flat upper boundary and the lower boundary which may not be flat, respectively.

Lemma 7.8. The following hold.
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() 1120y S 112y + 105 f 120, for all f € HI(U).

2) | fllez.) SN0 fllez@y — for f € HY(U) and f =0 on %;.

(3) fllo S Ifll S IV fllezwy — for all f € HY(U) and f =0 on ;.
Next Korn’s inequality is also used to the relation between Du and Vu.

Lemma 7.9. It holds that ||ul; < ||Dullo, for allw € "HY(U).

7.5. Stokes estimates. Let U be the horizontally periodic slab and I'y and I'_
be the smooth boundaries which may not be flat. We consider the Stokes problem
with the following boundary.

—pAu+ Vp = f! in U,
divu = f? in U,
u=20 on Iy,
(pI — pDu)v = f3 on I'_.

Lemma 7.10. Assume that s > 2, f' € H2(U), f> € H* 1 (U) and f3 €
Hs 3 (T_). Then the above Stokes problem has an unique solutions (u,p), satisfying
the following inequality

lelly 4 18l y—s < 1 e + 172y + 1 e -
Proof. Seeing [4]. O

Next, we present the Stokes problem with Dirichlet boundary condition on both
'y and I'_.

—pAu+ Vp = h! in U,
divu = h? in U,
u=h? on Iy,
u=h* on I'_.

Lemma 7.11. Assume that s > 2, h' € H"2(U), h? € H*~(U), h® € H~3(T'_)
and h* € H*=3(T'_), satisfying

/h2=/ h3-1/+/ hew.
u Iy r_

Then there exists an unique solution (u,p), satisfying

Jally + 1921 2 10 ey 102 s + 1ty 10 -

Proof. Seeing [21], [41] and [43]. O

3 (DY)
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