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CONVERGENCE ANALYSIS OF YEE-FDTD SCHEMES FOR 3D
MAXWELL’S EQUATIONS IN LINEAR DISPERSIVE MEDIA

PUTTHA SAKKAPLANGKUL AND VRUSHALI A. BOKIL

Abstract. In this paper, we develop and analyze finite difference methods for the 3D Maxwell’s
equations in the time domain in three different types of linear dispersive media described as Debye,
Lorentz and cold plasma. These methods are constructed by extending the Yee-Finite Difference
Time Domain (FDTD) method to linear dispersive materials. We analyze the stability criterion
for the FDTD schemes by using the energy method. Based on energy identities for the continuous
models, we derive discrete energy estimates for the FDTD schemes for the three dispersive models.
We also prove the convergence of the FDTD schemes with perfect electric conducting boundary
conditions, which describes the second order accuracy of the methods in both time and space. The
discrete divergence-free conditions of the FDTD schemes are studied. Lastly, numerical examples
are given to demonstrate and confirm our results.
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1. Introduction

The finite difference time domain (FDTD) method by Kane Yee [50] is a nu-
merical technique for discretizing the time-dependent Maxwell’s equations in com-
putational electromagnetics and has been widely used in engineering, physics and
computational mathematics [47, 50]. Electromagnetic wave propagation in a mate-
rial is described by the three dimensional (3D) Maxwell’s equations, modeling the
evolution in space and time of the electric and magnetic fields, along with consti-
tutive laws, relations between electric and magnetic fluxes and fields, that describe
the response of the material to the propagating fields.

The FDTD method was first proposed for a linear dielectric (e.g., free space)
by K. S. Yee [50] in 1966, and is also referred to as the (classical) Yee scheme or
the Yee-FDTD method. The Yee scheme, as originally constructed, is an explicit
scheme for the discretization of the 3D Maxwell’s equations on structured staggered
space-time grids. The staggered discretization results in a second order accurate
method. The classical Yee scheme has been theoretically analyzed for stability and
dispersion error [47], convergence analysis and error estimates [40, 41], and has
been extended to discretize Maxwell’s equations with constitutive laws describing
electromagnetic wave propagation in a variety of materials [47].

In this paper, we focus on constitutive laws that do not include any magnetic
effects, i.e. the magnetic constitutive law is the same as that in free space (linear
dielectric). Previous work in this area includes extension of the Yee scheme to
conductive media [47], linear dispersive media [4, 10, 14, 26, 27, 28, 38, 43] using
constitutive laws that include models such as the Debye model for orientational
polarization [16, 28], Lorentz model for electronic polarization [26, 42], cold plasma
model [14, 51, 52] and the Cole-Cole [10, 13] model. In nonlinear optics, nonlinear
dispersive models in 1D for the Kerr and Raman effects have been constructed
and discretized within this FDTD approach [5, 20, 25]. There is a large literature
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on the construction of Yee type FDTD schemes for other applications including in
metamaterials [21, 34], micromagnetics [1, 45], plasmas [15, 39], among others. The
classical Yee scheme for a linear dielectric, and many of its extensions, leads to a
conditionally stable second order accurate scheme. The scheme may no longer be
fully explicit for some constitutive laws, and other complications can arise [5]. In
addition, there are extensions of the Yee schemes to higher than second order [5, 6]
and to extensions on unstructured meshes [17].

One of the areas in which the Yee scheme has been relatively less studied is
convergence analysis, while there are several papers on dispersion analysis of the Yee
and Yee type schemes. In our recent work [7], we presented Yee schemes and their
convergence analysis for the 2D Maxwell’s equations in Debye and Lorentz (linear)
dispersive media. The Yee scheme for both media was proved to be conditionally
stable under the same stability condition as the classical Yee scheme. We proved
that the proposed Yee scheme in both media is of second order convergent in time
and space by the energy method.

In this paper, we extend the convergence of Yee schemes for linear dispersive
media in two spatial dimensions to 3D. We consider three types of models for linear
dispersive materials; the (single pole) Debye model for orientational polarization
(Maxwell-Debye), the (single pole) Lorentz (Maxwell-Lorentz) and the isotropic
cold plasma (Maxwell-Cold Plasma) model. We focus on the construction and
analysis of the finite difference time domain methods based on the staggered Yee
grids for 3D Maxwell’s equations in these three linearly dispersive media. We show
that our fully discrete schemes are conditionally stable via the energy method, and
convergent with second order accuracy. Moreover, we use the energy technique to
analyze the discrete divergence for the discrete Maxwell’s equations in dispersive
media. The energy method is a powerful method used on both the continuous PDEs
and discrete finite difference methods by defining an energy associated with the
solution and then showing that the energy is non-increasing. Recently, the energy
technique has been applied for analyzing stability and convergence properties of
the Yee scheme in various dispersive media, applied in operator splitting FDTD
methods [8, 9, 11, 18, 49, 35, 36], finite element methods (FEM) and discontinuous
Galerkin (DG) methods (for example see [22, 29, 30, 31, 32, 33, 37, 48] and references
therein).

We present numerical experiments to illustrate our theoretical results by con-
structing exact solutions for Maxwell’s equations in these linearly dispersive media:
Debye, Lorentz and Cold plasma. We also investigate the discrete divergence prop-
erties of electric and magnetic flux densities for these dispersive media. Our analy-
sis shows that the numerical divergence satisfies discrete versions of the continuous
Gauss’s laws for the 3D Maxwell’s equations in dispersive media.

This paper is organized as follows. In Section 2, we present the 3D Maxwell’s
equations in three types of linearly dispersive media (Debye, Lorentz and isotropic
cold plasma) and then present their corresponding weak formulations. In addition,
we present energy decay results for these dispersive models that are available in
the literature [7, 31]. Section 3 details the staggered discretization in space and
time. The stability, discrete energy estimates and convergence analysis, including
the analysis of the discrete divergence property are presented in Sections 4, 5 and
6. Numerical experiments demonstrating our theoretical results are presented in
Section 7. We provide concluding remarks in Section 8.
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2. Maxwell’s Equations in Dispersive Dielectrics

Let Q C R? be an open bounded domain. Let T > 0 be given. The time
dependent three dimensional (3D) Maxwell’s equations on € x [0,7] in a charge
and source free vacuum are a system of vector PDEs governing the evolution in
space and time of the electric field E and the magnetic field H, which are given as
follows:

On Q x (0,7] we have

B
(la) aa—t + curl E =0,
D
(1b) aa—t —curl H=0,
(1c) div D = 0 = div B,
along with initial conditions
(1d) D(x,0) = Dy(x); B(x,0) = Bo(x), on Q

where D is the electric flux density, B is the magnetic flux density, Dy and By
are initial conditions on the electric field and the magnetic field, respectively.
All fields in (1) are 3D vector fields with components that are functions of po-
sition x = (x,9,2)7 € Q and time t € [0,7], i.e., every vector field V(x,t) :=
(Va(x,1), Vy(x,1), Vo (x,t))T. The 3D operators, curl and div, are vector curl and
divergence operators respectively, operating on vector fields.

The boundary condition in this paper is assumed to be the perfect electric con-
ductor (PEC) boundary condition given as

(2) n x E =0, on 09,

where the vector n is the outward unit normal vector to 0S2.

Both the electric and magnetic flux densities are related to the electric and
magnetic fields through the constitutive relations on Q x [0,7]. The constitutive
relations for a dispersive medium are given as

(3a) D =¢yecE+ P,
(3b) B = /’LOHv

where € is the electric permittivity of free space, g is the magnetic permeability
of free space, and ¢y = 1/,/€ofio is the speed of light in vacuum. We note that the
magnetic constitutive law is the same as that in vacuum; thus we neglect magnetic
effects. The vector field P is the electric (macroscopic) polarization field, and €
is the permittivity at infinite frequency. The (linear, isotropic) vector polarization
field P in the constitutive relation (3a) is defined as a convolution in time with the
electric field given as

(4) P(xit) = [ gloxit = 9B s)ds.

where g is the linear susceptibility kernel (or the dielectric response function) of
the dispersive medium [4, 7] which is a function of space and time. Equation (4)
describes the non-instantaneous (delayed or retarded) response of the dispersive
material [2]. The system of equations (1), (2), (3), and (4), fully describe the
propagation of an electromagnetic field in a linear, isotropic, dispersive medium.
In this paper, we focus on three of the most common models for linear dispersive
materials. These are, the Debye model for orientational polarization which describes
relaxation processes and is used to model polar materials [16, 43, 16, 28]; the Lorentz
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model [42] for electronic polarization which describes resonance phenomenon at the
atomic level [43, 26, 42]; and the isotropic cold plasma model for the absorption
and propagation of electromagnetic waves in non-magnetized materials [46, 44, 32].
Next, we describe these three models.

2.1. Maxwell-Debye Model and Energy Estimates. In this section, we con-
sider the case of the single-pole Debye dispersive model for orientational polarization
[28, 7, 53]. The linear susceptibility kernel g, defined in (4), takes on the form

(5) g9(x;t) = el =V o-trr x e,
T

in which ¢, is the static relative permittivity and ¢, := €,/€ is the ratio of static
to infinite permittivities. The parameter 7 is the relaxation time of the medium.
All parameters 7, €, and €5 are assumed to be constant within the medium. We
also have the physical conditions €; > €, i.e., ¢ > 1, and 7 > 0.

The time convolution in (4) for P with the susceptibility ¢ given in (5) can be
converted into an ordinary differential equation (ODE) for the time evolution of
the polarization, given as

oP
(6) T— 4+ P = epec(eg — 1)E.

ot
Combining the ODE in (6) with Maxwell’s equations (1) and the constitutive laws
(3), we arrive at the 3D Maxwell-Debye model in the form of three first order vector

differential equations:
3D Maxwell-Debye Model:

(7a) 88—1;1 = fi curl E,

(7b) 9B _ carlH- =Yg, L p
ot €0€00 T €0€c0T
0P  epenc(eg — 1) 1
T _ Q=g p,

(7e) ot T T

We assume the PEC boundary condition (2) on 0€ and the initial conditions (1d),
along with homogeneous initial conditions for the polarization, in the domain 2 C
R3.

To show that the system (7) is well-posed, we construct a weak formulation. We
first define the following two functional spaces:

(8a) H(curl, Q) = {u € (L3(2))° | curl u € (L*(Q))’},
(8b) Hy(curl, Q) = {u € H(curl, Q) | n x u =0 on 90}.

Let (-, -) denote the L? inner products and ||-||2 denote the corresponding norm. The
weak formulation for the 3D Maxwell-Debye system can be constructed as follows
(see also [7]). Multiplying equation (7a), equation (7b) , and equation (7¢) by test
functions pov € (L2(Q))3 , €0€col € Hy(curl, ) ,and ———w € (LQ(Q))g,

€0€co(€g — 1)
respectively, and then integrating over the domain 2 C R? and finally applying
Green’s formula for the curl operator

(9) (curl H,u) = (H, curl u), Vu € Hy(curl, ),

the weak formulation for the 3D Maxwell-Debye system of equations (7) is:
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3D Maxwell-Debye Variational Formulation: Find E € C(0,T; Hy(curl, Q))N
CL(0,T; (L*(2))?), and H,P € C1(0,T; (L2(R))’) such that

(10a) <uoaal;l,v> =(—curlE,v),v e (LQ(Q))S,

(10b) (eoem%]?7u> = (H,curl u) — (60600(6‘1_1)E7u> + (1P,u) ,
pu

-
u € Hy(curl, Q),
(10c)

1 oP 1 1
———w|=|-Ew|—-| ——P.w|,we (LQ(Q))B.
€0€col€g — 1) Ot T €0€co(€q — 1)T

The Maxwell-Debye model exhibits energy decay, as stated in the theorem below.

Theorem 2.1 (Maxwell-Debye Energy Decay). Let Q C R? and suppose that
the solutions of the weak formulation (10) for the 8D Mazwell-Debye system of
equations (7) satisfy the regularity conditions E € C(0,T; Ho(curl,Q)) N C*(0,T;
(L2(2))?), and H,P € C*(0,T; (L (Q))g) along with the PEC boundary conditions
(2). Then the system exhibits energy decay,

(11) Ep(t) <Ep(0), Vvt>0,

where the energy Ep(t) is defined by

1 eut= (] 0 e w0+ o)

€0€co (€

Proof. See [7, 29, 31]. O

2.2. Maxwell-Lorentz Model and Energy Estimates. The second model for
a dispersive medium that we consider is the single pole Lorentz model for electronic
polarization. The susceptibility kernel function for the Lorentz model (see [28, 7,
53]) is given as

2

Eowp

Yo

A

(13) g(x;t) = e “sin(vot),

1
where wy is the resonance frequency of the medium, A := % is a damping frequency
T

with % the damping constant, the plasma frequency is w, := wpv/€s — €, and

Vo 1= yJwi — A2,
The time convolution for the electric polarization P with the susceptibility (13)
can be converted to a second order ODE in the form [27, 53]

#p  10p

(14) a2 T o

wgP = eoprE.
We define a new vector field, J = TR the polarization current density. With

this definition, combining the ODE in (14) with Maxwell’s equations (1) and the
constitutive laws (3), we arrive at the 3D Maxwell-Lorentz model written as
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3D Maxwell-Lorentz Model:

(15a) %—I;I 1 curl E
Ho
OE 1 1
15b — = 1H - J
(15b) Ot €r€oo cur €0€o0
0J 1
(15¢) 5= wiP + ow,’E,
oP
15d — =
(15d) 5 =9

We assume the PEC boundary conditions (2) on 992 and the initial conditions (1d),
along with homogeneous initial conditions for P and J, in the domain Q C R3.
To show that the system (15) is well-posed, we construct a weak formulation as
follows:

3D Maxwell-Lorentz Variational Formulation:
Find E € C(0,T;Hp(curl,Q)) N Cl(O,T; (LQ(Q))3)7 P,J, H¢€¢ Cl(O7T; (LQ(Q))
such that

3

)

(16a) (,uoaaftl,v) = —(curl E,v), Vv € (LQ(Q))S,

(16b) (6060088];3; u) = (H,curl u) — (J,u), Yu € Hy(curl, Q2),
1 0J 1 1

e () =~ () - (o= ™)

+(E,w), Vwe (L*(Q)°,

(16d) <meoo(€1q_1)fgz,q> = (meoo(iq_l)J,q> , Vq € (LQ(Q))?’.

The Maxwell-Lorentz model exhibits energy decay, as stated in the theorem below
(also see [31]).

Theorem 2.2 (Maxwell-Lorentz Energy Decay). Let Q C R® and suppose
that the solutions of the weak formulation (16) for the Mazwell-Lorentz system of
equations (15) satisfy the regularity conditions E € C(0,T;Ho(curl,Q)) N C1(0, T;
(L2())*), P,J,H € C1(0,T; (LZ(Q))?’), along with the PEC boundary conditions
(2). Then the system exhibits energy decay,

(17) Ep(t) <€L(0), Vt>0,

where the energy Er(t) is defined by

(18)

220 = (] B+ e B0+ s lPol+ olol,)
Proof. See [7, 31]. O

2.3. Maxwell-Cold Plasma: Model and Energy Estimates. The cold plasma
model is used to describe the propagation and absorption of electromagnetic waves
in isotropic non-magnetized cold plasma [46, 32]. The susceptibility kernel function
in isotropic cold plasma (see [53]) is given by

2
€0wp

(19) g(x;t) = —F(1—e ™),

Ve
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where w,, is the plasma frequency of the medium, and v, is the collision frequency.

The time convolution for the electric polarization P with the susceptibility (19)
in the isotropic cold plasma model can be converted to a second order ODE in the
form [24, 23, 53]

2

%TI; Z/C%—ltj = eowf]E.
By defining the polarization current density %—E’ = J, as before, we can rewrite this
system as a first order ODE

(20)

(21) Z—‘; =—v.J+ eowf)E.

The plasma model is a special case of the Lorentz model (15) with zero resonance
frequency. The 3D Maxwell-Cold Plasma equations of the non-magnetized cold
plasma are

3D Maxwell-Cold Plasma Model:

H 1

(22a) aa—t = i curl E,

(22b) 9B - curl H - ! J,
ot epeso €0€c0
0J

(22¢) Tl —veJ + eowiE.

We note that, we do not need to include the polarization P in this model, rather
just the polarization current density J. Similar to the Debye and the Lorentz case,
the weak formulation for the Maxwell cold plasma system (22) reads

3D Maxwell-Cold Plasma Variational Formulation:

Find E € C(0,T; Ho(curl,Q)) N C1(0,T; (L2())%), J,H € CY(0,T; (L*(2))),
such that

(23a) </1,085[;I,V> =—(curl E,v), Vv € (LQ(Q)):s7

ot
(23c) ( L o w> = < VCQJ,w) + (E,w), VYwe (LZ(Q))S.

€ow? ot ow?
The Maxwell-Cold Plasma model exhibits energy decay, as stated in the theorem
below.

(23b) <6060an7 u> = (H,curl u) — (J,u), Yu € Hy(curl, 2),

Theorem 2.3 (Maxwell-Cold Plasma Energy Decay). Let Q C R? and sup-
pose that the solutions of the weak formulation (23) for the Mazwell-Cold Plasma
system of equations (22) satisfy the regularity conditions E € C'(0,T; Hy(curl,Q))
N CY0,T; (L2(Q))%), I € C10,T; (L2(R))%), and H € CY(0,T; (L*(2))°) along
with the PEC boundary conditions (2). Then the system exhibits energy decay,
(24) Ec(t) <&€c(0), Vit=>0,

where the energy Ec(t) is defined by

(25) Ec(t) = (MOH H(t)Hz + 60600“ E<t)Hz + 601)% H'](t)Hz)é '

Proof. See [31]. O



CONVERGENCE ANALYSIS OF YEE-FDTD SCHEMES 531

3. Discretization on Staggered Grids

In this section, we define spatial and temporal discretization in a standard way
(seefore.g. [3,5,7,9, 11]) to obtain a staggered grid in space-time that we will call a
Yee grid or mesh. Here we consider a cubic spatial domain = [0, a]x [0,b] x [0, ] C
R3 for a,b,c > 0 and time interval [0, T] with "> 0. Let I, J, K and N be positive
integers such that I = a/Ax, J =b/Ay, K = ¢/Az, and N = T/At where Az, Ay
and Az are spatial step sizes along the z,y, and z direction, respectively, and At is
the time step size. Let £, j, k,n € N. We define grid points in the t, x, y, z directions
as

" =nAt,  t"tE =

e

n=0,1,2,.,N—1, N =NAt=T,

>
g

xy =LAz, zé+%:(€+ (=0,1,2,....1 -1, xy = I1Ax = a,

—— —
>
=

<.
+
= N = N = o =

y]:jAyv y]-',—%: J:0a15277‘]717 yJ:JAy:bv

2k = kA\z, zk+%:(k+ )Az, k=0,1,2,... K -1, zx=KAz=c.

2

To derive some of our results, we will sometimes consider the special case Az =
Ay = Az = h. In any case, we consistently use the notation Uy, (t) for an appropriate
grid function which approximates a smooth scalar field components u(x, t) on a Yee
grid. We represent the discrete electric and magnetic vector field grid functions by,
E; and Hj,, respectively. For components of fields related to the electric field, i.e.,
F, , where F € {E,P,J} and k € {x,y, z}, we define the set of spatial grid points
on which these fields are discretized as follows:

(26a) QP = {(x%,yj,zk) | ogegfq,ogjgj,ogkgff},
(26D) QP = {(a;g,yﬁ%,zk) | Ogégl,ogjg,]—l,ogk;gl(},
(26¢) OF- .= {(me,yj7zk+%) | 0§£g[,0gjg],ogkgf<—1}.

For magnetic field components, H, p, the sets of spatial grid points on which these
fields are discretized are

(27a)  QFe ;:{(m,yﬁ%,zk%) | 0§€§I,O§j§J71,O§k§K71},
(27b) Q" 5:{($z+§7ijzj+%) | OSKSI—l,OSjSJ,OSkSK—1}7
() = { (e p ey 5 ) [0S 0<T-1,0<5<T-1,0<k< K},

Thus, all z components of E;, (and P; and J;) are discretized at grid points
on Qf’ and collectively form the set of degrees of freedom (DoF) of E,}, given

as {EQEJLHl o (a:é+%,yj,zk) € Qf”} Similarly y components are discretized on
PR

Qf”, and z components on sz. All z components of Hy, are discretized on QhH Ty
components on Qth, and z components on Qth. We denote Q];E = Qf* X ny X QEZ
and QF = Qff= s Ty » Qff=

We assume that the PEC boundary condition (2) is satisfied on the discrete Yee
mesh. We denote the set of all grid points on the boundary of the cubic spatial
domain © = [0,a] x [0,b] x [0,c] as OQF. Then the discrete analogue of the PEC
boundary condition, n X E;, = 0, on the Yee grid is that the degrees of freedom of
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the electric grid function E;, satisfy

zher Lo ILTNE R Zher L0 They s K 0,
2 E =F =F =F =
(28) Ylo ik ok Yhrgedn Yl it LTRSS W ’
E =F =F =F =
Z’ho,y‘,ﬂé Z’hl,j.H% Z’h/z,o,ﬂé Z’hz,J,H% 0,

forany 0 < /<1, 0<j<J, 0<k<K and for all time ¢.

We define the centered temporal difference operator, the discrete time averaging
operator as well as the centered spatial difference operators acting on grid functions
as follows. For Uj, a discrete grid function approximating a smooth scalar field
component u(x,t), we have

(292) (29d)
Uy - Uy
o ~ L ha+2 B,k h(,_% B
Upo g u(aAx, BAy, KAz, YAL), Uy = e 7
(29P) (29¢)
vt+3 y— v o
6 (]’y = ha’;m _ U ha B " 6 U’Y L Uhf¥>ﬁ+%,n Uha,[i—%‘r;
t ha N At 9 a 5on = Ay ,
(29¢) (29f)
v+ 3 , -
T _ Uha;K+Uha;N 5.0 Uha,B e Uh(”“,%
o 2 7 Pop,n Az

The discrete grid inner products are defined as follows. Let A3 = AzAyAz.
For any fields related to the electric field denoted as Fy, Gy, which are defined on
QE, and for magnetic fields denoted by Uy, V},, defined on QhH, we define the inner
products

_A3
(30a)  (Fp,Gn)p =A%) (FL,LHI Gy,
£=0 j=0 k=0
+Fyn +%,kGy’hz,j+%,k + Fz7hz,j,k+%G2’hz,Jyk+%)’

(30b)  (Up, Vi)g =A3

U, V,
( I’hé,j+é,k+§ I’hl’.‘j-%—%,k-%—%

+Uy + U, Ven

TSNS S TSR Merdgtdae et g+%,k)'

The discrete norms associated to the inner products are defined as

(31a)
I-1J-1K-1
IFs 1% = A? (1o g1y 2+ 1Pty )
£=0 j=0 k=0
(31b)
I-1J-1K-1
[Tl = &° (g g P Oy sy P4 ey 1)
0=0 j=0 k=0
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Next, we define discrete spaces for the electric field, polarization and polarization
current density. Define the spaces

(32) \/E = {Fh = (Fz,h,Fy,h,Fz,h), on Qg, ||Fh||E < OO},
(33) VE,O = {Fh = (Fx,haFy,han,h) € \/E;n X Fh = 0, on 80%}

Similarly, we define discrete spaces for the magnetic field as
(34) \/hH = {Uh = (Uz,h; Uy,h; Uz,h)7 on Qth ||Uh||H < OO}

The discrete curl operators, primary and dual, are then defined respectively, as

(35a) curly V¥ — v
(35b) curly Vi 5 VE,
such that

(36a)

curly Ej, = ((5yEz,h - 52Ey,h)£7j+%7k+%a (52E:c,h - 62?Ez,h)€+%,j7k;+%7

T
(62 Ey,n — §yEm7h)£+%,j+é,k) evy,
(36b)

e~

curlLlH), = ((5sz,h — 5zHy,h)é+%A,j,kv (0,Hyp — c?aghfz’h)mqr%k7
T
(6. Hy 1, — 6sz’h)&j7k+%) e VE,
Summation (discrete integration) by parts (also see [3, 11]) yields the following

adjoint property of the discrete curl operator: for any E;, € Vﬁo and Hy, € VhH, we
have that

(37) (CllI‘lh EhaHh)H = (Eh,curthh)E.

The discrete curl operators (35) are represented in matrix form as [12, 9]

0 =4, &
(38) curly, :=curly, := | . 0 —0,
=8y, Oy 0

In the next sections we construct and analyze Yee schemes for Debye, Lorentz
and cold plasma models described earlier.

4. Yee Scheme for the Maxwell-Debye System

Extensions of the Yee-FDTD schemes for the 3D Maxwell-Debye model (7)
should use a staggered leap-frog discretization in time and space for staggering elec-
tromagnetic field components. Using the notation developed in the previous section
we can write down the scalar form of a Yee-FDTD scheme as an update of discrete
electromagnetic field solutions at time " = nAt,n € N to time t"*! = (n + 1)At
as follows:
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3D Yee-FDTD Maxwell-Debye Scheme (Scalar form)

1
39a 0 HY =—|4,.E) —6,E7
( ) t z’hé,j+%,k+% Lo z y’h2,1+%,k+% Y Z’hf,j-%—%,k-f—% )
(39b) 0:H” :i 0. E” — 0, E"
Yherlimed g \OF PP ared L el )0
(39¢)  S,H" L (s, mm 6, E"
L S S LTS SR S S e N A
n+% _ 1 n+% n+%
(39d) 6tEI,he 1 . - 67/Hz,h 1 . _62Hy,h 1 .
+§,_7,k‘, 60600 Z+§,_7‘k E+§,_7‘k
(6 — 1)—=n+3 1 —n+t
- Em h + Pz h )
T et gak  €o€neT Ut a0k
n4 L 1 n+i n+l
(39¢) Wl = OHyp” = 0H "
Plhejrie €pes e+ L ok etk
(€ —1)zn+i 1 on+3
E— N —— Py, ;
T Ylhejrde  goeseT PMed+ik
n+3 _ 1 n+3 n+3
(ng) 6th,hZ. 1 (;any,h . 1 75yHa;,h ] 1
ikt g €0€xo £,5,k+5 £,5,k+35
€y — 1)—=n+1l 1 —ntt!
_ ( q )Ez hz + Pz h2 ,
T Mgkt €0€oeT ) Gak+
n+l  €0€oo (€g — 1) mn+1 1—n+l
(39g) 5th hé . Ez,h 1., 7Pz,h 1.0
et g dk T bt+5,0k T bt 5,0k
n+i €0€00 (€g — 1) —n+1 l—ntil
(39h) 5thh2_ L ziEyh o nyh s
it 5k T TG+ 5k T Y+ 5k
. n+% _60600 (€q — 1)—n+% 1—n+%
(391) 6th hp . 1 EZ,h . 1 tzh, .1
Gkt T £,5,k+5 T £,3:k+3

The scheme (39) can be rewritten in vector form as

3D Yee-FDTD Maxwell-Debye Scheme (Vector form)

1
40a, o:H} = —— curl, E7,
h h
Ho
arl 1 1 ~Dentt 1 gl
(40Db) SETE = curl , H "% — MEJZ + P,z
€0€o0 T €0€ooT
n+i 0o —1)—=n+1! 1—n+l
(40¢) 5PITE = Wtiq)}:h*z - ;PZ“.

4.1. Stability Analysis of the Yee Scheme for Debye Media. In this section,
we prove a discrete energy property for the 3D Yee-FDTD Maxwell-Debye scheme
given in (40). We suppose a uniform mesh h = Az = Ay = Az > 0. The
conditional stability of the 3D Yee-FDTD Maxwell-Debye scheme is given by the
following theorem which proves the decay of discrete energy in time.

Theorem 4.1 (Yee Stability-Debye). If the time step and uniform mesh spatial
step sizes satisfy the stability condition

Coo AL - i
h V3’

(41)
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where coo = 1/\/l0€0€co, then the discrete solutions of the 3D Yee-FDTD scheme
for the Mazwell-Debye equations (40) satisfy the discrete energy decay,

(42) &b < &b
for all n > 0 where the discrete energy is defined as

(43)

& p = (NOH

1
IPrII% :
€0€cc(€qg — 1)

n_,

2112, + eoeoo |EP[IZ + — At (curlhEh,H" )H)

Proof. Multiplying both sides of equation (39a) by A3 ,uoH
A% uoH. (39¢) by A? ,uon Bt it

spatial nodes and adding all the results, we obtain

(39b) by

2 +1k+1’

et ary’ , summing each equation over all

n—x

(44) S (I R0 — ) = — (cwrl B L)

n+%
TPtk

Next, multiplying both sides of equation (39d) by A® epes E. , (39¢) by

. 1
A3 eoeooEZ;;;j , (39f) by A? eoeooEzJ;rL summing each equation over all
St

spatial nodes, and adding all the results, we obtam

)
G4 1

€0€oo 1i2 €0€oc(€g — 1) j=n+Lt o 1 (=n+l —ntl
Ert E} 0foolq = 1) yg = (P E )
o (et — gy + ol Dymr g L (et )

- —n+i
(45) = (curthn—i_2 E, +Z)E.
AB —n+i
Finally, multiplying both sides of equation (39¢g) by sz’h;%)jyk,
3 —n+41 8 —n++
(39h) by 2 (391) by 2 summing each

m Yol Lk m 2l kel
equation over all spatial nodes, and adding all the results, we obtain

P, 7|2

P2 — Py 1t =n P
oy JPUEIPIE L gty | IR
2ep€00(€qg — 1) AL E  €€ooleg—1)T

Adding equations (44)-(46) and using a discrete analogue of integration by parts
[9], we obtain

IP5IE — 1P IIE
2€p€00(€qg — 1)AL

nt1 n—s €0€c0 n41
o (I 23— 23 + S (IER 1% — IER1E) +

=" " _n+i —n+3
__ (curlh Er, H), ) 4 (curthh : B, )
H E

7n+l
ool€g — 1) —ntl 2 f—ntl — oyl P, |
_ o€ (Gq )HEh +2H?E+7 (Ph +27Eh +2) . [Pr 7HE
T T E  €€ooleq—1)T
1 n n—3 L n+t3 n+1
:—§<curlhEh,Hh 2>H—|—2 (curth *Ep )E
n+2

7n+§
_ lleococ(eq = DEn " —Pu "%

(47) €0€co(€q — 1)T
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We can convert equation (47) into the inequality

1

- ; \ w2y o (PR3 — IPRIZ)
pio (L, 2 3 = 2 13 ) + €oeoe (IERT % — BRI + 22 2

€0€c0(€g — 1)

- 1 n—=
(48) < At (curlH; %, E;;“)E - At (curl, Ej, H;, 2)H

Using the definition of the discrete energy function (43), the inequality (48) becomes
(49) (gh,+Dl) < (&ip)”
which applies for all n > 0.

Of course, we need to prove that the function & , defined in (43) defines an

“energy” i.e., that it takes on positive values for all n > 0. We note that, in 3D
with the PEC boundary conditions, the following inequality [19, p. 51] holds

1 n 1
Az2  Ay?
Assuming a uniform mesh, inequality (50) becomes

2V/3

3
(51) | curly Epflg < THEhHE-

1
(50) ||curlh EhHH S 2\/ + AZQ ||EhHE

Using Young’s inequality and the inequality (51) we have that
P73 1I%

1
H, *|7 Ep|% + —2E—
pol|Hy, 2|7 + eoes [ ER |7 + cveo(eq — 1)

— At (curlh E}, Hh_f) u

1 3At .
JEa ||Eh||%]

n—=% 9 2 Ko
> ol I + coc B I — e | S8+

) B3 1%

Assuming no trivial solutions, the discrete energy function (52) is positive when
3A¢E2 3c2 At?
hQM()E()GOO h?

3A?

52 > ol —————
(52) =0 < h2pp€o€ess

(53) < 1.

Thus, under the stability condition (41) we have discrete energy decay as indicated
in (49). O

Remark 4.1. The stability condition on a nonuniform spatial mesh is given by

1 1 1
4 WAt 1.
(54) ¢ \/Ax2+Ay2+A22<

Remark 4.2. The stability results based on energy decay for the 3D Yee-FDTD
Mazwell-Debye scheme given in (43) in Theorem 4.1 extend the 2D results in The-
orem 4.1 [7] with stability conditions that are different in 3D versus 2D. We note
that the discrete energy function 5,’;7 p can be expressed in two different ways.

P73 11%
€0€xo(€g — 1)

n—4i n—=x
(55) = (ulo > — At curl, Ej H, 2>H + coeso | BRI +

_1 _1
Enp = HollEL, 2 I3 + cocos BRI + — At (curl, Ef, H; %)

H
LAy

€0€oo(€q — 1)
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n no1
From equation (40a), we have pg (Hh+2 -H, 2) = —Atcurly E;. Thus, (55)
becomes

, : P32 .
€5 = iolH s + o BRI + o E A (curty B )
n n— P
66) =0 (M) e R+ Al
€0€c0(€g — 1)

4.2. Error Estimates and Convergence of the Yee Scheme for the Maxwell-
Debye Model. In this section, we present a convergence analysis of the Yee scheme
for the Maxwell-Debye model (40) . There are two ingredients needed for a con-
vergence analysis; the stability analysis in the previous section and analysis of
truncation errors. We first present a truncation error analysis below.

Lemma 4.1. Suppose that the solutions to the 3D Mazwell-Debye model (7) satisfy
the regularity conditions E,H € C* ([0,T7;[C* (Q)]*), and P € C* ([0, T}; [C (Q)]?).
Let &, be truncation errors for the Yee scheme for the 3D Mazwell-Debye model
(39) or equivalently (40), where w € {H,E, P}, m € {n,n+ %}, and a € {z,y,z}.
Then for any o € {x,y, z},

(57) max { n+ 2

P < op (an?+ ay? a2 4 AR,

where Cp is a constant that does not depend on the mesh sizes.

Proof. Consider equation (39a) of the Yee scheme for the 3D Maxwell-Debye model
(39) given as

(58)

1 HnJr% ané

At zh, 1 1 b, a1 1
At eg+5 k] eitletd

= #OAZ (Ey7he,j+é,k+1 - Eyyhz,j«}»%,k) o MOAy (Ez’hi,j+1,k+é - Ez’hf,j,kJr% .
Substituting the exact solution of the Maxwell-Debye model (7) in the above and

expanding using Taylor approximations around t" = nAt in time and the spatial
grid point (zy, yj+;7zk+;) we obtain the truncation error in the form

" At? h Az2 houn
5H”Lj+%,k+% = o4 8 H, (zfvyj+%7zk+%vt1) 24110 8 E (meayﬂ%azut )
Ay? n
(59) 5410 83 (xg,yf,zk+%,t )+ O(AtY + Ayt 4+ Az,

where t"~3 < t? < t”“‘f, Y1 < y? < Yjrls 21 < Z{L < Zpy 1 Following a
similar procedure, the truncation errors of equation (39b)-(39c) are

At? Az?
g;LIyz+l g 1 = 24 8? ($Z+ ayj?ZkJrl t2) 24,“’ 83 ($§l7ijzk+%7tn)
2 DTy
AzZ? g h 4n 4 4 4
(60) +24M O Ex(xpy1,y5,79,t") + O(AL" + Az” + AzY),
n At? Ay
5Hze+1j+1 . o4 0y H. ($z+%7yj+%azk,t§) 24110 6 Ep(yy 1, Yb 2 )
PSR
Az?
(61) +T83 Y (2, Y01, 2, t7) + O(A 4+ Azt + Ag?).
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where "2 < th,th <" @,y <afal Swpy oyl SyE <y meg <
2h <z i

We follow a similar procedure for the other electromagnetic field components in
equations (39d)-(39f) to get the truncation errors

gji%d’k =At? {214 8?E$(ac@+%7yj, 2, ) + (GqT;l)atZEz((E€+%7yj, 21, £5)
- 87'€T)€ooat2pz(xz+é’yj’zk>t§)} - Qioy:)o 3§’Hz(xz+%,yf,zk,t”+%)
(62a) + Qiozjoo agHy(xu%ayj, Zf,t"""%) + O(At* + Ay* + AzY),
njfﬁ%,k =At? {214 8E’Ey($e, yj-q—%’zk,ti) + %8?1@‘3!(&;[7%4_%7%7,5;)
B %afpy(“’yﬂé’zkvtg)} - Qﬁj; O3 Ho (e, yspy, 75,17 2)
(62b) + zi:; OPHL (25, y; 1z, t7F8) + O(AE + Azt + AzY),
Eti% =At? {214 OB (e, yjs 2 15 17) + %&Ezm,yj,zk%?tg)
B STezeooatQPZ(w’yj’z’ﬁé’tg)} - Qi:joo 35Hy($§»ijzk+évtn+%)
(62c) + Qig; ang(x@,yg,zH%,tn%),

and in (39g)-(39i) as

ntl 1 . €0€oo(€q — 1)
leil . =A¢t? [Mﬁfo(xH;vyj,Zk,tﬁ’) - 78: 8t2Ex(zé+%,yj,zk,t§)
bR
1 ;
(63a) + 878§Pw(xe+%,yj, 2k, 15) | + O(AY),
7;—&-% 1 60600(6 — 1)
Py[ L :At2 |:246?Py(x53 yj+%7zka ti) - 87:8§Ey(xfa yj+%7zkv tg)
RS
1 2 P ] 4
(63b) + 876t Py(xg,yj+%,zk,t6) —I—O(At ),
ntld 1 €0€co(€qg — 1)
Pze2, ot 1 :AtQ |:246§Pz(x‘€7yj7zk+é’tz7)) - ,;_1 atzEZ(xeayj7zk+%at18)>
5Js b}
1
(63C) + gafpz(xla Yj, Zk—i—%atg) + O(At4)a

where 773 < e, 2 <45 w1 < af <app, y;o1 <yl < yyhy, and zy <

Zg < 2pyy forr ={1,2,..,9} and s = {1,2}. From the assumed regularity of the
exact solution, we can bound the truncation errors to obtain the bound in (57). O
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To prove the convergence of the Yee scheme for the 3D Maxwell-Debye model,
we first define the error functions

(64a) n = Hj, —H("),
(64b) n=Ep —E("),
(64c) T =Py —P@"),

where H(¢t"), E(t"), P(t") are the exact solutions to the Maxwell-Debye model in
(7), while H}, E}}, P} are the solutions to the corresponding Yee scheme in (39) or
(40).

The error functions in (64) satisfy the following error equations:

1 .
(65a) §Hy = —— curly, €} — &7,
Ho
n+i 1 n+i —n 1 n —n
(65D) 5807 = — curl, ) E - ey Lgnte gntd
€0€xo
(65¢) 5P 7 = 7606“’(7 Jgrts _ —iP"“ Ap"ﬁ,

where Ewm = ( & S ),w € {H,E,P} and m € {n,n + 1/2} are the local
truncation errors as deﬁned in Lemma 4.1. The convergence of the Yee scheme (39)
or (40) for the 3D Maxwell-Debye model is given by the following result:

Theorem 4.2. Suppose that the solutions to the 8D Mazwell-Debye model (7)
satisfy the reqularity conditions E, H € C® ([0, T7; [C3 (ﬁ)}s) , and P € CS([O, T];
_ ntl

[C(Q)]%). Let & or Ewt2 be truncation errors of the Yee scheme (39) or (40)
for the 3D Mazwell-Debye model where w € {H, E, P} and o € {x,y,z} satisfying
Lemma 4.1. If the stability condition (41) is satisfied, then for any fized T > 0
there exists a positive constant C' depending on the medium parameters, the Courant
number v = coo At/h , butl otherwise independent of the mesh parameters, such that
the energy of the error at time t" = nAt, defined by
(66)

1
Rio = (ol I+ corn IERIE + —BUE At (curt, eg.06 ) )
€0€s0(€g — 1) h Jm

satisfies the bound
(67) mp <Rhp+COT (Az® + Ay® + A2 + A?).
Proof. We use the energy method and follow the proof of Theorem 4.1. Multiplying

'IL2

(65a) by A3 1oH,, (65b) by A eoeooeh , and (65¢) by mﬂ’ , summing
each equation over all spatial nodes, we obtam
(68a) o (5t9'fh75'fh) (Curlh Ehvg{h) — o (Eﬁ’ﬁ:ﬁ)
ntl 1 ol et €0€co(€q — 1) | mn+1
€0€00 <5t8h 2 e Q)E: (curlhﬂ-fh 2 ¢, 2)}43—%”6@ 2|13
1 n+d o+l ont+d g+l
(68D) +- (?h 2 2 )E—eoeoo( e gy )E
1 ntl —n+l 1 /nt+l —ntl 1 n+1
(8T = (BT T
€0€xo(€g — 1) ( th h g T \h h E  Te€p€so(€q — )H h ||E
1 Sptl —nptl

68 S S ( 2 P )
(68¢) €0€o0(€g — 1) S h g



540 P. SAKKAPLANGKUL AND V. A. BOKIL
We add all the results in (68) to obtain
—n n n 1 nt+l —n+i
55{”,9{) 00(68+2 s*z) 7(5? 2 P )
,UO( tIty, Iy |+ €pe t E+60€m(€q—1) tSp, h

—n —~—  n+l —n41
= — (curt, ez,%h) + (curlh%h+5,eh+2)E

E

60600(6(1 ) n+3g ( n+z +%) n+g
=M P —— 7
e A R (A L
n TR n+1 n+ 1 n+l1 —n+
—N0<§H79{h> —60600(515 “Eh )E—m@z? > Ph 2)E
_ (curlh 8;,%Z)H+ (c/u?mc T grts )E
1 —n+3 —=n+3
- o 8 2 _(J) 22
ey leoeseles = D) Al

o (65),, e (G7LE), - g (@AY,

— (curl}l 82,%2)1{ + (c/_\url/hﬂ-f +4 €n+ )E

IA

(69)
cnoqpt P+t ants
— Mo ( va}c}i)H — €€ (é-E 278};

The first two terms on the right hand side in the last inequality can be rewritten
as

@),

)E B €0€co(€q — 1

- (curlh SZ,ﬁZ)H + (mﬂ-ﬁ 4 & )E

(70) = (curlh EZ,WZ)H + (J{Z"'%,cul‘lh EZJri)H
_ 1 nt3 n+1 1 n—3 n
=3 (f}(h ,curly &} )H 5 (J—Ch ,curly Eh)H

Combining the last two steps we get

1

—n ntl —nti 1 n+l —ntl
59{”,}() 00(55+2,e ) 7(5? 2 P )
’uo(t h hH—’—606 t=h h E+€0600(6q71) “h h E
1 n+3 n 1 n—1 n
< 3 (f]-fh 2 curly 8h+1)H —3 (f}fh 2 curly, Eh)H

(71)

J— | +3 1 on+l —ntl
N i jfn) N ( n+2 En ) N ( 27.:]) 2) '
Ho (€H7 h €00 | € 75 €y E cotooleg — 1) P h 5

Using the definition of the energy of the error (66) in equation (71) we obtain the
inequality

(R~ (Rfo)?

n+2 *n-i-
g;”r )EJF (5 )E

< 2At o (Eg,ﬁ:)H + €0€xo (f goeoo(eq -1

(72)
+2 +2 +2 +2
< Crastmax { 1€ 1 1€5 H e 1R e b (156 + 18 21 + 175 28
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where (' is a constant depending on fig, €0, €xc,€q. Applying Young’s inequality
with 0 < v < 4, and equation (51), we obtain

n g%\ < Yo gmn-} 12At
(73) (curt £1,96,7%) | < GRGI9G I + 5 Rl
From the definition of the energy of the error in equation (66), we have the inequality
n— Al g
RE ) = poll 32 en|2 4+ —nle At( L &7, K )
(Ri,p)" = ol + cose 715 + 2 P — A (curl £7,96; %)
W et 12442 HU’ZH%
74 > (1 — —) H, 2 o | 1——— | ||EF —_—n
T8 = (1= ) I B o (1= 2o Y R+
. " Coo Al I . .
If the stability condition (41), — < %, is satisfied, all terms on the right

side (74) are nonnegative and for n > 0, we have

(75) b > Co (136, % I + Iklls + IP5]s)

1
— : _ _ 12A¢t2
where Cy = min {1/u0 (1 4), \/€0€oo (1 760600N0h2)7 P } From
(72) and (75), we therefore obtain
2 n 9
(Ri%) - (Rip)
~n+3 ~n+ n+

< Cytmax {5 L, 1E5 1, 1€ H 1} (156 o + 185 e + 17 1)

(76)
on4l - n-+ n
< CiGaAtmax { €51, 165 s, 165 s } (R + Rip) -

Dividing by R} + R} p and rearranging terms in (76), we obtain

n n+3 n+
Ry =R p < Ctmax {15 15 s, 1651 }
(77) < CAt (Az® + Ay® + A2° + At?)

where C = CpC1C5 is a constant depending on medium parameters, the Courant
number v = ¢, At/h, and the constant . Recursively applying the inequality (77)
from n to 0 and using the fact that T = NAt, we have

Riip — R p < OnAt (Az? + Ay® + AZ° + At?)
(78) < CT (A2? + Ay? + A22 + A?).
O

4.3. Discrete Divergence: Yee Scheme for the Maxwell-Debye Model. In
this section, we define the discrete divergence operators and show that the electric
and magnetic grid functions in the Yee scheme satisfies discrete divergence-free
conditions.

We first define the vertex and cell-centered discrete meshes [9]

(79a)
TIVE = (2,95, 26)[0<i < T1,0<j < JO< k< K},
(79b)
CAVH {(xi+%,yj+%,zk+%)|0§iSI—LOSj < J—1,ogkgK—1}.
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Let ¥y, = (Fyn, Fyn, Fsn) be an electromagnetic grid function. We define the
discrete divergence operator, divy, as

(80) divyFy = (Sng;,h + (SyF_%h + 5ze,h~

As the discrete derivative operators commute, we can show that,

(81) divh(curlh Fh) = 0.

Theorem 4.3. The discrete divergence of the solutions to the Yee scheme (39) or
(40) for the 3D Maxwell-Debye model is preserved at all time levels n > 0, i.e., we
have the identities,

(82a) div, D} = div, DY,
(82b) divyB), " = div, B?,
where the vector fields Dy, and By, are defined on the meshes 73F and r#H

respectively.

Proof. From the Yee scheme for the Maxwell-Debye model (40), applying the oper-
ator €pe At divy, on both sides of equation (40b) and applying the operator At divy,
on both sides of equation (40c) and summing the resulting equations, we obtain

divy,(epe EF ) + divy (P71 — divy, (€0eso EfY) — divy (P])

(83) —At divy (curl, H 2.
Applying the operator pgAt divy, on both sides of the equation (40a), we obtain
(84) diva (oH 2 — divy (jioH] %) = —At divy (curl,E}).

As the discrete divergence operator is linear, using the identities, Dy = egecc Ep+Pp,
and By, = poHp, equation (83) and equation (84) can be written as

(85a) div;, D} — div, D} =0,
(85b) divy B2 — div, Bl ? = 0.

We apply the equation (85) recursively from time level n to obtain (82a) and (82b),
respectively. O
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5. Yee Scheme for the Maxwell-Lorentz System

The fully discrete Yee scheme for the 3D Maxwell-Lorentz system (15) can be
constructed as

1 n n
(86a) 0:H. hé Selerd I (62Ey7he,j+§,k+§ — 0y E7 g it k+2>
1
n —_ n —
(86b) &Hy,hu%’j,k% = <<575Ez,hz+%d_k+é 0. By Py n+2)

1 n
(86¢) 6:H z,h£+ T g (%Em,hH%ﬁ%yk—(sx vy +2k>

n+3 _ 1 n+3g """2 —n+2

(86d) 6tEaL‘,hg+L P 59Hz,h 1, o 1 K’

A €0€x0 5,0,k /z+ sk z+

n+3 1 n4 L fn+

(86@) 5tE h2 = 6 H 2 — U 2 N
Ylej+ie €0€so P e e]+1 k Mook’
nt+l 1 n+i n+i 1 —n+1

(86£) 0k, )’ = 0t ) —0yH, .’ - Jon, oo
gkt S €0€co Yol et d Mgt €0€oo 0dk+ 1
n+3 1—n+l —n+3 o=n+i

86 0pd 52 =—— 2 WP, cowp B

(86g) Flah 1 o e 0T @by +cowp™ g th gk
n+: 1—n+ w2 —n+3 2=

86h 2 =— 2 P €qw. E

( ) t y’hl,jJr%,k 7Yl J+%,k “o yihy, Gk T Cowp™ iy, hy, +1 K’

: n+ti 1—n+l —n+i g=ntd
861 0pd, 1 2 =—= 2 WwiP, 2 cowp E 2
(861) v/ P gt L T Z’he,j.,k+1 0% 2ohy el T €oWp 2l gl
. n+i —n+1

86 6P ;2 =J, >

( J) P, m,he+ m,heJr »’
n+ —n+1

86k 0P ;2 =J, .0

(86k) byt Yhesedw
n+i —n+1

861 0P, =J_;° .

(861) P 2y a1 2yt )

Then the scheme (86) can be written as follows

1
(87a) 0:H}, = —— curl, E},
Ho

ntl 1 —— n n

(87h) SE = L canm o L gt
eoeoo €0€oco

n+i -n —n+4i —n+1

(87¢) 5I0tE = —fJ I 2P w2
1 _pal

(87d) 5P = Jh+2.

5.1. The Stability Analysis of the Yee Scheme for Lorentz Media. In this
section, we show that the solution of the fully discrete scheme (86) satisfies the
energy decay property by the following theorem.

Theorem 5.1. If the time step and uniform mesh spatial step sizes satisfy the
stability condition

Coo AL

1
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where coo = 1/\/l0€0€co, then the discrete solutions of the 3D Yee-FDTD scheme
for the Mazwell-Lorentz equations (87) satisfy the discrete energy decay,

(89) &t <Eips
for all n > 0 where a discrete energy is defined by

1 Il P17
h,L toll HH + €0€oo | ||E eowp2 + €o€oo(€q 1)

N

(90) ~ At (curlh By H' 2)H>

Proof. Multiplying (86a) by A3 uoH
(86¢) by A® poH. ),

ek d i+ gk
adding all the results, we obtain

+1 k+1, (86b) by A ,u‘OHyh j,k+%’

, summing each equation over all spatial nodes, and

(91) S (I — 2 ) = — (curl BRLH)

—ntl il
Secondly, multiplying (86d) by A® eoeooE:—;Q ., (86e) by A? eoeooEyH;L2 L
ek d gk Tlitgok

(36f) by A eoeooEz—Ze ey

adding all the results, we obtaln

summing each equation over all spatial nodes, and

€€ n n " __n+i —=n+i n+
(92) = (IR - IERE) = (cwrl 2 EL) - (TE)

2At
. . A3 —n+1 A3 —n+1 .
Next, multiplying (86g) by Tyt (86h) by sz Whegign (861) by
AN
— ZJ;FL: e summing each equation over all spatial nodes, and adding all the
€oWp

results, we obtaln

(93)
n nt3
[ - () o ()
2Ateqwy,? Teowp? cowp2 \ TR E h E’
n+ n+
AS P 7h£2+ dnk AS Py h;ﬂrl»k
Finally, multiplying (86j) by 2 (86k) by 2 and (861)

€0€ool€qg — 1) €0€co(€g — 1)
AS fn+2
Y €0€ol€g — 1) h

nally adding all the 1"esults7 we obtain

e summing each equation over all spatial nodes, and fi-
Js

1 n 1 n+ti —n+t
(94) < (PG = IPRIE) = — —— (T3

2€0€00(€g — 1) €0€c0(€g — 1)
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Adding all equations (91)-(94) and using a discrete analogue of integration by parts
[9], we obtain

n+2 . Hn—é €0€oco En+1 _IE
o (VR — DA )+ i (B~ IR 1)

(I 1% = 1971%) n (IPy% - IPrIZ)
2Ateqw,? 2ep€00(€qg — 1) AL

+

— — (curl Enﬁ”) ( LH E+> - 7t
(curh hotin ) curly 5 Teng ||E

n+
190211

1 O . 1
(95) =— 5 (curl B H,F) 4 (curl,H, R -

E  Teowp
We can convert equation (95) into the inequality
+3 -1
pio (L2 13 — 1L, 211 ) + cocor (IERH I — IBRIE)
(HJ”HHE —1971%) n (P % — IPRIE)
€owp? €0€oo(€q — 1)

(96) <At (c/u\_/rthZ+%,Ez+l)E — At (curlh E; H H ™ 2)H

Using the definition of the discrete energy function (90), the inequality (96) becomes

2
(97) (ent) < (enn)’
which applies for all n > 0.

We follow a similar procedure to the Debye case to confirm conditional stability
by showing that &', is a discrete energy function. By the inequality (51), we have

- BE P .
H 2112 o En 2 H E E At ( l E H 2)
pollHy, 2 {7 + eocac|Ep | + cowp? + €0€oo(€q — 1) curly Ly, "
3A¢E2
98 > e [1— —2=0 ) |ED
(98) > e (1= o — ) B
Thus, the discrete energy function (90) is positive when
3A¢E2 3c2 At?

99 e B BV i P
( ) hQM()E()GOO h?
so the stability condition (88) holds. O

Remark 5.1. The stability condition on nonuniform spatial meshes for the 3D
Yee-FDTD Mazwell-Lorentz scheme is identical to the stability criterion in Remark

4.1.

5.2. Error Estimates and Convergence of the Yee Scheme for the Maxwell-
Lorentz Model. In this section, we first analyze the truncation errors in the Yee
scheme for the Maxwell-Lorentz model and then prove convergence of the scheme.

Lemma 5.1. Suppose that the solutions to the 3D Mazwell-Lorentz model (15)
satisfy the regularity conditions E,H € C* (0,T];[C* (Q)]*), and J,P € C*([0,T7;
[C (ﬁ)]B) Let 1y, be truncation errors for the Yee scheme for the 3D Mazwell-
Lorentz model, (86) or equivalently (87), where w € {H,E,J,P}, m € {n,n+ 1},
and o € {z,y,z}. Then for any o € {z,vy, 2},

Junrt]

n+2 n+2

(100) max{

} <00 (a0 4 Ay? + A2 4 AR),
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where C'p, is a constant and does not depend on the mesh sizes.

Proof. From equation (86a), its scalar form is
(101) — (m™+? _H"?
At Tl b Lt L LZLTN NS G
— L E? — E" _ L E" —_ E"
oAz Yol i d et Yl jidn oAy 2 g1t} zhy et )

We substitute in the exact solutions and perform the Taylor expansions to obtain
truncation errors in the form

n At2 3 h AZQ 3 h n

B gty T2 O Ho(@e Yjgs Zr g 1) = 2440 OBy (e Yy g, 21 17)
(102) + Ay? DBE.(xe, Y, 2zp 0 1,t") + O(AL* + Ay* + Az?)
24,“40 yiz 2, Y1 k+§7 ) B}

where t""2 < th < t”+%, Y1 < gyt < Yjrls 21 <2 < Zpyl- Following a
similar procedure, the truncation errors of equation (86b)-(86¢) are

n At? Az? n
7/’HyHl el 24 8f’Hy(xg+%,yj,zk+%,t}2‘) " 244, 8§Ez(ac}f,yj,zk+%,t )
20 2
A% g hon 4 4 4
(103) + 40 OBy (gy1,y5,29,1") + O(AL” + Az™ + AzZ7),
n At? Ay? n
szg+l 1 = Z 8?Hz(xé+%7yj+%7zk7t§) - 24MO agEx(xZ+%7y§7zk7t )
2:JT 5
Az? g h n 4 4 4
(104) + 0 OBy (x5, Y4 1,2k, 1") + O(AL" + Az” + Ay®),

where "2 <, th < "ta wy g < abal <@g yin <08 <y zer <
2 < oz +1. We follow a similar procedure for the other electromagnetic field
components in (86d)-(86f) as

n"l‘% — AtQ i aSE ) s 782J _ v
Eml#»%,j,k 24 t l’(-TZJr%)yj,zkv 1)+ 860600 t z(mz+%’y‘7,zk7 2)
Ay* s 41 A2, 1
a 24€p€q 5sz(:Eg+%,yf,zk,t” )+ 24€0€n azHy(xZ-i—%vyjazfatn 7)
(105a)  + O(At* + Ay* + AzY),
/l/}n+% - Atz i adE (a’,’ 1.2 te) —+ L62J (I’ 1z te)
E”e,wé,k N 24 Y OYj+50 %k 13 8€0€ms tJy\ Lo Yjpl, 2k Uy
AZ2 3 e ynt+i AI2 3 e il
- 2e0em asz(méayj+%,Zz7t )+ lege 3$Hz(m1,yj+%7zk’t 2)

(105b)  + O(At* + Azt + AzY),

¢n+% *AtQ i 83E (SC oy te)+762j (I — te)
Ezfz.j,lwé N 94 Gt TOYi Akt g0 ts 8en€oe ' C 6 Y5 Zkt1:T6
AJ;Q 3 +l AyQ 3 +l
" 2epen OpHy (25, Y5> 244,87 72) + 24€0€00 Oy Ha(we,y3, 241, 1"72)

(105¢c)  + O(At* + Az* + Ay?),
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and in (86g)-(861) as

n+i AtQ ;
ijzil . = ﬂ atg'] (‘r€+ 7y]azka )+38 J ($e+%ayj72k7t%)
297
(106a) + BWSQEPm(mZ+%,yj7 2k, té) - 360wp2Ex(x5+%7yj, 2k, ti) + (’)(At‘l)7
n4x At2 [ 3 j 2 j
Jyg;_,_%yk = 1 _at Jy(.%'g, ijr%ka;tg,) + 30; Jy(mg7yj+%7zk7t6)
(106Db) + 3wio?P, (ﬂfp,yj+l , zk,t7) 3€0wp2Ey(£Cg, yj+%,zk,tg) + O(AtY),
n-&-l Atz I . .
Jzzz_ o = ﬂ 8?J2(x€,yja Zk+%7tg)) + ’?’atzjz(xfayﬁzk—i-%atjlo)
2 Js 2 L
(106¢) + 3wy 07 Px (e, Zk+%7t{1) — 3eowy” Ex (e, yj, Zk+§7t{2):| +O(At),
and finally in (86j)-(861) as
(107a)
n+sg At2 P 2 P 4
Py T 24 {8 Py (.’L‘g+%7ngzk,t1) — 30; Jz(mwévyjazkatz)} +O(AtY),
SN ENE]
(107b)
n+g A 7o, p 2 p 4
Ut = Sr [Py ) = 307 (e y 2 )] + O(AT),
»J PR
(107¢)
n+i At2
Pz;_ a7 [8 P, (ng,yJ,Zk+1,t5) 382 (xg,yj,zk+1,t6)} +O(At4).
7 f
where t""2 < &1 1P < ("3, Ty 1 < ag <@gy, Y1 < yg < gy, and

2z < z¢ < Zptd for r ={1,2,..,12} and s = {1,2}. From the assumed regularity
of the exact solution, we can bound the truncation errors to obtain the bound in
(100). O

To prove the convergence of the Yee scheme for the 3D Maxwell-Lorentz model,
we follow a similar procedure to the convergence analysis in Theorem 4.2. We use
the error functions (64) and define the additional one

(108) TP =Jn —J(t).

In combining these variables (64) and (108), we arrive at the error equations of
the Yee scheme for the 3D Maxwell-Lorentz model:

1 .
(109a) 6Hy = —— curl, € — Y,
Ho
(109b) 5t€Z+% _ a_l\l‘_l/hf}‘fn+2 n+2 _’g‘f‘%,
€0€co
1 n —n+1 —n+i ntd
(].OQC) §tgz+2 _ 773h+2 ng)h+2 +60wp28h+2 . J+2’
=N ~n4:
(109d) PR g gt

W) Pwy)

where " = ( s sz) ,we€ {H,E,J,P} and m € {n,n +1/2}. The con-
vergence property of the Yee scheme for the 3D Maxwell-Lorentz model is given by
the following result:
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Theorem 5.2. Suppose that the solutions to the 3D Mazwell-Lorentz model (15)
satisfy the regularity conditions Ey, H), € C? ([O,T];[C3 (Q)}B), and Jp,, Py, €

C3([0,T); [C(Q)®). Let vy or ¢n+2 be truncation errors of the Yee scheme,
(86) or equivalently (87), for the 3D Mazwell-Lorentz model where w € {H, E, J, P}
and o € {x,y,z} satisfying Lemma 5.1. Assuming the stability condition (88) is
satisfied and letting the Courant number v = cooAt/h, then for any fived T > 0

there exists a positive constant C depending on the medium parameters, the Courant
number, but independent of the mesh parameters, such that

(110) nL < RO+ CT (Ax? + Ay? + A2 + A?)
where the energy of the error at time t™ = nAt is defined by

A A
owp?  €€ool€q — 1)
P ool€q

Ry, —<u0|\9{n_§||H+60 <lIERIIE + 7
n—1 1/2
(111) - At (curty £5,56,%) )

Proof. We again apply the energy method as has been used in the proof of The-
orem 4.1 and Theorem 4.2. Multiplying (109a) by A3 uoi}(z, multiplying (109b)

by A3 60600§Z+§7 multiplying (109¢) b 3n+2, and multiplying (109d) by
AB n+2 . : :
— = P, ° and finally summing each over all spatial nodes, we obtain
€0€o0(€g — 1)
(1128,) Ho (6tj{27ﬁ2) == (Curlh 8?}:5%2) — Mo (1517}7%2‘)
+2 _ e +2 "+2 +2 n+
€0€oo (6t8 ) )E - (curlhi}( ) ) (gh i )E
(112b) ~ eo€oo (¢E+2 gt )E
2 1 1
+3 _ 1 "+2 Wo (mntz gnts
(6t3h H )E o TeQWp 2” HE €owp? ( neodn )E
n+i —nt 1 o+l Zntd
112 (8 2 2) - ( 2 gt
(112c) ho 2 dn E eowy? y In .
(112d)
n+i —n+1i
B At @), - )
€0€ol(€g — 1)  €o€oo(eqg — 1) b omh g poooth gl

We add all the results in (112) to obtain
n art +3 7”"'%
o (896, 56,) |+ evee (8€57%,8177)

—pal ntl —n+l
(0 *.37%) (e )

* eowp? + €0€oo(€q — 1)

+
13, " 1I%

Teqwp?

— <curlh ez,ﬁZ)H + (&?1]3{"*2 I3 )E — o (&};,ﬁ};)H



CONVERGENCE ANALYSIS OF YEE-FDTD SCHEMES 549

(), ()

2

E

snt+i sn+t
_60600( & 2)E_ €ow
P

< - (curlh EZ,%Z) + (mﬂ-ﬂ 2 & )E

€0€co(€g — 1)

— Mo (J%ﬁZ) — €0€x0 <¢E+2 8n+2)E
_ (%h & )E (¢P+2 Tn+2)E_

2

(113)

€oWwp €0€c0(€g — 1)

Using the identity (70), we get
o (0,36, 5,)  +eoese (5872 ETE)

(a3, (o)

B
+ €owp? €0€c0(€g — 1)
<2 (30 curlyertt) L (307F curl, €
_§< n 2.curly EF )H—§( n 2, curly h)H

o ()~ eoe (FETLETE)
(@), (e,

(114) 5

€0Wp €0€co(€g — 1)

Thus from equation (114) we have that

(REi) = (Ri)* <2

Lo (q}fl,ﬁh) + €0€oo (¢E+2 8n+2>

(), (o)

2

E

E

+

€0€oo(€g — 1)
n+3 n+1 n+
<Crastmax {1 lar 155 4 s 85 s 1 e }

n+3 n+3 ot
(115) G+ 18 H e+ 15+ 1 )

€oWp

where C is a constant depending on po, €0, €x, €. Applying Young’s inequality
and equation (51), for v > 0, we obtain

n gt < Mo n,, 12At
(116) (curt £5,9G7%) | < TG + 7 -kl

From the definition of the energy of the error given in (111)7 we have

n—3 19511 %
€owp?

|7 + o llER T +

ol 3G,
EAR
€0€xo(€g — 1)
5 n—19 12A¢t2
oo (1- ) o LI P
20 (1= 1) 1964+ o (1= 25 ) e
AP A

2 epeool(eg — 1)

~ At (curlh en o 2)H

(117)

€oWp
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If the stability condition (88) is satisfied, then for some v < 4, all terms on the
right side (117) are nonnegative, and for n > 0 we have

~ _1
(118) he = Co (196 % a + 1€k e + 13315 + P21 )

-~ . / At2
Where CQ - mln{ Ho (]- - %)7 \/60600 (]. — 4’76(}6200;,0h2)7 \/Espr’ \/606001(6{171) }
From (115) and (118), we therefore obtain
n+1 2 n 2
<Rh,L) — (Ri.L)
(119)
< Gy Cotstmax {55, 1052 1. 195 2 1. 197 1} (REE +Ri)

Dividing by R”H + R}, 1, and rearranging terms in (119), we obtain

n n+3 n+i n+
Ry~ Ry < Ctma {55l 1952 s 157 s, 155 )}
(120) < CAL (Aa? + Ay? + A% + At?)
where C = CL516~'2 is a constant depending on medium parameters, the Courant

number v = ¢, At/h, and the constant v. Recursively applying the inequality (120)
from n to 0 and using the fact that T = NAt, we have

— R%,L <CnAt (Am2 + Ay + A2+ Atg)
(121) <CT (Az® + Ay + A2 + At?).

O

5.3. Discrete Divergence Constraints of the Yee Scheme for the Maxwell-
Lorentz Model. As a result of divergence-conserved property of the Maxwell-
Debye model, in this section we show that the similar property holds for the
Maxwell-Lorentz model.

Theorem 5.3. Suppose that the solutions to the 3D Mazwell-Lorentz model (15)
are as given in Theorem 5.2. Then discrete divergence of the Yee scheme for the
3D Maxwell-Lorentz model, (86) or equivalently (87), is preserved for all time levels
n >0, i.e., satisfies the identities

(122a) div, D} = div, DY,
1 1
(122b) div, B} % = div,BZ,

where the vector fields D, and By, are defined on the meshes 7{E and 7

respectively.

dlvH

Proof. The proof of this theorem is the same as the proof of Theorem 4.3 for the
case of the Debye medium. O
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6. Development of the Yee Scheme for the Maxwell-Cold Plasma System

The fully discrete Yee scheme applied to the the 3D Maxwell-Cold Plasma sys-
tems reads

1
123a 0 H” =— | 0,E] —0,E7
( ) R A T N AR TS W S e IS S
1
123b 0H = — | 6, E7 -0
( ) Eyhyy 1 el o \° Zhe 1 eyl ERmh 1 el )
1
123c o H? =— | 6,E E?
( ) LR ST W o \ Y Ther L i Lk T L Lk )
nti 1 n+3 n+3 L —nt3
(123d) 0B, hyoy T oyH, ;2% 0, wh o ——Jon
V500 k €0 et 56,k T+ 5,5,k €0 Lt+5,d:k
n+3d 1 n+3d n+3d 1 —nt3
(123e) 6tEyh2, L o=—\0:H,,> | —0.H, % | ——Jynl
Meirte € Mgtk Mo+ d ok €0 Ltk
n+% N 1 n+3 n+% —nt3
(123f) 6th h, . . 6$Hy h, . . 6UH13 h 1 N ) 19
VG kg €0 £,3,k+ TGkt €0 £,5,k+5
+1 —n+4+1 2 n+1
123 §id 2 = —ved, cow2Ey 1’
( g) t m’he+%,j,k c x,h£+% ik + €9 D z,he 1’
+1 —n+1 2in+l
123h &, ) = —veJ, ,° cowiE, >
( ) P by g R LR T+ cowp Vet w
: +3 —n+3 9—=n+1
123i 62 =—v.J, ;> ewsF, .2 .
( ) t 2l ks d el zhy el + oy Zh ksl
Then the scheme (123) can be written as follows
n 1 n
(124a) oHp = " curly Ej,
0
T e i L
(124b) oE, * =—curhH, > — —J, ?,
€0 €0
+3 =+ =n+i
(124c) 5, 7 = —vd), P 4w Ey, 7.

6.1. The Stability Analysis of the Yee Scheme for Cold Plasma Media.
In this section, we show that the solution of the fully discrete scheme (123) satisfies
the energy decay property by the following theorem.

Theorem 6.1. If the time step and uniform mesh spatial step sizes satisfy the
stability condition
Coo AL < i’

h V3
where ¢, = 1/+/10€0, then the discrete solutions of the 3D Yee -FDTD Mazwell-
Cold Plasma equations satisfy the discrete energy decay,

(125)

(126) Ene <&l

for all n > 0 where a discrete energy is defined by

n—1i n Jn 2 n n—31
021) &g = (ol 1 + ol + ELE - av (curt, B 1Y) )

p

1
2
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Proof. Multiplying (123a) by A3 ,quZ hy,

A7 ,uoHy herl gmed’ e+Li+5 .k
each over all spatlal nodes, and adding all the results, we obtain

multiplying (123b) by

1k+1’

multiplying (123c) by A?’ MoH 2 h and finally summing

(128) IG5 — 7% ) = — (curl, Ez,ﬁ’;)H

22 (
ol

Next, multiplying (123d), (123¢) and (123f) by A® e B 2 hHl - A3 eoEyjﬁ
ol '

and A3 eoEz)Z; L respectively, and finally summing each over all spatial nodes,

and adding all the results, we obtain

—~— 4l —nti
(129) 2 (1B % — IBRIR) = (cwrhHG 2 ELTE) - (TR EE)

41

2A¢
. . . . A3 —n+ L A3 —n+
Finally, multiplying (123g), (123h) and (123i) by @J%h;%d,k, @ y’hZH%,k
31
and —J, Zf - and finally summing each over all spatial nodes, and adding all
Eowp 60kt g
the results, we obtain
1 nt nt
130) = (137 % - |37 e (EJ)
(30 ey (957 1B = 1901 = — 251337 13+ (B .

Adding all equations (128)-(130) and using a discrete analogue of integration by
parts [9], we obtain

e — 0 )+ (i — g+ U IR
2At " " 2At E B 2Ateow?
n e nt+i =ntg n+
~ (curly B )+ (cwrl T2 ELTE) - 60&}2 132
(131)
1 n—1l 1 —~ + n+
_ = n 2 2 n+1 2
=3 (curl]r1 E; H, )H + = 3 (curth JE )E 0w2 (1T 1%.

We convert equation (131) into an inequality

(9% — 19311%)
600.)%

+3 -3 s
o (I 23 — G203 ) + eo (1B 13 — IERIE) +

(132) < At (EEEH;”%,EZ“)E ~ At (curlh E! H]~ )H

We follow a similar procedure to the Debye case to confirm conditional stability
by showing that & - is a discrete energy function. By the inequality (51), we have

n— Jp 2 n n—4i
ol B 1+ collB %+ 2A0E A (eur, )
3AL? o
(133) > €0€co (1 - h2uo€o) 1ER -
Thus, the discrete energy function (127) is positive when
3A¢2 3c2 At?
134 — <1l & = <1,
( ) hQMOGO h2

so the stability condition (125) holds. O
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6.2. Error Estimates and Convergence of the Yee Scheme for the Maxwell-
Cold Plasma Model. In this section, we first analyze the truncation errors in
the Yee scheme for the Maxwell-Cold Plasma model and prove convergence of the
scheme.

Lemma 6.1. Suppose that the solutions to the Mazwell-Cold Plasma model (22)
satisfies the regularity conditions E,H € C® ([0, T]; [C® (Q)]*) , and J € 03([0,T];

[C (ﬁ)]3> Let ¢y be truncation errors for the Yee scheme for the Mazwell-Cold

Plasma model, (123) or equivalently (124), where w € {H,E,J}, m € {n,n + %},
and o € {x,y, z}. Then for any « € {z,y, 2},

(135) max {‘d)}’{ q’)n+2

where C¢ is a constant and does not depend on the mesh sizes.

n+2

} < Co(aa® + Ay + 222 + A,

Proof. We follow a similar procedure to Lemma 5.1. O

To prove the convergence of the Yee scheme for the 3D Maxwell-Cold Plasma
model, we follow the similar procedure to the convergence analysis in Theorem 5.2.

In combining variables (64) and (108), we arrive at the error equations of the
Yee scheme for the 3D Maxwell-Cold Plasma model:

1 -
(136a) 0t Hy, = —— curl, &) — o,

Ho

1 1 ——o —-n
(136b) 5t52+; = *Curlhf}fnJrz - *3 = n+27
€0
el

(136¢) 5t3n+2 = _Vc3h+2 + €Ow28h ¢n+27

Wg ) P Wy )

where ¢ = ( " b gz) ,2w € {H,E,J} and m € {n,n+ 1/2}. The conver-
gence property of the Yee scheme for the Maxwell-Cold Plasma model is given by
the following result.

Theorem 6.2. Suppose that the solutions to the Mazwell-Cold Plasma model (22)
satisfy the regularity conditions E,, Hy, € C* ([0,T7; [C® (ﬁ)]3) ,and J, € C3 ([O, TY;
[C (ﬁ)]3> Let ¢y, be truncation errors of the Yee scheme for the Mazwell-Cold

Plasma model, (123) or equivalently (124), where w € {H,E,J}, m € {n,n + %},
and o € {x,y, z} satisfying Lemma 6.1. Assuming the stability condition (125) is
satisfied and letting the Courant number v = cooAt/h, then for any fived T > 0
there exists a positive constant C depending on the medium parameters, the Courant
number, but independent of the mesh parameters, such that

(137) n o < RO o+ CT (Az? + Ay? + A2 + A?),
where the energy of the error at time t™ = nAt is defined by

. - 1321 waeri) )
(138) R = (ol + el + L2 — av (curt e o6,7) )
Eowp H
Proof. We follow a similar process, the energy method, that has been used in the
proof of Theorem 5.2. Multiplying (136a) by A3 MOJ'CZ and summing overall spatial
n+ 5

gl
nodes, multiplying (136b) by A3? 6082+27 multiplying (136¢) b,
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summing overall spatial nodes, we obtain

—n —n Y =N
(139a) 140 ((St ;f,.‘]-(h)H =— (curlh Sﬁ,ﬂ-fh)H — o <¢7}{,3{h)H,
1 il — —n
€0 <5t82+§a8h+2)]3 (Cllrlhf]-( *i € +Z)E
n+3 sn+i ontl Fn+d
(139b) (3h : e )E—eo( 2 g )E
n+di Zntz\ n+
oz BT == S
n+ sn+l =ntd
(139¢) +( 23 )E_eowg (¢J %, 2)

We add all the results in (139) to obtain

E Eowg
n qr’ n+3 —n+1
:—(curlhﬁh,%h)H—k(curlhj{h ) -
(“n-&-% gn+%)
n —»»,H_% —n+1 J sOh 5
_NO<¢H7%”) _60( g & 2)E cow?
el
< - (curlh Sh,%h) + (curlhi]-fh+2’gz+2)
E
7ty gt
(140) — 1 (a;n ﬁ") i (ﬂnﬁL% gnqt%) _ (¢] ’3h )E
BN N cow?

Using the identity (70), we get

141 _ (ﬂ”ﬁ") _ (”*2 8"+2) -
( ) po (95 by €0 ¢E h B EOWZQ)
Thus from equation (141) we have that
n+1 2 n 2
(Rit) - (Ric)
ant3
2A o, T nty grts (¢J+2 an )
<28t o (6,75, + o (957 E)
< po \Pr>Hp )+ €0 (g et cow?

<Crastmax { |, 1654 15,165 1}

nt g n+t3
(2) (1Tl + & e+ 13 )
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where 61 is a constant depending on fi, €9, €. Applying Young’s inequality and
equation (51), for v > 0, we obtain

n g3 < TR0 g} 12At
(143) (curti 5, 9G77) | < TR + eI
The the definition of the energy of the error given in (138), we have
. 133113 R
(Ri.c)* = moll " i +oll€hlf + T2 - (eur .36 %)
VY b2 12A¢? ||3”||2
144 > (1—7>J-C 2 1 - =
aa) oz (1= )10 e (1 S ) el +

If the stability condition (125) is satisfied, then for some v < 4, all terms on the
right side (144) are nonnegative, and for n > 0 we have

(145) ¢ = Co (196, +IER e + 13311z )

where Cy = min {1/u0 (1-12),4/e (1 - vgﬁf;g), \/;Tg’ \/éo(leq_l) } From (142)

and (145), we therefore obtain
n+1 2 n 2
(Rh c) - (Ri.c)
2n+3 n+ n
(146) <0102Atmax{||¢H||H, 1652 1 1654 e b (R +Rie )
Dividing by R” + R}, ¢ and rearranging terms in (146), we obtain

Ryt = Rit e < CrCotmax {6l 165 1, 1672 1}
(147) < CAt (Az? + Ay? + A% + At?)

where C' = 006152 is a constant depending on medium parameters, the Courant
number v = ¢o,At/h, and the constant 7. Recursively applying the inequality (120)
from n to 0 and using the fact that T = NAt, we have
(148)
— R%,C < CnAt (Aa:2 + Ay? + A2+ AtQ) < cT (Aa:2 + Ay + A2+ AtQ) .
[l

6.3. Discrete Divergence Constraints of the Yee Scheme for the Maxwell-
Cold Plasma Model. In this section we analyze the properties of the discrete
divergence for the 3D Yee-FDTD Maxwell-Cold Plasma equations. Due to lack of
information about the polarization, the divergence of the electric flux density is not
well defined. We now consider only the divergence of the magnetic flux density in
the following theorem.

Theorem 6.3. Suppose that the solutions to the 3D Mazwell-Cold Plasma model
(22) are as given in Theorem 6.2. Then discrete divergence of the magnetic flux
density in the Yee scheme for the 3D Mazwell-Cold Plasma model, (123) or equiv-
alently (124), is preserved for all time levels n > 0, i.e., satisfies the identity

1 1
(149) divy B2 = div, B?
where the vector field By, is defined on the mesh T d“’H

Proof. The proof of this theorem is the same as the proof of Theorem 4.3 for the
case of the Debye medium. O
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7. Numerical Experiments

In this section, we numerically investigate the Yee scheme for the three different
linear dispersive media presented in the paper. To numerically demonstrate the
convergence of our Yee schemes, we consider the domain = [0, 1] x [0,1] x [0, 1]
with the PEC boundary conditions (28). We demonstrate our convergence results
on a uniform mesh, Ax = Ay = Az = h. The parameters of the linear model are
chosen as g = 1,60 = 1,600 = 1,wg = 1,7 = 1,6, = 2, and T' = 1. By considering
exact solutions and relative errors for different wave numbers k = (ky, ky, k.)T

be a wave vector, with corresponding wave number, k| = ,/k2 + k2 + k2, where

(ka, kys k2)T = 7(ka, ky, k)T and ky, ky, k. are integer constants.
We also numerically demonstrate the satisfaction of the discrete divergence prop-
erty of the magnetic induction.

7.1. Yee Scheme for the Maxwell-Debye Model. In this section, we present
numerical results for the Yee scheme for the 3D Maxwell-Debye system (39).

We consider an exact solution of the 3D Maxwell-Debye system (7) given in the
form

k2

(150a) H,(2,y,2t) = —e " sin(k,x) cos(k,y) cos(k.2),
™
k 2

(150b) Hy(z,y,zt) = ue_gt cos(kzx) sin(kyy) cos(k.z),
7T

k 2
(150c) H,(z,y,zt) = %e‘gt cos(kzx) cos(kyy) sin(k. z),

(150d) E.(x,y,z;t) = —g(ky — k,)e % cos(k,a) sin(k,y) sin(k, 2),
7r
(150e) Ey(x,y,zt) = —g(kz — ky)e % sin(k,x) cos(kyy) sin(k,2),

(150f) E,(z,y,zt) = —%(km — ky)e " sin(k,z) sin(kyy) cos(k.z2),

(150g) Py (z,y,zt) = —w(ky — k.)e % cos(kya) sin(k,y) sin(k, 2),
0,k
(150h) Py(z,y,z;t) = —M(kz — ky)e % sin(kyx) cos(kyy) sin(k,2),
T
k
(1501) P.(z,y,zt) = —w(kw — ky)e " sin(k,z) sin(kyy) cos(k.z),
™
where the function 8p (0, [k|) := €peac(€q — 1)0 — €peceTd? — 7|k|? and 6 is a real

number. The relationship between the wave number k and the parameter 6 can be
represented by the equation

(151) €0€noT20% — €penneyT0? + 72 |k|20 — 7]K|? = 0.

In particular, for k = (1,2, —3)7, § ~ 1.007289596494, and for k = 27 (1,2, —3)7,
0 ~ 1.001812580410. Here the exact solution (150) satisfies the PEC boundary

conditions on the boundary of the domain 2 for the wave vectors as chosen in
Table 1.
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7.1.1. Computation of Energy Errors. The energy of the exact solution (150)
as defined in Theorem 2.1 can be computed to be

(152) o) = oot [% (e 102 - 330,

The values of the Courant number v, and the wave vector k that are used in our
numerical experiments are given in Table 1. We compute numerical errors in the
discrete solution by computing relative energy error defined as

h.D
Errorp(h) = oAy { Ep(tm) } ,

with R j, as defined in Theorem 4.2.

Table 1 gives the discrete energy error for the Yee scheme for the 3D Maxwell-
Debye model for various cases. We test our schemes for different Courant numbers
and different wave vectors k. The largest time step used is At = 0.02, and this value
is successively decreased by half to run four simulations. Figure 1 illustrates that

the convergence errors are all second order. This is consistent with the conclusion
in Theorem 4.2.

(153)

Wave Number k = 17(1,2,-3)!

Wave Number k = 27(1,2,-3)"

10°"
7 = 0.10 = 0.10
—e—v = 0.20 ——1 = 0.20
) v =0.50 ) v = 0.50
10° 1 10° 1
=10° =10%
= =
g g
2 g4 S
\\‘ ‘\\
10”8 107
h? Refference > h? Reference >
-6 L 6 "
10 10
10° 102 10° 10" 102 10°

N (numbers of time steps) N (numbers of time steps)

FI1GURE 1. Discrete energy errors for the 3D Yee-FDTD Maxwell-
Debye scheme with varying CFL number.

7.1.2. Convergence of Discrete Divergence. We show that the discrete diver-
gence of both the electric flux density, D;, and magnetic flux density, By, in the
Yee scheme for the 3D Maxwell-Debye model is preserved. We compute the error
in the discrete divergence as

(154a) Err(divy, D) = omax |div, D} — div, DY ||,
. . n-i—l . 1
(154b) Err(divy,B) = pmax |divyB,, " * — div,B} || a-

The errors (154) in the discrete divergence of solutions for the Maxwell-Debye
model are given in Table 2. We see that the errors presented are all negligible
compared to the discrete energy errors.
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TABLE 1. Discrete energy errors for the Maxwell-Debye model.

Wave Vector k = 7(1,2, —-3)T
N r=20.1 v=0.2 v=20.5
Errorp Rate Errorp Rate Errorp Rate
50 |2.789x1072] - 6.422x1073] - 1.012x1073] -
100 | 6.432x1073] -2.117 | 1.576x10~ 3| -2.027 | 2.524x10~%| -2.003
200 | 1.588x103| -2.018 | 3.953x10~ %] -1.996 | 6.357x10~"| -1.989
400 | 3.971x10~%] -2.000 | 9.924x107°| -1.994 | 1.598x10~°| -1.992
Wave Vector k = 27 (1,2, —3)T
N r=20.1 v=0.2 vr=20.5
Errorp Rate Errorp Rate Errorp Rate
50 | 7.347x107%| - 1.540x1072] - 22851073 -
100 | 1.387x1072] -2.405 | 3.405x10~3] -2.177 | 5.337x10~*[ -2.098
200 | 3.367x1073| -2.043 | 8.238x10~ %] -2.047 [ 1.312x10~%| -2.024
400 | 8.240x10~%] -2.031 | 2.049x10~%[ -2.007 | 3.279x10~"] -2.001

TABLE 2. Discrete divergence errors for the Maxwell-Debye model.

Wave Vector k = 7(1,2, —3)T
v=202

v =0.1 v=20.5

Err(divy D)

Err(divy, B)

Err(divy D)

Err(divy, B)

Err(divy D)

Err(div, B)

50

5.02x10~13

5.84x10~ 14

1.33x10~12

1.22x10°13

3.24x1012

2.89x1013

100

2.05x10~12

1.71x10~13

3.56x 10~ 12

3.41x10713

9.46x 1012

8.25x10~ 13

200

4.70x10~12

4.71x10~ 13

1.08x 1011

9.38x10~ 13

2.70x10~11

2.35x10"12

400

1.51x10~ 1T

1.33x10~ 12

3.08x10~ 1L

2.66x1012

7.75x107 11

6.66x10~12

Wave Vector k = 27(1,2,—3)T

v =0.1

v=20.2

v=20.5

Err(divy, D)

Err(divy, B)

Err(divy D)

Err(div, B)

Err(divy D)

Err(div, B)

50

5.88x 1012

4.76x10~ 13

1.00x10° 11

5.35x10~ 13

2.66x10~ 11

1.19x10~ 12

100

1.21x10~11

7.16x10~13

3.00x10~ 1

1.39x10~12

7.53x10~ 11

3.33x10~12

200

4.33x10~ 11

1.95x10~ 12

7.90x10~ 11

3.80x10~ 12

2.13x10°10

9.40x10 12

400

1.19%x10-10

5.38x10~12

2.45%x10~10

1.07x10~ 11

6.15x10~10

2.67x10~ 11

7.1.3. Example of Yee Scheme for the Maxwell-Debye Model with the
Non-uniform Mesh. For non-uniform meshes, we use the same parameters as
the linear model for the Yee scheme for the 3D Maxwell-Debye system. Here we
start using the following mesh parameters

(155) At =0.02, Az =0.2, Ay =0.1, Az =0.25,

and these values are successively decreased by half to run four simulations. The
stability condition based on these parameters satisfies equation (54). The discrete
energy error for the Maxwell-Debye model is given in Table 3 and Figure 2. We let
Ap, represent the scaling of the number of intervals in the mesh. Figure 2 illustrates
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that the convergence errors for the non-uniform mesh are of second order, which
agrees with the conclusion in Theorem 4.2.

TABLE 3. Discrete energy errors for the Maxwell-Debye model
with non-uniform meshes.

At Az Ay Az k =n(1,2,-3)7 k =2n(1,2,-3)T
Error Rate Error Rate
0.02 0.2 0.1 0.25 5.274x1072| - 1.872x10° 1 -

0.01 0.1 0.05 0.125 | 1.143x1072| -2.21 | 4.033x107% | -2.22
0.005 0.05 0.025 0.0625 | 2.782x1073] -2.04 | 9.868x1073 | -2.03
0.0025 | 0.025 | 0.0125 | 0.03125 | 6.932x10~*] -2.01 | 2.380x10~2 | -2.05
0.00125 | 0.0125 | 0.00625 | 0.015625 | 1.734x10~%| -2.00 | 5.891x10~% | -2.01

. ——k = 17r(.1,2,—3)"
——k = 271—(1725 _3)£
100 Ny —e--O(h?) Refferencel
10" '
=
Q
S
o
= 107 :
107 '
A4l )
10
10° 10"
Ah

FIGURE 2. Discrete energy errors for the Maxwell-Debye model
with non-uniform meshes where \j, represents a multiple of mesh
sizes.

Moreover, the discrete divergence of both electric flux density for the Maxwell-
Debye model are given in Table 4 which also supports our theoretical result in
(4.29).

7.2. Yee Scheme for the Maxwell-Lorentz Model. In this section, we test
the proposed Yee scheme for the Maxwell-Lorentz system (86). The experiment is
performed by using a uniform mesh on the domain Q = [0, 1] x [0, 1] x [0, 1] with
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TABLE 4. Discrete divergence errors for the Maxwell-Debye model
with non-uniform meshes.

At Az Ay Az k =m(1,2,-3)T k =2n(1,2,-3)T
Err(divy, D) Err(divy, B) Err(divy, D) Err(divy, B)
0.02 0.2 0.1 0.25 5.69x 10 15 9.71x10 ™% | 1.37x10 11 6.34x10 15
0.01 0.1 0.05 0.125 3.13x10 12 2.12x10° 12 | 2.10x10 11 1.07x10 12
0.005 0.05 0.025 0.0625 7.45x10~ 12 6.48x10 15 | 5.69x10 11 2.67x10 12
0.0025 0.025 0.0125 0.03125 2.25x10~ 11 1.83x10 12 | 1.82x10~ 10 7.43x10° 12
0.00125 0.0125 0.00625 | 0.015625 | 6.32x10 L1 5.12x10 12 | 4.87x10 10 2.08x10 11

the PEC boundary conditions (28). The parameters in this section are chosen by
o =160 =160 =1,wg=1,7=04,e,=2,and T = 1.
The analytic solutions of the 3D Maxwell-Lorentz system (15) are
2
(156a)  H,(z,y,2;t) = uefot sin(k,) cos(kyy) cos(k.2),
0

[[?

(156b)  Hy(w,y,2;t) = 767% cos(kyx) sin(kyy) cos(k2),

(156¢) H,(z,y,z1) = @e*m cos(kgz) cos(kyy) sin(k, z),

(156d)  E.(z,y,2t) = —g(ky — k.)e % cos(kyx) sin(kyy) sin(k. 2),

(156e) B, (z,y,z;t) = fg(kz — ky)e % sin(kyx) cos(kyy) sin(k,2),

(156f) E.(x,y,zt) = fg(kx — ky)e " sin(k,z) sin(kyy) cos(k.z2),

(1562)  Polary, =) = LMD (k) con(h,a) sin(kyp) sin k. 2),
(156h) Py(z,y,2zt) = —@(kz — ky)e % sin(k,x) cos(kyy) sin(k,2),
(1561)  Pu(z,y,zt) = —@(kx — ky)e" sin(k, ) sin(kyy) cos(k. ),
(1567) Jo(z,y, 2;1) = —w(z@ — k. )e " cos(kyx) sin(k,y) sin(k,2),
(156k) Jy(z,y,2;t) = —@(@ — ky)e % sin(k,x) cos(kyy) sin(k,2),
(1561) Jo(z,y, 2t) = —wuﬁm — ky)e % sin(kyx) sin(kyy) cos(k.z2),

k 2
where the function o (0, |k|) := <€060093 — 60%02 + (€owp” + |Kk|*)8 — |T|> Jwi

and B (0, |k|) := epeact? + |k|?, and 6 is a real number. The relationship between
the wave number |k|? and the parameter § can be expressed as follows

K2

T

(157)  epesolt — 25293 4 (co€octwi + k| + €owp?) 67 0 + wilk|? = 0.

T
In particular, for k = 7(1,2, —3)7 with the corresponding parameter 6 ~ 0.5012108,
and for k = 27(1,2,—3)7 with the corresponding parameter 6 ~ 0.500301839402.
Here the exact solution (156) satisfies the PEC boundary conditions on the bound-
ary of the domain €2 provided that the wave vector is chosen as above.
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7.2.1. Computation of Energy Errors. The exact energy, defined in Theorem
2.2, for the solutions (156) can be calculated to be

k 3 1
EL(t) = 2716‘”\/2 {|k|2 + 0%+ 7 (1 + 92)].

We compute numerical errors for the discrete solution by defining the numerical
eITor as

(158)

(159)

Brrory, (h) = 0ZneN { &L ?ti) }

where R} ; is defined in Theorem 111.

The results of the discrete energy error for the 3D Maxwell-Lorentz model are
given in Figure 3 and Table 5. Similarly to the numerical simulation in Section
7.1 with different values of wave vectors k, we take the largest time step sizes
to be At = 0.02, and these values are successively decreased by half to run four
simulations. In Table 5, it is obvious that the discrete energy errors decay for several
values of the Courant number v and the wave vector k. Figure 3 and Table 5 also
confirm the energy decay property of the Yee scheme by showing that convergence
rates are all of second order, which is in agreement with the conclusion in Theorem
5.2. Moreover, if the Courant number is increasing, then it improves the error of
the scheme but the order of accuracy remains the same.

Wave Number k = 17(1,2,-3)¢

Wave Number k = 27(1,2,-3)!

-1
10
——v = 0.10 ——v = 0.10
——v = (.20 ——v = (.20
" v = 0.50 i v = 0.50
10° 10°
=107 =10°
Q [=]
5 z
S M 10 “
\"‘
\n
-5 B 5 P4 .
10 h? Refference” o 10 W Refference” e,
.
. \‘\. . \‘\.
10" 10°
10" 102 10° 10° 102 10°

N (numbers of time steps)

N (numbers of time steps)

FIGURE 3. A comparison of the errors for the Yee scheme in the
Lorentz medium with varying CFL conditions.

7.2.2. Convergence of Discrete Divergence. We determine the numerical dis-
crete divergence properties for both the electric D;, and the magnetic By, flux
densities by calculating the formula defined in (154). Table 6 presents the discrete
divergence errors of solutions to the Yee scheme for the 3D Maxwell-Lorentz model.
All errors are relatively small.

7.3. Yee Scheme for the Maxwell-Cold Plasma Model. In this section, we
test the proposed Yee scheme for the Maxwell-Cold Plasma system (123). The
experiment is performed by using a uniform mesh on the domain Q = [0, 1] x [0, 1] x
[0,1] with the PEC boundary conditions (28). The parameters in this section are
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TABLE 5. Discrete energy errors for the Maxwell-Lorentz model.

Wave Vector k = 7(1,2, —-3)T
N r=20.1 v =0.2 v=0.>5
Error Rate Error Rate Error Rate
50 | 1.213x1072 - 2.814x1073 - 4.422%x10~1 -
100 | 2.780x103] -2.125 | 6.823x10~ %[ -2.044 | 1.088x10~%]| -2.023
200 | 6.821x10~%] -2.027 | 1.700x10~%] -2.007 | 2.719x10~°| -2.001
400 | 1.701x10~%] -2.004 | 4.248x107°] -1.999 | 6.808x10~ %] -1.998
Wave Vector k = 27 (1,2, —3)T
N r=20.1 v =0.2 v=20.>5
Error Rate Error Rate Error Rate
50 | 3.265x1072 - 6.812x1073 - 1.009x1073 -
100 | 6.128x1073| -2.414 | 1.497x1073] -2.186 | 2.343x10~%| -2.106
200 | 1.468x1073] -2.062 | 3.597x10~%] -2.057 | 5.727x10~°] -2.033
400 | 3.583x10~%] -2.035 | 8.914x107°] -2.013 | 1.425x10~"] -2.007

TABLE 6. Discrete divergence errors for the Maxwell-Lorentz model.

Wave Vector k = (1,2, —3)7

r=20.1

v=20.2

V=

0.5

Err(divy D)

Err(divy,B)

Err(divy D)

Err(divy, B)

Err(divy, D)

Err(divy, B)

50

7.43%x10~13

7.38x1014

2.05x10~12

1.52x10~13

6.07x10~12

3.52x10~13

100

3.10x10 12

1.95%x10~13

6.87x10~12

4.01x10~13

1.62x10~ 11

1.00x10~12

200

8.76x10~ 12

5.70x10~13

1.87x10~ 1

1.13x10~12

4.67x107 11

2.83x10712

400

2.52x10~ 11

1.61x10~12

5.22x1011

3.22x10712

1.33x10~10

8.03x10~12

Wave Vector k = 27(1,2, —3)T

v=0.1

v=20.2

v=20.5

Err(divy D)

Err(divy,B)

Err(divy, D)

Err(divy, B)

Err(divy, D)

Err(divy, B)

50

9.40x10~12

4.67x10-13

1.40x 10~ 11

6.64x10~13

4.65x10~ 11

1.44x10~12

100

3.26x10~ 11

1.00x10~ 12

5.61x10 11

1.70x10~ 12

1.27x10~10

4.04x10~12

200

5.70x10~ 11

2.32x10~12

1.40x 1010

4.56x10~12

3.75x10~10

1.13x10~ 11

400

1.92x10~ 10

6.48%x 1012

4.02x10~10

1.29x 1011

1.05x1079

3.21x10~ 11

chosen similarly to the case of Maxwell-Lorentz model i.e. pug = 1,69 = 1,€50 =
l,wp = 1,1, =2.5,¢4 = 2, and T = 1. The following analytic solutions of the 3D
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Maxwell-Cold Plasma system (22) are

(160a) H.(x,y,z;t) = ge_et sin(kzx) cos(kyy) cos(k.z),

(160b) Hy(z,y,zt) = ge_et cos(kzx) sin(kyy) cos(k. z),

(160c) H,(z,y,zt) = %e‘et cos(kzx) cos(kyy) sin(k. z),

(160d) E.(x,y,z;t) = —g(ky — k,)e % cos(kyx) sin(k,y) sin(k, 2),
(160e) Ey(z,y,zt) = —g(kz — ky)e % sin(k,x) cos(kyy) sin(k,2),

(160f) E,.(z,y,zt) = —g(kw — ky)e_‘% sin(kzx) sin(kyy) cos(k. z),

(160g) Ju(x,y,2;t) = —M(ky — k. )e % cos(k,a) sin(k,y) sin(k, 2),
(160h) Jy(z,y,z;t) = fw&,z — ky)e % sin(kyx) cos(kyy) sin(k,2),
(1601) J(z,y, 2;t) = —%(kw — ky)e " sin(k,x) sin(k,y) cos(k,2),

where the function B¢ (0, |k|) := €6 +|k|?, and 6 is a real number. The relationship
between the wave number |k| and the parameter 6 can be expressed as follows

(161) €00> — €02 + (eowﬁ + \k|2) 0 — |k|*v. = 0.

In particular, for k = 7(1,2, —3)7 with the corresponding parameter 6 ~ 2.4827988,
and for k = 27(1,2,—3)T with the corresponding parameter 6 ~ 2.495535120632.
Here the exact solution (160) satisfies the PEC boundary conditions on the bound-
ary of the domain €2 provided that the wave vector is chosen as above.

7.3.1. Computation of Energy Errors. The exact energy (160) defined in The-
orem 2.3 can be calculated to be

k 3
(162) Ec(t) = |27T|e_9t\/2 (k|2 + 62 + 2]

We compute numerical errors for the discrete solution by defining the numerical
error as

) 2o
(163) Errore(h) = max, {ec@") } ’

where R} - is defined in Theorem 6.2.

The results of the discrete energy error for the Yee scheme for the 3D Maxwell-
Cold Plasma model are given in Figure 4 and Table 7. Similarly to the numerical
simulation in Section 7.1 we take the largest time step sizes to be At = 0.02, and
these values are successively decreased by half to run four simulations. In Table 7,
it is obvious that the discrete energy errors decay for several values of the Courant
number v and the wave vector k. Figure 4 and Table 7 also confirm the energy
decay property of the Yee scheme by showing that convergence errors of the energy-
decayed finite-difference time-domain scheme for different space and time sizes are
all of second order, which is in agreement with the conclusion in Theorem 6.2.
Moreover, if the Courant number is increasing, then it improves the error of the
scheme but the order of accuracy remains the same, which exhibits the second order
of the Yee scheme with respect to a O(h?) reference.
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FIGURE 4. A comparison of the discrete energy errors for the Yee
scheme in a Cold Plasma medium with varying CFL conditions.

TABLE 7. Discrete energy errors for the Maxwell-Cold Plasma model.

Wave Vector k = 7(1,2, —3)T

N r=20.1 v =20.2 v=20.5
Error Rate Error Rate Error Rate
50 | 1.329x107 ! - 3.208x 1072 - 5.260x 1073 -

100 | 3.095%10~ 2| -2.102 | 7.509x10~3] -2.136 | 1.247x10~3] -2.076
200 | 7.277x1073] -2.089 | 1.815x10~ 3] -2.049 | 3.043x10~%] -2.035
400 | 1.782x1073] -2.030 | 4.476x10~%] -2.020 | 7.517x10~7] -2.017

Wave Vector k = 27 (1,2, —3)T

N r=20.1 v =0.2 v=0.>5

Error Rate Error Rate Error Rate
50 | 4.004x10°1T - 8.515%x 1072 - 1.113x1072 -
100 | 7.727x1072| -2.373 | 1.559x1072] -2.450 | 2.671x10~3| -2.059
200 | 1.602x102| -2.270 | 4.007x10~3] -1.960 | 6.497x10~*| -2.039
400 | 3.985x107 3] -2.001 | 9.922x10~%] -2.014 | 1.605x10~*] -2.017

7.3.2. Convergence of Discrete Divergence. We determine the numerical dis-
crete divergence properties for the magnetic B, flux densities by calculating the
formula defined in (154). Table 8 presents the discrete divergence errors of solutions
to the Yee scheme for the 3D Maxwell-Cold Plasma model. All errors are relatively
small.

7.4. Comparison of Discrete Divergence across all Models. In this sec-
tion, we compare the discrete divergence of the Maxwell’s equations in all linearly
dispersive media over the long time computation. Here we focus on the discrete
divergence of the magnetic flux density and set 7" = 200 and At = 0.02. For each
the CFL number v and the wave vector k, we compute the norm of the discrete
divergence of the magnetic field, ||div, B"*2 |z, plotted against the time level n.
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TABLE 8. Discrete divergence errors for the Maxwell-Cold Plasma
model where k; = 7(1,2, -3)7 and ko = 27(1,2,-3)T.
Err(div, B)
N v=20.1 v =02 v=0.5
k; ko k; ko k1 ks
50 | 5.87x10~ 14 3.47x10~ 13| 8.34x 10~ 1% 3.99x 10~ 13[ 1.95x 10~ 3] 7.98x10~ 13
100 | 1.10x10713] 5.47x10~13] 2.30x 10~ ] 9.29x 10~ 13| 5.60x 10~ 13| 2.24x 10~ 12
200 | 3.12x10713] 1.29x10~2] 6.34x 10~ 13| 2.55x 10~ 1?[ 1.60x 10~ 12 6.37x 10~ 12
400 | 9.04x10~ 53] 3.58x107 2] 1.81x10~ | 7.21x107 12| 4.55x 10~ 12| 1.81x10~ 1T

Figure 5 shows that the discrete divergence is proportional to the wave number
squared. Moreover, when the CFL number increases, the discrete divergence grows
rapidly, but will be controlled under 2 x 10~'2 for both cases of wave vectors. How-
ever, the discrete divergence for the Debye model grows linearly when the CFL
number is small, while the others grow slowly and are controlled. This means that
the convergence of discrete divergence for all models confirms our theoretical anal-
ysis when the CFL number is large enough, while the divergence is overestimated
in our theoretical analysis when the CFL number is small, at least for long time

computation.
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FIGURE 5. A comparison of the discrete divergence for the Yee
scheme in all medium with varying CFL conditions. First row:
the wave vector k = (1,2, —-3)T; Second row: the wave vector
k = 27(1,2,-3)T. First column: v = 0.1; Second column: v = 0.2;
Third column: v = 0.5.
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8. Conclusions

In this paper, we have constructed and analyzed finite difference time domain
(FDTD) methods coupled to Debye, Lorentz and cold isotropic plasma linear disper-
sive media based on the Yee scheme for the time-dependent Maxwell’s equations
in three-dimensional space. We began with the model formulation, followed by
construction of the weak formulations of Maxwell’s equations in the linear disper-
sive media and energy estimates for the continuous models. Based on the energy
method, we have presented accuracy, stability and convergence analysis of the Yee
scheme for each of the three linear dispersive models considered in this paper. It
was shown that the Yee scheme are conditionally stable under the same condition
as that of the classical Yee scheme for 3D Maxwell’s equations in a non-dispersive
dielectric. Our convergence analysis indicated that the fully discrete schemes are of
second order accuracy in both time and space. In addition, the discrete divergence
of the scheme is also studied and it is proved that the Yee scheme satisfies the
discrete divergence-free conditions in the numerical grid, an important aspect of
any numerical approximation for Maxwell’s equations. Finally, numerical experi-
ments are presented that demonstrate our theoretical results. We construct exact
solutions for each of the three linear dispersive media with the PEC boundary con-
ditions and confirm the energy decay properties, second order accuracy and discrete
analogues of the divergence free nature of the magnetic flux density.
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