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Abstract. We consider a second order singularly perturbed boundary value problem, of reaction-

convection-diffusion type with two small parameters, and the approximation of its solution by the
hp version of the Finite Element Method on the so-called Spectral Boundary Layer mesh. We
show that the method converges uniformly, with respect to both singular perturbation parameters,
at an exponential rate when the error is measured in the energy norm. Numerical examples are

also presented, which illustrate our theoretical findings as well as compare the proposed method
with others found in the literature.
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1. Introduction

The numerical solution of singularly perturbed problems has been studied ex-
tensively over the last few decades (see, e.g., the books [15], [16], [20] and the
references therein). As is well known, a main difficulty in these problems is the
presence of boundary layers in the solution, whose accurate approximation, inde-
pendently of the singular perturbation parameter(s), is of great importance for the
overall reliability of the approximate solution. In the context of the Finite Element
Method (FEM), the robust approximation of boundary layers requires either the
use of the h version on non-uniform, layer-adapted meshes (such as the Shishkin
[24] or Bakhvalov [2] mesh), or the use of the high order p and hp versions on the
so-called Spectral Boundary Layer mesh [11], [23].

Usually, problems of convection-diffusion or reaction-diffusion type are studied
separately and several researchers have proposed and analyzed numerical schemes
for the robust approximation of their solution (see, e.g., [20] and the references
therein). When there are two singular perturbation parameters present in the
differential equation, the problem becomes reaction-convection-diffusion and the
relationship between the parameters determines the ‘regime’ we are in (see Table 1
ahead). In [6] this problem was addressed using the h version of the FEM as well
as appropriate finite differences (see also [3], [5], [7], [17], [21], [28], [29]). In the
present article we consider the hp version of the FEM on the Spectral Boundary
Layer mesh (from [11]) and show that the method converges uniformly in the
perturbation parameters at an exponential rate, when the error is measured in the
energy norm.
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The rest of the paper is organized as follows: in Section 2 we present the model
problem and its regularity. Section 3 presents the discretization using the Spectral
Boundary Layer mesh and contains our main result of uniform, exponential con-
vergence. Finally, in Section 4 we show the results of numerical computations that
illustrate and extend our theoretical findings.

With I ⊂ R an interval with boundary ∂I and measure |I|, we will denote by
Ck(I) the space of continuous functions on I with continuous derivatives up to order
k. We will use the usual Sobolev spaces W k,m(I) of functions on I with 0, 1, 2, ..., k
generalized derivatives in Lm (I), equipped with the norm and seminorm ∥·∥k,m,I

and |·|k,m,I , respectively. When m = 2, we will write Hk (I) instead of W k,2 (I),

and for the norm and seminorm, we will write ∥·∥k,I and |·|k,I , respectively. The

usual L2(I) inner product will be denoted by ⟨·, ·⟩I , with the subscript omitted
when there is no confusion. We will also use the space

H1
0 (I) =

{
u ∈ H1 (I) : u|∂I = 0

}
.

The norm of the space L∞(I) of essentially bounded functions is denoted by ∥·∥∞,I .
Finally, the notation “a . b” means “a ≤ Cb” with C being a generic positive
constant, independent of any parameters (e.g. discretization, singular perturbation,
etc.).

2. The model problem and its regularity

We consider the following model problem (cf. [14]): Find u such that

−ε1u
′′(x) + ε2b(x)u

′(x) + c(x)u(x) =f(x), x ∈ I = (0, 1) ,(1)

u(0) = u(1) =0 ,(2)

where 0 < ε1, ε2 ≤ 1 are given parameters that can approach zero and the functions
b, c, f are given and sufficiently smooth. In particular, we assume that they are
analytic functions satisfying, for some positive constants γf , γc, γb, independent of
ε1, ε2,

(3)
∥∥∥f (n)

∥∥∥
∞,I

. n!γn
f ,

∥∥∥c(n)∥∥∥
∞,I

. n!γn
c ,

∥∥∥b(n)∥∥∥
∞,I

. n!γn
b ∀ n = 0, 1, 2, ...

In addition, we assume that there exist positive constants β, γ, ρ, independent of
ε1, ε2, such that ∀ x ∈ I

(4) b(x) ≥ β > 0 , c(x) ≥ γ > 0 , c(x)− ε2
2
b′(x) ≥ ρ > 0.

The solution to (1), (2) satisfies (see, e.g., [6])

(5) ∥u∥∞,I . 1.

Moreover, the following result was shown in [27].

Proposition 1. Let u be the solution of (1), (2). Then, there exists a positive
constant K, independent of ε1, ε2, such that for n = 0, 1, 2, ...∥∥∥u(n)

∥∥∥
∞,I

. Kn max
{
n, ε−1

1 , ε−1
2

}n
.

More details arise if one studies the structure of the solution to (1), which de-
pends on the roots of the characteristic equation associated with the differential
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operator. For this reason, we let λ0(x), λ1(x) be the solutions of the characteristic
equation and set

(6) µ0 = − max
x∈[0,1]

λ0(x) , µ1 = min
x∈[0,1]

λ1(x),

or equivalently,

µ0,1 = min
x∈[0,1]

∓ε2b(x) +
√
ε22b

2(x) + 4ε1c(x)

2ε1
.

The following hold true [21, 28]:

(7)

1 << µ0 ≤ µ1 , ε2
ε2+ε

1/2
1

. ε2µ0 . 1 , ε
1/2
1 µ0 . 1

max{µ−1
0 , ε1µ1} . ε1 + ε

1/2
2 , ε2 . ε1µ1

for ε22 ≥ ε1 : ε
−1/2
1 . µ1 . ε−1

1

for ε22 ≤ ε1 : ε
−1/2
1 . µ1 . ε

−1/2
1

 .

The values of µ0, µ1 determine the strength of the boundary layers and since
|λ0(x)| < |λ1(x)| the layer at x = 1 is stronger than the layer at x = 0. Es-
sentially, there are three regimes, as seen in Table 1 [6].

Table 1. Different regimes based on the relationship between ε1
and ε2.

µ0 µ1

convection-diffusion ε1 << ε2 = 1 1 ε−1
1

convection-reaction-diffusion ε1 << ε22 << 1 ε−1
2 ε2/ε1

reaction-diffusion 1 >> ε1 >> ε22 ε
−1/2
1 ε

−1/2
1

The above considerations suggest the following two cases:

(1) ε1 is large compared to ε2: this is similar to a ‘regular perturbation’ of
reaction-diffusion type. If one considers the limiting case ε2 = 0, then one
sees that there are two boundary layers, one at each endpoint, of width

O
(
ε
1/2
1

)
. This situation has been studied in the literature (see, e.g., [8])

and will not be considered further in this article.
(2) ε1 is small compared to ε2: before discussing the different regimes, it is

instructive to consider the limiting case ε1 = 0. Then there is an exponen-
tial layer (of length scale O(ε2)) at the left endpoint. The homogeneous
equation (with constant coefficients) suggests that the different regimes are
ε1 << ε22, ε1 ≈ ε22, ε1 >> ε22.
(a) In the regime ε1 << ε22, we have µ0 = O(ε−1

2 ) and µ1 = O(ε2ε
−1
1 ).

Hence µ1 is much larger than µ0 and the boundary layer in the vicinity
of x = 1 is stronger. Consequently, there is a layer of width O(ε2)
at the left endpoint (the one that arose from the analysis of the case
ε1 = 0) and additionally there is another layer at the right endpoint,
of width O(ε1/ε2).

(b) In the regime ε1 ≈ ε22, there are layers at both endpoints of width

O(ε2) = O
(
ε
1/2
1

)
.
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(c) In the regime ε22 << ε1 << 1, there are layers at both endpoints of

width O
(
ε
1/2
1

)
.

2.1. The asymptotic expansion. We focus on Case 2 (a)–(c) above, i.e. ε1 < ε2,
and describe an appropriate asymptotic expansion for u, in what follows. (The
material also appears in [27].)

2.1.1. The regime ε1 << ε22 << 1. In this case we anticipate a layer of width
O(ε2) at the left endpoint and a layer of width O (ε1/ε2) at the right endpoint. To
deal with this we define the stretched variables x̃ = x/ε2 and x̂ = (1− x)ε2/ε1 and
make the formal ansatz

(8) u ∼
∞∑
i=0

∞∑
j=0

εi2(ε1/ε
2
2)

j
(
ui,j(x) + ũBL

i,j (x̃) + ûBL
i,j (x̂)

)
,

with ui,j , ũ
BL
i,j , ûBL

i,j to be determined. Substituting (8) into (1), separating the slow

(i.e. x) and fast (i.e. x̃, x̂) variables, and equating like powers of ε1 and ε2 , we get1

(9)

u0,0(x) =
f(x)
c(x)

ui,0(x) = − b(x)
c(x)u

′
i−1,0(x), i ≥ 1

u0,j(x) = u1,j(x) = 0, j ≥ 1
ui,j(x) =

1
c(x)

(
u′′
i−2,j−1(x)− b(x)u′

i−1,j(x)
)
, i ≥ 2, j ≥ 1

 ,

(10)

b̃0
(
ũBL
0,0

)′
+ c̃0ũ

BL
0,0 = 0

b̃0
(
ũBL
i,0

)′
+ c̃0ũ

BL
i,0 = −

∑i
k=1

(
b̃k

(
ũBL
i−k,0

)′
+ c̃kũ

BL
i−k,0

)
, i ≥ 1

b̃0
(
ũBL
0,j

)′
+ c̃0ũ

BL
0,j =

(
ũBL
0,j−1

)′′
, j ≥ 1

b̃0
(
ũBL
i,j

)′
+ c̃0ũ

BL
i,j =

(
ũBL
i,j−1

)′′ −∑i
k=1

(
b̃k

(
ũBL
i−k,j

)′
+ c̃kũ

BL
i−k,j

)
, i ≥ 1, j ≥ 1


,

(11)

(
ûBL
i,0

)′′
+ b̂0

(
ûBL
i,0

)′
= 0, i ≥ 0(

ûBL
0,j

)′′
+ b̂0

(
ûBL
0,j

)′
= ĉ0û

BL
0,j−1, j ≥ 1(

ûBL
i,1

)′′
+ b̂0

(
ûBL
i,1

)′
= ĉ0û

BL
i,0 − b̂1

(
ûBL
i−1,0

)′
, i ≥ 1(

ûBL
1,j

)′′
+ b̂0

(
ûBL
1,j

)′
= ĉ0û

BL
1,j−1 − b̂1

(
ûBL
0,j−1

)′
+ ĉ1û

BL
0,j−2, j ≥ 2(

ûBL
i,j

)′′
+ b̂0

(
ûBL
i,j

)′
= ĉ0û

BL
i,j−1 − b̂j

(
ûBL
i−j,0

)′
+∑j−1

k=1

{
−b̂k

(
ûBL
i−k,j−k

)′
+ ĉkû

BL
i−k,j−k−1

}
, i ≥ 2, j = 2, ..., i(

ûBL
i,j

)′′
+ b̂0

(
ûBL
i,j

)′
= ĉ0û

BL
i,j−1+∑i

k=1

{
−b̂k

(
ûBL
i−k,j−k

)′
+ ĉkû

BL
i−k,j−k−1

}
, i ≥ 2, j > i



,

where the notation b̃k(x̃) = x̃kb(k)(0)/k! , b̂k(x̂) = (−1)kx̂kb(k)(1)/k! is used, and
analogously for the other terms. (We also adopt the convention that empty sums are
0.) The BVPs (10)–(11) are supplemented with the following boundary conditions
(in order for (2) to be satisfied) for all i, j ≥ 0:

(12)
ũBL
i,j (0) = −ui,j(0) , limx̃→∞ ũBL

i,j (x̃) = 0
ûBL
i,j (0) = −ui,j(1) , limx̂→−∞ ûBL

i,j (x̂) = 0

}
.

1The constant coefficient case is considerably simpler – see [25].
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Next, we define for some M ∈ N,

uM (x) : =
M∑
i=0

M∑
j=0

εi2(ε1/ε
2
2)

jui,j(x),(13)

ũBL
M (x̃) : =

M∑
i=0

M∑
j=0

εi2(ε1/ε
2
2)

j ũBL
i,j (x̃),(14)

ûBL
M (x̂) : =

M∑
i=0

M∑
j=0

εi2(ε1/ε
2
2)

j ûBL
i,j (x̂),(15)

r1M : = u−
(
uM + ũBL

M + ûBL
M

)
(16)

and we have the following decomposition

(17) u = uM + ũBL
M + ûBL

M + r1M .

The following was shown in [27] (see also [26]) and it gives analytic regularity
bounds on each term in the decomposition (17).

Proposition 2. Assume (3), (4) hold. Then there exist positive constants K1, K2,

K̃, K̂, γ̃1, γ̂1, γ̃2, γ̂2, δ, independent of ε1, ε2, such that the solution u of (1)–(2)
can be decomposed as in (17), with

(18)
∥∥∥u(n)

M

∥∥∥
∞,I

. n!Kn
1 ∀ n ∈ N0,

(19)
∣∣∣(ũBL

M

)(n)
(x)

∣∣∣ . K̃nε−n
2 e−dist(x,∂I)/ε2 ∀ n ∈ N0,

(20)
∣∣∣(ûBL

M

)(n)
(x)

∣∣∣ . K̂n

(
ε1
ε2

)−n

e−dist(x,∂I)ε2/ε1 ∀ n ∈ N0,

(21)
∥∥r1M∥∥

E,I
. e−δ/ε2 ,

provided 4ε2e
2M max{1,K2, γ̃1, γ̃2, γ̂1, γ̂2, γ̃

2
1} < 1 and ε1

ε22
e2M max {1,K2, γ̃1, γ̃2, γ̂1,

γ̂2, γ̃
2
1

}
< 1. The energy norm ∥·∥E,I is defined by (29).

2.1.2. The regime ε1 ≈ ε22. Now there are layers at both endpoints of width
O(ε2). So with x̃ = x/ε2, x = (1− x)/ε2, we make the formal ansatz

(22) u ∼
∞∑
i=0

εi2
(
ui(x) + ũBL

i (x̃) + uBL
i (x)

)
,

with ui, ũ
BL
i , uBL

i to be determined. Substituting (22) into (1), separating the slow
(i.e. x) and fast (i.e. x̃, x) variables, and equating like powers of ε1(= ε22) and ε2
we get

u0(x) =
f(x)
c(x) , u1(x) = − b(x)

c(x)u
′
0(x)

ui(x) =
1

c(x)

(
u′′
i−2(x)− b(x)u′

i−1(x)
)
, i ≥ 2

}
,

−
(
ũBL
0

)′′
+ b̃0

(
ũBL
0

)′
+ c̃0ũ

BL
0 = 0

−
(
ũBL
i

)′′
+ b̃0

(
ũBL
i

)′
+ c̃0ũ

BL
i = −

∑i
k=1

(
b̃k

(
ũBL
i−k

)′
+ c̃kũ

BL
i−k

)
, i ≥ 1

}
,

−
(
ūBL
0

)′′ − b̄0
(
ūBL
0

)′
+ c̄0ū

BL
0 = 0

−
(
ūBL
i

)′′ − b̄0
(
ūBL
i

)′
+ c̄0ū

BL
i =

∑i
k=1

(
b̄k

(
ūBL
i−k

)′ − c̄kū
BL
i−k

)
, i ≥ 1

}
,
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where the notation b̃k(x̃) = x̃kb(k)(0)/k! etc., is used again. The above equations
are supplemented with the following boundary conditions (in order to satisfy (2)):

ui(0) + ũBL
i (0) = 0,

ui(1) + ūBL
i (0) = 0,

limx̃→∞ ũBL
i (x̃) = 0 , limx→−∞ ūBL

i (x) = 0.


We then define for some M ∈ N,

uM (x) =
M∑
i=0

εi2ui(x), ũ
BL
M (x̃) =

M∑
i=0

εi2ũ
BL
i (x̃), uBL

M (x) =
M∑
i=0

εi2ū
BL
i (x),

as well as

(23) u = uM + ũBL
M + uBL

M + r2M .

The following was proven in [9].

Proposition 3. Assume (3), (4) hold. Then there exist positive constants K1,K2, K̃,
K, δ, independent of ε1, ε2, such that the solution u of (1)–(2) can be decomposed
as in (23), with ∥∥∥u(n)

M

∥∥∥
∞,I

. n!Kn
1 ∀ n ∈ N0,∣∣∣(ũBL

M

)(n)
(x)

∣∣∣ . K̃nε−n
2 e−dist(x,∂I)/ε2 ∀ n ∈ N0,∣∣∣(ūBL

M

)(n)
(x)

∣∣∣ . K
n
ε−n
2 e−dist(x,∂I)/ε2 ∀ n ∈ N0,∥∥r2M∥∥

E,I
. e−δ/ε2 ,

provided ε2K2M < 1. The energy norm ∥·∥E,I is defined by (29).

2.1.3. The regime ε22 << ε1 << 1. We anticipate layers at both endpoints of
width O

(√
ε1
)
. So we define the stretched variables x̌ = x/

√
ε1 and x̆ = (1−x)/

√
ε1

and make the formal ansatz

(24) u ∼
∞∑
i=0

∞∑
j=0

ε
i/2
1 (ε2/

√
ε1)

j (
ui,j(x) + ǔBL

i,j (x̌) + ŭBL
i,j (x̆)

)
,

with ui,j , ǔ
BL
i,j , ŭBL

i,j to be determined. Substituting (24) into (1), separating the
slow (i.e. x) and fast (i.e. x̌, x̆) variables, and equating like powers of ε1 and ε2 we
get

u0,0(x) =
f(x)
c(x) , u1,0(x) = u0,j(x) = 0, j ≥ 1

ui,0(x) =
1

c(x)u
′′
i−2,0(x), i ≥ 2

u2i+1,0(x) = 0, i ≥ 1

u1,1(x) = − b(x)
c(x)u

′
0,0(x), u1,j(x) = 0, j ≥ 2

ui,j(x) =
1

c(x)

(
u′′
i−2,j(x)− b(x)u′

i−1,j−1(x)
)
, i ≥ 2, j ≥ 1


,

−
(
ǔBL
0,0

)′′
+ č0ǔ

BL
0,0 = 0

−
(
ǔBL
i,0

)′′
+ č0ǔ

BL
i,0 = −

∑i
k=1 čkǔ

BL
i−k,0, i ≥ 1

−
(
ǔBL
0,j

)′′
+ č0ǔ

BL
0,j = −b̌0

(
ǔBL
0,j−1

)′
, j ≥ 1

−
(
ǔBL
i,j

)′′
+ č0ǔ

BL
i,j = −b̌0

(
ǔBL
i,j−1

)′ −∑i
k=1

{
b̌k

(
ǔBL
i−k,j−1

)′
+ čkǔ

BL
i−k,j

}
, i ≥ 1, j ≥ 1


,
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−
(
ŭBL
0,0

)′′
+ c̆0ŭ

BL
0,0 = 0

−
(
ŭBL
i,0

)′′
+ c̆0ŭ

BL
i,0 = −

∑i
k=1 c̆kŭ

BL
i−k,0, i ≥ 1

−
(
ŭBL
0,j

)′′
+ c̆0ŭ

BL
0,j = b̆0

(
ŭBL
0,j−1

)′
, j ≥ 1

−
(
ŭBL
i,j

)′′
+ c̆0ŭ

BL
i,j = b̆0

(
ŭBL
i,j−1

)′
+∑i

k=1

{
b̆k

(
ŭBL
i−k,j−1

)′
− c̆kŭ

BL
i−k,j

}
, i ≥ 1, j ≥ 1


,

where the notation b̌k(x̌) = x̌kb(k)(0)/k! etc., is used once more. The above equa-
tions are supplemented with the following boundary conditions (in order to satisfy
(2)):

ǔBL
i,j (0) = −ui,j(0) , ŭ

BL
i,j (0) = −ui,j(1),

limx̌→∞ ǔBL
i,j (x̌) = 0 , limx̆→−∞ ŭBL

i,j (x̆) = 0.

}
We then define for some M ∈ N,

uM (x) =
M∑
i=0

M∑
j=0

ε
i/2
1 (ε2/

√
ε1)

j
ui,j(x),

ǔBL
M (x̌) =

M∑
i=0

M∑
j=0

ε
i/2
1 (ε2/

√
ε1)

j
ǔBL
i,j (x̌),

ŭBL
M (x̆) =

M∑
i=0

M∑
j=0

ε
i/2
1 (ε2/

√
ε1)

j
ŭBL
i,j (x̆),

and we have the following decomposition

(25) u = uM + ǔBL
M + ŭBL

M + r3M .

The proposition that follows is the analog of Proposition 2 (the proof is given in
[30]).

Proposition 4. Assume (3), (4) hold. Then there exist positive constants K1,K2, Ǩ,

K̆ and δ, independent of ε1, ε2, such that the solution u of (1)–(2) can be decom-
posed as in (25), with ∥∥∥u(n)

M

∥∥∥
∞,I

. n!Kn
1 ∀ n ∈ N0,∣∣∣(ǔBL

M

)(n)
(x)

∣∣∣ . Ǩnε
−n/2
1 e−dist(x,∂I)/

√
ε1 ∀ n ∈ N0,∣∣∣(ŭBL

M

)(n)
(x)

∣∣∣ . K̆nε
−n/2
1 e−dist(x,∂I)/

√
ε1 ∀ n ∈ N0,∥∥r3M∥∥

E,I
. e−δ/

√
ε1 ,

provided
√
ε1K2M < 1. The energy norm ∥·∥E,I is defined by (29).

3. Discretization by an hp-FEM

3.1. Discrete formulation and definition of the mesh. The variational for-
mulation of (1)–(2) reads: Find u ∈ H1

0 (I) such that

(26) B (u, v) = F (v) ∀ v ∈ H1
0 (I) ,

where

B (u, v) = ε1 ⟨u′, v′⟩I + ε2 ⟨bu′, v⟩I + ⟨cu, v⟩I ,(27)

F (v) = ⟨f, v⟩I .(28)
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The bilinear form B (·, ·) given by (27) is coercive (due to (4)) with respect to the
energy norm

(29) ∥v∥2E,I := ε1 |v|21,I + ∥v∥20,I ,

i.e.,

(30) B (v, v) ≥ ∥v∥2E,I ∀ v ∈ H1
0 (I) .

With S ⊂ H1
0 (I) a finite dimensional subspace that will be defined shortly, the

discrete version of (26) reads: find uN ∈ S such that

(31) B (uN , v) = F (v) ∀ v ∈ S.

In order to define the subspace S, let Î = [−1, 1] be the reference element and denote

by Pp(Î) the space of polynomials on Î , of degree ≤ p. Then, with ∆ = {xj}Nj=0

an arbitrary subdivision of I, we define

(32) S ≡ Sp(∆) = {u ∈ H1
0 (I) : u(Qj(ξ)) ∈ Pp(Î), j = 1, . . . , N},

where the linear element mapping is given by Qj(ξ) = (2ξ−xj−1−xj)/(xj−xj−1).
We next give the definition of the Spectral Boundary Layer Mesh we will use (cf.

[11]):

Definition 1 (Spectral Boundary Layer mesh). Let µ0, µ1 be given by (6). For
κ > 0, p ∈ N and 0 < ε1, ε2 ≤ 1, define the Spectral Boundary Layer mesh
∆BL(κ, p) as

∆BL(κ, p) :=

{
∆ = {0, 1} if κpε1 ≥ 1/2
∆ = {0, κpµ−1

0 , 1− κpµ−1
1 , 1} if κpε2 < 1/2

.

The spaces S(κ, p) and S0(κ, p) of piecewise polynomials of degree p are given by

S(κ, p) :=Sp(∆BL(κ, p)),

S0(κ, p) :=Sp
0 (∆BL(κ, p)) = S(κ, p) ∩H1

0 (I).

The following tool from [22] will be used in the next subsection for the construc-
tion of the approximation.

Proposition 5. Let I = (a, b). Then for any u ∈ C∞(I) there exists Ipu ∈ Pp(I)
such that

(33) u (a) = Ipu (a) , u (b) = Ipu (b) ,

(34) ∥u− Ipu∥20,I ≤ (b− a)
2s 1

p2
(p− s)!

(p+ s)!

∥∥∥u(s+1)
∥∥∥2
0,I

, 0 ≤ s ≤ p,

(35)
∥∥(u− Ipu)′

∥∥2
0,I

≤ (b− a)
2s (p− s)!

(p+ s)!

∥∥∥u(s+1)
∥∥∥2
0,I

, 0 ≤ s ≤ p.

The following auxiliary result will be used repeatedly in the proofs that follow.

Lemma 1. For every t ∈ (0, 1], there exists a constant C (depending on t ∈ (0, 1])
such that for every q ∈ N, there holds

(q − tq)!

(q + tq)!
≤ C

[
(1− t)

(1−t)

(1 + t)
(1+t)

]q

q−2tqe2tq.
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Proof. We have (q ± tq)! = Γ(q ± tq + 1), and as q → ∞ [1],

(q − tq)!

(q + tq)!
=
Γ(q − tq + 1)

Γ(q + tq + 1)
≤ C

(q (1− t) + 1)
q−tq+1/2

e−(q−tq+1)

(q (1 + t) + 1)
q+tq+1/2

e−(q+tq+1)

≤C

[
(1− t)

(1−t)

(1 + t)
(1+t)

]q

q−2tqe2tq.

�

Remark 1. In the proofs that follow, we will be using derivatives and norms of frac-
tional order, as well as non-integer factorials. The corresponding error estimates
may be obtained by classical interpolation arguments.

3.2. Error estimates. We begin with the following lemma, which provides an
estimate for the interpolation error.

Lemma 2. Let u be the solution of (1), (2) and let Ip be the approximation operator
of Proposition 5. Then there exists a constant σ > 0, independent of ε1, ε2, such
that

∥u− Ipu∥E,I . e−σp.

Proof. The proof is separated into two cases:
Case 1 : κpε1 ≥ 1/2 (asymptotic case)
In this case the mesh consists of only one element and by Proposition 1, there

holds ∥∥∥u(n)
∥∥∥
0,I

. Kn max
{
n, ε−1

1 , ε−1
2

}n
= Kn max

{
n, ε−1

1

}n
,

since we assumed ε1 < ε2. By Proposition 5, there exists Ipu ∈ Pp(I) such that

∥u− Ipu∥20,I . 1

p2
(p− s)!

(p+ s)!

∥∥∥u(s+1)
∥∥∥2
0,I

, 0 ≤ s ≤ p.

Choose s = λp, with λ ∈ (0, 1) to be chosen shortly. Then

∥u− Ipu∥20,I . 1

p2
(p− s)!

(p+ s)!
K2(λp+1) max

{
λp+ 1, ε−1

1

}2(λp+1)

and since κpε1 ≥ 1/2,

max
{
λp+ 1, ε−1

1

}2(λp+1)
= (λp+ 1)2(λp+1),

provided the constant κ satisfies κ ≤ λ/2 . Lemma 1 gives

∥u− Ipu∥20,I . 1

p2
(p− λp)!

(p+ λp)!
K2(λp+1)(λp+ 1)2(λp+1)

. 1

p2

[
(1− λ)(1−λ)

(1 + λ)(1+λ)

]p
e2λp+1K2(λp+1)(λp+ 1)2

(
λp+ 1

p

)2λp

.eK2

[
(1− λ)(1−λ)

(1 + λ)(1+λ)
(eK)

2λ

]p (
1

p
+ λ

)2λp

.

Since
(

1
p + λ

)2λp

= λ2λp

[(
1 + 1

λp

)λp
]2

≤ e2λ2λp, we further have

∥u− Ipu∥20,I .
[
(1− λ)(1−λ)

(1 + λ)(1+λ)
(eKλ)

2λ

]p
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If we choose λ = (eK)−1 ∈ (0, 1) then we obtain

∥u− Ipu∥20,I .
[
(1− λ)(1−λ)

(1 + λ)(1+λ)

]p
. e−β1p,

where

β1 = |ln q1| , q1 =
(1− λ)(1−λ)

(1 + λ)(1+λ)
< 1.

We note that the choice of λ implies that the constant κ in the definition of the
mesh, satisfies κ < 1

2eK .
Following the same steps as above and using Propositions 1 and 5, we may show∥∥(u− Ipu)′

∥∥2
0,I

. p2e−β1p,

so that combining the two, gives the desired result (note that the p2 term above
may be absorbed into the exponential by adjusting the constants).

Case 2 : κpε2 < 1/2 (pre-asymptotic case)
In this case the mesh is given by

∆BL(κ, p) := {0, κpµ−1
0 , 1− κpµ−1

1 , 1},
and the solution is decomposed based on the relationship between ε1 and ε2. We
will consider the first regime (see Section 2.1.1) and note that the approximation
for the other two regimes (see Sections 2.1.2 and 2.1.3) is analogous (see also [8]).

So we assume ε1 << ε22 << 1 and we have the decomposition (17):

u = uM + ũBL
M + ûBL

M + r1M ,

with each term satisfying the bounds presented in Proposition 2. We will construct
a different approximation for each part, using Proposition 5.

For the smooth part uM , we have that there exists IpuM ∈ Pp(I) such that

∥uM − IpuM∥20,I +
∥∥(uM − IpuM )

′∥∥2
0,I

. (p− s)!

(p+ s)!

∥∥∥u(s+1)
M

∥∥∥2
0,I

, 0 ≤ s ≤ p.

Choose s = λ̄p, with λ̄ ∈ (0, 1) to be chosen shortly. Then, utilizing the estimate
(18) and Lemma 1, we arrive at

∥uM − IpuM∥20,I +
∥∥(uM − IpuM )

′∥∥2
0,I

. (p− s)!

(p+ s)!
K

2(λ̄p+1)
1

(
λ̄p+ 1

)2(λ̄p+1)

.
[
(1− λ̄)(1−λ̄)

(1 + λ̄)(1+λ̄)

]p

e2λ̄p+1K
2(λ̄p+1)
1 (λ̄p+ 1)2

(
λ̄p+ 1

p

)2λ̄p

.p2eK2
1

[
(1− λ̄)(1−λ̄)

(1 + λ̄)(1+λ̄)
(eK1)

2λ̄

]p (
1

p
+ λ̄

)2λ̄p

.p2

[
(1− λ̄)(1−λ̄)

(1 + λ̄)(1+λ̄)

(
eK1λ̄

)2λ̄]p

.

Following the same reasoning as in Case 1 above, i.e. choosing λ̄ = (eK1)
−1 etc.,

we obtain
∥uM − IpuM∥E,I . pe−σp.

For the left boundary layer ũBL
M , we will construct different approximations on

the intervals
Ĩ1 = [0, κpµ−1

0 ] , Ĩ2 = [κpµ−1
0 , 1].
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On Ĩ1, Proposition 5 gives the existence of IpũBL
M ∈ Pp(Ĩ1) such that

∥∥∥(ũBL
M − IpũBL

M

)′∥∥∥2
0,Ĩ1

.
(
κpµ−1

0

)2s (p− s)!

(p+ s)!

∥∥∥(ũBL
M

)(s+1)
∥∥∥2
0,Ĩ1

, 0 ≤ s ≤ p.

Choose s = λ̃p, with λ̃ ∈ (0, 1) arbitrary. Then, with the aid of Lemma 1, we have

∥∥∥(ũBL
M − IpũBL

M

)′∥∥∥2
0,Ĩ1

.
(
κpµ−1

0

)2λ̃p (
p− λ̃p

)
!(

p+ λ̃p
)
!

∥∥∥∥(ũBL
M

)(λ̃p+1)
∥∥∥∥2
0,Ĩ1

.
(
κpµ−1

0

)2λ̃p [ (1− λ̃)(1−λ̃)

(1 + λ̃)(1+λ̃)

]p

p−2λ̃pe2λ̃p+1

∥∥∥∥(ũBL
M

)(λ̃p+1)
∥∥∥∥2
0,Ĩ1

.

By (19),

∥∥∥∥(ũBL
M

)(λ̃p+1)
∥∥∥∥2
0,Ĩ1

=

∫ κpµ−1
0

0

[(
ũBL
M

)(λ̃p+1)
(x)

]2
dx

.
∫ κpµ−1

0

0

K̃2(λ̃p+1)ε
−2(λ̃p+1)
2 e−2dist(x,∂I)/ε2dx

.κpµ−1
0 K̃2(λ̃p+1)ε

−2(λ̃p+1)
2 ,

so that ∥∥∥(ũBL
M − IpũBL

M

)′∥∥∥2
0,Ĩ1

.
(
κpµ−1

0

)2λ̃p [ (1− λ̃)(1−λ̃)

(1 + λ̃)(1+λ̃)

]p

p−2λ̃pe2λ̃p+1κpµ−1
0 K̃2(λ̃p+1)ε

−2(λ̃p+1)
2

.p
(
µ−1
0

)2λ̃p+1
ε
−2(λ̃p+1)
2

[
(1− λ̃)(1−λ̃)

(1 + λ̃)(1+λ̃)

]p (
κeK̃

)2λ̃p

.pε−1
2 (µ0ε2)

−(2λ̃p+1)

[
(1− λ̃)(1−λ̃)

(1 + λ̃)(1+λ̃)

]p

,

by the choice of κ < 1/(eK̃). Since in this regime there holds µ0ε2 = O(1), we get

∥∥∥(ũBL
M − IpũBL

M

)′∥∥∥2
0,Ĩ1

. pε−1
2 e−β2p,

with

β2 = |ln q2| , q2 =
(1− λ̃)(1−λ̃)

(1 + λ̃)(1+λ̃)
< 1.
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On the interval Ĩ2 = [κpµ−1
0 , 1], we approximate ũBL

M by its linear interpolant I1ũBL
M

and we have∥∥∥(ũBL
M − I1ũBL

M

)′∥∥∥2
0,Ĩ2

.
∥∥∥(ũBL

M

)′∥∥∥2
0,Ĩ2

+
∥∥∥(I1ũBL

M

)′∥∥∥2
0,Ĩ2

.
∫ 1

κpµ−1
0

[(
ũBL
M

)′
(x)

]2
dx

.
∫ 1

κpµ−1
0

K̃2ε−2
2 e−2dist(x,∂I)/ε2dx . ε−1

2 e−2κpµ−1
0 /ε2

.ε−1
2 e−2κp,

by (7). Therefore, ∥∥∥(ũBL
M − IpũBL

M

)′∥∥∥
0,I

. ε
−1/2
2 e−σp,

for some σ > 0, independent of ε1, ε2. Repeating the argument for the L2 norm of
the error and using the definition of the energy norm, we get

∥∥(ũBL
M − IpũBL

M

)∥∥
E,I

.ε
1/2
1

∥∥∥(ũBL
M − IpũBL

M

)′∥∥∥
0,I

+
∥∥(ũBL

M − IpũBL
M

)∥∥
0,I

.ε
1/2
1 ε

−1/2
2 e−σp + e−σp

.e−σp,

since ε
1/2
1 ε

−1/2
2 = O(1) due to ε1 < ε2.

For the right boundary layer ûBL
M , we will construct different approximations on

the intervals

Î1 = [0, 1− κpµ−1
1 ] , Î2 = [1− κpµ−1

1 , 1].

The steps are the same as for the left boundary layer. On Î1 we use the linear
interpolant I1ûBL

M for the approximation, getting with the help of (20),

∥∥∥(ûBL
M − I1ûBL

M

)′∥∥∥2
0,Î1

.
∥∥∥(ûBL

M

)′∥∥∥2
0,Î1

+
∥∥∥(I1ûBL

M

)′∥∥∥2
0,Î1

.
∫ 1−κpµ−1

1

0

[(
ûBL
M

)′
(x)

]2
dx

.
∫ 1−κpµ−1

1

0

K̂2

(
ε1
ε2

)−2

e−2dist(x,∂I)ε2/ε1dx

.
(
ε1
ε2

)−1

e−2κp.

On Î2, we have by Proposition 5 that there exists IpûBL
M ∈ Pp(Î2) such that

∥∥∥(ûBL
M − IpûBL

M

)′∥∥∥2
0,Î2

.
(
κpµ−1

1

)2s (p− s)!

(p+ s)!

∥∥∥(ûBL
M

)(s+1)
∥∥∥2
0,Î2

, 0 ≤ s ≤ p.
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Choose s = λ̂p, with λ̂ ∈ (0, 1) arbitrary. Then, with the aid of Lemma 1, we have∥∥∥(ûBL
M − IpûBL

M

)′∥∥∥2
0,Î2

.
(
κpµ−1

1

)2λ̂p (
p− λ̂p

)
!(

p+ λ̂p
)
!

∥∥∥∥(ûBL
M

)(λ̂p+1)
∥∥∥∥2
0,Î2

.
(
κpµ−1

1

)2λ̂p [ (1− λ̂)(1−λ̂)

(1 + λ̂)(1+λ̂)

]p

p−2λ̂pe2λ̂p+1

∥∥∥∥(ûBL
M

)(λ̂p+1)
∥∥∥∥2
0,Î2

.

By (20),∥∥∥∥(ûBL
M

)(λ̂p+1)
∥∥∥∥2
0,Î2

=

∫ 1

1−κpµ−1
1

[(
ûBL
M

)(λ̂p+1)
(x)

]2
dx

.
∫ 1

1−κpµ−1
1

K̂2(λ̂p+1)

(
ε1
ε2

)−2(λ̂p+1)

e−2dist(x,∂I)ε2/ε1dx

.κpµ−1
1 K̂2(λ̂p+1)

(
ε1
ε2

)−2λ̂p−2

,

so that ∥∥∥(ûBL
M − IpûBL

M

)′∥∥∥2
0,Î2

.
(
κpµ−1

1

)2λ̂p+1

[
(1− λ̂)(1−λ̂)

(1 + λ̂)(1+λ̂)

]p

p−2λ̂pe2λ̂p+1K̂2(λ̂p+1)

(
ε1
ε2

)−2λ̂p−2

.p
(
µ−1
1

)2λ̂p+1
(
ε1
ε2

)−2λ̂p−2
[
(1− λ̂)(1−λ̂)

(1 + λ̂)(1+λ̂)

]p (
κeK̂

)2λ̂p

.p

(
ε1
ε2

)−1 (
µ−1
1

ε2
ε1

)2λ̂p+1
[
(1− λ̂)(1−λ̂)

(1 + λ̂)(1+λ̂)

]p

,

by the choice of κ < 1/(eK̂). Since in this regime there holds µ−1
1

ε2
ε1

= O(1), we
get

(36)
∥∥∥(ûBL

M − IpûBL
M

)′∥∥∥2
0,Î2

. p

(
ε1
ε2

)−1

e−β3p,

with

β3 = |ln q3| , q3 =
(1− λ̂)(1−λ̂)

(1 + λ̂)(1+λ̂)
< 1.

For the L2 error, we have in an analogous fashion∥∥ûBL
M − IpûBL

M

∥∥
0,Î2

. e−σp,

so that the above considerations yield∥∥ûBL
M − IpûBL

M

∥∥
E,I

.
(
ε
1/2
1 (ε

1/2
2 /ε

1/2
1 ) + 1

)
e−σp . e−σp,

with σ > 0 a constant independent of ε1, ε2.
We finally consider the remainder, r1M which satisfies (21):∥∥r1M∥∥

E,I
. e−δ/ε2 .
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Since the remainder is already exponentially small, it will not be approximated.
Due to κpε2 < 1/2, we have ∥∥r1M∥∥

E,I
. e−σκp,

with σ > 0 a constant independent of ε1, ε2. Combining all the above we obtain
the desired result. �

We next estimate the error between the finite element solution uFEM and the
interpolant Ipu.

Lemma 3. Let u be the solution of (1)–(2), uFEM ∈ S0(κ, p) be its approximation
based on the Spectral Boundary Layer Mesh, and let Ip be the approximation op-
erator of Proposition 5. Then there exists a constant σ > 0, independent of ε1, ε2,
such that

∥Ipu− uFEM∥E,I . e−σp.

Proof. By coercivity of the bilinear form Bε (eq. (30)), there holds with ξ :=
Ipu− uFEM ,

∥ξ∥2E,I ≤ Bε (ξ, ξ) = −Bε (u− Ipu, ξ) ,
where we also used Galerkin orthogonality. Hence

∥ξ∥2E,I ≤ −ε1
⟨
(u− Ipu)′ , ξ′

⟩
I
− ε2

⟨
b (u− Ipu)′ , ξ

⟩
I
− ⟨c (u− Ipu) , ξ⟩I .

Using integration by parts for the second term above, we obtain

∥ξ∥2E,I ≤ −ε1
⟨
(u− Ipu)′ , ξ′

⟩
I
+ ε2 ⟨b (u− Ipu) , ξ′⟩I + ⟨c̃ (u− Ipu) , ξ⟩I ,

where c̃ = ε2b
′ − c.

The first and last term may be estimated using Cauchy Schwarz:∣∣−ε1
⟨
(u− Ipu)′ , ξ′

⟩
I

∣∣+ ∣∣⟨c̃ (u− Ipu) , ξ⟩I
∣∣ . ε1

∥∥(u− Ipu)′
∥∥
0,I

∥ξ′∥0,I +

+ ∥c̃∥∞,I ∥u− Ipu∥0,I ∥ξ∥0,I . max{1, ∥c̃∥∞,I} ∥u− Ipu∥E,I ∥ξ∥E,I .

For the second term, we will consider the two ranges of p separately: in the asymp-
totic range of p, i.e. κpε1 ≥ 1/2, we have∣∣ε2 ⟨b (u− Ipu) , ξ′⟩I

∣∣ .ε2 ∥b∥∞,I ∥u− Ipu∥0,I ∥ξ
′∥0,I

.ε2ε
−1/2
1 ∥u− Ipu∥E,I ∥ξ∥E,I

.ε
1/2
1 κp ∥u− Ipu∥E,I ∥ξ∥E,I

.e−σp ∥ξ∥E,I .

In the pre-asymptotic range of p, i.e. κpε2 < 1/2, we consider the three intervals
of the Spectral Boundary Layer mesh

[0, κpµ−1
0 ] ∪ [κpµ−1

0 , 1− κpµ−1
1 ] ∪ [1− κpµ−1

1 , 1].

On the first subinterval we have∣∣∣ε2 ⟨b (u− Ipu) , ξ′⟩[0,κpµ−1
0 ]

∣∣∣ .ε2 ∥b∥∞,[0,κpµ−1
0 ]

∣∣∣⟨u− Ipu, ξ′⟩[0,κpµ−1
0 ]

∣∣∣
.ε2 ∥u− Ipu∥0,[0,κpµ−1

0 ] ∥ξ
′∥0,[0,κpµ−1

0 ]

. ε2

κpµ−1
0

∥u− Ipu∥0,[0,κpµ−1
0 ] ∥ξ∥0,[0,κpµ−1

0 ]

.ε2µ0

κp
∥u− Ipu∥0,[0,κpµ−1

0 ] ∥ξ∥0,[0,κpµ−1
0 ] ,
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where we used an inverse inequality (see, e.g. [22, Thm. 3.91]). Thus, (7) and
Lemma 2 give ∣∣∣ε2 ⟨b (u− Ipu) , ξ′⟩[0,κpµ−1

0 ]

∣∣∣ . e−βp ∥ξ∥E,I .

Similarly, on the second subinterval we have∣∣∣ε2 ⟨b (u− Ipu) , ξ′⟩[κpµ−1
0 ,1−κpµ−1

1 ]

∣∣∣
.ε2 ∥b∥∞,[κpµ−1

0 ,1−κpµ−1
1 ]
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.e−βp ∥ξ∥E,I .

Finally, on the third subinterval we have∣∣∣ε2 ⟨b (u− Ipu) , ξ′⟩[1−κpµ−1
1 ,1]

∣∣∣ .ε2 ∥b∥∞,[1−κpµ−1
1 ,1]

∣∣∣⟨u− Ipu, ξ′⟩[1−κpµ−1
1 ,1]
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. ε2
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e−βp ∥ξ∥E,I

.e−βp ∥ξ∥E,I ,

where Poincaré’s inequality was used. Therefore,∣∣ε2 ⟨b (u− Ipu) , ξ′⟩I
∣∣ . e−βp ∥ξ∥E,I

and

∥ξ∥2E,I . e−βp ∥ξ∥E,I

which completes the proof. �

We conclude with the main result of the article.

Theorem 1. Let u be the solution of (1)–(2) and let uFEM ∈ S0(κ, p) be its
approximation based on the Spectral Boundary Layer Mesh. Then there exists a
constant σ > 0, independent of ε1, ε2, such that

∥u− uFEM∥E,I . e−σp.

Proof. We begin with the triangle inequality:

∥u− uFEM∥E,I ≤ ∥u− Ipu∥E,I + ∥Ipu− uFEM∥E,I ,

where Ip is the approximation operator of Proposition 5. The first term is handled
by Lemma 2 and the second by Lemma 3. �

4. Numerical results

In this section we present the results of numerical computations in order to
illustrate the theory, for two examples, using the values

(37) ε1 = 10−9, ε2 = 10−4 ; ε1 = 10−10, ε2 = 10−5 ; ε1 = 10−12, ε2 = 10−12 ,

(hence we cover all three regimes).
We also consider a third example, in which a comparison is made between the

proposed method and others found in the literature. This is meant to show the
advantages of the present approach.
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Example 1: We consider (1), (2) with b(x) = c(x) = f(x) = 1. An exact solution
is available, hence our results are reliable. We take κ = 1 in the definition of
the mesh and we use polynomials of degree p = 1, ..., 11 for the approximation.
Figure 1 shows the percentage relative error measured in the energy norm, versus
the number of degrees of freedom DOF = 3p − 1, in a semi-log scale. The fact
that we see straight lines indicates the exponential convergence of the method,
while the robustness is visible since the method does not deteriorate as the singular
perturbation parameters tend to 0.
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Figure 1. Energy norm convergence for Example 1.

In order to get a ‘clearer’ picture of the performance of the method, we show in
Figures 2–4 the convergence in each regime separately. In regime 1 (ε1 << ε22), we
see from Figure 2 that the method converges exponentially (we get straight lines)
and independently of ε1, ε2 (the lines coincide). In regime 2 (ε1 ≈ ε22), however,
the lines do not coincide, even though we have exponential convergence. This is
due to the fact that the energy norm is not balanced for reaction-diffusion problems
(see, e.g. [18], [19]) and this manifests itself as the method performing better as
ε1, ε2 → 0. The same is true in regime 3 (ε1 >> ε22), as seen in Figure 4, since in
this regime we again have a reaction-diffusion problem.
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Figure 2. Energy norm convergence for Example 1, when ε1 << ε22.
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Figure 3. Energy norm convergence for Example 1, when ε1 ≈ ε22.
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Figure 4. Energy norm convergence for Example 1, when ε1 >> ε22.

Example 2: We now consider (1), (2) with b(x) = ex, c(x) = x, f(x) = 1. An
exact solution is not available, so we use a reference solution obtained with twice
as many DOF. In Figure 5 we show the convergence of the method for the values
of ε1, ε2 given by (37).

Once again we observe robust exponential convergence as DOF is increased.

Example 3: We consider a final example, namely (1), (2) with b(x) = c(x) =
1, f(x) = cos(πx). This example is taken from [3] with a known exact solution, and
our goal is to compare the following methods:

• The hp-FEM on the SBL mesh (proposed method), p = 1, . . . , 4
• The p-FEM on a single element, p = 1, . . . , 7, i.e. we use polynomials of
degree p = 1, . . . , 7 defined on [0, 1] to approximate the solution

• The h-FEM on a Shishkin mesh with p = 1, 2, 3
• The h-FEM on an exponential graded (eXp) mesh from [4], with p = 1, 2, 3
• The hp-FEM on the eXp mesh, p = 1, . . . , 8, i.e. p is increased linearly and
h is decreased (in an exponential fashion, see [4])

We use the values ε1 = 10−6, ε2 = 10−2 (i.e., we are in the first regime) noting that
different choices of these parameters gave qualitatively the same results. Figure
6 shows the convergence of each method using a log-log scale. As expected, the
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Figure 5. Energy norm convergence for Example 2.

p-FEM on a single element does not perform well (for this reasonable range of p),
while the Shishkin and exponential mesh h-FEMs yield almost optimal and optimal,
respectively, algebraic rates of convergence which are independent of ε1, ε2. The
proposed method and the hp-FEM on the eXp mesh, are the only ones converging
at an exponential rate. However, the proposed hp-FEM on the SBLM outperforms
all others, in the sense that it produces a small error at a lower number of degrees
of freedom.
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Figure 6. Energy norm convergence for Example 3.
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