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A DEEP LEARNING GALERKIN METHOD FOR THE

SECOND-ORDER LINEAR ELLIPTIC EQUATIONS

JIAN LI*, WEN ZHANG, AND JING YUE

Abstract. In this paper we propose a Deep Learning Galerkin Method (DGM) based on the
deep neural network learning algorithm to approximate the general second-order linear elliptic
problem. This method is a combination of Galerkin Method and machine learning. The DGM

uses the deep neural network instead of the linear combination of basis functions. Our algorithm
is meshfree and we train the neural network by randomly sampling the space points and using the
gradient descent algorithm to satisfy the differential operators and boundary conditions. Moreover,
the approximate ability of a neural networks’ solution to the exact solution is proved by the

convergence of the loss function and the convergence of the neural network to the exact solution in
L2 norm under certain conditions. Finally, some numerical experiments reflect the approximation
ability of the neural networks intuitively.
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1. Introduction

Mathematical models in many fields can be described by partial differential equa-
tions (PDEs). As early as the establishment of the calculus theory, PDEs were
used to describe various natural phenomena and were applied to various scientific
or engineering technologies. The high-dimensional partial differential equations
are applied to physics, engineering, aerospace and other aspects. The well-known
examples include the Schrödinger equation in quantum many-body problem, the
nonlinear Black-Scholes equation for pricing financial derivatives, the Hamilton-
Jacobi-Bellman equation in dynamic programming and so on. Unfortunately, the
solutions of most PDEs cannot be expressed in the form of analytical solutions,
so their numerical solutions are particularly important. Though many numerical
methods have been developed so far for solving PDEs, such as finite difference
method, finite element method and finite volume method, these methods still have
certain limitations. As for the higher dimensional problems, the computational
cost of the surge in grid points goes up exponentially with the dimensionality. As
a result, solving numerical solutions has been a longstanding challenge.

With the explosive growth of available data and computing resources, the deep
neural network model has shown remarkable success in artificial intelligence[1, 2, 3,
4, 5]. Recently, [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17] have proposed that it can use
the neural networks to solve PDEs. The deep neural networks with many layers
seem to do a surprisingly good job in modeling complicated datasets. Besides,
many effective algorithms are proposed to solve some high-dimensional PDEs in
[18, 27, 28, 30, 31, 33, 34, 35, 36, 37]. In these papers, most of them only give
numerical computations and illustrate the validity of numerical solutions through
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various pictures. But there are no strict proofs about the existence and uniqueness
of the exact solutions as well as the convergence of the error between the numerical
solutions and the exact solutions. Here, based on the framework of [6], we directly
apply the DGM for solving the second-order PDEs without using Monte Carlo
Method. This method is the merger of the Galerkin Method and machine learning,
which is different from the traditional Galerkin Method. The DGM uses the deep
neural network instead of the linear combination of basis functions. We train the
neural network by randomly sampling the space points and using the gradient
descent algorithm to satisfy the differential operators and boundary conditions.
We don’t need to form a grid in this process. This is also an important reason why
the DGM can solve the high-dimensional PDEs. Obviously, the method presented
is much simpler but more effective. Moreover, we obtain the convergence of the
loss function and the neural network, respectively. Finally, the performance of the
method is demonstrated by some numerical experiments.

The rest of paper is organized as follows. In the next section, we will introduce a
method that solves high dimensional PDEs with meshfree deep learning algorithm.
In section 3, the theorem to illustrate the convergence of the loss function is proved.
We also give the proof of another theorem to guarantee the convergence of neural
network’s solution in section 4. Finally, a series of numerical experiments are given
in section 5.

2. Methodology

Let Ω ⊂ Rd, (d = 2, 3) be a bounded set with a sufficiently smooth boundary
∂Ω. We consider a class of the second-order linear elliptic equations in combination
with Dirichlet boundary conditions:

αu(x)−∆u(x) = f(x), in Ω,(1)

u(x) = g(x), on ∂Ω,(2)

where α > 0 is a positive constant.
In the following, recall the classical Sobolev spaces:

Hk(Ω) =
{
ν|ν ∈ L2(Ω), Dk

w(ν) ∈ L2(Ω),∀α : |α| ≤ k
}
,

Hk
0 (Ω) =

{
ν ∈ Hk(Ω) : ν|∂Ω = 0

}
.

Especially, L2(Ω) =
{
ν(x)|

( ∫
Ω
|ν(x)|2dx

) 1
2

<∞
}
is sometimes defined by H0(Ω).

Here, Dk
w(ν) is the generalized k-order derivative of ν and its classical norm is

equipped with the norm ∥ν∥k.
For simplicity of notations, let us denote

G[u](x) = αu(x)−∆u(x)− f(x).

By the Lax-Milgram theorem, the second-order linear elliptic problem (1)-(2) has
a unique solution

u ∈ H2(Ω) such that ∥u∥2 ≤ C(∥f∥0 + ∥g∥3/2,∂Ω),(3)

where H3/2(∂Ω) is equipped with the trace norm

∥ϕ∥3/2,∂Ω = inf
{
∥u∥2

∣∣u ∈ H2(Ω) and u
∣∣
∂Ω

= ϕ
}
.
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In this section, we apply the multilayer feed forward networks, which consists
of an input layer, one or more hidden layers and one output layer, to approximate
solution of the equations (1)-(2). The approximation capabilities of neural net-
work architectures have recently been investigated by many authors. Especially, in
[28], they have ascertained that the standard multilayer feedforward networks with
activation function ψ can approximate any continuous function well on arbitrary
compact subsets X of Ω, whenever activation function ψ is continuous, bounded
and nonconstant. For convenience, we will specifically contrive our results only for
the instance where there is only one hidden layer, each hidden unit has the same
activation function ψi and one output unit. The output unit without threshold and
activation function, it is only the results of the hidden layer weighted summation.
The simplified diagram of this neural network is shown in Figure 1.
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..

Input 3

..

Input 4

.......
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layer1
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Input
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Figure 1. The neural networks with one hidden layer and one
output unit.

Then the set of all functions carried out by such a network with n hidden units
is

Cn(ψ) =

ζ(x) : Rm → R
∣∣ζ(x) = n∑

i=1

βiψi(
m∑
j=1

αj,ixj + γi)

 .(4)

As for Cn(ψ), we make the following notes:

• Cn: the class of neural networks consisting of a single hidden layer with
n hidden units and m random points xj , j = 1, 2, · · · ,m and one output
unit;

• ψi: the activation function of sigmoid type, of each hidden unit;
• γi: the threshold of the ith hidden unit;
• αj,i: the connection weight of the ith hidden unit and the jth input unit;
• βi: the connection weight of the ith hidden unit and the output unit.

Denote θ = (β1, · · · , βn, γ1, · · · , γn, α1,1, · · · , αm,n) ∈ R(2+m)n are the elements
of the parameter space. We assume that U(x; θ) is the neural network solution to
equations (1)-(2). Then the loss function of deep neural network is defined by

J(U) = ∥G[U ](x; θ)∥20,Ω,ν1
+ ∥U(x; θ)− g(x)∥20,∂Ω,ν2

.
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For the loss function, we make the following points:

• ∥f(y)∥20,Y,ν =
∫
Y |f(y)|2ν(y)dy, where ν is a positive probability density on

y ∈ Y;
• θ are the parameters of the neural network, ν1 and ν2 are the positive
probability densities of Ω and ∂Ω, respectively;

• J(U) measures how well the approximation solution satisfies differential
operators and boundary conditions.

The whole deep learning process is to find appropriate parameters θ such that
J(U) is as close to 0 as possible. If J(U) = 0, then U(x) is the solution to equations
(1)-(2), U(x) naturally meets differential operators and boundary conditions. If we
directly integration on Ω to minimize the loss function to find θ, the computation
becomes larger and larger as the dimension d increases. To avoid above situation,
we apply the DGM instead of the traditional numerical methods without forming
mesh. The DGM is provided as follows:

Step 1. Generate sample points xn ∈ Ω and zn ∈ ∂Ω based on respective
probability densities ν1 and ν2 randomly.

Step 2. At the random points τn = {xn, zn}, we compute the square error
G(θn; τn) by

G(θn; τn) =
(
G[U ](xn; θn)

)2

+
(
U(zn; θn)− g(zn)

)2

.

Step 3. Apply the stochastic gradient descent step at τn by

θn+1 = θn − ηn∇θG(θn, τn).

Here, the learning rate ηn decreases as n increases.
Step 4. Repeat step 3 until G(θn; τn) meets the convergence condition

lim
n→∞

∇θG(θn, τn) = 0,

where E
[
∇θG(θn, τn)|θn

]
= ∇θJ(θn, τn), i.e. ∇θG(θn, τn)|θn is the unbiased esti-

mation of ∇θJ(θn, τn).
In fact,

E
[
∇θG(θn, τn)|θn

]
=E

[
∇θ

(
(G[U ](xn; θn)

)2
+
(
U(zn; θn)− g(zn)

)2]
=∇θ

[ ∫
Ω

(
G[U ](xn; θn)

)2
ν1(xn)dxn +

∫
∂Ω

(
U(zn; θn)− g(zn)

)2
ν2(zn)dzn

]
=∇θ

[ ∫
Ω

∣∣∣G[U ](xn; θn)
∣∣∣2ν1(xn)dxn +

∫
∂Ω

∣∣∣U(zn; θn)− g(zn)
∣∣∣2ν2(zn)dzn]

=∇θ

[∥∥G[U ](xn; θn)
∥∥2
0,Ω,ν1

+
∥∥(U(zn; θn)− g(zn)

∥∥2
0,∂Ω,ν2

]
=∇θJ(θn, τn).

Thus, we can use ∇θG(θn, τn) instead of ∇θJ(θn, τn).
In order to describe the DGM more vividly, we use following photograph in

Figure 2 as follows.
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Figure 2. Flowchart of the DGM.

3. Convergence of the loss function

In this section, we propose a theorem to ensure the existence of multilayer feed
forward networks U which makes the loss function J(U) arbitrarily small. First,
we give the following hypotheses:

H1 . Let Ω be a bounded, compact and open subset of Rd and let parameters
ν1 and ν2 be the measures of the Ω and ∂Ω, respectively.

H2 . Let Cn(ψ) be the generalization of (4), in which ψ is a common function of
hidden units in C2(Ω), bounded and non-constant. Moreover C(ψ) = {Cn(ψ)}∞n=1

is the set implemented by Cn(ψ), where n is an arbitrarily large number of multiple
hidden layer units.

H3 . Let the terms αu(x) and ∆u(x) be locally Lipschitz in (u,∇u) with
Lipschitz constant which has at most polynomial growth on u, uniformly with
respect to x. This means that

|∆U −∆u| ≤
(
|∇U |q1/2 + |∇u|q2/2

)
|∇U −∇u|, 0 ≤ qi ≤ ∞, i = 1, 2.
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|∆U −∆u|2 ≤
(
|∇U |q1/2 + |∇u|q2/2

)2

|∇U −∇u|2

≤
(
|∇U |q1 + |∇u|q2 + 2|∇U |q1/2 · |∇u|q2/2

)
|∇U −∇u|2

≤ 2
(
|∇U |q1 + |∇u|q2

)
|∇U −∇u|2

Theorem 1. Under the assumptions of Hypotheses (H1 )-(H3 ), there exists a
positive constant C > 0 and a function U ∈ C(ψ) such that

J(U) ≤ Cϵ,

for ∀ϵ > 0, where C may depend on α, ν1, ν2, f and Ω.
Proof. Let u be the solution to (1)-(2), then G[u](x) = 0 naturally. Thus, we

have

J(U) = ∥G[U ](x; θ)∥20,Ω,ν1
+ ∥U(x; θ)− g(x)∥20,∂Ω,ν2

= ∥G[U ](x; θ)− G[u](x)∥20,Ω,ν1
+ ∥U(x; θ)− g(x)∥20,∂Ω,ν2

≤
∫
Ω

|∆U −∆u|2dν1(x) + α

∫
Ω

|U − u|2dν1(x) +
∫
∂Ω

|U − u|2dν2(x)(5)

since
∥G[U ](x; θ)− G[u](x)∥20,Ω,ν1

=

∫
Ω

[
(∆u−∆U) + α(U − u)

]2
dν1(x)

=

∫
Ω

[
− (∆U −∆u) + α(U − u)

]2
dν1(x)

≤
∫
Ω

(
− (∆U −∆u)

)2

dν1(x) +

∫
Ω

(
α(U − u)

)2

dν1(x).

From [28], we can get that there exists a function U ∈ C(ψ), which is uniformly
2-dense on compact sets of H2(Ω). The meaning is that for u ∈ H2(Ω) and ϵ > 0,
there exists U ∈ C(ψ) such that

(6) max
|α|≤2

sup
x∈Ω̄

|∂(α)x u(x)− ∂(α)x U(x; θ)| < ϵ .

Using Hypothesis (H3 ) and applying the Hölder inequality with indices p and q
satisfying 1

p + 1
q = 1, we have∫

Ω

|∆U −∆u|2dν1(x)

≤
∫
Ω

(
|∇U |q1 + |∇u|q2

)
|∇U −∇u|2dν1(x)

≤
[ ∫

Ω

(|∇U |q1 + |∇u|q2)pdν1(x)
]1/p(∫

Ω

|∇U −∇u|2qdν1(x)v
)1/q

≤
[ ∫

Ω

(|∇(U − u)|q1 + |∇u|q1∨q2)pdν1(x)
]1/p(∫

Ω

|∇U −∇u|2qdν1(x)
)1/q

≤C(ϵq1 + sup |∇u|q1∨q2)ϵ2.(7)

The last step holds by (6).
Putting together (5)-(7), we obtain

J(U) = ∥G[U ](x; θ)∥20,Ω,ν1
+ ∥U(x; θ)− g(x)∥20,∂Ω,ν2

≤ Cϵ2,
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where C < ∞ may change from line to line and for two numbers q1 ∨ q2 =
max{q1, q2}. �

4. Convergence of the neural network to the unique solution

Section 4 contains the convergence results of the neural networks Un to the
solution u, as n→ ∞, of the equations (8)-(9),

αu−∆u(x) = f(x), in Ω,(8)

u(x) = 0, on ∂Ω.(9)

At present, the loss function is

J(U) = ∥G[U ]∥20,Ω + ∥U∥20,∂Ω.

Recollect that the norms above are L2 norms in the space Ω and ∂Ω, respectively.
Theorem 1 implies that

J(Un) → 0 as n→ ∞.

Each neural network Un satisfies a PDE with a source term hn(x),

G[Un](x) = hn(x), x in Ω,(10)

Un(x) = gn(x), x on ∂Ω,(11)

for some hn and gn such that

∥hn∥20,Ω + ∥gn∥20,∂Ω → 0 as n→ ∞.(12)

For convenience, we only pay attention to the problem (8)-(9) since the corre-
sponding problem with inhomogeneous boundary conditions can be easily settled
by some classical homogeneous methods. For every n ∈ N, Un ∈ L2(Ω), for conve-
nience, we still use the same notation for the subsequence of Un. Next we provide
another important theorem.

Theorem 2. Under the Hypotheses (H1 )-(H3 ) and (12). There exists a unique
bounded solution u ∈ H2

0 (Ω) to (8)-(9). Moreover, when the sequence Un is uni-
formly bounded and equicontinuous, the neural networks Un converges strongly to
u in L2(Ω). Furthermore, Un uniformly converges to u in Ω.

Proof. From Theorem 2.1 of [19] combined with Theorems 6.3-6.5 of Chapter
V.6 in [20], we can obtain the existence, regularity and uniqueness for (8)-(9). Also,
the boundedness established from Theorem 2.1 in [19] and V.2 in [20]. Consider
equations (10)-(11) under the situation gn(x) = 0 and the solution to this problem

denoted by Ûn(x). We need to state that Ûn(x) is uniformly bounded and satisfies
the following equations:

G[Ûn](x) = hn(x), x in Ω,(13)

Ûn(x) = 0, x on ∂Ω.(14)

Multiply both sides of the equation (13) by an arbitrary function v ∈ C(ψ), then
integrate on Ω to obtain the following equation

α(Ûn, v)− (∇Ûn,∇v) = (hn, v).(15)

In particular, let v = Ûn in (15)



434 J. LI, W. ZHANG, AND J. YUE

α∥Ûn∥20,Ω + ∥∇Ûn∥20,Ω ≤ ∥hn∥0,Ω∥Ûn∥20,Ω,

which implies together with the Poincaré inequality

∥Ûn∥1,Ω ≤ C∥hn∥0,Ω.

Obviously, sequence Ûn(x) is uniformly bounded, in addition, there exists a

weakly subsequence Ûn (for simplicity, we still use the same notation for the sub-
sequence) such that

Ûn ⇀ u in C, n→ ∞.

Due to the compactness of the embedding H1
0 (Ω) ↩→ L2(Ω), we can obtain

Ûn → u in L2(Ω), n→ ∞.

This implies that Ûn converges strongly to u in L2(Ω) and lim
n→∞

∥Ûn − u∥0,Ω = 0.

Up to subsequences, Ûn converges almost everywhere to u in Ω. From the Theorem
3.3 of [23], we gain that

∇Ûn → ∇u almost everywhere in Ω.

From mow on, we have been ready for passing to the limit as n→ ∞ in the weak
formulation, therefore the weak formulation of the equation (10) with gn = 0 reads
as follows,

α(Ûn, ϕ)− (∇Ûn, ϕ)− (hn, ϕ) = 0, for ∀ ϕ ∈ C∞
0 (Ω).

Using the above results of the convergence, we then obtain the weak formulation
of the equations (8)-(9):

α(u, ϕ)− (∇u, ϕ)− (f, ϕ) = 0, for ∀ ϕ ∈ C∞
0 (Ω).

Now, lim
n→∞

∥Ûn − u∥0,Ω = 0 has been proved. We still need to state lim
n→∞

∥Un −

Ûn∥0,Ω = 0. Let us have a recollection. Here, Un fulfilling equations (10)-(11) is the

neural networks approximation solution, besides Ûn makes (11) hold with gn = 0.
Furthermore, sequence Un is uniformly bounded in L2(Ω). Then, we can conclude
that the subsequence of Un converges at least weakly in L2(Ω). By formulation
(12), we find that gn converges strongly in L2(Ω). What’s more, Un is defined by
gn on the boundary ∂Ω, so Un will converge to 0 at least along a subsequence on
the boundary. Then in (10)-(11), Un will be same as Ûn almost everywhere when
gn = 0.

Set Fn = |Un− Ûn|2. Thus, function sequence {Fn} is uniformly bounded in the

L2(Ω) because of the boundeness of Un and Ûn above. {Fn} is integrable on area Ω̄
naturally. Moreover, {Fn} converges to 0 almost everywhere. Furthermore, using
the definition of Fn together with the uniform boundedness as well as equicontinuity
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of Un(x) and Ûn(x), for ∀ϵ0 > 0, ∃δ > 0, |x− y| < δ, x, y ∈ Ω̄ and n ≥ 1, there is∣∣∣Fn(x)− Fn(y)
∣∣∣

=
∣∣∣|Un(x)− Ûn(x)|2 − |Un(y)− Ûn(y)|2

∣∣∣
=
∣∣∣|Un(x)− Ûn(x)|+ |Un(y)− Ûn(y)|

∣∣∣× ∣∣∣|Un(x)− Ûn(x)| − |Un(y)− Ûn(y)|
∣∣∣

≤
∣∣∣|Un(x)− Ûn(x)|+ |Un(y)− Ûn(y)|

∣∣∣× ∣∣∣|(Un(x)− Un(y)) + (Ûn(y)− Ûn(x))|
∣∣∣

≤
∣∣∣|Un(x)− Ûn(x)|+ |Un(y)− Ûn(y)|

∣∣∣× ∣∣∣|Un(x)− Un(y)|+ |Ûn(x)− Ûn(y)|
∣∣∣

≤Cϵ0,

which implies that function sequence {Fn(x)} is equicontinuous. Thus, using Vi-
tali’s theorem, we infer that

lim
n→∞

∥Un − Ûn∥20,Ω = 0,

which shows that Un − Ûn converges to 0 strongly in L2(Ω). Using a triangle
inequality, we can gain the following inequality

lim
n→∞

∥Un − u∥0,Ω

= lim
n→∞

∥Un − Ûn + Ûn − u∥0,Ω

≤ lim
n→∞

∥Un − Ûn∥0,Ω + lim
n→∞

∥Ûn − u∥0,Ω
=0.

This result shows that Un converges strongly to u in L2(Ω). Furthermore, based
on the equicontinuity and uniform boundedness of Un, by Arzelà-Ascoli theorem,
we obtain that Un uniformly converges to u in Ω. �

5. Numerical results

In this section, we present a series of numerical results to illustrate the theo-
retical analysis of the algorithm proposed in this paper. We test the DGM for
the second order linear elliptic problem (1)-(2) in the domain Ω = (0, 1) × (0, 1)
with manufactured problem u(x) = sin(πx1) sin(πx2) and α = 2. Then, f(x) =
2 sin(πx1)sin(πx2) + 2π2 sin(πx1)sin(πx2) can be determined by (1).

In order to observe the influence of the random weight initialization on the loss
function, we train the ten neural networks on dataset 4000. These neural networks
have one hidden layer and random even seeds from 32 to 50. Also we test the
same case with homogeneous boundary (i.e. g(x) = 0) under the same condition.
The values of the loss function J(U) can be found in Tables 1-2. Moreover, an
interesting thing can be found that the loss function does not decrease as the seeds
increase.

For convenience, we denote the discrete L1-norm and L2-norm between Ui and
ui by

errorL1 =
1

m

m∑
i=1

|Ui − ui|,

errorL2 =
1

m

m∑
i=1

(Ui − ui)
2,
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Table 1. The neural network with different seeds: g(x) ̸= 0.

hidden layer 1 1 1 1 1
random seed 32 34 36 38 40

J(U) 7.9× 10−5 6.7× 10−5 2.6× 10−5 3.0× 10−5 7.6× 10−5

random seed 42 44 46 48 50
J(U) 1.9× 10−5 8.4× 10−5 4.8× 10−5 8.1× 10−5 5.0× 10−5

Table 2. The neural network with different seeds: g(x) = 0.

hidden layer 1 1 1 1 1
random seed 32 34 36 38 40

J(U) 4.3× 10−5 8.3× 10−5 9.5× 10−5 6.0× 10−5 3.7× 10−5

random seed 42 44 46 48 50
J(U) 3.5× 10−5 2.3× 10−5 3.8× 10−5 7.7× 10−5 4.2× 10−5

Table 3. Numerical results of neural networks.

Random seed 42 42 42 42 42

Dataset 1000 2000 4000 8000 16000

Hidden layers 1 1 1 1 1
errorL2 3.53× 10−13 4.48× 10−14 5.77× 10−13 5.95× 10−14 9.42× 10−14

errorL1 4.03× 10−7 1.46× 10−7 6.60× 10−7 1.88× 10−7 2.41× 10−7

iterations 20000 20000 20000 14266 20000
CPU(s) 84.30 137.07 282.38 494.72 1004.25

Dataset 1000 2000 4000 8000 16000

Hidden layers 2 2 2 2 2
errorL2 5.71× 10−12 2.06× 10−12 2.21× 10−12 8.48× 10−12 1.16× 10−12

errorL1 1.42× 10−6 9.10× 10−7 9.57× 10−7 1.74× 10−6 6.61× 10−7

iterations 19574 19574 19574 19574 19574
CPU (s) 243.37 175.83 477.48 656.65 1461.66

respectively. Here, errorL1 is the mean absolute error (MAE) and the errorL2 is
the mean square error (MSE) in the deep learning.

Based on this results, we implement the neural networks with one or two hidden
layers and the random seeds of 42 or 44 to solve equations (1)-(2) with homogeneous
boundary. The networks have 16 units on each hidden layer and are trained on five
datasets with 1000, 2000, 4000, 8000 and 16000 interior and boundary sample
points, respectively.

Observed from Tables 3-4 and Figures 3-10, we can see that the neural networks
have obtained good results and can approximate the exact solution very well except
for a larger error on the boundaries and the form of the L1 norm with 1 hidden layer,
see Figures 5 and 9. The performance shows that J(U) → 0 does not necessarily
imply that U → u. On the other hand, the approximation ability of the deep neural
networks is obviously better than that of the neural networks with one hidden layer.

Numerical results show that the deep learning is a valuable approach for solv-
ing a class of second-order linear elliptic equations. The PDEs’ solution can be
approximated by a deep neural network which is trained to satisfy the differential
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(a) Dataset = 1000.(b) Dataset = 2000. (c) Dataset = 4000.

(d) Dataset = 8000. (e) Dataset = 16000.

Figure 3. errorL2 with one hidden layer.

(a) Dataset = 1000.(b) Dataset = 2000. (c) Dataset = 4000.

(d) Dataset = 8000. (e) Dataset = 16000.

Figure 4. errorL2 with two hidden layers.

(a) Dataset = 1000.(b) Dataset = 2000. (c) Dataset = 4000.

(d) Dataset = 8000. (e) Dataset = 16000.

Figure 5. errorL1 with one hidden layer.

operators and boundary conditions. Moreover, the DGM converges to the solution
of the PDEs as the number of hidden units goes to infinity.
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(a) Dataset = 1000.(b) Dataset = 2000. (c) Dataset = 4000.

(d) Dataset = 8000. (e) Dataset = 16000.

Figure 6. errorL1 with two hidden layers.

Table 4. Numerical results of neural networks: g(x) = 0.

seed 44 44 44 44 44

Batch size 1000 2000 4000 8000 16000

Hidden layers 1 1 1 1 1
errorL2 7.80× 10−12 3.06× 10−12 3.18× 10−14 1.89× 10−13 7.71× 10−13

errorL1 1.98× 10−6 1.47× 10−6 1.35× 10−7 3.28× 10−7 6.86× 10−7

iterations 16548 20000 20000 20000 20000
elapsed time (s)(s) 95.84 134.19 262.74 358.21 1015.88

Batch size 1000 2000 4000 8000 16000

Hidden layers 2 2 2 2 2
errorL2 1.74× 10−12 3.77× 10−12 1.26× 10−11 2.36× 10−11 7.65× 10−12

errorL1 7.46× 10−7 1.14× 10−6 2.07× 10−6 2.83× 10−6 1.69× 10−6

iterations 13953 10314 10386 10940 11002
elapsed time (s) 209.23 297.79 629.17 953.70 1374.60

(a) 1000. (b) 2000. (c) 4000.

(d) 8000. (e) 16000.

Figure 7. errorL2 with one hidden layer: g(x) = 0.

Furthermore, we also believe that it will be useful for solving the high-dimensional
PDEs, since the DGM is meshfree, which is key because meshes become infeasible
in higher dimensions, instead of forming a mesh.
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(a) 1000. (b) 2000. (c) 4000.

(d) 8000. (e) 16000.

Figure 8. errorL2 with two hidden layers: g(x) = 0.

(a) 1000. (b) 2000. (c) 4000.

(d) 8000. (e) 16000.

Figure 9. errorL1 with one hidden layer: g(x) = 0.

(a) 1000. (b) 2000. (c) 4000.

(d) 8000. (e) 16000.

Figure 10. errorL1 with two hidden layers: g(x) = 0.
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