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A POSITIVITY-PRESERVING AND CONVERGENT

NUMERICAL SCHEME FOR THE BINARY

FLUID-SURFACTANT SYSTEM

YUZHE QIN, CHENG WANG∗, AND ZHENGRU ZHANG

Abstract. In this paper, we develop a first order (in time) numerical scheme for the binary fluid
surfactant phase field model. The free energy contains a double-well potential, a nonlinear coupling

entropy and a Flory-Huggins potential. The resulting coupled system consists of two Cahn-Hilliard
type equations. This system is solved numerically by finite difference spatial approximation, in
combination with convex splitting temporal discretization. We prove the proposed scheme is
unique solvable, positivity-preserving and unconditionally energy stable. In addition, an optimal

rate convergence analysis is provided for the proposed numerical scheme, which will be the first
such result for the binary fluid-surfactant system. Newton iteration is used to solve the discrete
system. Some numerical experiments are performed to validate the accuracy and energy stability
of the proposed scheme.

Key words. Binary fluid-surfactant system, convex splitting, positivity-preserving, unconditional
energy stability, Newton iteration

1. Introduction

Two important characteristics of surfactants in binary fluid is that they can
move towards the fluid interface due to their amphiphilic structure and they can
reduce the interfacial tension and system energy [37]. Therefore, surfactants have
various applications in many fields such as biotechnology and industry because of
their features [2, 35]. In the past two decades, there have been a number of excel-
lent studies related to models with surfactants [17, 27, 29, 53, 61, 63]. Often, there
are two different ideas to model the interfacial dynamics with surfactants. One
is the sharp interface model which has a long history dated back to one century
ago [19, 48], and this kind of model has been adopted in [24, 26]. In fact, sharp
interface models have made great progresses in explaining kinetics of diffusional
phase transformations and simulating multiphase systems with surfactants at one
time. However, there are some difficulties stemming from the interface interactions
with various complex processes during the course of phase transformations [35].
The other approach method is the known phase-field method [16, 28, 18, 54]. This
approach makes use of an appropriate free energy functional to character the in-
terfacial dynamics, and it has been adopted to investigate the interfacial dynamics
with surfactants in [17, 29, 49, 51, 52]. In particular, phase-field method was used
to in [29] to study the phase transition behaviors of the monolayer microemulsion
system, formed by surfactant molecules. Generally, the free energy of binary fluid-
surfactant model consists of the following two parts: the first part is the classical
Ginzburg-Landau double well potential, which is used to describe a binary mixture,
and the other part, called nonlinear coupling entropy term, has a historical evolu-
tion process, and is used to account for the influence of the surfactant in boosting
the formation of interfaces. Laradji et al. in the pioneering work [29] introduced
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two phase field variables to represent the local densities of the fluids, as well as the
local concentration of the surfactant, respectively. As mentioned in [27], an extra
diffusion term was added to prevent the model from becoming unbounded and a
Ginzburg-Landau type potential for the concentration variable to allow the coex-
istence of the two bulk states. In order to restrict the range of the concentration
variable, the authors added the logarithmic Flory-Huggins potential in [53], based
on the nonlinear coupling entropy similar to [27, 29]. In consideration of penalizing
the concentration to accumulate along the fluid interface, the authors changed the
nonlinear coupled entropy slightly in [17]. In addition, a further modified model was
considered in [50] by adding the Flory-Huggins potential for the local concentration
variable as well, in comparison with the model in [17].

In this paper, we focus on constructing unconditionally energy stable numeri-
cal schemes for the binary fluid-surfactant model in [50]. There have been some
works about numerical approximation to multi-phase models [7, 25]. Owing to the
stiff nonlinear terms originated from the thin interface thickness parameter, there
are a lot of subtle difficulties to construct numerical schemes with unconditional
energy stability, especially for the second order accurate (in time) scheme. Lots
of efforts have been made to solve these problems [7, 59, 66], etc. Since a simple
fully implicit or explicit type discretization brings extremely severe time step size
constraint on the interfacial width [1, 15, 47], a semi-implicit method was adopted
in [50]. However, the author mentioned that it suffers from a small CFL conditional
number. Recently, Gu et al. in [20] constructed an energy stable finite difference
scheme for the binary fluid-surfactant system, which is based on the convex split-
ting approach [13, 43, 56, 58]: implicit treatment for the convex part and explicit
treatment for the concave part. Meanwhile, it is observed that, the convexity anal-
ysis for one mixed term has not been theoretically justified in [20], due to the multi
variables involved in the system. In addition, the positivity-preserving property
has not been theoretically proved, so that the well-defined nature of the numerical
scheme is not available. More recently, Yang et al. constructed the linear and stable
schemes for the binary fluid-surfactant system with constant mobility in [63], using
the invariant energy quadratization (IEQ) technique [6, 21, 23, 60, 62, 64, 65, 68].
In this approach, the free energy is transformed into an equivalent quadratic form
by introducing appropriate auxiliary variables, and all nonlinear terms in this sys-
tem are treated semi-explicitly [63]. The energy stability has been derived for the
IEQ method, while such a stability has to be based on an alternate energy func-
tional (involved with auxiliary variables), not for the original energy functional, as
always in the IEQ approach. Moreover, the positivity-preserving property is not
available to the IEQ-based numerical method, because of the explicit treatment for
the nonlinear logarithmic term. In addition to the IEQ idea, Zhu et al. proposed
the scalar auxiliary variable (SAV) method to the surfactant model in [69], follow-
ing similar ideas in [46, 45]. The SAV approach introduces a constant-coefficient
linear equation to solve at each time step, and the energy stability could be de-
rived for an alternate energy involved with a scalar variable. The convergence and
error estimate for the SAV approach, for the typical Cahn-Hilliard equation with
double-well potential, has also been established in recent works [33, 44]. However,
an application of the SAV approach to the surfactant model could not overcome
the difficulty to theoretically justify the positivity-preserving property, due to the
explicit treatment of the logarithmic term. In turn, the Flory-Huggins energy po-
tential has to be re-defined and extended around and beyond the singular phase
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variable values. Also see a more recent work [39] of SAV-based numerical algorithm
for the surfactant model.

Among the existing numerical methods, different approaches have different ad-
vantages. Here, we pay attention to the the convex splitting approach, originated
from the pioneering work of Eyre [13]. The idea is that the energy admits a split-
ting into purely convex and concave parts, that is, E = Ec −Ee, where Ec and Ee

are both convex. Such an idea has had wide applications in various gradient flow
models, including either first or second order accurate schemes. See the related
works for the phase field crystal (PFC) and the modified PFC (MPFC) equation
[57, 55], the epitaxial thin film growth models [4, 14], and the Cahn-Hilliard flow
coupled with fluid motion [3, 8], etc.

Meanwhile, there have been extensive works of linear numerical schemes for the
Cahn-Hilliard and epitaxial thin film equations [30, 31, 32], in which stabilized
implicit-explicit approach has been applied, and energy stability has been theo-
retically provided. In the case of a Flory-Huggins energy potential with singular
logarithmic terms, the positivity-preserving property has been recently established
in [12] for the corresponding Allen-Cahn equation, based on the maximum principle
arguments. The advantage of such a linear scheme (corresponding to an explicit
treatment of the nonlinear logarithmic term) is associated with the computational
efficiency, so that a nonlinear Newton iteration is not required. On the other
hand, this approach works very well for the positivity preserving analysis for the
Allen-Cahn gradient flow, due to the availability of maximum principle, while its
direct extension to the Cahn-Hilliard gradient flow would face a serious theoreti-
cal difficulty. In this paper, we design a uniquely solvable, positivity-preserving,
unconditionally energy stable, and first order in time convergent scheme for the
binary fluid-surfactant system, based on the convex-splitting idea, combined with
the centered difference spatial approximation. For the theoretical analysis of the
positivity-preserving property, we make use of the singular nature of the logarith-
mic function, and prove that such a singular nature prevents the numerical solution
approaches the singular limit values, following similar ideas of in the analysis for the
Cahn-Hilliard model [5, 9, 10, 11], as well as the one for the Poisson-Nernst-Planck
system [34, 38], droplet liquid film model [67], etc. In addition, an optimal rate
convergence analysis is provided, which is the first such work for the surfactant
model. The key difficulty in such an analysis is associated with the logarithmic
potential term and the coupled term. In this article, we can make full use of the
convexity of energy associated with the nonlinear terms to directly deal with all
logarithmic terms and coupled terms, because the convexity of energy indicates the
corresponding nonlinear error inner product is always non-negative.

The rest of the paper is organized as follows. In Section 2, we give a brief
introduction to the binary fluid-surfactant phase field model and state its energy
law. In Section 3, the numerical scheme is proposed and analyzed, and we prove the
unique solvability, positivity-preserving property, as well as the energy stability. An
optimal rate convergence estimate is also provided. Some numerical experiments
are presented in Section 4. Finally, some conclusions are made in Section 5.

2. The mathematical model: binary fluid-surfactant system

In this paper, we consider the two-dimensional (2-D) binary fluid-surfactant
system. With the domain given by Ω = (0, Lx)×(0, Ly), the binary fluid-surfactant
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system is formulated as

ϕt =M1∆µϕ,(1a)

ρt =M2∇ · (M (ρ)∇µρ) ,(1b)

µϕ =
δG

δϕ
=
f ′(ϕ)

ε
− ε∆ϕ+ α∇ ·

(ρ∇ϕ
|∇ϕ|

)
,(1c)

µρ =
δG

δρ
= −α|∇ϕ|+ βH ′(ρ),(1d)

with the periodic boundary condition and M (ρ) = ρ (1− ρ). The PDE system (1)
corresponds to the following free energy functional

(2) G (ϕ, ρ) =

∫
Ω

(f (ϕ)
ε

+
ε

2
|∇ϕ|2 + α

2
(ρ− |∇ϕ|)2 + βH (ρ)

)
dx,

where

f (ϕ) =
1

4
ϕ2 (1− ϕ)

2
, H (ρ) = ρ ln ρ+ (1− ρ) ln (1− ρ) ,

and α, β, ε are all small positive parameters. In this paper we assumeM (ρ) = 1 and
M1 =M2 = M for simplicity. Furthermore, to avoid the singularity in calculating

the coupled energy (ρ− |∇ϕ|)2, we use
√
ϕ2x + ϕ2y + δ2 to approximate |∇ϕ|. And

also, we add diffuse terms η2

2 |∆ϕ|2 and ξ
2 |∇ρ|

2 in the energy density, so that the
new free energy functional becomes
(3)

Gnew (ϕ, ρ) =

∫
Ω

(f (ϕ)
ε

+
ε

2
|∇ϕ|2+ η2

2
|∆ϕ|2+ ξ

2
|∇ρ|2+α

2
(ρ− |∇ϕ|)2+βH (ρ)

)
dx.

For simplicity, we still use G to express Gnew. In turn, the corresponding chemical
potentials become

µϕ =
δG

δϕ
=
f ′(ϕ)

ε
− ε∆ϕ+ η2∆2ϕ+ α∇ ·

(ρ∇ϕ
|∇ϕ|

)
,(4a)

µρ =
δG

δρ
= −α|∇ϕ| − ξ∆ρ+ βH ′(ρ).(4b)

As always in the gradient system, the energy dissipation property is always valid:

d

dt
G (ϕ (t) , ρ (t)) ≤ 0, t > 0.

Besides, the appearance of the Flory-Huggins energy indicates a positivity property
for the density variable, 0 < ρ < 1 at a point-wise level. Our primary aim is to
develop a numerical scheme inheriting these properties at a theoretical level.

Remark 2.1. Typically, in the context of physical models, the Dirichlet energy
∥∇u∥2 represents surface tension, whereas the higher order term ∥∆u∥2 represents
bending rigidity. In general, it may be assumed that all orders of the energy density
are represented in the expansion of the energy

E(u) = f(u) + a0u
2 + a2∥∇u∥2 + a4∥∆u∥2 + ...,

where f may be non-quadratic, and the coefficients ak may depend upon u, or deriva-
tives of u but are usually constants. On the other hand, it is typical to drop all higher
order terms beyond those that are physically/mathematically necessary to make the
PDE well posed. One would assume that the corresponding coefficients are suffi-
ciently small so as to justify this. In most cases, it may be more reasonable to
assume that a2 = 0 (or is negligible) and only keep terms of order higher than two.
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For the binary fluid-surfactant system (1), combined with the physical energy (2),
we are able to construct a numerical scheme with an energy stability, while the
optimal rate convergence analysis will face essential theoretical difficulties, due to
the highly nonlinear and singular 1-Laplacian term involved for the variable ϕ. To
overcome this subtle difficulty, we add an additional bi-harmonic diffusion term for
ϕ, as well as a regular diffusion term for the ρ, in the energy representation (3).
As a result, both the energy stability and optimal rate convergence analysis could be
theoretically justified, as will be demonstrated in the later section. In particular, an
optimal rate convergence analysis will be the first such result for the binary fluid-
surfactant system. Such an approach of adding higher order bi-harmonic diffusion
process has been reported in many related nonlinear physical systems, in which the
diffusion terms have played essential roles in the stability analysis, such as the
planetary geostrophic equations of oceanic geophysical fluid model [36, 40, 41, 42],
etc.

3. The numerical scheme

In this section, we present a convex-concave decomposition of the energy (3),
and propose a convex splitting scheme based on such a decomposition. The unique
solvability, energy stability, positivity-preserving property will be analyzed after-
ward.

3.1. The convex-concave decomposition of the energy.

Lemma 3.1. Suppose that Ω = (0, Lx)× (0, Ly) and ϕ, ρ : Ω → R are periodic and
sufficiently regular. Define the following energy functionals

Gc (ϕ, ρ) =

∫
Ω

1

4ε
(ϕ− 1

2
)4 +

1

64ε
+
ε

2
|∇ϕ|2 + η2

2
|∆ϕ|2 + βH (ρ) +

ξ

2
|∇ρ|2

+
α

2

{(
ρ− |∇δϕ|

)2
+ (

√
2− 1)ρ2 +

1

δ
|∇ϕ|2

}
dx,

Ge (ϕ, ρ) =

∫
Ω

1

8ε
(ϕ− 1

2
)2 +

α

2

{
(
√
2− 1)ρ2 +

1

δ
|∇ϕ|2

}
dx,

with |∇δϕ| := (|∇ϕ|2 + δ2)
1
2 . Then Gc (ϕ, ρ) and Ge (ϕ, ρ) are both convex with

respect to ϕ and ρ, with G (ϕ, ρ) = Gc (ϕ, ρ)−Ge (ϕ, ρ).

Proof. We focus on the convexity analysis of Gc (ϕ, ρ) and Ge (ϕ, ρ). Let

ec (ϕ, ϕx, ϕy,∆ϕ, ρ, ρx, ρy) =
1

4ε
(ϕ− 1

2
)4 +

1

64ε
+
ε

2
|∇ϕ|2 + η2

2
|∆ϕ|2 + βH (ρ)

+
ξ

2
|∇ρ|2 + α

2

{
(ρ− |∇ϕ|)2 + (

√
2− 1)ρ2 +

1

δ
|∇ϕ|2

}
,

ee (ϕ, ϕx, ϕy,∆ϕ, ρ, ρx, ρy) =
1

8ε
(ϕ− 1

2
)2 +

α

2

{
(
√
2− 1)ρ2 +

1

δ
|∇ϕ|2

}
.
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We also denote

ec1 (v) , ec1 (ϕ, ϕx, ϕy,∆ϕ, ρ, ρx, ρy) =
1

4ε
(ϕ− 1

2
)4 +

1

64ε
+
ε

2
|∇ϕ|2 + η2

2
|∆ϕ|2

+ βH (ρ) +
ξ

2
|∇ρ|2,

ec2 (v) , ec2 (ϕ, ϕx, ϕy,∆ϕ, ρ, ρx, ρy) =
α

2

{(
ρ− |∇δϕ|

)2
+ (

√
2− 1)ρ2 +

1

δ
|∇ϕ|2

}
,

ee (v) , ee (ϕ, ϕx, ϕy,∆ϕ, ρ, ρx, ρy) =
1

8ε
(ϕ− 1

2
)2 +

α

2

{
(
√
2− 1)ρ2 +

1

δ
|∇ϕ|2

}
,

where

v = (v1, v2, v3, v4, v5, v6, v7) , (ϕ, ϕx, ϕy,∆ϕ, ρ, ρx, ρy) .

Then we have

ec (v) = ec1 (v) + ec2 (v) , Gc (ϕ, ρ) =

∫
Ω

ec (v) dx, Ge (ϕ, ρ) =

∫
Ω

ee (v) dx,

and the following inequalities are derived:

∂2v1ec1 (v1, v2, v3, v4, v5, v6, v7) =
3

ε
(ϕ− 1

2
)2 ≥ 0,

∂2v2ec1 (v1, v2, v3, v4, v5, v6, v7) = ε > 0,

∂2v3ec1 (v1, v2, v3, v4, v5, v6, v7) = ε > 0,

∂2v4ec1 (v1, v2, v3, v4, v5, v6, v7) = η2 > 0,

∂2v5ec1 (v1, v2, v3, v4, v5, v6, v7) =
β

ρ (1− ρ)
> 0,

∂2v6ec1 (v1, v2, v3, v4, v5, v6, v7) = ξ > 0,

∂2v7ec1 (v1, v2, v3, v4, v5, v6, v7) = ξ > 0,

∂2v1ee (v1, v2, v3, v4, v5, v6, v7) =
1

4ε
> 0,

∂2v2ee (v1, v2, v3, v4, v5, v6, v7) =
α

δ
> 0,

∂2v3ea (v1, v2, v3, v4, v5, v6, v7) =
α

δ
> 0,

∂2v4ec1 (v1, v2, v3, v4, v5, v6, v7) = 0,

∂2v5ee (v1, v2, v3, v4, v5, v6, v7) = (
√
2− 1)α > 0.

These facts imply that both ec1 (v) and ee (v) are convex. To get the convexity
of ec2 (v), we have to analyze the Hessian matrix of ec2 (v̂) as follows, where v̂ =
(v2, v3, v5):

(7) H (v̂) = α



√
2 − v2√

v2
2+v2

3+δ2
− v3√

v2
2+v2

3+δ2

− v2√
v2
2+v2

3+δ2
− v5(v2

3+δ2)

(v2
2+v2

3+δ2)
3
2
+ 1

δ + 1 v2v3v5

(v2
2+v2

3+δ2)
3
2

− v3√
v2
2+v2

3+δ2
v2v3v5

(v2
2+v2

3+δ2)
3
2

− v5(v2
2+δ2)

(v2
2+v2

3+δ2)
3
2
+ 1

δ + 1

 .

Since 0 < ρ < 1, i.e. v5 ∈ (0, 1), a careful application of calculus reveals that H (v̂)
is diagonally dominated, so that it is non-negative definite. This in turn indicates
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the convexity of ec2 . Therefore, we obtain the following inequality, according to the
definition of convex function:

ec (λw + (1− λ)v) ≤ λec (w) + (1− λ) ec (v) ,(8a)

ee (λw + (1− λ)v) ≤ λee (w) + (1− λ) ee (v) ,(8b)

where λ ∈ (0, 1) ,w,v ∈ R7. Integrating both sides of (8a) and (8b) leads to

Gc (λϕ1 + (1− λ)ϕ2, λρ1 + (1− λ) ρ2) ≤ λGc (ϕ1, ρ1) + (1− λ)Gc (ϕ2, ρ2) ,

and

Ge (λϕ1 + (1− λ)ϕ2, λρ1 + (1− λ) ρ2) ≤ λGe (ϕ1, ρ1) + (1− λ)Ge (ϕ2, ρ2) ,

which indicates that both Gc (ϕ, ρ) and Ge (ϕ, ρ) are convex with respect to ϕ and
ρ. �

As a generalization of the theorem presented in [57], the following lemma is the
foundation of energy stability for binary fluid-surfactant, or more generally, for two
variable functional. The proof is similar to [57], so we skip it for the sake of brevity.

Lemma 3.2. Assume ϕ, φ, ρ, ψ : Ω → R are periodic and smooth enough. If
G = Gc −Ge gives a convex-concave decomposition, then we have

(9)
G (ϕ, ρ)−G (φ,ψ) ≤ (δϕGc (ϕ, ρ)− δϕGe (φ,ψ) , ϕ− φ)L2

+ (δρGc (ϕ, ρ)− δρGe (φ,ψ) , ρ− ψ)L2 ,

where δ denotes the variational derivative.

Given a time step ∆t > 0, we construct the discrete-time, continuous-space
scheme of the binary fluid-surfactant system (1) as follows

ϕn+1 − ϕn

∆t
= M∆µn+1

ϕ ,(10a)

ρn+1 − ρn

∆t
= M∆µn+1

ρ ,(10b)

µn+1
ϕ = δϕGc

(
ϕn+1, ρn+1

)
− δϕGe (ϕ

n, ρn) ,(10c)

µn+1
ρ = δρGc

(
ϕn+1, ρn+1

)
− δρGe (ϕ

n, ρn) .(10d)

3.2. The spatial discretization and the fully discrete numerical scheme.
The centered difference approximation is applied to discretize the space. Here
we first recall some basic notations of this methodology, and we use the similar
notations and results for some discrete functions and operators introduced in [22,
57]. Let Ω = (0, Lx)× (0, Ly), where for simplicity, we assume Lx = Ly := L > 0.
Let N ∈ N be given, and define the grid mesh size h := L/N . Such a uniform mesh
size assumption is only for simplicity of presentation. We define the following two
uniform, infinite node sets with grid spacing h > 0:

(11) E := {pi+ 1
2
| i ∈ Z}, C := {pi | i ∈ Z},

where pi = p(i) := (i − 1
2 ) · h. Consider the following 2-D discrete N2-peroidic

function spaces:

Cper := {ν : C × C → R|νi,j = νi+αN,j+βN , ∀i, j, α, β ∈ Z},
Ex
per := {ν : E × C → R|νi+ 1

2 ,j
= νi+ 1

2+αN,j+βN , ∀i, j, α, β ∈ Z}.

The spaces Ey
per can be analogously defined. Here we use the Greek symbols νi,j =

ν(pi, pj), et cetera. The functions of Cper are called cell − centered functions,
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while the functions of Ex
per and Ey

per are called x − direction and y − direction
edge− centered functions, respectively. We also define the mean zero space

C̊per :=

ν ∈ Cper | 0 = ν̄ :=
h2

|Ω|

m∑
i,j=1

νi,j

 .

Additionally, we denote E⃗per := Ex
per × Ey

per.
Next, the important difference and average operators are introduced on the func-

tion spaces:

Axνi+ 1
2 ,j

:=
1

2
(νi+1,j + νi,j), Dxνi+ 1

2 ,j
:=

1

h
(νi+1,j − νi,j),

Ayνi,j+ 1
2
:=

1

2
(νi,j+1 + νi,j), Dyνi,j+ 1

2
:=

1

h
(νi,j+1 − νi,j),

with Ax, Dx : Cper → Ex
per and Ay, Dy : Cper → Ey

per. Likewise,

axνi,j :=
1

2
(νi+ 1

2 ,j
+ νi− 1

2 ,j
), dxνi,j :=

1

h
(νi+ 1

2 ,j
− νi− 1

2 ,j
),

ayνi,j :=
1

2
(νi,j+ 1

2
+ νi,j− 1

2
), dyνi,j :=

1

h
(νi,j+ 1

2
− νi,j− 1

2
),

with ax, dx : Cper → Cx
per and ay, dy : Cper → Cy

per. The discrete gradient ∇h :

Cper → E⃗per is defined via

∇hνi,j = (Dxνi+ 1
2 ,j
, Dyνi,j+ 1

2
),

and the discrete divergence ∇h· : Eper → C⃗per becomes

∇h · f⃗i,j = dxf
x
i,j + dyf

y
i,j , for f⃗ = (fx, fy) ∈ E⃗per.

The standard 2-D discrete Laplacian, ∆h : Cper → Cper, is given by

∆hνi,j : = ∇h · (∇hν)i,j = dx(Dxν)i,j + dy(Dyν)i,j

=
1

h2
(νi+1,j + νi−1,j + νi,j+1 + νi,j−1 − 4νi,j).

More generally, if D is a periodic scalar function that is defined at all of the face

center points and f⃗ ∈ E⃗per, assuming point-wise multiplication, we may define

∇h · (Df⃗)i,j = dx(Dfx)i,j + dy(Dfy)i,j .
Specifically, if ν ∈ Cper, then ∇h · (D∇h) : Cper → Cper is defined point-wise via

∇h · (D∇hν)i,j = dx(DDxν)i,j + dy(DDy)i,j .

Now we are ready to introduce the following grid inner products:

⟨ν, ξ⟩Ω := h2
N∑

i,j=1

νi,jξi,j , ν, ξ ∈ Cper,

[ν, ξ]x := ⟨ax(νξ), 1⟩Ω, ν, ξ ∈ Ex
per,

[ν, ξ]y := ⟨ay(νξ), 1⟩Ω, ν, ξ ∈ Ey
per.

[f⃗1, f⃗2]Ω := [fx1 , f
x
2 ]x + [fy1 , f

y
2 ]y, f⃗i = (fxi , f

y
i ) ∈ E⃗per, i = 1, 2.

We define the following norms for cell-centered functions. If ν ∈ Cper, then
∥ν∥22 := ⟨ν, ν⟩Ω; ∥ν∥pp := ⟨|ν|p, 1⟩Ω, for 1 ≤ p ≤ ∞, and ∥ν∥∞ := max

1≤i,j≤N
|νi,j |. The

norms of the gradient are defined as follows: for ν ∈ Cper,

∥∇hν∥22 := [∇hν,∇hν]Ω = [Dxν,Dxν]x + [Dyν,Dyν]y,
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and, more generally, for 1 ≤ p ≤ ∞,

∥∇hν∥p := ([|Dxν|p, 1]x + [|Dyν|p, 1]y)
1
p ,

Higher order norms can be similarly introduced; for example,

∥ν∥2H1
h
:= ∥ν∥22 + ∥∇hν∥22, ∥ν∥2H2

h
:= ∥ν∥2H1

h
+ ∥∆hν∥22.

To facilitate the convergence analysis, we need to introduce a discrete analogue
of the space H−1

per(Ω), as outlined in [56]. Suppose that D is a positive, periodic
scalar function defined at all of the face center points. For any ϕ ∈ Cper, there
exists a unique ψ ∈ C̊per, that solves
(12) LD(ψ) := −∇h · (D∇hψ) = ϕ− ϕ̄,

where, recall, ϕ̄ := |Ω|−1⟨ϕ, 1⟩Ω. We equip this space with a bilinear form: for any

ϕ1, ϕ2 ∈ C̊per, define
(13) ⟨ϕ1, ϕ2⟩L−1

D
:= [D∇hψ1,∇hψ2]Ω,

where ψi ∈ C̊per is the unique solution to

(14) LD(ψi) := −∇h · (D∇hψi) = ϕi, i = 1, 2.

The following identity is easy to prove via summation-by-parts:

(15) ⟨ϕ1, ϕ2⟩L−1
D

= ⟨ϕ1,L−1
D (ϕ2)⟩Ω = ⟨L−1

D (ϕ1), ϕ2⟩Ω,

and since LD is symmetric positive definite, ⟨·, ·⟩L−1
D

is an inner product on C̊per.
When D ≡ 1, we drop the subscript and write L1 = L, and in this case we usually
write ⟨·, ·⟩L−1

D
=: ⟨·, ·⟩−1,h. In the general setting, the norm associated to this inner

product is denoted as ∥ϕ∥L−1
D

:=
√
⟨ϕ, ϕ⟩L−1

D
, for all ϕ ∈ C̊per, but, if D ≡ 1, we

write ∥ · ∥L−1
D

=: ∥ · ∥−1,h.

With the preparations above, we turn to discuss the discrete energy and the fully
discrete scheme. Define the discrete energies E,Ec, Ee : Cper × Cper → R as

E (ϕ, ρ) =h2
N∑

i,j=1

(f (ϕi,j)
ε

+
ε

2
|∇hϕi,j |2 +

η2

2
|∆hϕi,j |2 +

ξ

2
|∇hρi,j |2

+
ε

2

(
ρi,j −A|∇δ

hϕ|i,j
)2

+ βH(ρi,j)
)
,

in which A|∇δ
hϕ| is defined as

(A|∇δ
hϕ|i,j)2 =

1

2
((Dxϕ)

2
i+ 1

2 ,j
+ (Dxϕ)

2
i− 1

2 ,j
+ (Dyϕ)

2
i,j+ 1

2
+ (Dyϕ)

2
i,j− 1

2
) + δ2.

The relevant discrete convex and concave energy functionals Ec, Ee : Cper×Cper → R
are given by

Ec (ϕ, ρ) =h
2

N∑
i,j=1

( 1

4ε
(ϕi,j −

1

2
)4 +

1

64ε
+
ε

2
|∇hϕi,j |2 +

η2

2
|∆hϕi,j |2 + βH(ρi,j)

+
ξ

2
|∇hρi,j |2 +

α

2

(
(ρi,j −A|∇δ

hϕ|i,j)2 + (
√
2− 1)ρ2i,j +

1

δ
|∇hϕi,j |2

)
,(16)

Ee (ϕ, ρ) =h
2

N∑
i,j=1

(
1

8ε
(ϕi,j −

1

2
)2 +

α

2

(
(
√
2− 1)ρ2i,j +

1

δ
|∇hϕi,j |2

))
.

(17)
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In particular, a Hessian matrix could be similar formulated as the one given by (7),
for the following discrete function

(18)
ec2,h(ρ, v1, v2, v3, v4) =

α

2

(
(ρ−

√
1

2
(v21 + v22 + v23 + v24) + δ2)2

+ (
√
2− 1)ρ2 +

1

2δ
(v21 + v22 + v23 + v24)

)
.

A careful calculation reveals that, the corresponding 5× 5 Hessian matrix is diago-
nally dominated, therefore non-negative definite. This in turn leads to the convexity
of the following discrete functional:

(19)

Ec2,h(ρ, v1, v2, v3, v4)

=
α

2
h2

N∑
i,j=1

(
(ρi,j −A|∇δ

hϕ|i,j)2 + (
√
2− 1)ρ2i,j +

1

δ
|∇hϕi,j |2

)
.

The convexity analysiss for the other parts of Ec and Ee is more straightforward.
We follow the idea of convexity splitting and consider the following semi-implicit,

fully discrete scheme: given ϕn, ρn ∈ Cper, find ϕn+1, ρn+1, µn+1
ϕ , µn+1

ρ ∈ Cper, such
that

ϕn+1 − ϕn

∆t
= M∆hµ

n+1
ϕ ,(20a)

ρn+1 − ρn

∆t
= M∆hµ

n+1
ρ ,(20b)

µn+1
ϕ = δϕEc

(
ϕn+1, ρn+1

)
− δϕEe (ϕ

n, ρn) ,(20c)

µn+1
ρ = δρEc

(
ϕn+1, ρn+1

)
− δρEe (ϕ

n, ρn) ,(20d)

where

µn+1
ϕ =

1

ε
(ϕn+1 − 1

2
)3 − (ε+ α+

α

δ
)∆hϕ

n+1 + η2∆2
hϕ

n+1

+ α∇h ·
(
A(

ρn+1

A|∇δ
hϕ

n+1|
)∇hϕ

n+1

)
− 1

4ε
(ϕn − 1

2
) +

α

δ
∆hϕ

n,(21)

µn+1
ρ =− ξ∆hρ

n+1 + β
(
ln ρn+1 − ln

(
1− ρn+1

))
+
√
2αρn+1

− αA
∣∣∇hϕ

n+1
∣∣− α(

√
2− 1)ρn.(22)

Notice that ∇h ·
(
A( ρ

A|∇hϕ| )∇hϕ
)
is evaluated as follows

∇h ·
(
A(

ρ

A|∇δ
hϕ|

)∇hϕ

)
=
1

h

(1
2
(

ρi,j
A|∇δ

hϕi,j |
+

ρi+1,j

A|∇δ
hϕi+1,j |

)(Dxϕ)i+ 1
2 ,j

− 1

2
(

ρi,j
A|∇δ

hϕi,j |
+

ρi−1,j

A|∇δ
hϕi−1,j |

)(Dxϕ)i− 1
2 ,j

)
+

1

h

(1
2
(

ρi,j
A|∇δ

hϕi,j |
+

ρi,j+1

A|∇δ
hϕi,j+1|

)(Dyϕ)i,j+ 1
2

− 1

2
(

ρi,j
A|∇δ

hϕi,j |
+

ρi,j−1

A|∇δ
hϕi,j−1|

)(Dyϕ)i,j− 1
2

)
.(23)

It is observed that the finite difference scheme is a system of nonlinear equa-
tions with respect to ϕn+1 and ρn+1, so we that have to solve it iteratively. The
theoretical properties of this scheme are analyzed in the next few sections.
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3.3. The positivity-preserving property. Of course, a point-wise bound for
the grid function ρn+1, namely, 0 < ρn+1

i,j < 1, is needed to make sure the numerical
scheme is well-defined. The main theoretical result is stated below, which assures
that there exists a unique numerical solution for (20a) and (20b), so that the given
bound is satisfied.

Theorem 3.1. Given ϕn, ρn ∈ Cper, with ∥ρn∥∞ ≤ M , for some M ≥ 0, and 0 <
ρn < 1, there exists a unique solution ϕn+1, ρn+1 ∈ Cper to (20), with 0 < ρn+1 < 1
at a point-wise level.

Before the proof of the positivity-preserving property, we recall the following
lemma, cited from [5].

Lemma 3.3. [5] Suppose that ϕ ∈ C̊per and ∥ϕ∥∞ ≤ C1, then we have the following
estimate:

(24) ∥(−∆h)
−1ϕ∥∞ ≤ C2C1,

where C2 depends only on Ω.

In addition, a few more preliminary estimates are needed for the positivity-
preserving analysis. The following discrete energy functional is introduced

(25)

J n (ϕ, ρ) :=
1

2M∆t
∥ϕ− ϕn∥2−1,h +

1

2M∆t
∥ρ− ρn∥2−1,h

+
1

4ε
∥ϕ− 1

2
∥44 +

ε

2
∥∇hϕ∥22 +

η2

2
∥∆hϕ∥22 +

ξ

2
∥∇hρ∥22

+
α

2

{∥∥ρ−A
∣∣∇δ

hϕ
∣∣∥∥2

2
+ (

√
2− 1)∥ρ∥22 +

1

δ
∥∇hϕ∥22

}
+ β ⟨ρ, ln ρ⟩Ω + β ⟨1− ρ, ln (1− ρ)⟩Ω + ⟨ϕ, fnϕ ⟩Ω + ⟨ρ, fnρ ⟩Ω,

fnϕ =− 1

4ε
(ϕn − 1

2
)− α

δ
∆hϕ

n, fnρ = −(
√
2− 1)αρn.

Lemma 3.4. Set M∗
1 = max |fnϕ |, M∗

2 = max |fnρ | ≤ (
√
2− 1)αM . We notice that

M∗
1 may be h, ε, δ and ϕn dependent. The following inequality is available for the

lower bound of J n(ϕ, ρ), for 0 < ρ < 1:

J n(ϕ, ρ) ≥ 1

8ε
∥ϕ− 1

2
∥44 −Mn

3 ,

Mn
3 = (

1

2
(M∗

1 )
2 +

1

2
M∗

1 +
1

2
ε+ β ln 2 +M∗

2 )|Ω|,
(26)

Proof. In the expansion of J n(ϕ, ρ), it is observed that all the terms are non-
negative, except for the last four term. Then we get
(27)

J n(ϕ, ρ) ≥ 1

4ε
∥ϕ− 1

2
∥44 + ⟨ϕ, fnϕ ⟩Ω + β(⟨ρ, ln ρ⟩Ω + ⟨1− ρ, ln (1− ρ)⟩Ω) + ⟨ρ, fnρ ⟩Ω.

For the third and fourth terms on the right hand side of (27), the following point-
wise lower bound is available:

(28)
ρ ln ρ+ (1− ρ) ln(1− ρ) ≥ 2 · 1

2
ln

1

2
= − ln 2, for 0 < ρ < 1,

which in turn leads to ⟨ρ, ln ρ⟩Ω + ⟨1− ρ, ln (1− ρ)⟩Ω ≥ −|Ω| ln 2.
For the last term on the right hand side of (27), the following lower bound is valid,
based on the fact that 0 < ρ < 1:

(29) ⟨ρ, fnρ ⟩Ω ≥ −∥fnρ ∥∞ · ∥1∥1 ≥ −M∗
2 |Ω|.
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For the first two terms on the right hand side of (27), we begin with the following
estimate:

⟨ϕ, fnϕ ⟩Ω =⟨ϕ− 1

2
, fnϕ ⟩Ω +

1

2
⟨1, fnϕ ⟩Ω ≥ −1

2
(∥ϕ− 1

2
∥22 + ∥fnϕ ∥22)−

1

2
M∗

1 |Ω|

≥ − 1

2
∥ϕ− 1

2
∥22 −

1

2
(M∗

1 )
2|Ω| − 1

2
M∗

1 |Ω|.
(30)

Meanwhile, the following lower bound is a direct application of Cauchy inequality:

(31)
1

8ε
∥ϕ− 1

2
∥44 −

1

2
∥ϕ− 1

2
∥22 ≥ −1

2
ε|Ω|,

and its combination with (30) yields

1

8ε
∥ϕ− 1

2
∥44 + ⟨ϕ, fnϕ ⟩Ω ≥ −(

1

2
(M∗

1 )
2 +

1

2
M∗

1 +
1

2
ε)|Ω|.(32)

Finally, a substitution of (28), (29) and (32) into (27) results in (26). This completes
the proof of Lemma 3.4. �

Now we proceed into the proof of Theorem 3.1.

Proof. We denote Mn
0 = J n(ϕn, ρn), a fixed constant with given (ϕn, ρn). The

numerical solution of (20) is a minimizer of the discrete energy functional J n (ϕ, ρ)
(defined in (25)), over the admissible set

(33)

Ah := {ϕ, ρ ∈ Cper| −A∗ < ϕ < A∗, 0 < ρ < 1,⟨
ϕ− ϕ̄0

⟩
Ω
= 0, ⟨ρ− ρ̄0⟩Ω = 0

}
⊂ RN2

× RN2

,

A∗ :=max
(
(8ε(Mn

0 +Mn
3 ))

1
4h−

1
2 , ∥ϕn∥∞

)
+ 1.

We can observe that J n is a strictly convex function over this set.
To facilitate the analysis below, we transform the minimization problem into an

equivalent one. Consider the functional

Fn (ϕ, ρ) :=J n
(
ϕ+ ϕ̄0, ρ+ ρ̄0

)
=

1

2M∆t
∥ϕ+ ϕ̄0 − ϕn∥2−1,h +

1

2M∆t
∥ρ+ ρ̄0 − ρn∥2−1,h

+
1

4ε
∥(ϕ+ ϕ̄0 −

1

2
)2∥22 +

ε

2
∥∇hϕ∥22 +

η2

2
∥∆hϕ∥22 +

ξ

2
∥∇hρ∥22

+
α

2

{∥∥ρ+ ρ̄0 −A|∇δ
hϕ|

∥∥2
2
+ (

√
2− 1) ∥ρ+ ρ̄0∥22 +

1

δ
∥∇hϕ∥22

}
+ β ⟨ρ+ ρ̄0, ln (ρ+ ρ̄0)⟩Ω + β ⟨1− ρ− ρ̄0, ln (1− ρ− ρ̄0)⟩Ω
+ ⟨ϕ+ ϕ̄0, f

n
ϕ ⟩Ω + ⟨ρ+ ρ̄0, f

n
ρ ⟩Ω,(34)

defined on the set

Åh :=
{
(ϕ, ρ) ∈ C̊per × C̊per| −A∗ − ϕ̄0 < ϕ < A∗ − ϕ̄0,−ρ̄0 < ρ < 1− ρ̄0

}
⊂RN2

× RN2

.

If (ϕ, ρ) ∈ Åh minimizes Fn, then (φ, ϱ) := (ϕ+ ϕ̄0, ρ+ ρ̄0) ∈ Ah minimizes J n and
vice versa. Next, we prove that there exists a minimizer of Fn over the domain
Åh. Consider the following closed domain: for δ0 ∈

(
0, 12

)
Åh,δ0 :=

{
(ϕ, ρ) ∈ C̊per × C̊per| −A∗ − ϕ̄0 + δ0 ≤ ϕ ≤ A∗ − ϕ̄0 − δ0,

δ0 − ρ̄0 ≤ ρ ≤ 1− δ0 − ρ̄0} ⊂ RN2

× RN2

.
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Since Åh,δ0 is a bounded, compact, and convex set in the subspace C̊per, there

exists a (not necessarily unique) minimizer of Fn over Åh,δ0 . The key point of the
positivity analysis is that, such a minimizer could not occur on the boundary of
Åh,δ0 , if δ0 is sufficiently small. To be more explicit, by the boundary of Åh,δ0 ,

we mean the locus of points (ϕ, ψ) ∈ Åh,δ0 such that ψ + ρ̄0 = δ0 or 1 − δ0, or
ϕ+ ϕ̄0 = −A∗ + δ0 or A∗ − δ0, precisely.

To get a contradiction, suppose that the minimizer of Fn, call it (ϕ⋆, ρ⋆), occurs

at a boundary point of Åh,δ0 . There is at least one grid point α⃗0 = (i0, j0) such
that ρ⋆α⃗0

+ ρ̄0 = δ0 or 1− δ0, or ϕ⋆α⃗0
+ ϕ̄0 = −A∗+ δ0 or A∗− δ0. Let us assume that

ρ⋆α⃗0
+ ρ̄0 = δ0, and denote by α⃗1 = (i1, j1) as the grid point at which ρ⋆ achieves

its maximum. By the fact that ρ̄⋆ = 0, it is obvious that ρ⋆α⃗1
≥ 0 and

1− δ0 ≥ ρ⋆α⃗1
+ ρ̄0 ≥ ρ̄0.

Since Fn is smooth over Åh,δ, for all (φ,ψ) ∈ C̊per, the directional derivative is

dsFn (ϕ⋆ + sφ, ρ⋆ + sψ) |s=0

=
1

M∆t

(
⟨(−∆h)

−1 (
ϕ⋆ + ϕ̄0 − ϕn

)
, φ⟩Ω + ⟨(−∆h)

−1
(ρ⋆ + ρ̄0 − ρn) , ψ⟩Ω

)
+

1

2ε
⟨ϕ⋆ + ϕ̄0 −

1

2
, φ⟩Ω − ε ⟨∆hϕ

⋆, φ⟩Ω + η2
⟨
∆2

hϕ
⋆, φ

⟩
Ω
− ξ ⟨∆hρ

⋆, ψ⟩Ω
+ β ⟨ln (ρ⋆ + ρ̄0)− ln (1− ρ⋆ − ρ̄0) , ψ⟩Ω

− α

⟨
∇h ·

(
A(

ρ⋆ + ρ̄0
A|∇δ

hϕ
⋆|
)∇hϕ

⋆
)
, φ

⟩
Ω

− α
⟨
A|∇δ

hϕ
⋆|, ψ

⟩
Ω
+ α(

√
2− 1) ⟨ρ⋆ + ρ̄0, ψ⟩Ω

− α

δ
⟨∆hϕ

⋆, φ⟩Ω + ⟨fnϕ , φ⟩Ω + ⟨fnρ , ψ⟩Ω.(35)

Here, we take the direction φ,ψ ∈ C̊per, such that

φ = 0, ψ = δi,i0δj,j0 − δi,i1δj,j1 .

Then the derivative may be expressed as

1

h2
dsFn (ϕ⋆, ρ⋆ + sψ) |s=0

=
1

M∆t

(
(−∆h)

−1
(ρ⋆ + ρ̄0 − ρn)α⃗0

− (−∆h)
−1

(ρ⋆ + ρ̄0 − ρn)α⃗1

)
− ξ

(
∆hρ

⋆
α⃗0

−∆hρ
⋆
α⃗1

)
+ β ln

(
ρ⋆α⃗0

+ ρ̄0
)
− β ln

(
1− ρ⋆α⃗0

− ρ̄0
)

− β ln
(
ρ⋆α⃗1

+ ρ̄0
)
+ β ln

(
1− ρ⋆α⃗1

− ρ̄0
)

− α
(
A|∇δ

hϕ
⋆
α⃗0
| − A|∇δ

hϕ
⋆
α⃗1
|
)
+ α(

√
2− 1)

(
ρ⋆α⃗0

− ρ⋆α⃗1

)
+ (fnρ )α⃗0

− (fnρ )α⃗1
.(36)

For simplicity, now let us write ϱ⋆ := ρ⋆ + ρ̄0. Since ϱ⋆α⃗0
= δ0 and ϱ⋆α⃗1

≥ ρ̄0, we
have

(37) ln
(
ϱ⋆α⃗0

)
− ln

(
1− ϱ⋆α⃗0

)
− ln

(
ϱ⋆α⃗1

)
+ ln

(
1− ϱ⋆α⃗1

)
≤ ln

δ0
1− δ0

− ln
ρ̄0

1− ρ̄0
.

Since ϱ⋆ takes a minimum at the grid point α⃗0, with ϱ
⋆
α⃗0

= δ ≤ ϱ⋆i,j , for any (i, j),

and a maximum at the grid point α⃗1, with ϱ
⋆
α⃗1

≥ ϱ⋆i,j , for any (i, j),

(38) ∆hρ
⋆
α⃗0

≥ 0, ∆hρ
⋆
α⃗1

≤ 0, ρ⋆α⃗0
− ρ⋆α⃗1

≤ 0.
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For the numerical solution ρn at the previous time step, the a priori assumption
∥ρn∥∞ ≤M indicates that

(39) −2M ≤ ρnα⃗0
− ρnα⃗1

≤ 2M.

According to Lemma 3.3, we obtain

(40) −4MC2 ≤ (−∆h)
−1

(ϱ⋆ − ρn)α⃗0
− (−∆h)

−1
(ϱ⋆ − ρn)α⃗1

≤ 4MC2.

Denote C3 = max
{
A|∇δ

hϕ
⋆
α⃗0
|,A|∇δ

hϕ
⋆
α⃗1
|
}
. Based on the fact that −A∗−ϕ̄0 < ϕ∗ <

A∗ − ϕ̄0 at a point-wise level, we conclude that

(41) A|∇δ
hϕ

⋆
α⃗0
|, A|∇δ

hϕ
⋆
α⃗1
| ≤ 2A∗

h
+ 1, so that C3 ≤ 2A∗

h
+ 1.

Then we have

(42) −αC3 ≤ −αA
(
|∇δ

hϕ
⋆
α⃗0
| − |∇δ

hϕ
⋆
α⃗1
|
)
≤ αC3.

Consequently, a substitution of (37), (38), (39), (40), (42) into (36) yields the follow-
ing bound on the directional derivative:

1

h2
dsFn (ϕ⋆, ρ⋆ + sψ) |s=0 ≤ β ln

δ0
1− δ0

−β ln ρ̄0
1− ρ̄0

+4MC2(M∆t)−1+2αC3+2M2.

We denote D0 = 4MC2(M∆t)−1 + 2αC3 + 2M2. Notice that D0 is a constant for
fixed ∆t and h, though it becomes singular as ∆t → 0 and h → 0. On the other
hand, for any fixed ∆t and h, we may choose δ0 ∈ (0, 1/2) sufficiently small so that

(43) β ln
δ0

1− δ0
− β ln

ρ̄0
1− ρ̄0

+D0 < 0.

This in turn leads to the following inequality, provided δ0 satisfies (43),

(44)
1

h2
dsFn (ϕ⋆, ρ⋆ + sψ) |s=0 < 0.

As before, this contradicts the assumption that Fn has a minimum at (ϕ⋆, ρ⋆),
since the directional derivative is negative in a direction pointing into the interior
of Åh,δ0 .

Using very similar arguments, we can also prove that the global minimum of Fn

over Åh,δ0 could not occur at a boundary point (ϕ⋆, ρ⋆) such that ρ⋆α⃗0
+ ρ̄0 = 1−δ0,

for some α⃗0, so that the grid function ρ⋆ has a global maximum at α⃗0. The details
are left to interested readers.

Moreover, if the global minimum of Fn over Åh,δ0 could occurs at a boundary
point (ϕ⋆, ρ⋆) such that φ∗

α⃗0
= ϕ⋆α⃗0

+ ϕ̄0 = A∗ − δ0. In turn, we apply Lemma 3.4
and obtain

Fn(ϕ∗, ρ∗) =J n(φ∗, ϱ∗) ≥ 1

8ε
∥φ∗ − 1

2
∥44 −Mn

3 ≥ 1

8ε
h2 · (φ∗

α⃗0
− 1

2
)4 −Mn

3

≥ 1

8ε
h2(A∗ − δ0 −

1

2
)4 −Mn

3 >
1

8ε
h2(A∗ − 1)4 −Mn

3

≥ 1

8ε
h2 · (8ε(Mn

0 +Mn
3 ))h

−2 −Mn
3 =Mn

0 = J n(ϕn, ρn),

(45)

in which the definition of A∗ (in (33)) has been recalled. This contradicts the
assumption that Fn has a minimum at (ϕ⋆, ρ⋆).

Using similar arguments, a minimization point cannot occur at a boundary point
(ϕ⋆, ρ⋆) such that φ∗

α⃗0
= ϕ⋆α⃗0

+ ϕ̄0 = −A∗ + δ0. The details are left to interested
readers.
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A combination of above four facts have indicated that, the global minimum of Fn

over Åh,δ0 could only possibly occur at interior point (ϕ, ρ) ∈
(
Åh,δ0

)◦
⊂

(
Åh

)◦
.

We conclude that there must be a solution (ϕ, ρ) ∈ Ah that minimizes J n over
Ah, which is equivalent to the numerical solution of (20). The existence of the
numerical solution is established.

In addition, since J n is strictly convex function over Ah, the uniqueness anal-
ysis for this numerical solution is straightforward. The proof of Theorem 3.1 is
completed. �
3.4. Unconditional energy stability.

Theorem 3.2 (Energy stability). For n ≥ 1, the numerical scheme (20) is uncon-
ditionally energy stable, i.e.

E
(
ϕn+1, ρn+1

)
≤ E (ϕn, ρn) .

Proof. We denote L = −∆h. Because of the mass conservation, it is clear that
L−1

(
ϕn+1 − ϕn

)
and L−1

(
ρn+1 − ρn

)
are well-defined. Taking a discrete inner

product with (20a), (20b), (20c), (20d) by L−1
(
ϕn+1 − ϕn

)
, L−1

(
ρn+1 − ρn

)
,

ϕn+1 − ϕn and ρn+1 − ρn, respectively, yields the following estimate

0 =
1

M∆t

( ⟨
ϕn+1 − ϕn,L−1

(
ϕn+1 − ϕn

)⟩
Ω

+
⟨
ρn+1 − ρn,L−1

(
ρn+1 − ρn

)⟩
Ω

)
+
⟨
δϕEc

(
ϕn+1, ρn+1

)
− δϕEe (ϕ

n, ρn) , ϕn+1 − ϕn
⟩
Ω

+
⟨
δρEc

(
ϕn+1, ρn+1

)
− δρEe (ϕ

n, ρn) , ρn+1 − ρn
⟩
Ω

≥E
(
ϕn+1, ρn+1

)
− E (ϕn, ρn) .(46)

Hence that
E
(
ϕn+1, ρn+1

)
≤ E (ϕn, ρn) .

This completes the proof. �
3.5. Optimal rate convergence analysis. Let Φ and Ψ be the exact solution for
the binary fluid-surfactant system (1). With initial data with sufficient regularity,
we could assume that the exact solution has regularity of class R1 and R2:

Φ ∈ R1 := H2 (0, T ;Cper (Ω)) ∩ L∞ (
0, T ;C8

per (Ω)
)
,(47a)

Ψ ∈ R2 := H2 (0, T ;Cper (Ω)) ∩ L∞ (
0, T ;C6

per (Ω)
)
.(47b)

Define ΦN (·, t) := PNΦ(·, t), and ΨN (·, t) := PNΨ(·, t), the spatial Fourier projec-
tion of the exact solutions into BK , the space of trigonometric polynomials of degree
to and including K (with N = 2K +1). The following projection approximation is
standard: if Φ ∈ L∞ (

0, T ;H l
per (Ω)

)
for some l ∈ N,

(48) ∥ΦN − Φ∥L∞(0,T ;Hk(Ω)) ≤ Chl−k ∥Φ∥L∞(0,T ;Hl(Ω)) , 0 ≤ k ≤ l.

By Φm
N ,Φ

m, we denote ΦN (·, tm) and Φ (·, tm), respectively, with tm = m · ∆t.
Since ΦN ∈ Bm, the mass conservative property is available at the discrete level:

Φm
N =

1

|Ω|

∫
Ω

ΦN (·, tm) dx =
1

|Ω|

∫
Ω

ΦN (·, tm+1) dx = Φm+1
N , m ∈ N.

We have a similar result about Ψ. On the other hand, the solution of (1) is also
mass conservative at the discrete level:

(49) ϕm = ϕm+1, ρm = ρm+1, m ∈ N.
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As indicated before, we use the mass conservative interpolation for the initial data:
ϕ0 = PhΦN (·, t = 0) and ρ0 = PhΨN (·, t = 0), that is

(50)
ϕ0i,j = Ph(ΦN (·, t = 0))i,j := ΦN (xi, yj , t = 0) ,

ρ0i,j = Ph(ΨN (·, t = 0))i,j := ΨN (xi, yj , t = 0) .

The error grid function is defined as

(51) ϕ̃m := PhΦ
m
N − ϕm, ρ̃m := PhΨ

m
N − ρm, m ∈ N,

in which a similar interpolation formula could be applied to Ph as in (50). Therefore,

it follows that ϕ̃m = 0 and ρ̃m = 0, for anym ∈ N, so that the discrete norm ∥·∥−1,h

is well defined for the numerical error grid function.

Theorem 3.3. Given initial data Φ(·, t = 0) ∈ C8
per(Ω) and Ψ(·, t = 0) ∈ C6

per(Ω),
suppose the exact solutin for binary fluid-surfactant system (1) is of regularity class
R = R1 ×R2. Then, provided that ∆t is sufficiently small, for all positive integers
n, such that tn ≤ T , we have

∥ϕ̃n+1∥−1,h + ∥ρ̃n+1∥−1,h

+
(
M∆t

n+1∑
k=0

(
η2∥∆hϕ̃

k∥22 + ε∥∇hϕ̃
k∥22 + ξ∥∇hρ̃

k∥22
)) 1

2 ≤ C
(
∆t+ h2

)
,(52)

where C > 0 is independent of n, ∆t, and h.

Proof. A carefully consistency analysis indicates the following truncation error es-
timate:

Φn+1
N − Φn

N

∆t
=M∆h

(
η2∆2

hΦ
n+1
N − ε∆hΦ

n+1
N +

1

ε
(Φn+1

N − 1

2
)3

+ α∇h ·
(
A(

Ψn+1
N

A|∇δ
hΦ

n+1
N |

)∇hΦ
n+1
N

)
− α

(
1 +

1

δ

)
∆hΦ

n+1
N − 1

4ε
(Φn

N − 1

2
)− α

δ
∆hΦ

n
N

)
+ τϕ,(53a)

Ψn+1
N −Ψn

N

∆t
=M∆h

(
− ξ∆hΨ

n+1
N + βH ′ (Ψn+1

N

)
+
√
2αΨn+1

N − αA|∇δ
hΦ

n+1
N |

− α(
√
2− 1)Ψn

N

)
+ τρ,(53b)

with ∥τn∥−1,h ≤ C
(
∆t+ h2

)
. Observe that we have dropped the operator Ph,

which should appear in front of ΦN , for simplicity of presentation.
Subtracting the numerical scheme (20) from (53) gives

ϕ̃n+1
N − ϕ̃nN

∆t
=M∆h

(
η2∆2

hϕ̃
n+1 − ε∆hϕ̃

n+1 +
1

ε
(Φn+1

N − 1

2
)3 − 1

ε
(ϕn+1 − 1

2
)3

+α∇h ·
(
A(

Ψn+1
N

A|∇δ
hΦ

n+1
N |

)∇hΦ
n+1
N −A(

ρn+1

A|∇δ
hϕ

n+1|
)∇hϕ

n+1

)
−α(1 + 1

δ
)∆hϕ̃

n+1 − 1

4ε
ϕ̃n − α

δ
∆hϕ̃

n

)
+ τϕ,(54a)

ρ̃n+1 − ρ̃n

∆t
=M∆h

(
−ξ∆hρ̃

n+1 + βH ′ (Ψn+1
N

)
− βH ′ (ρn+1

)
+
√
2αρ̃n+1

−αA|∇δ
hΦ

n+1
N |+ αA|∇δ

hϕ
n+1| − α(

√
2− 1)ρ̃n

)
+ τρ.(54b)
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Since the numerical error function has zero-mean, we see that both (−∆h)
−1
ϕ̃m

and (−∆h)
−1
ρ̃m are well-defined, for any k ≥ 0. Taking a discrete inner product

with (53a) and (53b) by 2 (−M∆h)
−1
ϕ̃n+1 and 2 (−M∆h)

−1
ρ̃n+1, respectively,

yields

1

M∆t

(
∥ϕ̃n+1∥2−1,h − ∥ϕ̃n∥2−1,h + ∥ϕ̃n+1 − ϕ̃n∥2−1,h

+ ∥ρ̃n+1∥2−1,h − ∥ρ̃n∥2−1,h + ∥ρ̃n+1 − ρ̃n∥2−1,h

)
+ 2η2⟨ϕ̃n+1,∆2

hϕ̃
n+1⟩Ω − 2ε⟨ϕ̃n+1,∆hϕ̃

n+1⟩Ω − 2ξ⟨ρ̃n+1,∆hρ̃
n+1⟩Ω

+
2

ε

⟨
ϕ̃n+1, (Φn+1

N − 1

2
)3 − (ϕn+1 − 1

2
)3
⟩

Ω

− 2α(1 +
1

δ
)⟨ϕ̃n+1,∆hϕ̃

n+1⟩Ω

+ 2α

⟨
ϕ̃n+1,∇h ·

(
A(

Ψn+1
N

A|∇δ
hΦ

n+1
N |

)∇hΦ
n+1
N −A(

ρn+1

A|∇δ
hϕ

n+1|
)∇hϕ

n+1

)⟩
Ω

+ 2β
⟨
ρ̃n+1,H ′ (Ψn+1

N

)
−H ′ (ρn+1

N

)⟩
Ω
+ 2

√
2α

⟨
ρ̃n+1, ρ̃n+1

⟩
Ω

− 2α
⟨
ρ̃n+1,A|∇δ

hΦ
n+1
N | − A|∇δ

hϕ
n+1|

⟩
Ω

=
1

2ε
⟨ϕ̃n+1, ϕ̃n⟩Ω +

2α

δ
⟨ϕ̃n+1,∆hϕ̃

n⟩Ω + 2α(
√
2− 1)

⟨
ρ̃n+1, ρ̃n

⟩
Ω

+
2

M
(⟨ϕ̃n+1, τnϕ ⟩−1,h + ⟨ρ̃n+1, τnρ ⟩−1,h).

The estimate for the terms associated with the surface diffusion is straightforward:

⟨ϕ̃n+1,∆2
hϕ̃

n+1⟩Ω = ∥∆hϕ̃
n+1∥22, −⟨ϕ̃n+1,∆hϕ̃

n+1⟩Ω = ∥∇hϕ̃
n+1∥22,

−⟨ρ̃n+1,∆hρ̃
n+1⟩Ω = ∥∇hρ̃

n+1∥22.

For the nonlinear inner product, we have the following result

(55) 2β
⟨
ρ̃n+1,H ′ (Ψn+1

N

)
−H ′ (ρn+1

N

)⟩
Ω
≥ 0,

due to the fact that the logarithmic function is an increasing function. Simi-

larly, the convexity of the nonlinear functional g1(ϕ) = h2
∑N

i,j=1(ϕi,j −
1
2 )

4 and

g2(ϕ, ρ) = h2
∑N

i,j=1(ρi,j − A|∇δ
hϕi,j |)2 + (

√
2 − 1)∥ρ∥22 + 1

δ ∥∇hϕ∥22 leads to the
following inequalities:

2

ε

⟨
ϕ̃n+1, (Φn+1

N − 1

2
)3 − (ϕn+1 − 1

2
)3
⟩

Ω

≥ 0,

2α

⟨
ϕ̃n+1,∇h ·

(
A(

Ψn+1
N

A|∇δ
hΦ

n+1
N |

)∇hΦ
n+1
N −A(

ρn+1

A|∇δ
hϕ

n+1|
)∇hϕ

n+1

)⟩
Ω

− 2α(1 +
1

δ
)⟨ϕ̃n+1,∆hϕ̃

n+1⟩Ω

+ 2
√
2α

⟨
ρ̃n+1, ρ̃n+1

⟩
Ω
− 2α

⟨
ρ̃n+1,A|∇δ

hΦ
n+1
N | − A|∇δ

hϕ
n+1|

⟩
Ω
≥ 0.(56)
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Then we arrive at the following estimate:

1

M∆t

(
∥ϕ̃n+1∥2−1,h − ∥ϕ̃n∥2−1,h + ∥ϕ̃n+1 − ϕ̃n∥2−1,h

+ ∥ρ̃n+1∥2−1,h − ∥ρ̃n∥2−1,h + ∥ρ̃n+1 − ρ̃n∥2−1,h

)
+ 2η2∥∆hϕ̃

n+1∥22 + 2ε∥∇hϕ̃
n+1∥22 + 2ξ∥∇hρ̃

n+1∥22

≤ 1

2ε

⟨
ϕ̃n+1, ϕ̃n

⟩
Ω
+

2α

δ

⟨
ϕ̃n+1,∆hϕ̃

n
⟩
Ω
+ 2α

(√
2− 1

) ⟨
ρ̃n+1, ρ̃n

⟩
Ω

+
2

M

⟨
ϕ̃n+1, τnϕ

⟩
−1,h

+
2

M
⟨
ρ̃n+1, τnρ

⟩
−1,h

.

Meanwhile, for the inner product associated with the concave part, the following
inequalities could be derived:

1

2ε

⟨
ϕ̃n+1, ϕ̃n

⟩
Ω
≤ ε

2
∥∇hϕ̃

n+1∥22 +
1

8ε3
∥ϕ̃n∥2−1,h,(57a)

2
(√

2− 1
)
α
⟨
ρ̃n+1, ρ̃n

⟩
Ω
≤ ξ∥∇hρ̃

n+1∥22 +
α2

(√
2− 1

)2
ξ

∥ρ̃n∥2−1,h,

(57b)

2

M

⟨
ϕ̃n+1, τnϕ

⟩
−1,h

≤ 1

M
∥ϕ̃n+1∥2−1,h +

1

M
∥τnϕ ∥2−1,h,(57c)

2

M
⟨
ρ̃n+1, τnρ

⟩
−1,h

≤ 1

M
∥ρ̃n+1∥2−1,h +

1

M
∥τnρ ∥2−1,h,(57d)

−2α

δ

⟨
ϕ̃n+1,∆hϕ̃

n
⟩
Ω
=

2α

δ

⟨
∇hϕ̃

n+1,∇hϕ̃
n
⟩
Ω

≤ ε

2
∥∇hϕ̃

n+1∥22 +
2α2

εδ2
∥∇hϕ̃

n∥22

≤ ε

2
∥∇hϕ̃

n+1∥22 +
α2

εδ2
∥ϕ̃n∥

2
3
−1∥∆hϕ̃

n∥
4
3
2

≤ ε

2
∥∇hϕ̃

n+1∥22 +
8α6

η4ε3δ6
∥ϕ̃n∥2−1,h + η2∥∆hϕ̃

n∥22.(57e)

Therefore, we obtain

1

M∆t

(
∥ϕ̃n+1∥2−1,h − ∥ϕ̃n∥2−1,h + ∥ϕ̃n+1 − ϕ̃n∥2−1,h

+ ∥ρ̃n+1∥2−1,h − ∥ρ̃n∥2−1,h + ∥ρ̃n+1 − ρ̃n∥2−1,h

)
+ 2η2∥∆hϕ̃

n+1∥22 + 2ε∥∇hϕ̃
n+1∥22 + 2ξ∥∇hρ̃

n+1∥22

≤ε
2
∥∇hϕ̃

n+1∥22 +
1

8ε2
∥ϕ̃n∥2−1,h + ξ∥∇hρ̃

n+1∥22 +
α2

(√
2− 1

)2
ξ

∥ρ̃n∥2−1,h

+
1

M
∥ϕ̃n+1∥2−1,h +

1

M
∥τnϕ ∥2−1,h +

1

M
∥ρ̃n+1∥2−1,h +

1

M
∥τnρ ∥2−1,h

+
ε

2
∥∇hϕ̃

n+1∥22 +
8α6

η4ε3δ6
∥ϕ̃n∥2−1,h + η2∥∆hϕ̃

n∥22,(58)
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which in turn gives

1

M∆t

(
∥ϕ̃n+1∥2−1,h − ∥ϕ̃n∥2−1,h + ∥ρ̃n+1∥2−1,h − ∥ρ̃n∥2−1,h

)
+ 2η2∥∆hϕ̃

n+1∥22 + ε∥∇hϕ̃
n+1∥22 + ξ∥∇hρ̃

n+1∥22

≤
(

1

8ε2
+

8α6

η4ε3δ6

)
∥ϕ̃n∥2−1,h +

α2
(√

2− 1
)2

ξ
∥ρ̃n∥2−1,h + η2∥∆hϕ̃

n∥22

+
1

M
∥ϕ̃n+1∥2−1,h +

1

M
∥τnϕ ∥2−1,h +

1

M
∥ρ̃n+1∥2−1,h +

1

M
∥τnρ ∥2−1,h.(59)

Finally, an application of a discrete Gronwall inequality results in the desired con-
vergence estimate:

∥ϕ̃n+1∥−1,h + ∥ρ̃n+1∥−1,h

+
(
M∆t

n+1∑
k=0

(
η2∥∆hϕ̃

k∥22 + ε∥∇hϕ̃
k∥22 + ξ∥∇hρ̃

k∥22
)) 1

2 ≤ C
(
∆t+ h2

)
,

where C > 0 is independent of ∆t, h and n. This completes the proof of Theo-
rem 3.3. �

Remark 3.1. In the application of the discrete Gronwall inequality, we see that

the growth constants for ∥ϕ̃n∥2−1,h and ∥ρ̃n∥2−1,h terms, given by 1
8ε2 + 8α6

η4ε3δ6 and

α2(
√
2−1)

2

ξ , respectively, depend singularly on ε, η, δ and ξ. In turn, it would be

reasonable to require that( 1

8ε2
+

8α6

η4ε3δ6

)
M∆t ≤ 1,

α2
(√

2− 1
)2

ξ
M∆t ≤ 1,

so that a singular convergence constant is avoided. In other words, the time step
size ∆t should be bounded by a given constant, dependent on ε, η, δ and ξ, to
present a singular convergence constant at a theoretical level; this requirement refers
to the condition that “provided that ∆t is sufficiently small” in the statement of
Theorem 3.3. Meanwhile, such a requirement is only associated with a theoretical
analysis, and this requirement may not be necessary in the practical computations
to preserve a numerical convergence.

Remark 3.2. As the regularization parameter δ → 0, the positivity-preserving
property and the energy stability estimates, as established in Theorems 3.1 and
3.2, are still valid. In fact, these two theoretical properties are available even with
δ = 0. On the other hand, the optimal rate convergence estimate, as established in
Theorem 3.3, is only available for a fixed δ > 0, due to the singularly-δ-dependent
convergence constant appearing in (59). In other words, the convergence constant
in Theorem 3.3 depends singularly on δ, and such a convergence estimate would
not be theoretically justified as δ → 0, although the numerical convergence has also
been verified in various numerical experiments.

Remark 3.3. In the proposed numerical scheme (20), we take M1 = M2 = M,
and M(ρ) ≡ 1, for simplicity of presentation. In case of a ρ-dependent mobility
function M(ρ), the positivity-preserving property and energy stability are still valid,
as long as M(ρ) > 0 is available at a point-wise level. Meanwhile, the correspond-
ing convergence analysis and error estimate are expected to face certain theoretical
difficulties in the case of a non-constant mobility function, due to the highly non-
linear and singular nature of the chemical potential. The theoretical justification of
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this convergence analysis will be left to the future works, and some techniques of
rough error estimate and refined error estimate, as reported in a recent work [34]
to analyze the non-constant-mobility Poisson-Nernst-Planck system, may have to
be applied in this future work.

4. Numerical experiments

In this section, we preform a few two-dimensional numerical simulations using
the proposed scheme (20). The mass conservation, energy decay, positivity of the
numerical solution, as well as the numerical accuracy, will be demonstrated in these
computations. To achieve this goal, we will present two numerical examples with
different initial conditions.

4.1. Accuracy test. Here, we take the domain Ω = (0, 8)2, and choose the pa-
rameters as follows

ε = 0.05, α = 0.001, β = 0.02, δ = 0.001,

η = 0.05, ξ = 0.05, M1 = 0.01, M2 = 0.01.

The initial data are set as

(60)


ϕ0(x, y) = 0.5 + 0.2 cos

4πx

8
cos

4πy

8
,

ρ0(x, y) = 0.5 + 0.2 sin
4πx

8
sin

4πy

8
.

It is obvious that the initial data are subject to periodic boundary condition. This
example is designed to study the numerical accuracy in time and space. In order
to test the first order convergence rate in time and second order convergence rate
in space, we use a linear refinement pate, i.e. ∆t = Ch2, C = 0.01. The global
error is expected to be O(∆t) +O(h2) = O(h2) under the discrete L2 norm. Since
an exact solution is not available, we compute the Cauchy difference instead of
directly calculating the numerical error, which is defined as δu = uhf

− If
c (uhc),

where If
c is a bilinear interpolation operator. This requires a relatively coarse

solution, parametrized by hc, and a relatively fine solution, parametrized by hf ,
where hc = 2hf , at the same final time. The discrete L2 norms of Cauchy difference
and the convergence rates are displayed in Table 1. These results confirm the
expected convergence rate.

Table 1. The discrete L2 error and convergence rate at t = 0.1
with initial data (60) and the given parameters.

Grid sizes Error(ϕ) Rate Error(ρ) Rate

16× 16 1.93E–01 – 1.88E–01 –
32× 32 5.07E–02 1.93 4.86E–02 1.95
64× 64 1.28E–02 1.98 1.23E–02 1.99
128× 128 3.21E–03 2.00 3.07E–03 2.00
256× 256 8.04E–04 2.00 7.68E–04 2.00
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(a) ϕ(t = 0) (b) ρ(t = 0)

Figure 1. Snapshots of the phase variables ϕ and ρ, taken at
t = 0 for Example 61.

(a) ϕ(t = 0.5) (b) ρ(t = 0.5)

Figure 2. Snapshots of the phase variables ϕ and ρ, taken at
t = 0.5 for Example 61.

4.2. Spinodal decomposition. In this example, we study the phase separation
phenomenon, so called spinodal decomposition. Usually we describe this process
as a thermal quench, which is considered that an initially homogeneous mixture is
thrust into a two-phase region. In this case, the spinodal decomposition occurs and
leads the system from the homogeneous to two-phase state. We take the domain
as Ω = (0, 2π)2. The initial data are given by

(61)

{
ϕ0(x, y) = 0.4 + 0.1rand(x, y),

ρ0(x, y) = 0.4 + 0.1rand(x, y),
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(a) ϕ(t = 2) (b) ρ(t = 2)

Figure 3. Snapshots of the phase variables ϕ and ρ, taken at
t = 2 for Example 61.

(a) ϕ(t = 10) (b) ρ(t = 10)

Figure 4. Snapshots of the phase variables ϕ and ρ, taken at
t = 10 for Example 61.

where rand(x, y) is a random number in [−1, 1] and has zero mean. The parameters
are chosen as follows

(62) ε = 0.02, α = 0.02, β = 0.02, η = 0.02, δ = 0.01, ξ = 0.02, M = 0.01.

From Figures 1 to 6, we display the snapshots of coarsening dynamics. Initially,
the two fluids are well mixed, and they sooner start to decompose and accumulate.
We observe that a relatively high value of the concentration variable ρ gathers at
the interface between the two different fluids. A monotone decay evolution of the
physical energy is illustrated in Figure 7.
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(a) ϕ(t = 40) (b) ρ(t = 40)

Figure 5. Snapshots of the phase variables ϕ and ρ, taken at
t = 40 for Example 61.

(a) ϕ(t = 700) (b) ρ(t = 700)

Figure 6. Snapshots of the phase variables ϕ and ρ, taken at
t = 700 for Example 61.
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Figure 7. Time evolution of the free energy functional for Exam-
ple 61, which shows a monotone decay.
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5. Conclusions

In this paper, we propose and analyze a first order (in time) accurate, convex
splitting scheme for the binary fluid-surfactant phase field model. The multi-phase
structure and the singularity associated with the 1-Laplacian part makes the whole
system very challenging, at both the theoretical and numerical levels. To overcome
this subtle difficulty, we make an observation for a non-standard convex-concave
decomposition of the free energy. In addition, the singular nature of the logarithmic
function around the limit values prevents the numerical solution approaching these
limit values, so that the positivity property is preserved for the numerical scheme.
As a result, the convex structure of the implicit part guarantees the unique solv-
ability and energy stability of the proposed numerical scheme. Furthermore, an
optimal rate convergence analysis is carefully derived, which is the first such result
in this area. Some numerical experiments are performed to validate the accuracy
and energy stability of the proposed scheme.
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